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Abstract. In this paper we develop some techniques to obtain global hyperbolicity for a

certain class of endomorphisms of (Rp)n with p, n ≥ 2. This kind of endomorphisms are

obtained from vectorial difference equations where the mapping defining these equations satisfy

a circulant condition. In particular, we show that one-parameter families of these quadratic

endomorphisms are hyperbolic for large values of the parameter.
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1 Introduction

A wide number of mathematical and computational models, as well as those
obtained from discretization of partial and ordinary differential equations with
constant time step (Euler’s method) point out directly to the study of the dy-
namics of certain class of delayed difference equations

Xn+k = ϕ(Xk, · · · , Xk+n−1), k ≥ 0 (1)

where Xn is a vector in R
p and ϕ is a mapping defined on a subset of (Rp)n.

By a solution of Eq. (1) we mean a sequence {Xm}m∈N in R
p satisfy-

ing (1) for every integer n ≥ 0. It is clear that for every initial condition
(X0, · · · , Xn−1) ∈ (Rp)n there exists a unique solution of (1) satisfying this
initial condition. On the other hand, the endomorphism

F (X0, · · · , Xn−1) = (X1, · · · , Xn−1, ϕ(X0, · · · , Xn−1)), (2)

is called a delay endomorphism of (Rp)n. The orbit by F of each initial condition
(X0, · · · , Xn−1) ∈ (Rp)n, that is the set {F k(X0, · · · , Xn−1) : k ≥ 0}, describes
the evolution of the states (Xk, · · · , Xk+n−1) = F k(X0, · · · , Xn−1) with k ≥ 0.
Clearly this orbit determines the solution of (1) with such initial condition.
Therefore the analysis of the limit points of the solutions of (1) can be done
studying the asymptotic behavior of the orbits of the discrete dynamical system
given by the delay endomorphism F .
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Example 1. Motivated by different problems in many contexts, such as bio-
logical, economic and social sciences, a considerable number of researchers have
investigated the dynamics given by endomorphisms like (2) for choices of the
function ϕ appropiated to certain problems in many contexts. For example, Z.
Zhou and J. Wu [13] considered the system of difference equations

{
xk = βxk−1 + f(yk−n)
yk = βyk−1 + f(xk−n), k ≥ 0

(3)

to describe some dynamical properties of the interaction of two identical neu-
rons, where β ∈ (0, 1) is the internal decay rate, f is the signal transmission
function and n is the signal transmission delay. Observe that if X = (x, y) ∈ R

2

and

ϕ(X0, · · · , Xn−1) = (ϕ1(X0, · · · , Xn−1), ϕ2(X0, · · · , Xn−1))

= (f(y0) + βxn−1, f(x0) + βyn−1),

then the system (3) is written as

Xn+k = ϕ(Xk, · · · , Xk+n−1), k ≥ 0,

with ϕ = (ϕ1, ϕ2) and satisfying the identity

ϕ2(X0, · · · , Xn−1) = ϕ1(σ(X0), · · · , σ(Xn−1)),

where σ(x, y) = (y, x) for all (x, y) ∈ R
2. This example represent an important

class of delay difference equations which are characterized by the relationship
described between the mapping ϕ and the transformation σ. Actually this
property induces the following definition.

Definition 1. A mapping ϕ : (Rp)n → R
p is circulant if satisfies the condition

ϕi(X1, · · · , Xn) = ϕ1(σ
−i+1(X1), · · · , σ−i+1(Xn)), 1 ≤ i ≤ p (C)

for all X1, · · · , Xn ∈ R
p where σ is the circular linear transformation given by

σ(x1, · · · , xp) = (xp, x1, · · · , xp−1). (4)

If ϕ : (Rp)n → R
p is circulant, then the equation (1) is called circulant difference

equation; and the endomorphism (2) is called circulant delay endomorphism.

Clearly the property that a mapping ϕ : (Rp)n → R
p should verify in order

to satisfies (C) is exactly σ ◦ ϕ = ϕ ◦ σ̃n, where σ̃n : (Rp)n → (Rp)n is given by
σ̃n = (σ, · · · , σ).

