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Abstract. In this paper we develop some techniques to obtain global hyperbolicity for a

certain class of endomorphisms of R
n called real cellular automata, which are characterized

by the property of commuting with a shift. In particular, we show that one parameter

families of generic quadratic cellular automata in R
n are hyperbolic for large values of the

parameter.
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1 Definitions and statement of results

Several mathematical and computational models, as those that arise from
biological networks, image processing or fluid dynamics by discretizing ordi-
nary differential equations and from the qualitative analysis of the evolution
of spatially extended dynamical systems given by partial differential equa-
tions, take us to the study of a special class of dynamical systems known
as Lattices Dynamical Systems (LDS). Roughly speaking, a LDS is an infi-
nite system of ordinary differential equations (continuous time) or difference
equations (discrete time).

In order to define a discrete time lattice dynamical system, let Ω be a
lattice (with discrete structure) whose elements are called cells (or sites).
For each ω ∈ Ω, let Xω be a topological space (in most applications those
spaces are the same) and M =

Y

ω∈Ω

Xω endowed with the product topology.

A LDS is a pair (M, F ), where F = {Fω}ω∈Ω : M → M is a product
structure preserving mapping, also called the global transition function, that
is F ({xω}ω∈Ω) = {Fω(x)}ω∈Ω. The state-transition in (M, F ) is given by
the difference equation x(n + 1) = F (x(n)), where x(n) = {xω(n)}ω∈Ω ∈ M
for every n ∈ Z+. Cellular Automata (CA) are LDS’s for which Ω = Z

k

(integer k dimensional lattice) and, for every ω ∈ Ω, Xω = X is a finite
set (the alphabet in computation theory). The final ingredient of a CA is
the action of dynamical systems generated by a group of spatial translations
σ : M → M, x = {xω}ω∈Ω 7→ σ(x) = {xω′}ω∈Ω, that is (σ(x))ω = xω′ ,
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where the correspondence ω → ω′ is a bijection of Ω, and every translation
commutes with the global transition function: F ◦ σ = σ ◦F , see [5]. Earlier
definitions of CA was expressed in terms of a block map f [12]. However, it
follows from a result of Hedlund, [4], that both definitions are equivalent.

The natural generalization of CA in terms of the block funtions are the
Coupled Map Lattices (CML). A definition of CML of d-dimensional and p-
component unbounded media is in [9]. The fundamental difference between
CA and CML is that the spaces Xω have an uncountable number of ele-
ments and the lattices Ω also can be uncountable. A dissertation about the
definition of CML can be found in [3].

We will consider CML’s with a finite lattice Ω and Xω = R for every
ω ∈ Ω. In this setting, one can consider the lattice as a finite set of cells
ordered linearly following a circle, subordinate to the action of a group of
transitive permutations. This kind of systems are known as coupled map
lattices with periodic boundary condition, circular cellular automata or real
cellular automata, see [11]. Here we use the last terminology.

In [11] real cellular automata appear to describe bifurcations of coupled
logistic map together a linear influence from the neighbors; real cellular au-
tomata in R

2 are used in [10] to study competitive maps with complicated
dynamics and to describe global properties of competition models with rid-
dling and blowout phenomena in [1]. Real cellular automata appear in [6] and
in [7] for study a synchronization problem in dissipative physical systems, for
a unified framework of this physical phenomenon see [13].

From this time forth, we consider real cellular automata defined on R
n,

that is Ω = {1, 2, . . . , n} and Xω = R, for every ω ∈ Ω. The group of
translations on this lattice are the transitive permutation on n elements, i.e.,
permutation on Ω with only one periodic orbit.

It is well known that, for every transitive permutations τ1 and τ2 of n cells
of Ω, there exists a third one, η, such that τ1η = ητ2. Thus, if F : R

n → R
n

commutes with the linear mapping τ1 : R
n → R

n induced by τ1, there exists
G : R

n → R
n commuting with the linear mapping τ2 : R

n → R
n and linearly

conjugated to F . Therefore, we will consider a real cellular automaton as a
mapping F : R

n → R
n communting with the circular shift on R

n:

σ(x1, . . . , xn) = (xn, x1, . . . , xn−1). (1)

The set of real cellular automata of R
n will be denoted by An. A straight-

forward verification shows that for every cellular automaton F : R
n → R

n

there exists a unique function f : R
n → R such that

F (X) =
(

f(X), f(σ−1(X)), · · · , f(σ−n+1(X))
)

. (2)

In computation theory of cellular automata, the function f is the block func-
tion of the cellular automaton given by (2).

In this paper, we will focus our attention to describe dynamical proper-
ties of some real cellular automata. Our first problem consist in determine
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the consequences of the absence of fixed points for a class of real cellular au-
tomata. This question arose from [2] by proving that every orbit of a plane
orientation preserving homeomorphism without fixed points diverges (that
is, the ω-limit set of every point is empty). In section 3 we will prove the
following result:

Theorem 1. Let f : R
n → R be a function such that

∑n−1
i=0 f ◦ σ−i is a C0

strictly convex function. If the real cellular automaton F given by the block
function f has no fixed points, then the ω-limit set of any point is empty.

