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Abstract

In the present paper we show that in sectionally dissipative region of the Limit set (noted with
L(f,1)) either hold that f can be C!-approximated by a diffeomorphism exhibiting a sectional
dissipative homoclinic tangency or by another one such that L(f,1) is a hyperbolic compact set.
The prof goes extending some results on dominated splitting obtained in compact surfaces.

1 Introduction and statements.

For a long time (mainly after Poincaré) it has been a goal of the theory of dynamical systems to
describe the dynamics from the generic viewpoint, that is, to describe the dynamics of “big sets”
(residual, dense, etc.) within the space of all dynamical systems.

It was briefly thought in the sixties that this could be realized by the so-called hyperbolic ones:
systems with the assumption that the tangent bundle over the limit set L(f) (the closure of the
accumulations points of any orbit) splits into two complementary subbundles TrpM = E* ® E* so
that vectors in E* (respectively E*) are uniformly forward (respectively backward) contracted by the
tangent map Df. Under this assumption, it was proved that the limit set decomposes into a finite
number of disjoint transitive sets such that the asymptotic behavior of any orbit is described by the
dynamics in the trajectories in those finite transitive sets (see [9]).

Uniform hyperbolicity was soon realized to be a less universal property than was initially thought:
In fact, it was through the seminal works of Newhouse (see [N1], [N2], [N3]) that hyperbolicity was
shown not to be dense in the space of C” diffeomorphisms (r > 2) of compact surfaces. The under-
lying mechanism here was the presence of a homoclinic tangency: non-transversal intersection of the
stable and unstable manifold of a periodic point. The unfolding of a homoclinic tangencies leads to
the nowadays so-called “Newhouse phenomena”, i.e., residual subsets of diffeomorphisms displaying
infinitely many periodic attractors. In particular, this shows that the unfolding of tangencies “destroys
in a robust way” transitive sets.

In few words, for surface diffeomorphisms, homolicinic tangencies can be understood as an ob-
struction to hyperbolicity and in particular as an obstruction to decompose the Limit set into a finite
number of transitive isolated sets. In this direction, around the early 80’s, Palis conjectured (see [P]
and [PT]) that homoclinic tangencies are very common in the complement of the hyperbolic systems:



Any C" diffeomorphism on a surface can be C" approximated by one which is hyperbolic or by one
exhibiting a homoclinic tangency.

The above conjecture was proved to be true for the case of surfaces and the C' topology (see
[PS1)).

Theorem ([PS1]): Let M? be a surface. Every f € Dif f*(M?) can be C'-approzimated either by a
diffeomorphism exhibiting a homoclinic tangency or by an Axiom A diffeomorphism.

In higher dimension, robust transitive sets (sets that remains transitive after perturbation of the
dynamic), can coexist with the presence of a homoclinic tangency (see for instances the examples
showed in [BV] of robust transitive systems). In particular, it follows that tangencies are not the
universal obstruction to decompose the Limit set in a finite number of transitive isolated sets.

However, it was shown in [PV] that for smooth diffecomorphisms on manifold with dimension
larger than two, the unfold of tangencies associated to sectional dissipative periodic points (tangencies
associated to a periodic point such that the modulus of the product of any pair of eigenvalues is smaller
than one) leads to the same Newhouse phenomena that holds in dimension two.

Regarding the previous comments, it is naturally to ask if it holds that any diffeomorphisms on
o finite dimensional manifold can be either C"—approximated by another one such its dynamic is
hyperbolic restricted to a sectionally dissipative regions of the limit set, or it is C"—approzimated by a
system exhibiting a sectional dissipative homoclinic tangency.

To be precise, let us introduce some definitions.

A hyperbolic diffeomorphism means a diffeomorphism such that its limit set is hyperbolic. The
limit set of f is the closure of the forward and backward accumulation points of all orbits and we note
it with L(f). A set A is called hyperbolic for f if it is compact, f-invariant and the tangent bundle
TAM can be decomposed as TAM = E*® E* invariant under D f and there exist C' > 0and 0 < A < 1
such that

D] < ON"
and
DS oy < A"

for all z € A and for every positive integer n.
Moreover, a diffeomorphism is called Axiom A, if the non-wandering set is hyperbolic and it is the
closure of the periodic points.

We recall that the stable and unstable sets
W) ={y e M : dist(f*(y), f*(p)) = 0 as n — oo},

W*(p) ={y € M : dist(f"(y), f"(p)) = 0 as n — —oo}

are C"-injectively immersed submanifolds when p is a hyperbolic periodic point of f. A point of
intersection of these manifolds is called a homoclinic point.

Definition 1 Homoclinic tangency. We say that f exhibits a homoclinic tangency if there is a
periodic point p such that there is a point x € W*(p) N W"(p) with T,W?*(p) + T,W"(p) # TuM.
Given an open set V, we say that the tangency holds in V if p and x belong to V.



Definition 2 Given f : M — M be a C'-diffeomorphism of a finite dimensional compact riemannian
manifold M, we say that f is sectionally dissipative at a point x if for any two dimensional subspace
L hold that

|det(D fz )| < 1.

Given A > 0, we note with SD¢()) the set
SDg(A) :={z € M : |det(Dfy))| < A for any two dimensional subspace L C T;M}.
We take

SDy(A) :=={z: O(x) C SDf(N)},
where O(x) is the orbit of x by f. We define the sectionally dissipative limit set as

L(f,1) == L(f) N SD;(1).

Definition 3 We say that a tangency is sectionally dissipative if the tangency is associated to a
sectionally dissipative periodic point.

Related to these notions we can prove the following theorem.

Theorem A: Let f : M — M be a C?-diffeomorphism of a finite dimensional compact riemannian
manifold M. Let us assume that L(f,1) is an isolated set in L(f). Then, f can be Cl-approzimated
by a diffeomorphism exhibiting a sectional dissipative homoclinic tangency or by another one such that
L(f,1) is a hyperbolic compact set.

Roughly speaking, in this paper we deal with the “sectionally dissipative region of the Limit set”.

In the direction to prove the previous theorem, we shall extend some results on dominated splitting
we have obtained in compact surfaces. Let f : M — M be a C! diffeomorphism of a compact
riemmanian manifold M. An f-invariant set A is said to have dominated splitting if we can decompose
its tangent bundle in two invariant subbundles TA M = E & F, such that:

||Df7E(x)||||Df/_F’?(fn(w))|| <CN\*, forallz € A,n>0.

with C >0and 0 < A < 1.

We say that the dominated splitting is a codimension one dominated splitting if dimension(F') = 1.
We say that a codimension one dominated splitting is a contractive codimension one dominated splitting
if the direction F is a contractive direction, i.e.: there exists C > 0 and A < 1 such that for any « and
any n holds that |D fl%azl < CA". We denote the direction E as E°.

The strategy of the proofs of theorem A consists first in showing that if L(f,1) cannot be ap-
proximated by another system exhibiting a sectionally dissipative homoclinic tangency, then L(f,1)
exhibits a contractive codimension one dominated splitting E° @ F' (see theorem B).

Definition 4 Given a compact inavariant set A in L(f,1) we say that fs is C'—far from sectionally
dissipative homoclinic tangencies, if there is a neighborhood U C Dif f1(M) of f and a neighborhood
V' of A such that any g € U does not exhibit o sectionally dissipative tangency in V.

In particular, we say that fis,1) 48 C'—far from sectionally dissipative homoclinic tangencies,
if there is a neighborhood U C Dif fY(M) of f such that any g € U does not exhibit a sectionally
dissipative tangency in L(g,1). Moreover,



Before to obtain theorem A, we get a weak version of it in terms of the following dichotomy: either
f is approximated by a system having a sectionaly dissipative homoclinic tangeny, or L(f,1) exhibits
a contractive codimension one dominated splitting.

Theorem B:

Let A be a compact invariant set in L(f,1) . Let us assume that fo is C'—far from sectionally
dissipative tangencies. Then, A has a contractive codimension one dominated splitting.

Let us assume that fips1) s C'—far from sectionally dissipative tangencies. Then, |L(f,1) has a
contractive codimension one dominated splitting.

Later, we prove that under certain conditions, contractive codimension one dominated splitting
are actually hyperbolic. Before to state it, we note with Py(f) the sets of sinks of f and we get the
set Lo(f) defined as

Lo(f) = Closure(L(f) \ Po(f))-

Theorem C: Let f : M — M be a C?-diffeomorphism. Let A be a compact invariant set contained
in L(f) and exhibiting contractive codimension one dominated splitting. Let also assume that either
A is isolated in L(f) or is isolated in Lo(f) and all the periodic points in A are hyperbolic. Then, we
get that,

A=A 1UA,

where A1 is a hyperbolic set and Ay consists of a finite union of periodic simple closed curves Cq,...Cp,
normally hyperbolic and such that f™ : C; — C; is conjugated to an irrational rotation (m; denotes
the period of C;).

Remark 1.1 Observe that in theorem C we are not assuming that the set A is contained in L(f,1).

The next corollary follows if it assume that the whole manifold has has contractive codimension
one dominated splitting.

Corollary 1: Let f : M — M be a C?-diffeomorphism. Assume that M has contractive
codimension one dominated splitting and all the hyperbolic periodic points are of saddle type. Then f
is an Anosov diffeomorphism and M = T™.

Now we are in condition to show how the proof of theorem A follows from theorem B and C.