The set of circulant delay endomorphisms of order n on R
p will be denoted

by Dp,n. Observe that Dp,1 is the set of endomorphisms F : R
p → R

p commut-
ing with σ; this kind of endomorphisms is known as real cellular automata, see
J. Weitkämper [12] and references therein. Real cellular automata appear in
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different contexts; we mention some of them: Bischi and Gardini [2] utilize real
cellular automata to study global properties of competition models with identi-
cal competitors; they arrive to a first order difference equation Xn+1 = T (Xn)
where Xn = (xn, yn) ∈ R

2 and T is a real cellular automaton. When the dif-
ference equation has superior order, for example Xn+1 = T (Xn−1, Xn), one
arrives to a D2,2 endomorphism whenever T is a circulant delay endomorphism.
H. Smith, see [11], employs these dynamical systems as competitive and co-
operative mappings with chaotic behavior; finally, coupled map lattices with
periodic boundary conditions also are examples of real cellular automata; see
for example K. Kaneko [5], and W. Lin et al. [6], [7].

Example 2. Another example of circulant delay endomorphisms arise naturally
when one consider discretizations, for example with time step one, of differential
equations. In fact, if g : R

p → R
p is any real cellular automaton, then the second

order ordinary differential system

X ′′ = g(X)

can be discretized as a delayed circulant endomorphism of order 2 on R
p as

follows: changing variables to make the second order differential system a first
order differential system, one has X ′ = Y, Y ′ = g(X). The elementary dis-
cretization with time step one then gives

{
X(n + 1) = X(n) + Y (n)
Y (n + 1) = Y (n) + g(X(n));

now making U = X and V = X + Y this system of difference equations is
equivalent to {

U(n + 1) = V (n)
V (n + 1) = 2V (n) − U(n) + g(U(n)),

and this system of difference equations is represented by means of the mapping
F (U, V ) = (V, 2V −U + g(U)), which is clearly a circulant delay endomorphism
because ϕ(U, V ) = 2V − U + g(U) satisfies σ ◦ ϕ = ϕ ◦ σ̃2.

2 Preliminaries and Statement of Results

In this paper we will focus our attention in the description of certain dynamical
properties of some discrete dynamical systems given by circulant delay endomor-
phisms. The first result is related with the ancient problem of find consequences
to the hypothesis of absence of points of fixed points for a mapping. In the next
section we will prove the following result:

Theorem 1. Let F be a C0 circulant delay endomorphism as given by equation
(2). If the function

∑p
i=1 ϕi is strictly convex and F has no fixed points, then

the ω-limit set of any point is empty.
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It is very simple to check that if in example 1 we take f(t) = t2 + µ where
the parameter µ satisfies 4µ > (β − 1)2, then the hypothesis of the theorem
hold; therefore every solution of (3) is divergent.

As final part of this paper we will present a result concerning the hyperbol-
icity of circulant delay endomorphisms, representing, in some sense, a general-
ization of a theorem for delay endomorphisms in [9]:
Let f : R

n → R be a C2 function such that the second derivative with respect to
the first variable is bigger than every other second derivative. If fµ = f −µ and
Fµ(x1, · · · , xn) = (x2, · · · , xn, fµ(x1, · · · , xn)), then for every µ large the point
at ∞ is an attractor of Fµ and the complementary set of the basin of attraction
of ∞ is an expanding Cantor set.

We recall that for a mapping G : R
m → R

m, ∞ is an attractor if there exists
R > 0 such that

• ‖G(x)‖ > R if ‖x‖ ≥ R, and

• ‖Gk(x)‖ → +∞ when k → +∞ for every ‖x‖ > R.

In this case, the basin of attraction of ∞ is the open set

B(G) = {x ∈ R
m : ‖Gk(x)‖ → +∞ if k → +∞}.

Here we will find sufficient conditions imposed on certain quadratic circulant
delay endomorphism which will imply the same conclusion above. Actually, we
are more interested in introduce simple ideas than to arrive to elaborated state-
ments. We will show that the same techniques used in [8] and [9] apply to obtain
hyperbolicity for circulant delayed endomorphisms, treating a very particular
case to avoid technical developements; nevertheless, we need to introduce some
preliminary and notations to establish our second result.

Denote by A`
p the set of linear cellular automata in R

p, that is, the set
of linear transformations of R

p commuting with σ. We will always identify
every linear transformation with its matrix associated in the cannonical basis.
If a = (a1, · · · , ap) ∈ R

p, let aσ be the unique linear cellular automaton in R
p

having a as first row, that is the circulant matrix

aσ =




a
σ(a)

...
σp−1(a)


 =




α1 α2 · · · αp−1 αp

αp α1 · · · αp−2 αp−1

. . . . . . . . . . . . . . . . .
α2 α3 · · · αp α1


 .