We will present, also in section 3, a result concerning with the hyperbolic-
ity of quadratic real cellular automata. It is a simple fact that any quadratic
real cellular automaton in R

n is determined by a unique symmetric linear
transformation A : R

n → R
n, a linear function L : R

n → R and a real
number µ, and it is given by:

Fµ(X) = (fµ(X), fµ(σ−1(X)), · · · , fµ(σ−n+1(X))), (3)

where fµ(X) = f(X)+µ = 〈A(X), X〉+L(X)+µ and 〈·, ·〉 denotes the usual
scalar product of R

n.
In order to state our second result, we denote by S(n) the space of sym-

metric linear transformations of R
n, and L(n) the space of linear functions

of R
n.

For any quadratic function f(X) = 〈A(X), X〉 + L(X) with A ∈ S(n)
and L ∈ L(n), we say that the real cellular automaton Fµ given by (3) is
hyperbolic for every |µ| sufficiently large if there exist µ1 < µ2 such that, for
any µ < µ1 the orbit of every point in R

n is attracted by ∞, and for any
µ > µ2 there exists an invariant compact set C(µ) such that:

1. Every point outside C(µ) has empty ω-limit set, that is, its orbit is
attracted by ∞.

2. There exist constants K > 0 and λ > 1 such that for every X ∈ C(µ),
v ∈ R

n and m ∈ Z+, ‖(DFm
µ )X(v)‖ ≥ Kλm‖v‖.

That is, C(µ) is an expanding Cantor set whose complementary set is the
basin of attraction of ∞.

Once established this concept of hyperbolicity for large enough |µ|, our
second result, about hyperbolicity is stated as follows:

Theorem 2. There exists an open and dense subset S ′(n) ⊂ S(n) such that,
for every A ∈ S ′(n) any quadratic real cellular automaton Fµ as given in
equation (3) is hyperbolic for every |µ| sufficiently large.

To prove theorem 2 we will need some preliminaries on transversality. For
each A ∈ S(n) and 0 ≤ j ≤ n − 1 define the quadric

ξA
j = {X ∈ R

n : 〈Aσ−j(X), σ−j(X)〉 = 1},
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observe that ξA
j = σj(ξA

0 ) for all j = 0, · · · , n − 1.
We will use the following argument to obtain expansivity for Fµ. Suppose

that D is a matrix whose rows are not only linearly independent, but make an
angle bounded away from zero. If in addition, the rows of D have sufficiently
large norms, then D expands any vector. Now, the rows of the differential
matrix of Fµ at a point X consists of the normal vectors to the level sets
of the coordinate functions of Fµ at X. Therefore, the transversality of
{ξA

0 , · · · , ξA
n−1} is an important ingredient, that accompanied with the fact

that the coordinates of Fµ are quadratic and that the nonwandering set of
Fµ is far from the origin for large values of |µ| gives a proof of the result.

The following proposition, which will be proved in section 2, deals with
the transversality of the level sets of the cellular automaton Fµ and it has a
fundamental role in the proof of the theorem 2.

Proposition 1. (a) There exists an open and dense subset Sn−1 of S(n),
such that for every A ∈ Sn−1 the set {ξA

0 , · · · , ξA
n−1} is transverse.

(b) Let S ′(n) be the subset of Sn−1 of transformations A for which the fol-
lowing property is satisfied: 〈σjAσ−j(X), X〉 = 0 for every j, implies X = 0.
Then S ′(n) is open and dense in S(n).

Recall that a set of n codimension-one submanifolds of R
n is said to

be transverse if at each point of intersection of these submanifolds, the set
of normal vectors is linearly independent. In addition, two submanifolds
ξ1, ξ2 ⊂ R

n are transverse at X ∈ ξ1 ∩ ξ2 if R
n is spanned by the tangent

spaces of ξ1 and ξ2 at X. Observe that if ξ0, · · · , ξn−1 are codimension-one
submanifolds of R

n and for every 0 < j < n − 1 the intersection
⋂j

i=0 ξi is
a codimension-(j + 1) submanifold transverse to ξj+1, then {ξ0, · · · , ξn−1} is
transverse.

2 Preliminaries on transversality

This section is dedicated to the proof of proposition 1; its main ingredient
is the use of the well known parametrized transversality theorem, in the
following way. Consider the mapping Φ : S(n) × R

n → R
k given by

Φ(A, X) = (〈A(X), X〉, · · · , 〈Aσ−k+1(X), σ−k+1(X)〉),

with 1 ≤ k ≤ n. Suppose that one can prove that the point u = (1, · · · , 1) in
R

k is a regular value of Φ. By the above mentioned theorem, it follows that
there exists an open and dense set of symmetric linear transformations such
that for every A in this set, the mapping ΦA, defined by ΦA(X) = Φ(A, X),
has the point u as a regular value. This means that for such A and any point
X satisfying 〈Aσ−j+1(X), σ−j+1(X)〉 = 1 for all 1 ≤ j ≤ k, it holds that the
set of normal vectors to the ξA

j is linearly independent, and this is equivalent

to the transversality of {ξA
0 , · · · , ξA

k−1}. The problem is that the point u is



Hyperbolic Real Quadratic Cellular Automata 5

not a regular value of Φ for every A. To obtain this condition one has to
take a careful look at the geometry of the transformation σ and then use an
inductive argument. For this we will need some elementary results. The first
one is a trivial assertion:

Lemma 1. Let H and L be linear subspaces of R
n with dim H + dim L ≤ n.