Proof of theorem A:

To conclude theorem A, we assume that frs1) is C 1_far from sectionally dissipative tangencies.
Therefore, by theorem B holds that firy,1) exhibits a contractive codimension one dominated splitting.
Later, we approximated f by another C?—diffeomorphisms g such that L(g,1) remains isolated in
L(g), all the periodic points in L(g, 1) are hyperbolic and L(g,1) is close (in the Hausdorff topology)
to L(f,1). Therefore L(g,1) has a contractive codimension one dominated splitting such that all the
periodic points in L(g, 1) are hyperbolic. Then, we can apply the theorem C, concluding that L(g, 1) is
decomposed in a finite number of hyperbolic sets and a finite number of normally hyperbolic invariant
curve with dynamics conjugated to an irrational rotation. After a second perturbation, we can assume
that the dynamics in the normally hyperbolic curves are Morse-Smale, concluding so that L(g,1) is
hyperbolic.

|



As we said before, there is a srong relation between the presences of infinitely many sinks with
unbounded period and the unfolding of a sectionally dissipative homoclinic tangency. In fact, in [PV]
it is prove that any smooth diffeomorphisms with a sectionally dissipative homoclinic tangency can be
C"—approximated (r < 2) by another one having infinitely many sinks with unbounded period (and
also contained in a sectionally dissipative region).

The next theorem shows a weak converse to the theorem states in [PV].

Theorem D: Let f € Dif f2(M) having infinitely many sinks with unbounded period and contained
in L(f,1). Let A be the accumulation set of the sinks of f. Let us also assume that A is isolated in
Lo(f) and such that all the periodic points in A are hyperbolic. Then, for any neighborhood V' of A,
it follows that f can be C' approzimated by another diffeomorphism exhibiting a sectional dissipative
tangency in V.

Proof of theorem D:

To conclude theorem D, we assume that fj is C'—far from sectionally dissipative tangencies.
Therefore, by theorem B holds that A exhibits a contractive codimension one dominated splitting.
Then, we can apply the theorem C, concluding that A is decomposed in a finite number of hyperbolic
sets and a finite number of normally hyperbolic invariant curve with dynamics conjugated to an
irrational rotation. Since any normally hyperbolic curve is isolated and since A is the accumulation
set of periodic points, it follows that A is hyperbolic such that the unstable subbundle has dimension
one. Therefore, the same holds for the closure of the maximal invariant set of some neighborhood of
A. Since the sinks of largest period remains in a neighboprhood of A, we get a contradiction.

|

The paper is organized as follows: In section 2 we show that if it cannot be created sectionally
dissipative homoclinic tangencies by C'—perturbations, it follows that L(f, 1) exhibits a contractive
codimension one dominated splitting. In section 3 we show the existence of Markov partition for a
general class of sets that include the homoclinic classes under the hypothes of contractive codimension
one dominated splitting. This results are a fundamental tool in the proof of the rest of the theorems.
In section 4 is done the proof of theorem C.



2 Dominated splitting for systems far from sectionally dissipative
homoclinic tangencies. Proof of theorem B.

We give the proof for the case that A = L(f,1). The general case, is similar. The theorem follows
from techniques introduced in [PS1], and it goes in two steps:
Step L. If fir(s1) is Cl—far from sectionally dissipative tangencies. Then, f|L(y,1) exhibits a codimen-
sion one dominated splitting.
Step II. Any codimension one dominated splitting over L(f,1) is a contractive codimension one
dominated splitting.

First we recall some definitions:

Definition 5 It is said that a hyperbolic periodic point has stable index d if the number of stable
eigenvalues (or eigenvalues with modulus smaller than one) counted with multiplicity is d.

Definition 6 We note with
Per(f, )

the set of periodic point of f such that they have stable index n — 1 and they belong to SD()).

Lemma 2.0.1 Let z € L(f,1). Then, there exist a sequence of diffeormorphisms {gm}{m>o0} con-
verging to f in the C'—topology, a sequences of periodic points {@m}{m>0y converging to = such that
dm € Per(gm,1) and ¢, has stable index n — 1.

First we introduce the notion of angle between a vector and a hyperplane:

Definition 7 Let v a vector in R™ and S a hyperplane in R™. It is defined the angle a(v,S) as the
unique positive number in [0, 5] such that

<v,w >
cos(a(v,S)) = ———
[v]|w]
where < .,. > 1is the internal product induced by the riemanniam metric and w is the orthogonal

projection of v over S.
The following lemma is a atraightforward adaptation of lemma 2.2.2 of [PS1].

Lemma 2.0.2 Let us assume that fip(s1) s Cl—far from sectionally dissipative tangencies. Then
there exists a meighborhood U of f and a positive constant a such that for any g € U and any q €
Per(g,1) follows that

a(Ey, Ey) > a,

where Eg 1is the stable eigenspace of D;L" and E is the unstable eigenspace of DZ" (nq is the period

of q).



Proof:

The proof is similar to the proof of lemma 2.2.2 in [PS1]. The basic idea is that if there is not pos-
sible to get an uniform angle bounded away by zero, then it is possible to perform a C!—perturbation
in a way to create a homoclinic tangency associated to a sectionally dissipative periodic point.

|
End of Proof of theorem B:

To conclude the proof, we follow [M2]. In fact, the goal is to show that there exist a positive

integer no and a neighborhood U of f such that for any g € U and any g € Per(g,1) follows that

1Dg"™ (B (¢ (@)1 Dg ™" (B* (¢" ™ (a))]| < %

If this does not hold, then by a C'—perturbation it is contradicted the lemma 2.0.2. To conclude
that L(f,1) exhibits a codimension one dominated splitting, E @ F', we use lemma 2.0.1 to extend the
domination property over Per(g,1) to L(f,1).

Therefore we have concluded that there is a splitting E' @ F' over T|;s,1)M, a positive integer k
and a positive constant A < 1 such that

1D £ p@ 1D f 7 iy | < A

To show that the the subbundle E is contractive, we use that the splitting holds in a sectionally
dissipative region. In fact, and without lose of generality assuming that k = 1, given = € L(f, 1), let
v € E; be a vector of norm one such that ||Dfig)ll = [|[Df(v)|. Let w € Fy(,) be a vector of norm

one such that ||Df|}l(w)|| = ||Df~!(w)||. Therefore

1D ip@ 1D fip(s | = IDF @D (w)]| < X
|

On the other hand, if we take L the subspace generated by v and Df~!(w) it follows that

_ _IDfM)ll
det(DAi)l = 15 10y <1
and so | Df(v)l
1D fip@ I = ||Df(v)||||Df71(w)llm <A

]
Proof of lemma 2.0.1:
Before to give the proof we recall a technical version of the closing lemma that appears in [Pg].

Lemma 2.0.3 [Pg] Let € L(f), then for any € > 0 there exist a diffeomorphism g C' — e—close to
f, a periodic point q and a positive integer n such that

dist(f*(x), ¢’ (q)) < e 0<j<ny,

where ng is the period of q.



The next lemma, is a simple yet powerful perturbation technique (in the C* topology). This results
says, for instance, that any small perturbation of the linear maps along a periodic orbit can be realized
through a diffeomorphism C!—nearby:

Lemma 2.0.4 [Fr, Lemma 1.1] Let M be a closed n-manifold and f : M — M be a C' diffeo-
morphism, and let U(f) a neighborhood of f. Then, there exist Up(f) C U(f) and § > 0 such that
if g € U(f), S C M 1is a finite set, S = {p1,p2,...Pm} and L;;i = 1,...,m are linear maps
L; : Tp,M — Ty M satisfying ||Li — Dp,g|| < 6,7 =1,...,m then there exists g € U(f) satisfying
9(pi) = g(pi) and Dp,g = L;, i = 1,...,m. Moreover, if U is any neighborhood of S then we may chose
g so that g(z) = g(z) for all z € {p1,p2...Pm} U (M\U).

Now we state a slight modification of a theorem due to Pliss proved in [Pl].

Theorem 2.1 Let x € L(f) and let us assume that there is a sequences of diffeormorphisms {gm}
converging to f in the C'—topology, and sequences of attracting periodic points {gn} converging to
x with unbounded period. Then, for any € > 0 there exists mg such that for any gm with m > myg
follows that there is §m C'—close to gm such that gm is a periodic point of Gm with an eigenvalue with
modulus greater than one.

Now we can proceed to prove the lemma 2.0.1 using the three previous result listed. By lemma
2.0.3, follows that there is a sequences of periodic of diffeormorphisms {gm}{m>0} converging to f
in the C'—topology, and a sequences of attracting periodic points {qm}{m>0} converging to x such
that for each m there exists a sequences {em}{m>0} converging to zero and for each m there are two
positive integer k,, < n,, such that

dist(f5n 9 (z), gkt (gn)) < €m 0 < j < nim,

where n, is the period of g,,. Therefore, it follows that there is a sequences {dm }{m>0} converging to
zero such that
Gm € SD(gm, (1 + 0m)).