This identification defines a linear isomorphism between R
p and A`

p, its inverse
is given by A → At(e1), where At is the transpose of the matrix A and e1 is the
first vector of the cannonical basis of R

p.
Given vectors a1, · · · , an in R

p, µ ∈ R and u = (1, · · · , 1) ∈ R
p, consider the

familiy of endomorphisms Fµ : (Rp)n → (Rp)n given by

Fµ(X1, · · · , Xn) = (X2, · · · , Xn, ϕµ(X1, · · · , Xn)), (5)
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with ϕµ : (Rp)n → R
p defined as

ϕµ(X1, · · · , Xn) = aσ
1X2

1 + · · · + aσ
nX2

n − µu, (6)

where X2 denotes the vector (x2
1, · · · , x2

p) whenever X = (x1, · · · , xp). Clearly
if we make ϕµ = (ϕ1µ, · · · , ϕpµ), then for all 1 ≤ j ≤ p is satisfied

ϕjµ(X1, · · · , Xn) = ϕ1µ(σ−j+1(X1), · · · , σ−j+1(Xn)),

that is, Fµ is an one-parameter family of circulant delay endomorphisms. Under
certain hypothesis on the vectors ai (i = 1, · · · , n) we will show that for everyy
|µ| large, either Fµ satisfies the hypothesis of theorem 1 or it is hyperbolic.

To state these conditions precisely we will first introduce a product on R
p

associated with the operator σ. Given a, b ∈ R
p we define the product a � b as

the vector (AB)t(e1) where A = aσ and B = bσ. Obviously (a � b)σ = aσbσ;
moreover, since the inverse of an invertible linear cellular automaton is also a
linear cellular automaton, then a vector a ∈ R

p is invertible under � if and only
if aσ is invertible. In this case, a−1 = (A−1)t(e1) is the inverse of a, where A−1 is
the inverse of aσ. As A`

p is a linear space and closed under composition, it follows
that R

p endowed with � becomes an algebra with identity e = (1, 0, · · · , 0). This
algebra is commutative since σ is self-adjoint.

In R
p we consider the norm |a| = max1≤i≤p{|αi|} with a = (α1, · · · , αp). If

‖aσ‖ denotes the operator norm associated with the previous norm of R
p, then

it is easy to see that |a| ≤ ‖aσ‖ ≤ p |a|.
Some additional properties of the matrix aσ and � are the following:

(a) It is well known, see [3], that the eigenvalues of aσ are

Σj(a) =

p∑

k=1

αkx
j(k−1)
0 , with 0 ≤ j ≤ p − 1,

where x0 = exp( 2πi
p

). An eigenvector associated to Σj(a) with 0 ≤ j ≤ p − 1,

is (1, xj
0, x

2j
0 , · · · , x

(p−1)j
0 ). In particular the vector u = (1, · · · , 1) ∈ R

p is an
eigenvector of every aσ, its eigenvalue Σ0(a) will be denoted by Σ(a) throughout
all this work.
(b) The function a → Σ(a) defines an algebra homomorphism from R

p to R.
Indeed, the fact that Σ is linear is trivial; and to prove that it is multiplicative
observe that

Σ(a � b)u = (a � b)σ(u) = aσbσ(u) = aσ(Σ(b)u) = Σ(a)Σ(b)u.

(c) To obtain hyperbolicity for the endomorphisms Fµ with ϕµ given in (6) we
need some expansivity property of the matrix aσ. To do this we will introduce
the concept of transversality of a vector a ∈ R

p and the relationship with the
expansivity of the matrix aσ.

Define the transversality, τ(a), of a vector a in R
p as follows:

τ(a) =

{
0 if a is noninvertible
1

|a||a−1| if a is invertible
.
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Observe that τ is a continuous function and invariant under scalar multiplica-
tion, that is τ(λa) = τ(a) for every a ∈ R

p and λ ∈ R. The transversality of
a as defined here is equivalent to the transversality of the set of rows of aσ, as
defined in [8] (cf. definition 1). Moreover, τ(a) is related to the expansiveness
of the linear transformation aσ as follows:

|aσ(V )| ≥ 1

‖(aσ)−1‖ |V | ≥ 1

p |a−1| |V | =
1

p
τ(a) |a| |V |.