Then the set of A ∈ S(n) such that A(H) ∩ L = {0} is open and dense.

Now we introduce some notations: for k < n, let Dk be the set of X in
R

n such that {X, σ(X), · · · , σk(X)} is linearly dependent (ld); the minimal
nontrivial invariant subspaces of σ are denoted by ∆0, · · · , ∆Jn/2K, where
JaK denotes the integer part of a; ∆0 is the diagonal of R

n, that is the
eigenspace associated to the eigenvalue 1 of σ; when n is even, ∆n/2 is the
one-dimensional eigenspace associated to the eigenvalue −1 of σ. When n is
odd, we will define ∆n/2 = {0} by convenience; any other ∆j is a plane, and

σ restricted to ∆j is a rotation of angle 2πj
n ; finally, for each 1 ≤ k ≤ n − 1,

Hk = ker(σk − I) and H−k = ker(σk + I), where I is the identity operator
in R

n, and ker(T ) denotes the kernel of the linear operator T .

Lemma 2. Given 1 ≤ k ≤ n − 1, let {v0, · · · vk} ⊂ R
n such that:

1. {v0, · · · vk−1} is linearly independent (li), and

2. {vj , vk} is li for every 0 ≤ j ≤ k − 1.

Then the transformation ϕ = ϕ{v0,··· ,vk} defined in S(n) and given by:

ϕ(V ) = (〈V (v0), v0〉, · · · , 〈V (vk), vk〉) ,

is onto R
k+1.

Proof. First we asume that {v0, · · · , vk} is ld. Let U = {v0, · · · , vk−1} and
[U ] the linear subspace generated by U . For each 0 ≤ i ≤ j ≤ k − 1 and
0 ≤ h, l ≤ k − 1 define

〈Vij(vh), vl〉 =
1

2
(δ(i,j),(h,l) + δ(i,j),(l,h)),

where δ is the Kronecker symbol. It is easy to see that each Vij can be
extended in a unique way to a symmetric linear transformation defined in
[U ], and the set of all Vij with 0 ≤ i ≤ j ≤ k − 1 constitutes a basis for the
space of all symmetric linear transformations of [U ].

Given α = (α0, · · · , αk) ∈ R
k+1, we will find V =

∑

0≤i≤j≤k−1 βijVij in
such a way that ϕ(V ) = α. So begin defining βjj = αj for every 0 ≤ j ≤ k−1.

Since {v0, · · · , vk} is ld, by hypothesis we have vk =
∑k−1

j=0 λjvj , where at
least a pair of numbers λj0 and λj1 are not zero. Choose one of these possible
pairs with j0 < j1 and define

βj0j1 =
1

2
(λj0λj1)

−1



αk −
k−1
∑

j=0

λ2
jαj



 .
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Finally, take βij = 0 for every βij as yet undefined. 〈Vjoj1(vl), vl〉 = 0 for all
l = 0, · · · , k − 1, it follows that 〈V (vl), vl〉 = αl for all l = 0, · · · , k − 1. It
remains to check that 〈V (vk), vk〉 = αk. Indeed, observe that:

〈V (vk), vk〉 =

k−1
∑

i≤j=0

βij〈Vij(vk), vk〉 =

k−1
∑

i≤j=0

βij

k−1
∑

p,q=0

λpλq〈Vij(vp), vq〉

=

k−1
∑

i=1

αiλ
2
i + βj0j1

k−1
∑

p,q=0

λpλq〈Vj0j1(vp), vq〉

=
k−1
∑

i=1

αiλ
2
i + βj0j1λj0λj1(〈Vj0j1(vj0), vj1〉 + 〈Vj0j1(vj1), vj0〉)

=

k−1
∑

i=1

αiλ
2
i + 2βj0j1λj0λj1 = αk.

When {v0, · · · , vk} is li, we proceed with the same arguments and substituting
U = {v0, · · · , vk−1} by U = {v0, · · · , vk}.

Next define Lk as the set of X ∈ R
n such that {X, σ(X), · · · , σk(X)}

satisfies the hypothesis of lemma 2.

Lemma 3. For every 0 ≤ k ≤ n − 1 the following properties are satisfied:

(a) Dk ⊂ Dk−1 ∪ Lk ∪ Hk ∪ H−k.

(b) Dk is the union of a finite number of subspaces each of dimension at
most k.

(c) dim H±k ≤ min{k, Jn/2K}.
Proof. Let X ∈ Dk. If X /∈ Dk−1, then {X, · · · , σk−1(X)} is li. If, in addi-
tion, X /∈ Hk∪H−k, then {X, σk(X)} is li (because σk is orthogonal and can
only have 1 and −1 as real eigenvalues). Finally observe that {σj(X), σk(X)}
is also li for every 1 ≤ j ≤ k − 1, otherwise {X, · · · , σk−1(X)} is ld. So
{X, · · · , σk(X)} satisfies the hypothesis of lemma 2, that is, X ∈ Lk. This
proves part (a).