In particular, this implies that the product of any eigenvalues of g, is smaller than (1 + d,,)"™. By
theorem 2.1, we can assume that g,, has at least one eigenvalues has modulus largest than one. Using
lemma 2.0.4, for a perturbation of g,, we can assume that there is only one eigenvalue with modulus
largest than one and that ¢, € Per(gm,1). In fact, to perform that, we consider {Eém}{lgign}
the eigenspace of Dy, g associated to each eigenvalue, noting with Ej the one associated to the
eigenvalue with largest modulus. Then we consider the set of linear maps {4;}{1<j<n,,—1} defined as

1 . .
Aj|Dj_1(Eém) - 1+ 25mD9zn(qm)gm|Dj—l(E2m) 1 <i<n-— 1) 1 < J < Nm — 1a

Aj|Dj71(Ez?m) - Dggn(Qm)gm|Djfl(E;m) 1 S J S Mm — 1.
Then, by lemma 2.0.4 there is g, close to gm, such that the orbit of ¢, by gm remains the same
for g, and such that

dmIm

Alm . TTMm—1 4 .
Dy, gnr =T0mg Aj.



Therefore, it follows that
dm € SD(gm, 1)

and ¢, is a saddle point (meaning that Dgmgm has at least one eigenvalue largest than one) and
therefore Dg™ gy, has only one eigenvalue with modulus larger and

gm € Per(gm,1).



3 Markov partitions for contractive codimension one dominated
splitting.

in this section, we show the existences of Markov partition for “basic sets” exhibiting a contractive
codimension one dominated dominated splitting (see subsection 3.2 for the correct definitions). First,
in the next subsection we show some dynamical properties that the center unstable manifold exhibits.

3.1 Some dynamical properties.

In the sequel, we will prove that the tangent manifold has dynamical meaning and we will use this to
prove in subsection 3.2 that for some special sets can exhibit a Markov Partition

Let I; = (—1,1) and I. = (—¢,¢), and denote by Emb?(I;, M) the set of C2-embedings of I; on
M, and denote by Emb2(ff_1, M) the set of C2-embedings of I{”_l on M, where n is the dimension
of M.

Recall by [HPS], that a contractive codimension one dominated splitting imply the next

Lemma 3.1.1 There exist two continuous functions ¢° : A — Emb2(I{“1,M) and ¢ : A —
Emb?(I1, M) such that if define Wi(z) = ¢*(z)I* ! and W (z) = ¢“(x)I. the following proper-
ties holds:
a) T,WE(z) = E(x) and T,WE(z) = F(x),
b) There is A < 1 such that
FWe(z)) C W3(f(2)),

¢) for all 0 < €1 < 1 there exist €2 such that and
FrwE () c W (F (=)

We will conclude some dynamical properties for the center unstable manifold tangent to the F'
direction.

First, we appeal to some results and definitions proved in [PS3] for “codimension one dominated
splitting”. It what follows with £(I) it is denoted the usual length of an arc I.

Definition 8 Let f: M — M be a C? diffeomorphism and let A be a compact invariant set having
dominated splitting E @ F with dim(F) = 1. Let U be an open set containing A where is possible to
extend the previous dominated splitting. We say that a C%-arc I in M (i.e, a C*-embedding of the
interval (-1,1)) is a §-E-arc provided the next two conditions holds:

1. fM(I) Cc U, and £(f™(I)) < 6 for alln > 0.
2. f™(I) is always transverse to the E-subbundle.

Related to this kind of arcs it is proved in [PS3] the following result.

Theorem 3.1 Denjoy theorem. There exists §g such that if I is a §-E-interval with § < &g, then
one of the following properties holds:

10



1. w(I) = Ugzeryw() is a periodic simple closed curve and fie:¢—=C (where m is the period of
C) is conjugated to an irrational rotation,

2. w(I) C J where J is a periodic arc.

As a consequence of the Denjoy Theorem, we can conclude the following lemma related to the
center unstable manifolds.

Lemma 3.1.2 For all v < &g there exists r = r(vy) such that:
1. for any positive integer n follows that f~" (Wi (z)) C Wi (f~"(x)).
2. For every r < r(dy), either

(a) L(f ™ (WFt(x))) = 0 as n — +0o0,
(b) or x € Wyt(p) for some p € Per(f/z) such that p € W*(x) and there exists a another
periodic points ¢ € W¥(p) which is a sink or a non-hyperbolic periodic point,

(c) = € C such that C is a periodic simple closed curve and f/"é :C — C (where m is the period
of C) is conjugated to an irrational rotation.
3.2 Markov partitions.

Definition 9 We say that A has local product structure if exists a > 0 such that if for any r,y € A
with d(z,y) < a holds that W (z) N W (y) € A. We denote with [z,y] = WE(z) N W (y).

Definition 10 A subset B is called a bozx if
1. [z,y] € B whenever x,y € BNA,
2. B =int(B).

We also define the diameter of B as the maximum distance between points in B.

Definition 11 Let A be a compact and invariant set having contractive codimension one dominated
splitting. A Markov partition of A is a collection of boxes P = {Bu,....., By} such that:

1. A C Ui<i<nBi,
2. int(B;) Nint(B;) =0 if i # j, where int(B;) denotes the interior of B; in A,
3. for any x € A, if x € B; for some B; € P follow that:

(a) there exist B; € P such that f Y (W (z) N B;) C B,
(b) there exist By € P such that f(Ws(z) N B;) C By,

11



Moreover, we define the size of the Markov partition as the mazimum of the diameters of B;.

Definition 12 We say that a point x in the limit set L(f) is isolated if there exists a meighborhood
Uz of x such that Uy N L(f) C Per(f). Let L(f) C L(f) be the sets of the non-isolated points.

Definition 13 We say that a compact and invariant set A with contractive codimension one domi-
nated splitting is a Basic piece if it is transitive and has local product structure.

Theorem 3.2 Let A be a basic piece of I~/( f). Then, there exists a Markov partition of A of arbitrarily
small size.

To prove this, first we will prove that there exists Markov partition for the unstable direction.
Using this, we will prove a shadowing lemma. And from that we will construct a semiconjugacy with
a subshift of finite type, and that will allow us to construct the Markov partition. We want to point
out, that classically, the shadowing lemma is used to prove the existence of a Markov partition. Here,
we do the opposite.

Definition 14 We say that a collection of sets P* = {Bx,....., Bn} is an unstable Markov partition
for A if:

1. A C Ui<i<nB;,
2. int(B;) Nint(B;) = 0 if i # j, where int(B;) denotes the interior of B;,
8. if x € B; for some B; € P follows that there ezist B; such that f~1(WS(z) N B;) C B,

Moreover, we define the size of the Markov partition as the mazimum of the diameters of B;

Remark 3.1 Given an unstable Markov partition P* = {Bh,....., By} and a positive integer k, then
Pr={f *(B;)NBj:1>14,j>n} is also an unstable Markov partition. We say in this case, that Py
refine P and we call this unstable Markov partition, a refining of P.

Proposition 3.1 Let A be a basic piece of f/( f), and B > 0. Then, there exists an unstable Markov
partition of A with size smaller than (3.

Before to give the proof we need a series of definitions and lemmas.

Now, we fix 8 and we will prove that there exists an unstable Markov partition of A of size smaller
than (. Before to prove the Proposition we introduce some news definitions.

12



Definition 15 Boundary points. Let A be a basic piece of E( f). We say that x is boundary point,
if there exists €1 < € such that one of the connected components of W*(x) \ {x} does not contain
points in A.

We say that = is a y—boundary point if one of the connected components of W3*(z) \ {z} does not
contain points in A but the closure of this connected component contain a point in A, i.e.: the two
extremal point, of the connected component of Wi*(x) \ {z} are in A.

Lemma 3.2.1 Let A be a basic piece of f/(f) The followings holds:
1. if  is a boundary points then it belongs to the stable manifold of a periodic point p in A,
2. yv—boundary periodic points are finite;

8. if there are not boundaries points, then £(f " (Ws*(x))) — 0 for any = € A.

Proof: Let x be a boundary point. Then, there is €; < € such that one of the connected components
of W& (x) \ {«} do not contain points in A. By the lemma 3.1.2, we have that there is = r(e;) such
that for any y € A £ "(We(y)) € WE(F(1))-

To see the first item, it is enough to show that there are positive integers m < n such that f"(x) €
WE(f™(x)). If this does not hold, we would have positive integers ni,ng,ng such that W (f"2(x)) \
{f"2(z)}nWe(f™(z)) # 0 and W (f™2(z)) \{f"2(z) }nWE(f™#(z)) # 0, such that these intersections
hold at both side of f"2(x). But this implies that W£*(x) has points in A in both sides of x which is
a contradiction with the assumption that x is a boundary point.

The second item is inmediat.

To prove the last one, we use the sublemma, that follows from lemma 3.1.2.

Sublemma 1 If for some v and some z £(f~"(W5*(z))) does not converge to zero, them there is a
periodic point p in A such that one of the component of the local central unstable manifold of p contains
a sink or a non-hyperbolic periodic point.

Proof:
If £(f~"(W3*(x))) does not converge to zero, we take a strictly increasing sequences of positive
integers ky such that
U (Wi (@) =

and .
U (W (@) <7 05 < kn.

Taking
I= lim f~*(W(x))

n——+o0o

follows that I does not growth for positive iteration and it is transversal to E*@®F';i.e.: [isay—E*@F
arc.
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Then, we can apply theorem 3.1 and follows that either w(I) is a periodic curve with dynamic conju-
gated to an irrational rotation or it is contained in a periodic arc. Since we are assuming that there
are not closed curves, then it holds the second option.
]
Applying the previous sublemma it follows also that p is a boundary point.
|

Lemma 3.2.2 For any periodic point p in A, follows that W*(p) is dense.