(d) Define a partial order in R
p as follows: a > b if each coordinate of a − b is

positive. We claim that:
If a ∈ R

p is invertible under � and Σ(a) > 0, then there exists b ∈ R
p invertible

with Σ(b) > 0 such that a � b−1 > 0.
Indeed, the mapping c → a � c is a linear isomorphism if a is invertible. Since
invertible elements are dense and the condition is open, it follows that there
exists c ∈ R

p invertible such that a � c > 0. Take b = c−1 and observe that by
property (b), Σ(b) = Σ(c−1) = (Σ(c))−1. Then a � c > 0 and Σ(a) > 0 imply
Σ(c) > 0.

Theorem 2. Let Fµ be a one-parameter family of circulant delay endomor-
phisms as defined in equations (5) and (6).

(i) If Σ(aj) > 0 for every 1 ≤ j ≤ n, then the ω-limit set of any point

X̂ ∈ (Rp)n is empty for every µ large and negative.

(ii) Given ε > 0, there exists λ > 0 such that if τ(a1) > ε and a1 > λu, then for
every µ large and positive, Fµ has ∞ as an attractor and the nonwandering
set of Fµ is an expanding Cantor set; moreover, its complementary set is
the basin of attraction of ∞.

There is an obvious symmetric statement when Σ(aj) < 0 for j = 2, · · · , n
and a1 < λu with λ < 0; also is clear the corresponding translation for quadratic
circulant difference equations:

Xn+k = aσ
1X2

k + · · · + aσ
nX2

k+n−1 − µu, k ≥ 0. (7)

3 Proofs of the Theorems

In example 2, let g(x, y) = (ax2 + by2 + c, bx2 + ay2 + c), then it is clear that
F (x1, y1, x2, y2) = (x2, y2, ϕ(x1, y1, x2, y2)) with

ϕ(x1, y1, x2, y2) = 2(x2, y2) − (x1, y1) + g(x1, y1)

is a circulant delay endomorphism. Moreover, if a, b, c > 0, the hypothesis of
theorem 1 are satisfied; indeed the endomorphism F has fixed points if and only

if the system

{
ax2 + by2 + c = 0
bx2 + ay2 + c = 0

has a solution. For the proof of the theorem

1 in this case we observe that the function L(x1, y1, x2, y2) = −x1 −y1 +x2 +y2
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satisfies L ◦ F − L > 0, so the conclusion of the theorem follows. The proof
of the theorem in the general case is based on the construction of a Lyapunov
function L such that L ◦ F − L > 0, which clearly implies the conclusion of the
theorem 1, cf. Lemma 2.1 in F. Bofill et al. [1].

Proof of theorem 1. Let G : R
n → R be the function defined by

G(t1, · · · , tn) =
1

p

p∑

i=1

ϕi(t1u, · · · , tnu),

where u = (1, · · · , 1) ∈ R
p.

Claim: The graph of G does not intersect the diagonal of R
n × R.

In the contrary case, there exists t ∈ R such that G(t, · · · , t) = t. It is clear that
ϕi(tu, · · · , tu) = ϕ1(tu, · · · , tu) for every 1 ≤ i ≤ p. In this way ϕ1(tu, · · · , tu) =
t, but this clearly implies that (tu, · · · , tu) is a fixed point of F , contradicting
the hypothesis.

Observe that G is a strictly convex function due to the strict convexity of∑p
i=1 ϕi. Hence the claim implies that G(t, . . . , t) > t for every t ∈ R. From the

same claim it follows that there exists an hyperplane in R
n×R that contains the

diagonal and does not intersect the graph of G. Furthermore, this hyperplane
is the graph of a function π(t1, · · · , tn) = v1t1 + · · · + vntn, where

∑n
i=1 vi = 1

because the hyperplane contains the diagonal of R
n×R. As G is strictly convex,

we conclude that G − π > 0.
Let L : (Rp)n → R be defined by

L(X1, · · · , Xn) =
n∑

i=1

(v1 + · · · + vi)Σ(Xi) =
n−1∑

i=1

(v1 + · · · + vi)Σ(Xi) + Σ(Xn),

where Σ(X) denotes, as above, the sum of the coordinates of X. An easy
calculation shows that

L(F (X))− L(X) =

p∑

i=1

ϕi(X1, · · · , Xn) − π(Σ(X1), · · · , Σ(Xn)).