For the proof of (b) we claim first that the set of invariant subspaces
of σ is finite. Indeed, this holds for any linear transformation having no
invariant subspace of dimension at least two on which it is a multiple of the
identity, and this trivially holds for σ. This proves the claim. It is clear that
Dk is invariant under σ; moreover, if X ∈ Dk, then the subspace generated
by {X, · · · , σk−1(X)} is invariant under σ, has dimension at most k, and is
contained in Dk. It follows that Dk is union of invariant subspaces of σ, each
one of dimension at most k. This proves (b).

To prove (c) observe that

Hk = {X = (x1, · · · , xn) ∈ R
n : (xn−k+1, · · · , xn, x1, · · · , xn−k) = X}.
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We will show that the dimension of Hk is the great common divisor between
k and n. The definition of Hk given above constitutes a set of n equations
and one has to determine the maximal number of independent equations
contained in it to obtain the dimension of Hk. For any integer t, define xj =
xj−tn when j is an integer belonging to the interval (tn, (t + 1)n]. Observe
that the equations can now be expressed as: xj+k = xj , for every 1 ≤ j ≤ n.
Then note that the number of independent equations is determined by the
permutation {1, · · · , n} → {k, k + 1, · · · , n − k + 1} in the following way:

1. the cycles of this permutation have all the same length, say l; so n = lm
where m is the number of cycles;

2. each cycle of length l represents l − 1 independent equations; and

3. different cycles involve different variables.

In conclusion, the number of independent equations is exactly (l − 1)m, and
so the dimension of Hk is equal to n− (l − 1)m = m. To find m, put k = rq
and n = rp, where q and p are mutually prime numbers. It is easy to see that
the length of a cycle is always p (because p is the smaller positive number t
such that kt is a multiple of n). It follows that the dimension of Hk is r. The
conclusion of the assertion of the lemma involving Hk follows. The proof for
H−k is almost the same.

Lemma 4. Let S̃(n) be the subset of S(n) such that A ∈ S̃ implies

(a) A(∆0 ∪ ∆n/2) ∩ Dn−1 = {0};

(b) for every 1 ≤ k ≤ n, A(Hk) ∩ H±k = {0}; and

(c) for every 1 ≤ k ≤ n, A(Hk) ∩ H⊥
k = {0} = A(H−k) ∩ H⊥

−k, where H⊥

denotes the orthogonal complement of H.

Then S̃(n) is open and dense and for every A ∈ S̃(n), the intersection of
ξA
0 , · · · , ξA

n−1 with ∆0 is not empty and transversal as well as the intersection
of ξA

0 , · · · , ξA
n−1 with ∆n/2 if n is even.

Proof. That the set S̃(n) is open and dense is a consequence of lemma 1 and
parts (b) and (c) of lemma 3. Take X ∈ ∆0 such that 〈A(X), X〉 = 1, that
is, X ∈ ξA

0 . As σ(X) = X, it follows that X ∈ ξA
j for every j. It remains

to show that this intersection is transverse. Indeed, by the first hypothesis
on S̃(n) we can conclude that {A(X), · · ·σn−1A(X)} is li, or, which is the
same, {ξA

0 , · · · , ξA
n−1} is transverse at X.

Proof of Proposition 1. As was explained at the beginning of this section,
the transversality theorem cannot be applied directly. For this reason, to
prove part (a) of proposition 1, an inductive argument will be needed: at each
step k the transversality of {ξA

0 , · · · , ξA
n−1} is obtained and its intersection

(of codimension k) is almost taken off Dk−1 (union of subspaces of dimension
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≤ k). The precise formulation of the induction hypothesis is:
Let 1 ≤ k ≤ n. There exists an open and dense set Sk−1 ⊂ S̃(n) such that,
for every A ∈ Sk−1 it holds that:

(ak−1) {ξA
0 , · · · , ξA

k−1} is transversal; and

(bk−1) (
⋂k−1

j=0 ξA
j ) ∩ Dk−1 ⊂ (∆0 ∪ ∆n/2).

For k = 1 this is obvious since we can take A an invertible linear transforma-
tion (open and dense condition). Then ξA

0 is a codimension-one submanifold
which does not intersect D0 = {0}.

Suppose that (ak−1) and (bk−1) hold. We will first prove that there exists
an open and dense subset S0

k−1 of Sk−1 such that, for every A ∈ S0
k−1, (ak)

is satisfied. To do this, define Φ : Sk−1 × R
n → R

k+1 as follows:

Φ(A, X) =
(

〈A(X), X〉, · · · , 〈Aσ−k(X), σ−k(X)〉
)

.

We will prove now that (1, · · · , 1) ∈ R
k+1 is a regular value of Φ. So let A

and X be such that Φ(A, X) = (1, · · · , 1), and observe that the differential
of Φ at (A, X) satisfies, for V ∈ S(n) and a vector v ∈ R

n:

(DΦ)(A,X)(V, v) =
(

〈2A(X), v〉, · · · , 〈2σkAσ−k(X), v〉
)

+
(

〈V (X), X〉, · · · , +〈V σk(X), σk(X)〉
)

.

