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Abstract. Let M be a smooth compact Riemannian manifold without boundary, and
φ : M × IR → M a transitive Anosov flow.

We prove that if the time one map of φ is C1-approximated by Axiom A diffeomor-
phisms with more than one attractor, then φ is topologically equivalent to the suspension
of an Anosov diffeomorphism.

Introduction

A flow φ on a closed manifold M is called an Anosov flow if it is hyperbolic: the
transverse bundle of the flow splits into two invariant bundles Es and Eu, where the
vectors in Es and Eu are exponentially contracted and expanded, respectively, by the
action of the flow. In the same way, a diffeomorphism on compact manifold is an Anosov
diffeomorphism if the whole manifold is a hyperbolic set. Given an Anosov diffeomorphism
f : N → N there is an associated Anosov flow φ called suspension of f : the suspension
manifold Nf is obtained from the direct product N × [0, 1] by identifying pairs of points
of the form (x, 0) and (f(x), 1) for x ∈ N . The suspension flow ϕ(x, t) is determined by
the vector field ∂

∂t
.

The global hyperbolic structure of Anosov flows or diffeomorphisms is a very strong
geometric property, so that manifolds carrying such dynamics satisfy strong topological
conditions and the list of known examples is not so long. For example, all the known
Anosov diffeomorphisms are conjugated to algebraic automorphisms of infranil manifolds,
and Franks [7] and Newhouse [14] proved that any codimension 1 Anosov diffeomorphism
(i.e. the stable bundle Es of f has codimension 1) is conjugated to a linear automorphism
of the torus T n. In the same way Verjovsky conjectured in [22], that every codimension 1
Anosov flow, on a compact manifold M with dimM ≥ 4, is topologically equivalent to the
suspension of an Anosov diffeomorphism. There are many partial results in the direction
of this conjecture, and the proof of the conjecture for conservative flows has been recently
announced by S. Simić [19].

However, in dimension 3 there are many examples of Anosov flow with unexpected
behavior: for example there are non-transitive Anosov flow, see [8]; see also [4]. We refer
to [1] and [6] for works in the direction of a classification of transitive Anosov flows in
dimension 3.

So, a natural problem is

Problem 1. Give a dynamical characterization of the Anosov flows which are obtained
by the suspension of Anosov diffeomorphisms.
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The time one map f1 = φ(., 1) of an Anosov flow φ is not hyperbolic, since the tangent
direction of the orbits of the flow is neither contracted nor expanded by the differential
of the iterates of f1. Hence f1 is not structurally stable: small perturbations of f1 may
be not conjugated to f . However [10] shows that perturbations of f1 only change the
dynamic along the orbit of the flow φ: every diffeomorphism g, sufficiently C1-close to
f1, is conjugated to a homeomorphism of the form x 7→ φ(x, τg(x)), where τg(x) > 0
is a continuous function. In this paper we investigate the dynamics of diffeomorphisms
C1-close to f1.

Question 1. What kind of dynamical system can appear under perturbations of the time
one map of an Anosov flows?

We are specially interested in the case of a transitive Anosov flow (i.e. the case when
the non-wandering set of φ is the whole manifold). More specifically we would like to
understand when the time one map of a transitive Anosov flow can be approximated by
hyperbolic (i.e. Axiom A) diffeomorphisms.

At the end of the sixties, Abraham and Smale constructed a diffeomorphism f : T 2 ×
S2 → T 2 × S2 and a C1- neighbourhood N(f) of f , such that if g ∈ N(f) then the non-
wandering set of g is non-hyperbolic: there is no Axiom A diffeomorphisms in N(f). This
example can be extended in a simple way to higher dimensions, and has been extended
to dimension 3 in [19]. Later, C1-open sets of non Axiom A and robustly transitive
diffeomorphisms were described on T 4 by Shub (see [17]), on T 3 by Mañé (see [13]). All
these examples show that Axiom A diffeomorphisms are not dense, if the dimension of
the manifold is greater or equal to 3 (it is not known if Axiom A diffeomorphisms are
C1- dense in surfaces). In other words, many diffeomorphisms cannot be approximated
by Axiom A, and an ambitious general question is to characterize diffeomorphisms in the
C1-closure of the set of Axiom A diffeomorphisms.