Proof:

Let z such that w(z) = a(z) = A. It follows that this point the central unstable manifold is
dynamically defined. In fact, if it not the case, by sublemma 3.2.1 follows that z € W#(q) for some
periodic point g and therefore, w(z) = O(q); a contradiction.

Then, given any periodic point p, there exists n > 0 such that dist(f"(z),p) < § and therefore,
We(p) NWE(f™(2)) # 0. Noting with 2’ the point of intersection, it follows that

dist(F™(f"(2)), F™(=")) = 0 n — +oo

and since a(z) = A it follows that a(z') = A.

Lemma 3.2.3 Let A be a basic piece of L(f).
Given (3, there are a finite number of periodic points p1,.....,p, and D1, ..., D, compact disc contained
mn UlgiSTWS(pi) such if x ¢ D = UlgigrDi then:

1. W (x) has intersection with D at both sides of x;

2. the connected component of WE*(z) \ D containing x has length smaller than (3.

Proof: Take €; < /2. Take ea < /2 and such that £(f~"(WS5'(z))) < e1. Take v < €1,€2 and
take all the y—boundary periodic points pi, ...., pr. Let us assume that the lemma is not true. Then,
there exists a sequence x, of points in A and compacts disks D,, = U;D; , such that the conclusion
1) of the lemma does not holds for any z, and D,. Take z and accumulation point of {z,}. If z
is in the stable manifold of some p;, from the fact that p; is a boundary point, then all points z,
are converging either from one side of the stable compact disk D, of W*(p;) or are contained in D,.
Using the lemma 3.2.2 we get that there are compact disks D, contained in the stable manifold of p;
converging to D, and so the points z,, are enclosed by compact disks of the stables manifolds of the
points p; getting a contradiction. If  do not belong to any of the stables manifolds of the points p;,
we get two alternatives; either x is a boundary point, or it is not a boundary point. In the first case,
x belong to the stable manifold of some §—boundary periodic point ¢ with § < «. This implies that
on one of the connected components of W (z) \ {z} we get points of A converging to ¢ and on the
other components there are points of A also contained in Wﬁ“(q) Taking n large enough such that
f"(z) is close to ¢ we get that there are points of A contained in both side of W *(f"(z)), and this
implies that there are points of A on both sides of W{fu(x) Again, using that the stables manifolds of
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the periodic points are dense, we conclude the points xz, are closed by compact disks of the stables
manifolds of the points p; getting a contradiction. In the case that z is not a boundary point, there
are points of A on both sides of W5*(z), and again we get a contradiction.

]

Definition 16 Boxes around z.

Given a family of disks {D;} as the one obtained in previous lemma, for each x € A we take the
connected component of WE(x) \ D containing x. Observe that this arc intersect D in two points z™
and z~. For v > 0, take D" (z,v) = By(z*) N D and D~ (z,7) = By(z~) N D, where B,(z) note the
ball of radius v and center x. Take the set

C={ye D (z,7)NA: Wy) N D" (z,7) # 0}

and define W (y,z) as the connected component of W (y) containing y and intersecting DT (x,7)
and D™ (z,v). We define the box B(x) around x in the following way:

B(z) = UyecW™ (y, ).

Lemma 3.2.4 Given two bozes B(z) and B(z) such that B(z) N B(z) # 0 then we can subdivide
B(z) N B(z) in a finite number of bozes (at most seven bozes) Bi(z,z), ..., Bx(z, z) which are pair
disjoint and such that:

1. 0°*Bji(z,z) C D,

2. if y € 8T By(z, z) then 0%~ B;(z,z) N WE(y) # 0.
Proof:

Given B(z) and B(y) with non-empty intersection, we subdivide B(z) in the following four boxes
(observe that one of them could be empty):

1. Bi(z,2z) ={y € B(x

N
\ B(z) : W(y,z) N B(z) = 0};

\ B(z) : W (y,z) N B(z) # 0};
\
B

3. Bs(z,z) ={y € B(z

(,2) (
2. By(z,2) ={y € Bz

(,2) (

(,2) (

4. By(z,z) ={y € B(z) \ B(z) : W™ (y,x) N B(z) # 0}.
(2). By definition, follows the thesis of the lemma.
|
Proof of proposition 3.1:
We take the collection of sets { B(z)}zca defined in definition 16. Then we take a finite covering
of A and then we “refine” this collection as is done in previous lemma. After that, we obtained the
following;:
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A finite covering {B;} of A defined as in definition 16 and refined by disjointness as in lemma
8.2.4, is an unstable Markov partition of size smaller than (.

So, the proof of Proposition 3.1 is finished.
|

Now, we will use this unstable Markov partition to obtain a shadowing lemma. Before to do that
we need some definitions:

Definition 17 We say tha {z;} is a f™ — a-pseudo orbit in A if for any integer i follows that

1. z; € A and
2. dist(f™(z;), zit1) < a.

Definition 18 Given a f™° — a-pseudo orbit {z;} in A we say that the f™0-orbit of x —shadows {x;}
if for any integer i follows that

dist(f™(z), z;) < B.

Theorem 3.3 Let A be a basic piece of I~/( f). Then, it has the shadowing property, that is, given
B > 0 there exists a > 0 such that any a-pseudo orbit in A is B- shadow by an orbit in A

Proof:

First we will prove that given 51 < /2, there exist ng = ng(81) and « such that any f™ a-pseudo
orbit in A is (31- shadowed by a true f™ orbit in A. From there, we will conclude the shadowing
lemma.

Let 81 > 0 be given. Choose € > 0 such that £(f "(WS*(x))) < 1/3. Then choose an unstable
Markov partition {B;} of size less than (31 /4. We say that two boxes B; and B; of the Markov partition
are adjacent if B; N B; # (). For a box B; denote by B; the collection formed by the boxes B; and all
its adjacent; we note with Bz the union of all the boxes in B;. Moreover, we take the diameter of the
Markov partition small enough such that given any x € B; for some ¢ then the connected component of
W$¥(z) N B; that contains z is contained in W¢¥(z). On the other hand, let B;,...B;, be the elements
of the Markov partition such that there is a periodic point in the stable boundary. Recall that the
boundary of any of this boxes are given by the stable manifolds of those periodic points.

Sublemma 2 Refining the Markov partition by negative iteration, we can assume that the elements
of the Markov partition having periodic points in the boundary are not adjacent.

This follows combining the followings facts:

1. the boundary of the boxes obtained after refining are stable manifolds of the previous periodic
points and so no new periodic points can appear;

2. the diameter of the boxes is arbitrarily small.
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After that, we get the next sublema:

Sublemma 3 There exists kg such that if for some x there exists an arc [ C W5k (x) that is contained
in at most three bozes it follows that for any n > kg it is verified that f~™(I°*) is contained in at most
two bozes.

Proof of the sublemma:

The proof of the sublemma goes as follows: first, lets show first that there exists kg such that
for any [°* contained in at most two (adjacent) boxes then, either there exists a box B; such that
f~*(1°*) € B; or there exists a box Béjs containing a periodic point in its boundary such that
1*No°B;; # 0.

Take ky = 2r + 1 where r is the number of boxes involved in the Markov partition, and assume
that f%0(I°*) belongs to two adjacent boxes. Observe that the same holds for f~#(I®*), 0 < i < k.
From the election of kg follows that there exists 0 < k; < ko < kg such that f—*1(I°*) and f—*2(I®%)
intersects a boundary component of some box Bj;,. Denote this boundary component by 95(B;,)-
Set w = f~*2(1°*) N 8(B;,) and notice that w is an interior point of f~*2(I°*). From the fact that
fraki(fke2(jeu)) = foki(jev) it follows that f*2 %1 (w) € f*1(I°*) and it is an interior point of
it. Hence fk2=Fi(w) € 0%°(B;,). Since the direction E°® is a contractive direction it follows that
fr2=k1(05(By,)) C 0§(By,)- Therefore there is a periodic point in the boundary on this box and so it is
one of the boxes B;,. From this follows immediately that [ intersects one of the boxes B;,. Secondly,
to conclude the sublemma, recall that the boxes having periodic points in their boundaries are not
adjacent and let [°* be is as in the hypothesis of the sublemma. Then we may write [** = [{* U I§*
where [§*,% = 1,2 is contained in at most two adjacent boxes and so only one of them can intersects
the boundary of some B;; and the result follows.

Finally, notice that if the property in the conclusion holds for kg then it holds for any n > kg. This
completes the proof of the sublemma.

]

Continuing with the proof of our shadowing lemma, choose v > 0 such that v < diam,(B;) for any
1 where diamg(B;) = inf{{(W(z) N B;) : = € B;}.

Let mg be such that f™(W5)(z) C Wj/Q(fm(x)) for any x and m > myg. Let ko be the positive
integer chosen in sublemma 3.

Take g = f™ where ng = max{myg, ko}. We will prove that there is a; such that any a;- pseudo
orbit (for g) is f1-shadowed by a true orbit (of g). Later, we will prove that it is enough to prove the
shadowing property for f.

Choose 1,0 < a1 < 1/2 such that if z,y € A, z € B; and d(z,y) < a; then y € B; and such
that if z € B; and d(z,y) < a1 then W5(z) N W< (y) € B;. Moreover, choose a; so small that if
d(x,y) < a1 then W2 (z) N W (y) € Wi*(y) and W¢(z) N W (z) € W3 (z) for any z € W;/Z(y).