To prove that DΦ(A,X) is onto, take any α = (α0, · · · , αk) ∈ R
k+1. If X ∈ Lk,

choose v = 0, then (DΦ)(A,X)(V, v) = ϕ{X,··· ,σ−k(X)}(V ). From lemma 2 it
follows that if X ∈ Lk, then as ϕ as DΦ(A,X) are onto. Suppose now that
X /∈ Lk, therefore X ∈ Dk. If X ∈ Dk−1, then the hypothesis (bk−1) implies
that X ∈ ∆0 ∪∆n/2 and lemma 4 implies that this intersection is transverse,
and consequently (A, X) is a regular point of Φ. It remains to consider the
case when X ∈ Dk \ (Dk−1 ∪ Lk). By part (a) of lemma 3 it is known that
X ∈ H±k = Hk ∪ H−k. Suppose first that X ∈ Hk. By lemma 3 part
(c), lemma 1 and lemma 4, we know that A(Hk) ∩ H±k = {0}. It follows
that A(X), σkA(X) are linearly independent, and as σ−k(X) = X, we can
choose the vector v such that 2〈A(X), v〉 = α0 and 2〈σkAσ−k(X), v〉 = αk.
Next observe that, as X /∈ Dk−1, then X ∈ Lk−1, and so there exists a
transformation V such that 〈V (X), X〉 = 0, and for every 1 ≤ j ≤ k − 1 it
holds

〈V σ−j(X), σ−j(X)〉 = αj − 2〈σjAσ−j(X), v〉.
It is clear that with this choice, v and V satisfy:

〈2σjAσ−j(X), v〉 + 〈V σ−j(X), σ−j(X)〉 = αj , (4)

for every 0 ≤ j ≤ k−1. As 〈V (X), X〉 = 0 and σk(X) = X, it follows that the
equation (4) for j = k, is also satisfied. In conclusion, we have proved that
(1, · · · , 1) is a regular value of Φ. Hence, there exists a dense subset S0

k−1
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of transformations A for which the mapping ΦA, ΦA(X) = Φ(A, X), has
(1, · · · , 1) as a regular value. This subset is clearly open, and the regularity
of (1, · · · , 1) for ΦA is equivalent to the transversality of the sets ξA

0 , · · · , ξA
k .

So we have proved (ak) in the case that X ∈ Hk. The case X ∈ H−k is
treated similarly. This proves (ak).

For the proof of (bk), consider a subspace H ⊂ Dk. By lemma 3, the
dimension of H is h ≤ k. Let M : R

n → R
n−h be a linear transformation

such that H = ker(M), so the rank of M is n − h. Consider the mapping

Φ : S0
k−1 ×

(

R
n \
(

∆0 ∪ ∆n/2 ∪ Hk ∪ H−k

))

→ R
k+1 × R

n−h

given by:

Φ(A, X) =
(

〈A(X), X〉, · · · , 〈σkAσ−k(X), X〉, M(X)
)

. (5)

We will prove that the point (1̄, 0̄) ∈ R
k+1 × R

n−h, with 1̄ = (1, · · · , 1) and
0̄ = (0, · · · , 0), is a regular value of Φ. So let Φ(A, X) = (1̄, 0̄). Then for
V ∈ S(n) and v ∈ R

n

(DΦ)(A,X)(V, v) =
(

〈2A(X), v〉, · · · , 〈2σkAσ−k(X), v〉, M(v)
)

+
(

〈V (X), X〉, · · · , 〈V σ−k(X), σ−k(X)〉, 0
)

.

Let ᾱ = (α0, · · · , αk), and β̄ ∈ R
n−h. As Φ(A, X) = (1̄, 0̄), X ∈ ⋂k

j=0 ξA
j , in

particular the hypothesis (bk−1) implies that X /∈ Dk−1 (recall that ∆0∪∆n/2

were taken off the domain of Φ). Also H±k were taken off the domain of Φ,
so it follows by lemma 3 part (a), that X ∈ Lk. On the other hand, observe
that the rank of M is equal to n − h, so there exists a vector v ∈ R

n such
that M(v) = β̄. Now as X ∈ Lk, we can apply lemma 2 to conclude that
there exists a symmetric transformation V such that for every 0 ≤ j ≤ k
it holds that 〈V σ−j(X), σ−j(X)〉 = αj − 2〈σjAσ−j(X), v〉. It is clear now
that (DΦ)(A,X) is onto, so (1̄, 0̄) is a regular value of Φ. This implies that
there exists a dense open set S00

k−1 ⊂ S0
k−1, such that every A there satisfies

that
⋂k

j=0 ξA
j is transversal to H \ (∆0 ∪ ∆n/2 ∪ H±k). The first one has

codimension k + 1, while the second one is a submanifold with dimension
h ≤ k, so the transversality implies that the intersection is empty. By lemma
3, Dk is a finite union of subspaces like H, therefore

k
⋂

j=0

ξA
j ∩

(

Dk \ (∆0 ∪ ∆n/2 ∪ H±k)
)

= ∅.