Consider the set A = {X ∈ (Rp)n : (LF −L)(X) ≤ 0}. If we prove that A is
empty, then L is a Lyapunov function globally defined and its orbital difference
∆L := LF −L is positive; this implies the theorem. Observe that A is closed by
continuity, is a convex set by the hypothesis on

∑p

i=1 ϕi, and A is σ̃-invariant;
that is, (X1, · · · , Xn) ∈ A implies that (σ(X1), · · · , σ(Xn)) ∈ A.

By contradiction, suppose that there exists X = (X1, · · · , Xn) ∈ A, then

X̃ =
1

p

p∑

i=1

(σi(X1), · · · , σi(Xn)) = (t1u, · · · , tnu)

also belongs to A, by σ̃ invariance and convexity of A; here tj = 1
p
Σ(Xj) for

j = 1, · · · , n. Now this fact implies that

G(t1, . . . , tn) − π(t1, . . . , tn) =
1

p
(L(F (X̃)) − L(X̃)) ≤ 0,
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contradicting G − π > 0. This proves the theorem. �

Remark 1. This theorem was proved for n = 1 in [4] and for p = 1 in [10].

To prove the theorem 2 we will need the following lemma:

Lemma 1. Let b and c be vectors in R
p.

(i) If Σ(b) > 0 and µ is a real number sufficiently large, then the equation
bσX2 + cσX + µu = 0 has no solution X ∈ R

p.

(ii) If b > 0, then bσX2 + cσX + µu > 0 for every X ∈ R
p and µ sufficiently

large.

Proof. (i) Recall that if a ∈ R
p, then aσ(u) = Σ(a)u for u = (1, · · · , 1) ∈ R

p.
So, it is enough to prove that Σ(bσX2 + cσX + µu) > 0 for every X ∈ R

p and
µ sufficiently large.

Observe that for every X ∈ R
p it holds

(bσX2 + cσX + µu)σu = (Σ(b)Σ(X2) + Σ(c)Σ(X) + pµ)u,

and each of the entries of the right side vector is equal to

p∑

k=1

(Σ(b)x2
k + Σ(c)xk + µ), (8)

where, as above, X = (x1, · · · , xp) and X2 = (x2
1, · · · , x2

p). Clearly each term
of the sum (8) is positive for every X ∈ R

p and µ sufficiently large.
(ii) This part follows with the same arguments of part (i). �

Proof of theorem 2. To prove (i) we will show that if µ is sufficiently negative,
then Fµ satisfies the hypothesis of theorem 1, that is, the function

∑p

j=1 ϕjµ is
strictly convex and Fµ has no fixed points, then the assertion in part (i) follows.

It easy to see that

p∑

j=1

ϕjµ(X1, · · · , Xn) = Σ(a1)Σ(X2
1 ) + · · · + Σ(an)Σ(X2

n) − pµ;

moreover, since Σ(aj) > 0 for all 1 ≤ j ≤ p, then the convexity of
∑p

j=1 ϕjµ

follows obviously.
On the other hand, observe that (X1, · · · , Xn) ∈ (Rp)n is a fixed point of

Fµ if and only if X1 = X2 = · · · = Xn = X and (
∑n

j=1 aσ
j )X2 − X − µu = 0.

Since
∑n

j=1 aσ
j = (

∑n
j=1 aj)

σ and Σ(
∑n

j=1 aj) > 0, then from part (i) of lemma
1 it follows that Fµ has no fixed points if µ is sufficiently negative.

To prove (ii) suppose b1, · · · , bn−1 ∈ R
p are given and define L : (Rp)n → R

p

by

L(X1, · · · , Xn) = Xn + bσ
1X2

1 + · · · + bσ
n−1X

2
n−1. (9)
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Denote by X̂ = (X1, · · · , Xn) ∈ (Rp)n. We will show that the orbital difference

∆L(X̂) = L(Fµ(X̂)) − L(X̂) is positive whenever L(X̂) > ρµu and µ is large
enough, where ρ is a small positive number to be determined.

A straightforward computation shows that

∆L(X̂) = (aσ
1 − bσ

1 )X2
1 +

n−1∑

j=2

(aσ
j + bσ

j−1 − bσ
j )X2

j + (aσ
n + bσ

n−1)X
2
n − Xn − µu.

Now suppose that L(X̂) > ρµu. Let θ > ρ−1 and choose b1 > 0 such that
a1 > (θ + 1)b1. Substituting in equation (9), this implies that

(aσ
1 − bσ

1 )X2
1 > θbσ

1X2
1 > θρµu − θ

n−1∑

j=2

bσ
j X2

j − θXn.