Now let us proceed by induction. Let {z;}{2, is a “forward” ai-pseudo orbit. Assume that for
k < n we have a point z; with the following properties:

L.z, € WJ§ (zx) and both points belong to the same box or to adjacent boxes.

2. g79(z) and 2p—; belong to a same box ort o adjacent ones for each j = 1,..,k. Moreover
977 (zk) € W (2k—j)-
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This two conditions imply that y, = g~"(2,) shadows {z;} . Indeed,

(9" (yn), :) d(g" " (2n), i)

< d(giin(zn)a znf(nfi)) + d(znf(nfi)v xl)
B, B

< —_— —_— =

< 5t b1

(remember that the size of the partition is less than (3;/4).
Let us show how to construct z41. Since 2, € W (x,) then g(2,) € Wﬂf/2(g(acn)). Set

Znt1 = Wi (Tng1) N WE(g(2n)).

Since d(g(zn), Tn+1) < a1 it follows that zn41 € W3(zs41) (and in particular this implies that 2,41
and z,41 are in the same box or in adjacent ones). This shows that property 1) of the induction
hypothesis is satisfied for z,41. Moreover, by the election of a; it follows that 2,11 is adjacent to the
box that contains g(z,). Then, g~!(z,+1) and g~ (g(2n)) = 2, belong to the same box or to adjacent
ones.

To continue with the proof of the property 2), assume that given j > 1 we get that g=7(2z,11)
and z,y1—; belong to the same box or to adjacent ones. We will prove that the same holds for
§ + 1. Tt follows from the assumption that the unstable arc containing g~/ (2zp11), Zn+1—; and g(zn—j)
is contained in at most three boxes of the Markov partition (and contained in Ws(g(zn—;)). By the
sublemma 3 it follows that the pre image is contained in at most two, that is, g_(j+1)(zn+1) and
Zn—j belongs at most to two adjacent boxes and by the size of the Markov partition it follows that
g~ Ut (2,41) € WE(2,—;). This completes the proof of the item 2).

Notice that we have constructed a sequence {zn}{,>0} such that

1. zp € Wi(zp).
2. 20 € We(g(zn-1))
3. 979 (2n) € W (2p—j)
Therefore it follows that for any 1,0 < I < ng — 1 it is satisfied
d(f'(zx), £ (9" (yn))) < B1.
Indeed,
d(f'(zx), (6" (wn)) < d(f' (@), F(2n8)) + d(F 7 (F™ (20-1)), £ (20 41))

+d(f' 7" (zn—k11)), £ (g 2m))
< B3+ 61/3+/3< B

This means that if {z;}"_ is a a- f"0-pseudo orbit then there is a point y, such that the f™-orbit
of this point (i-shadows the pseudo orbit {z;}}*, and this point also shadows the f-pseudo orbit

{{F (@ino) 112  Hso.
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To prove the Lemma for f, given 81 > 0 consider 31/2 and ng and « such that any a-f™-pseudo
orbit is 31/2 shadowed by f™0.

Take o such that if {w;};>0 is a a-f-pseudo orbit then {wjn,};>0 is an oq-fm°-pseudo orbit.
Moreover, choose o so small such that d(f*(wjn,), Wjng+i) < B/2 for any j and ¢ =0, ...,n9 — 1. Then
{{fi(wjno)}?:‘)al}j:o is 1/2-f-shadowed by a point y. So, we get that this point also (;-f-shadows
the pseudo orbit {w;}.

|

To conclude the proof of theorem 3.2, observe first that it may happen that the shadowing point is
not unique, since we do not have, a priori, expansivity. For this reason we argue as follows to construct
a Markov partition of size 3. Let 31 < (3/2 and define a relation in A :

z ~y iff d(f"(z), f*(y) < Br, Vn € Z.
Lemma 3.2.5 We have that x ~ y if and only if:
1. z € Wi(y) and y € Wi¥(z).

2. Denoting by (z,y) the (open) arc in WS (y) whose endpoints are  and y we have that (z,y)NA =
0.

3. z € W(p1) and y € W*(p2) and p1,p2 are n boundary points with n < 3.

Proof:

The converse follows immediately from the definition of 7 boundary point.

To prove the two first item listed in the lemma, assuming that x ~ y, we argue by contradiction.

If z € Wit (y), we take z = Wi (y)Wef (§) and observe that for some positive integer n follows that
dist(f~™(z), f™(x)) > € and for any positive integer m, dist(f ™(z), f~™(y)) < n. Therefore, if £ is
small enough we get that 81 > dist(f "(y), f"(z)) > dist(f~"(2), f"(x)) — dist(f~"(2), f"(y)) >
€ — 1. Which is a contradiction.

If (z,y) N A # 0 it follows that W*(q) N (z,y) # 0 for some g with unbounded unstable manifold.
Therefore, for any open connected compact arc W of the unstable manifold of ¢ that contains gq, it
follows that there is a positive iterate of (x,y) C"—close to W Hence the arc length of (z,y) growths
by positive iteration. Again a contradiction.

To prove the last item, observe that by item two it follows that z and y are boundary points.
Therefore they belongs to the stable manifold of some periodic points p; and ps respectively. Since
f™(z) = p1 and f™(y) — p2 and dist(f™(z), f*(y)) < B1 the last item follows.

|

Corolary 3.1 ~ is an equivalence relation.

Let

and
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the canonical projection and endow A with the quotient topology. Denote by [z] = p(z). Also denote
by
W3 ([z]) = p(W7*(z) N A)

and by
W3 ([z]) = p(W(z) N A).

Moreover, denote by

f:A—A

the induced homeomorphism.

Lemma 3.2.6 With the notations above the following holds:
1. p is closed and A is a compact Hausdorff metrizabel space.
2. f is expansive and has the shadowing property.

8. Wit([z]) is an unstable set and W3 ([z]) is a stable set and A has local product structure.

Proof:
It follows immediately from the definition of p and lemma 3.2.5.
|
End of proof of theorem 3.2:

Using the above lemma and arguing exactly the same way as [B] we can construct a Markov
partition P = {Bj, ....., By} on A of size less than ;. Define B; = p~1(B;). It is straightforward to
verify that P = {By,....., B,} is a Markov partition of A. It remains the question if it has size less
than (. It may occur that the this Markov partition does not have size smaller than 3. Therefore,
we construct a new one with this property. To do that, we will refine the Markov partition P* using
that there is a an unstable Markov partition P* of arbitrarily small size (see proposition 3.1). Recall
that the boundaries of an unstable Markov partition is given by stable discs contained in the stable
manifold of some periodic points. Then, given a box B; of P with size larger than 3, we consider
the points z}, ,wf’ contained in B; which are boundary points of P* and we take the local stable
manifold W? (a:f ). Then we take the connected components B}, ..., BI* of B;\ {Wes(a:{ ) Ha<j<ky- Now
we take a new partition .

Pu = {Bi}Hi<j<m, 1<i<n}-

It follows immediately that the partition is a Markov partition of size smaller than 3.
|

In the sequel, we will consider the especial case of homoclinic class, and we will show that they
exhibit Markov partition.

Definition 19 We define the homoclinic class of a saddle hyperbolic periodic point as the closure of
intersection of the stable and unstable manifold of p and will be denoted with H(p) = W*(p) N W*(p).
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Proposition 3.2 If a homoclinic class has codimension one contractive dominated splitting, then it
is o Basic piece. In particular, it has Markov partition.

Proof: It is well known that a homoclinic class is transitive. Let us prove the local product structure.
If one of the components W*(p) \ {p} has finite length, take  small and less than the this length.
It follows that for any z in the intersection of the stable and unstable manifold of p we have that
Wit (z) C W*(p). And also Wi(z) C W?¥(p). Thus, if z,y € W*(p) N W*(p) and dist(z,y) is small
then Wi“(z) N W3(y) € Wé(p) N W¥(p), i.e., [z,y] € A = H(p). Since H(p) is the closure of the
intersection of the stable and unstable manifold of p we conclude, by continuity, the local product

structure on H (p).
|
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4 Proof of Theorem C:

The Theorem A follows from the next Theorem.

Theorem 4.1 Let f : M — M be a C2%-diffeomorphism. Let A C L(f) be a compact invariant set
such that it is isolated in the limit set, all the periodic points are hyperbolic, and has contractive
codimension one dominated splitting. Then, one of the following statements holds:

1. A is a hyperbolic set;

2. there exist a simple closed curve C C A which is invariant under f™ for some m and it is
normally hyperbolic. Moreover f™ : C — C is conjugated to an irrational rotation.

Assuming that this last theorem is true we show that in this case, the number of periodic simple
closed curves normally hyperbolic and conjugated to an irrational rotation contained in A is finite.
This will imply Theorem A. For more details see [PS1].

The first step in the proof of the Theorem 4.1 is the following elementary lemma.

Lemma 4.0.7 Let Ay be a compact invariant set having a contractive codimension one dominated
splitting T)\M = E° © F. If ||Df/_F"(E)|| — 0 as n — oo then Ag is a hyperbolic set.

Now, using the previous lemma, we will prove Theorem 4.1 based on the next lemma.