To conclude the proof of (bk), it remains to find an open dense subset of S00
k−1

such that for any A in this set it holds that:

k
⋂

j=0

ξA
j ∩ H±k ⊂ ∆0 ∪ ∆n/2.
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To prove this, consider the same function Φ as defined in equation (5), but
now the domain of Φ is R

n \ (∆0 ∪ ∆n/2), and the linear transformation M
now satisfies M(v) = 0 iff v ∈ Hk. The rows of M are linearly independent
and constitute a basis of H⊥

k (the orthogonal complement of Hk). Suppose
that Φ(A, X) = (1̄, 0̄), which implies X ∈ Hk, and so A(X) /∈ H±k by lemma
4 and the fact that A ∈ S̃. It follows that {A(X), σ−kA(X)} is li. Another
application of lemma 4 permits to affirm that A(X) /∈ H⊥

k , and so (as H⊥
k is

invariant under σk) it follows that A(X), σkA(X), and the rows of M , form
a li set with 2 + n − h elements. Then there exists a vector v such that

〈2A(X), v〉 = α0, 〈2σkA(X), v〉 = αk and M(v) = β̄.

Since X /∈ Dk−1 we can choose V satisfying

〈V (X), X〉 = 0 and 〈V σ−j(X), σ−j(X)〉 = αj − 2〈σjAσ−j(X), v〉,

for 1 ≤ j ≤ k−1. Then (DΦ)(A,x) is onto, which implies that the codimension-

(k + 1) submanifold
⋂k

j=0 ξA
j is transversal to Hk \ (∆0 ∪ ∆n/2). As the

dim Hk ≤ min {k, Jn/2K} it follows that Hk \ (∆0 ∪ ∆n/2) does not intersect
⋂k

j=0 ξA
j . The proof for H−k is similar, so we have proved (bk), completing

the induction and the proof of the first part of the proposition 1.
To prove parte (b) of proposition 1 first observe that this condition is

open. For every j = 0, · · · , n − 1, let

τA
j = {X ∈ R

n : 〈Aσ−j(X), σ−j(X)〉 = 0}.

The proof is again by induction. Now the induction hypothesis is:
There exists an open and dense set Tk−1 ⊂ S(n) such that for every A ∈ Tk−1

it holds:

(ak−1)

k−1
⋂

j=0

τA
j ∩ Sn−1 is a codimension-k submanifold of the sphere

Sn−1.

(bk−1)

k−1
⋂

j=0

τA
j ∩ (Dk \ {0}) = ∅.

Fix A ∈ S(n); let X1, · · · , Xn be eigenvectors of A and λ1, · · · , λn its
eigenvalues. Let V =

∑n
j=0 αjXj . Observe that V ∈ τA

0 if and only if
∑n

j=0 λjα
2
j = 0. It is clear that without changing the vectors Xj one can

perturb the eigenvalues λj , j = 0, · · · , n, in such a way to obtain all the values
∑

j λjα
2
j 6= 0. This can be done for V generating ∆0 and for V generating

∆n/2. As D1 = ∆0 ∪ ∆n/2, this implies (b0). Clearly (a0) holds for every A
with eigenvalues different from zero.

Now we prove that (bk−1) implies (ak). Define Φ : Tk−1 ×R
k → R

k+1 by

Φ(A, X) = (〈A(X), X〉, · · · , 〈Aσ−k(X), σ−k(X)〉, ‖x‖2).
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Let A, X be such that Φ(A, X) = (0̄, 1), where 0̄ = (0, . . . , 0) ∈ R
k+1. This

condition is equivalent to X ∈ ⋂k
j=0 τA

j ∩Sn−1, hence X /∈ Dk. We will prove

that (0̄, 1) is a regular value of Φ. It is easy to see that for V ∈ S(n) and
v ∈ R

n

(DΦ)(A,X)(V, v) =
(

〈2A(X), v〉, · · · , 〈2σ−1+kAσk−1(X), v〉, 〈2X, v〉
)

+
(

〈V (X), X〉, · · · , 〈V σ−k(X), σ−k(X)〉, 0
)

.

To prove that (DΦ)(A,X) is onto, take any (α0, . . . , αk, β) ∈ R
k+2. Con-

sider a vector v = βX
2‖X‖2 , so that 2〈X, v〉 = β. Since X /∈ Dk we can

apply again lemma 2 to obtain a symmetric transformation V such that
〈V σj(X), σj(X)〉 = αj − 2〈Aσj(X), σj(v)〉 for every j = 0, . . . , k − 1. This

proves that DΦ(A,x) is onto. Then it follows that
⋂k

j=0 τA
j ∩ Sn−1 is a sub-

manifold of Sn−1 with codimension at least k + 1 in Sn−1. This proves (ak).
To prove (bk), define Φ : (Tk−1∩S̃(n))×R

k+1 → R
k+1×R

n−h, as in equation
(5), where, as before, M is a linear transformation which kernel is H, a sub-
space of dimension h ≤ k contained in Dk. Observe that the domain of Φ was
taken contained in S̃(n). Such condition implies that A(H±k) ∩ H⊥

±k = {0}.
So the proof that (DΦ)(A,X) is onto follows as in the final part of the proof of
(bk) in the first part of this proposition. In conclusion, the intersection of all
the τA

j with Sn−1 is empty. So, the proof of proposition 1 is complete.