So,

∆L(X̂) >

n−1∑

j=2

dσ
j X2

j + (aσ
n − bσ

n−1)X
2
n − (1 + θ)Xn + (ρθ − 1)µu,

where dj = aj + bj−1 − (1 + θ)bj for j = 2, · · · , n − 1.
Claim: The vectors b1, · · · , bn−1 can be chosen in such a way that bi > 0 for all
1 ≤ i ≤ n − 1, an + bn−1 > 0 and dj > 0 for every 2 ≤ j ≤ n − 1.

If we prove this claim and the fact that was assumed above (a1 > (1+ θ)b1),

then lemma 1 part (ii) implies that ∆L(X̂) is positive when L(X̂) > ρµu and µ
sufficiently large.

Begin taking any bn−1 > 0 such that bn−1 > −an. Then observe that for
2 ≤ j ≤ n − 1, the vector dj is positive if and only if bj−1 > −aj + (θ + 1)bj

for all 2 ≤ j ≤ n − 1. Therefore a sequence bj can be chosen by recurrence in
such a way to satisfy all the conditions bj > 0 and dj > 0 for 2 ≤ j ≤ n − 1.

This shows that b1 has to verify b1 > −∑n−2
j=0 (θ + 1)jaj+2. We conclude that

all the choices are possible if a1 > (θ + 1)b1 > −
∑n

j=2(θ + 1)j−1aj , which can
be done by hypothesis provided λ is sufficiently large. This finishes the proof of
the claim.

Take b1, · · · , bn−1 as in the claim. Observe that any point in the preimage,

under Fµ, of {X̂ : L(X̂) > ρµu} is also attracted to ∞ for every µ large enough,
and this preimage is given by

ξµ = {X̂ = (X1, · · · , Xn) : aσ
1X2

1 +

n∑

j=2

(aσ
j + bσ

j−1)X
2
j > (ρ + 1)µu}.

Since (Rp)n \ ξµ is a compact set, it follows that Fµ has ∞ as an attractor when
µ is sufficiently large. In this case, denote by B∞(µ) the basin of attraction of
∞.

Now suppose X̂ /∈ B∞(µ) and µ large enough. As X̂ /∈ ξµ, aσ
1X2

1 ≤ (ρ +

1)µu, which implies that abs(X1) ≤
√

(ρ+1)µ
|a1|

u, where abs(X) = (|x1|, · · · , |xp|)
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whenever X = (x1, · · · , xp) ∈ R
p. On the other hand, as F j

µ(X̂) /∈ B∞(µ) for
all j ≥ 0, then in particular for 2 ≤ j ≤ n it holds

abs(Xj) ≤
√

(ρ + 1)µ

|a1|
u, (10)

and

abs(ϕµ(X̂)) ≤
√

(ρ + 1)µ

|a1|
u.

From this last inequality and equation (6) it follows that

n∑

j=1

aσ
j X2

j − µ.u ≥ −
√

(ρ + 1)µ

|a1|
u.

Therefore,

aσ
1X2

1 ≥
(

µ −
√

(ρ + 1)µ

|a1|

)
u −

n∑

j=2

aσ
j X2

j .

Using the upper bounds obtained in equation (10), it follows that aσ
1X2

1 > Rµu,
where

R = 1 − (ρ + 1)
n∑

j=2

Σ(abs(aj))

|a1|
−
√

ρ + 1

µ|a1|
.

Clearly if the positive number λ is taken sufficiently large, then R > 1 − ρ for
all µ large enough. Putting this together with the lower bound obtained above,
it comes that

µ(u − ρu) ≤ aσ
1X2

1 ≤ µ(u + ρu).

Hence, there exists δ ∈ R
p with abs(δ) ≤ ρ such that aσ

1X2
1 = µ(u + δ). In this

way X2
1 = µ(aσ

1 )−1(u + δ). By property (3) of τ(a1) it follows that

∣∣(aσ
1 )−1(δ)

∣∣ ≤ |δ| p

|a1|τ(a1)
≤ ρ p

|a1|τ(a1)
.