To prove how the Maim Lemma implies theorem 4.1 we argue as follows: First we take a compact
invariant subset Ag C A which is the minimal set, in the Zorn’s lemma sense, such that Ag is not
hyperbolic. To prove the existence of this set, it is enough to show that given a sequences of nonhy-
perbolic compacts invariant sets { Ay }aca ordered by inclusion follows that Nye4A4 is a nonhyperbolic
compact invariant set.

can be found in [PS1].

Main Lemma

Let f: M — M be a C?-diffeomorphism of a finite dimensional compact riemannian manifold M.
Let Ay be non-trivial transitive and compact invariant set contained in a set A such that it is isolated
in the limit set and not containing a periodic simple closed curve normally hyperbolic C conjugated to
an irrational rotation. Assume that every properly compact invariant subset of Ay is hyperbolic. Then,
Ao is a hyperbolic set.

To prove how the Maim Lemma implies theorem 4.1 we argue as follows: First we take a compact
invariant subset A9 C A which is the minimal set, in the Zorn’s lemma sense, such that Ag is not
hyperbolic. To prove the existence of this set, it is enough to show that given a sequences of nonhy-
perbolic compacts invariant sets {Aq }ac ordered by inclusion follows that Nype 4 A4 is a nonhyperbolic
compact invariant set. By election of Ag it follows that every properly compact invariant subset of Ag
is hyperbolic. More details can be found in [PS1].

The proof of the maim lemma will be given in the next subsection. Nevertheless we give here the
basics steps of it proof:
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1. The central unstable manifolds (which are of class C?) have dynamics properties. In fact for

every © € Ag there exist e(x) such that W (z) is an unstable manifold of z, meaning that

L(f~™( :(1;)(31&))) — 0 asn — .

2. For point z in an open set B in Ag we have

oUW (@) < oo.

n>0

3. For every point x € Ay we have

IDf iyl =0

when n — oo.

4.1 Proof of the Maim Lemma.

In this section we shall assume that Ag = A is in the hypothesis of the main lemma, i.e., A is a
nontrivial compact invariant transitive set isolated in the limit set, such that every proper compact
invariant subset is hyperbolic and it is not a periodic simple curve normally hyperbolic conjugated to
an irrational rotation. Under this conditions, we will prove that for every z € A. ||D f/}n(w) | — 0.

To show that, it is enough to find an open set By such that for every y € By N A we have
| D f/_;‘y)H —n—oo 0. Let us show, that this is enough: let z be any point in A. There are two
possibiﬁities:

e The a- limit set a(z) is properly contained in A. Then, a(z) is an hyperbolic set, thus

||Df/}?(z)|| —n—o0 0.

e a(z) = A. Then, there exist mg such that f~™9(z) € By, implying that
||Df;F(f—m0(z))|| —?n—o0 0

and so
X —)

The first lemma of this subsection is classical in one dimensional dynamics(see for example [dMS])
and the proof is left to the reader. We only have to remark, since the diffeomorphism f is of class C?,
the center unstable manifolds are also, and moreover this center unstable manifolds varies continuously
in the C? topology, we have a uniform Lipchitz constant K of log(Df) along this manifolds.

Lemma 4.1.1 there exist Ko such that for all x € A and J C W§“($) we have for all z,y € J and
n > 0:
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IDf, 7

1 ol < exp(Ko i ()
F(z

— Lf"™J -1 i
2 IDF7 Il < S0 exp(o S0y 674 ()))
where F(z) = T,We(x)
First, we will show that we can assume that Ag is contained in an homoclinic class.

Lemma 4.1.2 Let f : M — M be a C?-diffeomorphism of a finite dimensional compact riemannian
manifold M, and let A be a transitive compact and invariant set with contractive codimension one
dominated splitting. Then either A is is a periodic simple closed curve such the dynamic is conjugated
to an irrational rotation or A is contained in the homoclinic class of a periodic point p.

Proof: Let us assume that A is not a periodic simple closed curve with dynamic conjugated to an
irrational rotation. Let € A such that A = a(z). So, there is a subsequence m; of positive integers
such that f~™i(z) — . We can assume that x does not belong to the unstable manifold of a periodic
point (in other case, A would be a periodic point) and so by lemma 3.1.2 we get that there is v such
that £(f~"(W5*(z))) — 0. Then, for m;, large enough, we get that for any y € f~ ™ (Ws*(x)) follows
that W2(y) N W,;f’/%(:v) # (. Then, from standard arguments, we get a periodic point p with orbit in a
neighborhood of A and such that W3*(p) C W*(p). Moreover, we get that for any y € A in a box of
radius /3 around z we get that W2 (p) N WS (y) # 0 and Ws*(p) N W (y) # 0. In particular we get
that W (p) N W3*(f~™(z)) # 0 and Wit (p) N WE(f~™i(z)) # 0 for any m; large enough.

From the fact that W (p) "\W2(f~™(z)) # 0 for any m; and that WS*(p) C W*(p), we conclude
that there are compact disks of W¥*(p) converging to the central unstable manifold of z. On th other
hand, since W2(p) N W (f~™(z)) # 0, f~™i(z) — = and the dynamical properties of the central
unstable manifold, we get that there are compact disks of W*(p) converging to the local stable manifold
of z. The two fact together, imply that there are homoclinic points of p converging to x.

|

Observe that in the previous lemma, we not assume that the whole limit set has contractive

codimension one dominated splitting.

Lemma 4.1.3 Let A C L(f) be a compact invariant set either isolated in the limit set or in Lo(f).
Then, there is a neighborhood U of A such that for any z € A Nw(zx) for some x € M it follows that
there exists a positive integer ng such that f*(x) € U for any n > ng.

Proof: Let us assume that it is false. Then for any closed neighborhood U of A such that A C
interior(A) and L(f)NU = A, and there exists z and y € ANw(z) such that OF (z) = {f*(z) : k > n}
is not contained in U for any positive integer n. Let n; — +oo such that f™(z) — y. Let for each n;
the first positive k; such that f™**i(z) ¢ U and let z be an accumulation point of {f™*%~1(z)};s0.
We can assume that fmitki—1(z) — 2. Tt follows that z € U and z € w(x). Therefore, z € A and so
f(2) € A. However, ft*i(z) — f(2) and so f(z) € interior(U)°. A contradiction.

|
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Corolary 4.1 Let f : M — M be a C?-diffeomorphism of a finite dimensional compact riemannian
manifold M, and let A be a transitive compact and invariant set either isolated in the limit set or
in Lo(f) and having a contractive codimension one dominated splitting. Then A is contained in the
homoclinic class H(p) of a periodic point p with H(p) C A.

Now, we can also assume that Ag C H(p) for some hyperbolic periodic point p. Moreover,
since H(p) C A has codimension one contractive dominated splitting, we can obtain a Markov
P ={Bx,....., By} partition associated for H(p) and we will use it to conclude the Main Lemma.

Definition 20 Given a Markov Partition P = {Bu,....., B,} we say that a set B is a Markov box
if there exist k > 0 and two rectangles B; and B; of P such that B is a connected component of
f7*(B:i) N B;.

Now, given a Markov box B, for any y € B we define:
Jr(y) = Wi*(y) N B.
Moreover, since P is a Markov partition we get that for any y € B and any k& > 0 either,
1. f*(Js(y))NB=0or

2. f*(Js(y)) C B.

In many occasions, we will need to estimate the length between different central unstable arcs in
a Markov box. In this direction, we introduce the following definitions.

Definition 21 We say that a Markov box B has distortion (or cu-distortion) C if for any two intervals
J1, Jo in B transversal to the E*-direction and whose endpoints are in the same local stable manifold,

the following holds:
1

c

~

(J1)
(J2)

Lemma 4.1.4 Let A be a compact invariant set having a contractive codimension one dominated
splitting. It follows that the local stable foliation defined on A is a C'—foliation.

< <cC.

~

Notice that, in order to guarantee distortion C' on a box B, it is sufficient to find a C' foliation
close to the E*-direction in the box, such that, for any two intervals Ji, J2 (taken as in the definition
of distortion),

1
— < <cC
<) <
holds, where IT = II(J1, J2) is the projection along the foliation between these intervals.
Now, given a Markov partition P = {Bj,...., B,}, we introduce a stable foliation in the following
way:

For each box B, and since the stable foliation is a C! foliation, we can extended it to a C'-foliation
in B, Cl-close to the E*-direction (recall that the stable foliation is only defined for points in A) and
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such that it coincides with the stable one on the boundary of the box. Then, we take the foliation
given the now obtained in each box.
Denote this foliation by

Fe.
For any x € B let F*(z) the leave passing through z. Notice that there exists C' such that
L wi<c
c S <

where II = II(Jy, J2) the projection along this foliation between two intervals transversal to the E*-
direction.
The following lemma will be useful in the sequel.

Lemma 4.1.5 Let P = {B,...., By} be a Markov partition. Then, there exist C = C(P) such that
any Markov box of any refinement of this Markov partition has distortion C.

Proof:

For each box B; € P, we consider a Cl— stable foliation with distortion C;. From standard
arguments about foliations and contractive direction, follows that any negative iterate of this foliation
has distortion smaller than DC;. Then we take, C = max{DC4,...., DC,} and so, any Markov box in
the refinement has distortion smaller than C.

|

This Lemma, will help us to prove the following.

Lemma 4.1.6 Let P = {Bj,..., By} be a Markov Partition. Then, ezrists K = K(P) such that for
any Markov box B and any z € BN A holds that

S UfiUs(2) < K
1=0

provided f~*(z) ¢ B,1 <i<n.