3 Proof of main results

Proof of Theorem 1. Let f : R
n → R be a function satisfying the hypoth-

esis of theorem 1 and F the real cellular automaton generated by f .
Let C = {X ∈ R

n :
∑n−1

i=0 f ◦ σ−i(X) ≤ Σ(X)}, where Σ(X) denotes the
sum of the coordinates of X. Observe that:

1. σ(C) = C; this is obvious since σ−n is the identity map.

2. C is convex: by hypothesis the function X → Σ(f ◦ σ−i(X)) is convex
and Σ is linear.

3. C is closed by continuity of X → Σ(F (X))− Σ(X).

4. ∂C = {X ∈ R
n : Σ(F (X)) = Σ(X)}, the boundary of C, does not

intersect the diagonal of R
n. In the contrary case, there exists a real

number t such that tu = (t, · · · , t) ∈ R
n belongs to ∂C. As tu is fixed

by σ, it follows that f(tu) = t. Then F (tu) = tu, contradicting the
hypothesis of abscence of fixed points for F .

5. C does not intersect the diagonal of R
n: Indeed, the function φ : R → R

given by φ(t) = f(tu) − t is strictly convex. If there exists a point
t0u ∈ C, then φ(t0) < 0. By the strict convexity of φ there exists
points t1 with φ(t1) > 0. This means that there exists at least a point
where φ vanishes, contradicting the previous item.
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We conclude that C is empty: by contradiction, if a point X ∈ C, then
σi(X) belongs to C for every i by item 1. Then 1

n

∑n−1
i=0 σi(X) also belongs

to C by item 2, but this point belongs to the diagonal, so this contradicts the
previous item. It follows that Σ(F (X))− Σ(X) > 0; this implies that Σ is a
Lyapunov function positively defined, so ‖F m(X)‖ → +∞ when m → +∞,
consequently the ω-limit set of any point is empty.

Proof of Theorem 2. Let S ′(n) be the open and dense set obtained in
proposition 1. Take A ∈ S ′(n) and L ∈ L(n). Let Fµ be the quadratic real
cellular automaton given by equation (3). We will prove that Fµ is hyperbolic
for every |µ| sufficiently large. From part (b) of proposition 1 we have that
⋂n−1

j=0 {X : 〈Aσ−j(X), σ−j(X)〉 = 0} = {0}, then there exists δ > 0 such that

n−1
⋂

j=0

{X : |〈Aσ−j(X), σ−j(X)〉| < δ} ∩ Sn−1 = ∅,

where Sn−1 is the (n − 1)-dimensional sphere. So, for every X ∈ R
n \ {0}

there exists j ∈ {0, · · · , n − 1} such that |〈Aσ−j(X), σ−j(X)〉| ≥ δ‖X‖2.
Then it follows the existence of a constant δ0 > 0 such that

‖Fµ(X)‖ ≥ δ0‖X‖2 − µ. (6)

Here comes the argument showing that the nonwandering set of Fµ is located

at a distance of the order
√

|µ| from the origin whenever |µ| is large. We
claim that there are constants r2 > r1 > 0 such that:

(i) ‖Fm
µ (X)‖ → +∞ when m → +∞ for all X /∈ D(r2

√

|µ|), where D(r)
denotes the open disk centered at the origin and radius r; and

(ii) if |µ| is large and X ∈ D(r1

√

|µ|), then Fµ(X) /∈ D(r2

√

|µ|).

In fact, from (6) and taking r2 sufficiently large (r2 > 3
δ0

is enough) it follows

that ‖Fµ(X)‖ > 2‖X‖ for all X /∈ D(r2

√

|µ|), which implies (i). On the
other hand, since Fµ = (f0 − µ, · · · , fn−1 − µ) with |fi(X)| ≤ K1‖X‖2 + K2

for some positive constants, then for all X ∈ R
n we have

‖Fµ(X)‖ ≥ max
0≤j≤n−1

|fj(X) − µ| ≥ |µ| − K1‖X‖2 − K2.

Hence, if X ∈ D(r1

√

|µ|) and 1
K1

> r2
1, the last inequality implies

‖Fµ(X)‖ ≥ |µ|(1 − K1r
2
1) − K2,

which is bigger than r2

√

|µ| for all |µ| sufficiently large. This proves (ii).
Observe that (i) implies that ∞ is an attractor for Fµ, that is, there exists

R > 0 such that ‖X‖ > R is an invariant region, and ‖F m
µ (X)‖ → +∞ when

m → +∞, for all ‖X‖ > R. If B∞(µ) denotes the basin of attraction of ∞,
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i.e. the set of X ∈ R
n such that ‖F m