Then from the fact that (aσ
1 )−1 (u) = (Σ(a1))

−1 u, we have that X2
1 ≥ µκu,

where κ = 1
Σ(a1)

− ρ p
|a1|τ(a1)

; that is positive if ρ > 0 is taken such that ρ < ε
p2 ≤

|a1|τ(a1)
Σ(a1)

. This proves that abs(X1) ≥ √
κµu whenever X̂ /∈ B∞. In particular

this implies that the set of critical points of Fµ is contained in B∞(µ). Recall
that the set of critical points of a mapping G : R

m → R
m is the set of those

X ∈ R
m such that the differential of G at X, (DG)X , is noninvertible. It is easy

to see that for Fµ this set coincides with the set of points X̂ = (X1, · · · , Xn) ∈
(Rp)n for which at least one of the coordinates of X1 is zero.

To finish with the proof of the theorem, we will prove that if µ is large enough,
then (DFµ) bX

is an expanding map in the complementary set of B∞(µ).
In general, a sufficient condition for a mapping G : R

m → R
m to be expand-

ing in a compact and invariant set Λ is the following:
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• for every X in Λ and every vector V , |(DG)X(V )| ≥ |V |, and

• there exists a constant γ > 1 and a positive integer k such that for every
point X ∈ Λ and any vector V there exists an integer q, 1 ≤ q ≤ k such
that |(DGq)X(V )| ≥ γ |V |.

Indeed, it is clear that this condition implies that for every X ∈ Λ and any
vector V it holds that |(DGk)X(V )| ≥ γ |V |; this implies that G is expanding
on Λ.

To prove the condition above, observe first that if V̂ = (V1, · · · , Vn) ∈ R
p,

X̂ = (X1, · · · , Xn) /∈ B∞(µ) and µ sufficiently large, then

(DFµ) bX
(V̂ ) = (V2, · · · , Vn, 2aσ

1 X̃1V1 + · · · + 2aσ
nX̃nVn),

where X̃j is the p×p diagonal matrix whose diagonal is the vector Xj . Observe
that

|X̃1V1| ≥
√

κµ |V1| and |X̃jVj | ≤
√

(ρ + 1)µ

|a1|
|Vj |, for all 2 ≤ j ≤ n. (11)

For j = 1, · · · , n, let Tj = |2aσ
j X̃jVj |. It is clear that from property (c) of the

function τ and (11) it follows that

T1 ≥ 2

p
τ(a1) |a1| |X̃1V1| ≥

2

p
ε λ

√
κµ |V1|; (12)

and for each j = 2, · · · , n

Tj ≤ 2 ‖aσ
j ‖ |X̃jVj | ≤ 2 |aj |

√
(ρ + 1)µ

|a1|
|Vj |. (13)

Now take V̂ = (V1, · · · , Vn) ∈ (Rp)n with |V̂ | = 1. If |V1| = 1, it follows that

|(DFµ) bX
(V̂ )| ≥

∣∣∣2aσ
1 X̃1V1 + · · · + 2aσ

nX̃nVn

∣∣∣

≥ |2aσ
1 X̃1V1|

(
1 −

∑n

j=2 |2aσ
j X̃jVj |

|2aσ
1 X̃1V1|

)
= T1

(
1 −

∑n

j=2 Tj

T1

)
.

From (12) and (13), if λ is taken large with respect to |aj | for j = 2, · · · , n, then

|(DFµ) bX
(V̂ )| > 2. On the other hand, if |V1| < 1, then there exists j = 2, · · · , n

such that |Vj | = 1, so |(DFµ) bX
(V̂ )| ≥ 1. In this case, if the norm of the

last R
p-entry of (DFµ) bX

(V̂ ) is less than 2, then take |(DF 2
µ) bX

(V̂ )| and argue
as above. In this way, by recurrence we will find that there exists an integer
q ≤ n such that |(DF q

µ) bX
(V̂ )| ≥ 2. This proves that the sufficient condition for

expansiveness holds for Fµ in the complementary set of B∞(µ) and proves the
theorem. �
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Remark 2. The proof of this theorem is almost the same when the mapping
ϕ has also linear parts because the fundamental hypothesis is the relationship
between the quadratic parts. See also the proof of theorem 2 in [9].

Example 3. In example 2, taking g(x, y) = αx2 + βy2 with α, β > 0 it comes
that a1 = (α, β) and a2(0, 0), so the hypothesis of the theorem are satisfied.

In example 1, if f(t) = t2, then a1 = (0, 1), a2 = a3 = (0, 0) and the
hypothesis of the theorem hold. In this case the Cantor set has four symbols.
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