Proof:

Let P = {B4y, ....., B,} be a Markov partition of H,. For each box B; we choose a point z; € B;NA
and we take J; = Jp, (z;).

Let B be a Markov box and let z € BN A such that f~*(z) ¢ B for i« = 1,...,n. Let B(%) the
connected component of f~*(B)N By, where k; is such that f~*(Jg(z)) C By,, and we consider J; x, (2)
the projection of the arc f~¢(Jp(z)) over Ji, along the stable foliation. Observe that:

1. Since each B € P is Markovian in the stable direction follows that for ¢ # 7 B(i) N B(j) = 0,
and in particular J; g, (2) N Jjx, (2) = 0;

2. for any i,
' Win(2)
6 s =

1
~<
oS
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Then,

S U TBE) < & DU (2) < 5 S < K.
||

Now, we will prove that in the case that the central unstable manifolds are not dynamically defined,
then we can prove the Main Lemma.

Lemma 4.1.7 Assume that A C L(f) is a transitive and invariant set such that every proper compact
subset is hyperbolic. Then, either there is v > 0 such that

Lf (Wi (z))) =+ 0 asn — oo Vz € A
or F is expanding (i.e, ||Df/}?(w)|| — 0Vz € A).

Proof: First, we will take a Markov Partition P = {Bi,...., B,} for the homoclinic class where A
is contained. Recall that if £(f~"(Ws*(x))) does not converge to 0, then there is a periodic point
pz € Per(f/,) such that z € W*(p,) and p, € W*(z) having one of the separatrix of W*(p,) with
length less than §y. Moreover, the endpoint of this separatrix, g, different from p, is a sink or a
nonhyperbolic periodic point. If we have only finite of this arcs, then reducing v we get that the
central unstable manifold are dynamically defined. On the other hand, if there are infinite of these
separatrixes, then the size of them go to zero.

Moreover, since A is transitive (and is not a periodic orbit), there exists yo € A such that yy €
W¢(pg) — pz- Since the size of the separatrixes go to zero and the boundaries of the Markov boxes are
given by a compact arcs of the stable manifold of a finite number of periodic points, we can chose one
of the separatrixes, such that yo and z,, = W (yo) N WZ(qz) belong to same box B of the Markov
partition. We can take also an small neighborhood U of yg such that UNA C B and for any y € UNA
follows that y and z, = W%(yo) N W2 (gs) belong to same box B. Now, for each y € UNA we consider
the arc I(y) contained in Jp(y) with endpoints z, and W*(yo) N W2 (pz). Observe that this arcs are
contained in the local stable manifold of the arc that link p, and g.

Arguing as in the previous lemma, we consider the arcs I;(y) obtained as the projection of f 7 (I(y))
along the stable foliation over the arc Jy, where k; is such that f~7(I(y)) C By;. These arcs are
contained in the stable manifold of the arc that link p, and g, and so they are all pair disjoint.
Hence, the sum of their lengths is bounded. Again, using the distortion property, we get that

S UFTI)) < 5 L) < YU < K
i=0 i=0 J

Now, as in the Schwarz’s proof of the Denjoy Theorem ([Sch]), we conclude that Vy € U N A there
exist I1(y) C Jp(y) such that the length of I1(y) — I(y) is bounded away from zero (independently of
y) and such that, for some K,

[e.e]

D AU M) < K.

n=0
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Now, taking the set U = Uyeanul1(y) follows using lemma 4.1.1, that for any z € U, holds

|| D | > 0asn— oo

/()
completing the proof of the lemma.
]

The previous lemma, shows that we can assume that the central unstable manifold are dynamically
defined (otherwise, from the previous lemma, there is nothing to prove). In particular, from the fact
that the central unstable manifold are dynamically defined, then we have Markov boxes which are
arbitrarily small in the vertical direction. Furthermore, as a consequence of lemma 3.1.2, given § > 0,
then, if the box is small enough,

(")) <o

for any y € BN A and n > 0.

Now, we proceed to conclude the proof of the Main Lemmma. We will make a distinction if A is
either a minimal or is not a minimal set. In the next subsubsection is done the minimal case and in
subsection 4.1.2 the other one.

4.1.1 A is not a minimal set.

Observe that if A is not a minimal set, there are points € A such that z ¢ w(z). We will explore
this properties to prove the Main Lemma when A is not minimal.

Definition 22 Given a Markov box B, we say that it has infinite returns if there are points x, € UNA
such that f~%n(x,) € B, f3 ¢ B forj = 1,....,kn, — 1 and k, — oco. For the point x, we call the
integer ky, the time of return of .

Since A is not a minimal set, then there exist a point z € A such that z ¢ w(x). Take now a small
box B associated to z such that B N {f"(x): n > 1} = (. Then, since A is transitive, we conclude
that for this box we have infinite returns (notice that if the point z is a boundary point of A the same
conclusion holds also).

Lemma 4.1.8 Let B be a Markov box and assume that there is £ < 1 such that for everyy € BNA we
have ||Df/_;(y)|| < & for all y € Jp(y) where k is such that f~*(y) € B and f~(z) ¢ B fori <i < k.
Then for all y € BN A the following holds:

> U (Is(y))) < oo

n>0

In particular this implies that

Ty [—)
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The proof of the previous lemma is the same as the proof of Lemma 3.7.2. in [PS1]
Now, we show that given a Markov box, it is possible to find another one verifying the condition
of lemma, 4.1.8.

Lemma 4.1.9 Let B be Markov box with infinite returns. Then there exist another Markov box By
contained in B such that satisfies the conditions of lemma 4.1.8.

Proved this lemma, it is finished the proof in the case that A is not minimal, since in this case we
have a box with infinite returns. And so, by the previous lemma, there exist an Markov box By such
that satisfies the conditions of lemma 4.1.8.

Now we give the proof of lemma 4.1.9.

Proof:

Let B be a Markov box as in the hypothesis of the lemma, and let K, Ky, C be as in lemmas 4.1.6,
4.1.1 and corollary 4.1.5 respectively. Consider also L = min{{(J(z)): z € BN A}.

Let » > 0 such that

1
r% exp(2KpK) < 3"

Since B has infinite returns, there exist y € B N A such that if we take By the connected component
of f~%(B) N B that contains f~*0(y), where kg is the return time of y, then follows that

(7 (Jpy(2))) <1 Vj >0,z € ByNA.

Let us prove that the box By satisfied the thesis of the lemma. Observe that if z € f*0(Bg) N A,
then for y € J(2)

—ko 2
Ips720,1 < L5 expror)

Let now y € By N A with return time to By equal to k Setting ng = k — ko, (k > ko) we have

F7™(y) € f*(Bo).
Then, for y € Jp,(2)

IDfE

I < Dk L DS |

/F(f~0(y)) /F(y)
o U™ () 6™ (IBy(2)))
T LI(F(2) £(JB,(2))
_ p(4—m0 UJBo (f*(2))) 1
= E(f (JBo(Z))) EB(JBO(Z)) E(J(f*no(z)))

1 1
< TClZ eXp(2K0K) < 5

exp(KoK) exp(KoK)

exp(2KoK)

So, the proof is finished.

This completes the proof of the main lemma in case A is not a minimal set.
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4.1.2 A is a minimal set.

We begin remarking that we can not expect to do the same argument here as in the preceding case,
due to the fact that, if A is a minimal set, then for every Markov box, the set of returns of this box
is always finite. Nevertheless we shall exploit the fact that in the case A is a minimal set, the central
unstable manifold is in fact an unstable together with the existence of ”boundary points”. First, we
introduce some notations. Given a central unstable arc J, we order J in some way and we denote
Jt={yeJ:y>z}, J-={yeJ:y<z}. Also, giving z € B we shall denote by B (say the
upper part of the box) the connected component of B — W:'(z) which contains J*, and by B~ (the
bottom one) the one containing J~.

Lemma 4.1.10 Assume A is minimal set. Then, there exist a Markov box arbitrary small B such
that BFNA=0 or B-NA=0.

Proof: Given a box B; € P, follows that there is x1,x2 € B; N A such that the strip in B, bounded
by W2(z1) and W2 (z2) has empty intersection with A. If it is not the case, we would get that there
is a periodic point in A which is a contradiction since A is minimal. Now, take for instance the point
z1 in B; and take an small Markov box B containing this point, i.e.: take k large enough B; € P
and the connected component of f *(B;) N B; that contains z1. Observe that the point z1 does not
belong to the boundary of B, since the boundary of the Markov box are given by the stable manifold
of periodic points and A is minimal. On the other hand, if &k is large enough, the vertical size of B is
small enough such that one of the side of B\ W?(z) is contained in the strip bounded by W2(z1) and
W (x2). These two facts imply that the box B satisfies the properties required.
]

Related to this box we will get the following lemma that will imply the Main Lemma when A is
minimal:

Lemma 4.1.11 Let B be a Markov box such that BT NA = 0. Then there exist K such that for every
y € BNA,

D UTIT) < K.