µ (X)‖ → +∞ when m → +∞, then
from the claim it follows that

R
n \ B∞(µ) ⊂ D(r2

√

|µ|) \ D(r1

√

|µ|)

for all |µ| sufficiently large. Moreover, from the invariance of R
n \ B∞(µ) it

can be proved that B∞(µ) contains the complementary set of points satisfying

r1

√

|µ| ≤ |〈Aσ−j(X), σ−j(X)〉 + L(X) + µ| ≤ r2

√

|µ|

for every 0 ≤ j ≤ n − 1 and all |µ| large enough. Now it follows that there
exist constants s1, s2 such that for every X /∈ B∞(µ) and Y = X√

|µ|
it holds

that

|〈Aσ−j(Y ), σ−j(Y )〉| ∈
[

1 − s1
√

|µ|
, 1 +

s2
√

|µ|

]

(7)

for all |µ| sufficiently large. Observe that no point Y ∈ R
n satisfies (7) if |µ|

is large and
⋂n−1

j=0 ξA
j = ∅. Therefore we conclude in this case that the basin

of attraction of ∞ is R
n.

Now we introduce a quantified notion of tranversality, which together with
proposition 1 will be used to obtain expansivity of Fµ. First we introduce
some notation. For a linear subspace V of R

n, P⊥
V denotes the orthogonal

projection of R
n onto V ; recall that [U ] denotes the linear subspace generated

by U ⊂ R
n.

Definition 1. Given ε > 0 we say that {v1, · · · , vn} ⊂ R
n \ {0} is ε-

transverse if for each Vi = [{v1, · · · , vn} \ {vi}] with i = 1, · · · , n, it holds
that ‖P⊥

Vi
(vi)‖ ≥ ε‖vi‖.

This notion is associated with the angle between the vector vi and the
subspace Vi for each i = 1, · · · , n. Moreover, the concept of ε-transversality
can be extended to the intersection of n codimension-one manifolds, saying
that the set {ξj : 0 ≤ j ≤ n − 1} is ε-transverse if the set of normal vectors
at any point of intersection is ε-transverse.

We will use the following criterion for expansiveness using ε-transversality.

Lemma 5 (cf. Lemma 3, [8]). Given ε > 0 there exists a constant c(ε) > 0
such that if the set of unit vectors {v1, · · · , vn} ⊂ R

n is ε-transverse, then
the matrix A whose rows are the vectors v1, · · · , vn is c(ε)-expanding:

‖A(v)‖ ≥ c(ε)‖v‖ for every v ∈ R
n.

By proposition 1 the set {ξA
j : j = 0, · · · , n−1} is ε-transverse for some ε.

This implies that {2σjAσ−j(Z) : j = 0, · · · , n − 1} is ε-transverse for every

point Z ∈ ⋂n−1
j=0 ξA

j . Using continuity arguments, there exists δ1 > 0 such
that if dj ∈ (1 − δ1, 1 + δ1), then {ξj(dj) : j = 0, · · · , n − 1} is ε

2 -transverse,

where ξj(dj) = {Z : 〈σjAσ−j(Z), Z〉 = dj}. Consider X /∈ B∞(µ), Y = X√
|µ|
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and hj = 〈σjAσ−j(Y ), Y 〉. From (7) we have that hj ∈ (1 − δ1, 1 + δ1) for
all j = 0, · · · , n − 1 and |µ| large enough. So, {ξj(hj) : j = 0, · · · , n − 1} is
ε
2 -transverse; in particular {2σjAσ−j(Y ) : j = 0, · · · , n − 1} is ε

2 -transverse

because Y ∈ ⋂n−1
j=0 ξj(hj) and 2σjAσ−j(Y ) is normal to ξj(hj) at Y for all

j = 0, · · · , n − 1.
Finally, and following the sketch of proof indicated after the statement of

the teorema 2 in section 1, observe that (DFµ)X is the matrix whose (j+1)-th
row (j = 0, · · · , n − 1) is the vector

wj = 2σjAσ−j(X) + Lσ−j =
√

|µ|
(

2σjAσ−j(Y ) +
1

√

|µ|
Lσ−j

)

.

If |µ| is large, the vector vj = 2σjAσ−j(Y )+ 1√
|µ|

Lσ−j is a small perturbation

of 2σjAσ−j(Y ) for all j = 0, · · · , n − 1, it comes that {v0, · · · , vn−1} is ε
4 -

transverse. In addition, as

(DFµ)X(u) =







〈w0, u〉
...

〈wn−1, u〉






=
√

|µ|







‖v0‖〈 v0

‖v0‖
, u〉

...
‖vn−1‖〈 vn−1

‖vn−1‖
, u〉







it follows that

‖(DFµ)X(u)‖ ≥
√

|µ| min
0≤j≤n−1

‖vj‖c(ε/4)‖u‖, (8)

where c(ε/4) is the constant obtained from lemma 5 applied to the matrix
with rows v0

‖v0‖
, · · · , vn−1

‖vn−1‖
. Clearly (8) implies that (DFµ)X expands vectors

at a rate of
√

|µ|min0≤j≤n−1 ‖vj‖c(ε/4), which can be taken greater than 1
(if |µ| is large); so the proof of theorem 2 is complete.
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