Jj=>0
In particular there exist Ji(y), JT (y) C Ji(y) C J(y) such that the length of J1(y) — J " (y) is bounded
away from zero (independently of y) and such that

oo

D U TMN))) < oo

n=0

Assuming this lemma, we can prove the Main Lemma when A is a minimal set. We shall proceed
as in lemma 4.1.7. Using the notation of the preceding lemma, take

B= |J 2.

yEBNA
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Notice that B is an open set of A, and for every y € BN A (i.e. y € Ji(y)), we have

(e o]

D AW < o0
n=0
and so
DY E—)
Let z be any point in A. Since A is a minimal set there exist mg = mgo(z) such that f~™(z) € B
and so
1275 g-mo (el Zn—eo 0
implying that
IDS | ~+ns00 .
This completes the proof of the Main Lemma.
|

To finish the section, we have to conclude the proof of lemma 4.1.11. First we show that the box
introduced in 4.1.10, has some similar property as the Markov box.

Lemma 4.1.12 Assume that A is a minimal set and let B be a Markov boz such that BT N A = (.
Then BT werifies that for all y € Be(J) N A,

I W) NBY =0or f(J(y)) C BF

where J* (y) = J(y)NBT. Moreover, there exist K1 such that if y € Bo(J)NA and f 7 (JT(y))NBT =
0,1 <j<n then

Ze I(J*(y))) < K1.

Proof:

Assume that for some y € BNA andn >0 f~"(J*(y))NB* # 0 holds. As B is a Markov box we
conclude that f~"(J(y)) C B. If f~™(J"(y)) is not contained in BT, then f~"(J*(y)) N W2(zx) # 0.
However, this implies that f*(z) € B*. Since z € A this is a contradiction, and completes the proof
of the first part.

The existence of K it can be proved with the same arguments as in lemma 4.1.6.

Now, we conclude the proof of lemma 4.1.11.
Proof of lemma 4.1.11:

First, if we have that there are not points in BT that for some negative iterates are also in BT,
by the preceding lemma, we conclude the thesis.

Assume now that there is ko such that if y € B such that f~%(J*(y)) C B (where k is the first
return time of y to B"), then k < ko. In this case, we assert that there exist r > 0 such that

dist(We(x), f (T (y)) > r, ¥y € BT f7*W(y) € BT
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If it is not the case, since that the return time is bounded, we get a point ¥y € B N A such that
F7R@ (Tt (y))) N W2(z) # 0; then, using that B is a Markov box, and that the extremal points of
J*(y) and f~*®)(J*(y)) are W#(z), we conclude that w(z) is a periodic point, which is an absurd
because z € A and A is minimal.

On the other hand, there exist NV such that for every y € BN A and n > N we have

L") <
This implies that for n > N we get that
FrJ@)nB* =0.

In fact, since £(f~™(J(y))) < r and dist(W?(z), f*®)(J*(y))) > r, we conclude that f~"(J(y)) C Bt
implying that f "(y) € BT N A = (), which is impossible.

Let ng = max{n > 0 : f"(J(y)) N BT # 0}. Thus, ng < N and, since f~"(J*(y)) C
JT(f™(y)), we conclude that

FATT (™) NBt =0, Vi>1

and so, by the previous lemma,

S eFTIIT (W) < K.

320

Therefore
D e(f ™It (y))) < Ndiam(M) + K, = K.
Jj>0
Finally, let us assume that there is a sequences y, € B N A such that
FW(J* (yn)) € BT and kn(y) — oo.
Take r > 0 such that

1
%exp(KOKl) <3

where L = min{{(J*(y)) : y € BN A}. Let N > 0 be such that if n > N then £(f"(J(y))) < .
We assert that there is jp such that given y € A, if k;i(y), k2(y), .-...., kn(y), ... are the return times of
JT(fer@)+-+ki() (1)), then for i > jo holds that ki1 (y) — ki(y) > N. It this is not the case, arguing
as in the previous case, we get a point y € BN A such that f~*®)(J*(y))) N W2(z) # 0, which leads
to a contradiction. Now, follows from the assertion, that

ks 1
||Df/F(]fk1(y)+...+ki(y)(y))” < B

provided that j > jo.
Applying the same argument as before, we can conclude that for every y € BN A we have

Zﬁ(f_j) < Ndiam(M) + Zdiam(M) exp(2K0K1)(%)j =K < 00.
Jj=>0 j>0
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In particular, as in the Schwarz’s proof of the Denjoy Theorem, we conclude that Vy € BN A there
exist J1(y), J T (y) C Ji(y) C J(y) such that the length of J;(y) — JT(y) is bounded away from zero
(independently of y) and such that

[e o]

> U (1Y) < oo

n=0

and the proof of the lemma, is finished.

33



References

[ABV] J. Alves, C. Bonatti, M. Viana, SRB measures for partially hyperbolic systems whose central

[B]

[BV]

[BP]

[C]

[CY]

[dMS]
[DRV]

[F]

[HPS]

K]
[LW]

[M]
[M2]
[N1]

[N2]
[N3]

[N4]

direction is mostly expanding. Invent. Math. 140 (2000), 351-398.

R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms Springer-
Verlag (1975).

C. Bonatti, M. Viana, SRB measures for partially hyperbolic systems whose central direction
is mostly contracting, Israel J. Math. 115 (2000), 157-193.

M. I.Brin, Ja. B. Pesin, . Partially hyperbolic dynamical systems. (Russian) Izv. Akad. Nauk
SSSR Ser. Mat. 38 (1974), 170-212.

Costa, M. J., Saddle-node horseshoes giving rise to global Hénon-like attractors. An. Acad.
Brasil. Cienc.70 (1998), no. 3, 393—400.

Cowieson, B.; Young, L-S.; SRB measures as zero noise limits, Talk at Conference on Partially
Hyperbolicity, Northwestern University, May 2001.

W. de Melo, S van Strien, One-dimensional dynamics, Springer Verlag, 1993.

Diaz, L. J.; Rocha, J.; Viana, M. Strange attractors in saddle-node cycles: prevalence and
globality. Invent. Math. 125 (1996), no. 1, 37-74.

J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158
(1971) 301-308.

M. Hirsch, C. Pugh, M. Shub, Invariant manifolds, Springer Lecture Notes in Math., 583
(1977).

I. Kupka, Contribution & la théorie des chaps génériques, Cont. Diff. Equ. 2 (1963), 457-484.

L. Wen. Homoclinic tangencies and dominated splittings. Nonlinearity 15 (2002), no. 5, 1445—
1469

Maiié, R., Ergodic Theory and Differential Dynamics, Springer-Verlag New York, 1987.
Maiié, R., An ergodic closing lemma, Ann. of Math, 116, 1982, 503-540.

S. Newhouse, Non-density of Axiom A(a) on S?, Proc. A.M.S. Symp. Pure Math. 14 (1970),
191-202.

S. Newhouse, Diffeomorphism with infinitely many sinks, Topology 13 (1974), 9-18.

S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomor-
phisms, Publ. Math. I.H.E.S. 50 (1979), 101-151.

S. Newhouse, Hyperbolic limit sets, Trans. A.M.S. 167 (1972), 125-150.

34



[NP]

[P]
[Pg]
[P1]
[PPV]

[PuSh]

[PS1]

[PS2]

[PS3]

[PT]

[PV]

[S]
[S3]

[Sch]

[Sh]

Newhouse, S.; Palis, J. Hyperbolic nonwandering sets on two-dimensional manifolds. Dynam-
ical systems Proc. Sympos., Univ. Bahia, Salvador, 1971, pp. 293-301. Academic Press, New
York, 1973.

J. Palis, On Morse-Smale dynamical systems, Topology 8 (1969), 385-405.
C. Pugh, The closing lemma, Amer. J. Math (1967).
V. A. Pliss, On a conjecture due to Smale, Diff. Uravnenija, 8 (1972), 268-282.

M. J. Pacifico, E. R. Pujals, J. Vieitez, Robustly expansive homoclinic classes Ergodic Theory
and Dynamical Systems, 25 n. 1, (2004), p. 271-300.

C. Pugh, M. Shub, Stable ergodicity and julienne quasi-conformality. J. Eur. Math. Soc.
(JEMS) 2 (2000), no. 1, 1-52.

E. Pujals, M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms,
Ann. of Math. 151 (2000), no. 3, 961-1023.

E. Pujals, M. Sambarino, On homoclinic tangencies, hyperbolicity, creation of homoclinic
orbits and varation of entropy. Nonlinearity 13 (2000), 921-926.

E. Pujals, M. Sambarino, Integrability on codimension one dominated splitting. preprint.

J.Palis and F.Takens Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurcations,
Cambridge University Press, (1993).

J.Palis, M. Viana High dimension diffeomorphisms displaying infinitely many periodic attrac-
tors. Ann. of Math. (2) 140, (1994), no. 1, 207-250.

S. Smale, Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747-817.

S. Smale, Stable manifolds for differential equation and diffeomorphisms, Ann. Scuola Norm.
Super. Pisa 17 (1963) 97-116.

A. J. Schwartz, A generalization of a Poincaré-Bendixon Theorem to closed two-dimensional
manifolds, Amer. J. Math. 85 (1963), 453-458.

M. Shub, Global Stability of Dynamical Systems, Springer- Verlag, 1987.

35



Enrique R. Pujals

(enrique@impa.br)

Instituto de Matemaética Pura e Aplicada
Estrada Dona Castorina 110, CEP: 22460-320
Rio de Janeiro, R.J., Brazil

Martin Sambarino
(samba@cmat.edu.uy)

Centro de Matemaética
Universidad de la Republica

Igud 4225 esq. Mataojo, CP:11400
Montevideo-Uruguay

36