Another example, built in [2], gives a partial answer of Question 1: for any transitive
Anosov flow φ, any C1-neighborhood of the time one map f1 of φ contains a (non-empty)
open set of nonhyperbolic and transitive diffeomorphisms.

It is a well known fact that the time one map f1 belongs to the closure of Axiom A
diffeomorphisms in the case of an Anosov flow φ is obtained as the suspension of an
Anosov diffeomorphism g : N → N . The suspension manifold, Ng, is fibered over S1 and
the projection of the time one map onto S1 is the identity map. There are diffeomorphisms
f preserving fibers, C1- close to f1, and such that the projection of f over S1 is a Morse-
Smale map. Then such a diffeomorphism f is an Axiom A diffeomorphism.

Palis and Pugh asked in [15, Problem 20]:

Question 2. Can the time one map of an Anosov flow be approximated by an Axiom A
diffeomorphism? If the flow is a suspension of an Anosov diffeomorphism the answer is
yes.

Our main result is:



Theorem 1. Let M be a smooth compact Riemannian manifold without boundary. If
the time one map of a transitive Anosov flow φ is C1-approximated by Axiom A dif-
feomorphisms having more than one attractor, then φ is topologically equivalent1 to the
suspension of a hyperbolic diffeomorphism.

Indeed we prove a slightly stronger statement: if φ is not topologically equivalent to a
suspension, and if f is an Axiom A diffeomorphism C1-close to the time one map of φ,
then the unique transitive attractor and the unique transitive repeller of f are connected
(hence topologically mixing).

A partial result was given previously in ([9]) for codimension one Anosov flows under
some technical and restrictive assumptions related to periodic points: we asked that the
number of periodic points of the Axiom A diffeomorphism in a ”fundamental domain ”
of any closed central leaf is constant (see [9] for more details). This technical hypothesis
allowed us to prove that a repeller basic set was a global section, so that the initial Anosov
flow was topologically equivalent to a suspension.

An important improvement is that we remove not only this ”technical” assumption but
the codimension one hypothesis as well. Although in the general case the proof is quite
different, we include some results that had appeared in ([9]). This is done because they
contain basic ideas of the proof of the main theorem.

0.1. A stronger version of Theorem 1.

Let us restate our main result in a slightly stronger version:
Denote by F c the 1-dimensional foliation ofM whose leaves are the orbits of φ. Consider

the set Eφ of diffeomorphisms f : M →M satisfying the following hypotheses:

• f is a partially hyperbolic diffeomorphisms with one dimensional central direction:
there exists a Df -invariant splitting TM = Es ⊕ Ec ⊕ Eu, such that Df |Es is
uniformly contracting, Df |Eu is uniformly expanding, and Ec is a nonhyperbolic
central direction with dim(Ec) = 1

• there is an f -invariant foliation F c
f tangent to Ec.

• the central foliation F c
f is topologically conjugated to F c: there is a homeomor-

phism h : M → M such that h(F c) = F c
f .

• each leaf F c
f (x) is invariant by f . Furthermore, the distance dc(x, f(x)) in the leaf

F c
f (x) is uniformly bounded on M : there is Kf > 0 such that, for any x ∈ M

there is a path γ ⊂ F c
f (x) with length ℓ(γ) < Kf joining x to f(x) in the central

leaf F c
f (x).

We will show that, for f ∈ Eφ there is a continuous function τ(x) 6= 0 such that f is
conjugated to the homeomorphism x 7→ φ(x, τ(x)).

Hirsch Pugh and Shub (see Section 1) proved that Eφ contains a C1-neighborhood of
f1. Hence Theorem 1 is a direct consequence of:

Theorem 2. Let φ be a transitive Anosov flow on a smooth compact Riemannian manifold
M without boundary. If the set Eφ contains Axiom A diffeomorphisms which have more
than one attractor, then φ is topologically equivalent to the suspension of a hyperbolic
diffeomorphism.

1Some authors use orbit equivalent instead of topologically equivalent.



In a future work, we will show that for a transitive Anosov flow on a 3-manifold M , the
set Eφ contains Axiom A diffeomorphism whose non-wandering set is the union of only
two basic sets. One of them is an attractor and the other is a repeller set.

0.2. Sketch of the proof of Theorem 2 and organization of the paper.

Assume that f ∈ Eφ is an Axiom A diffeomorphism.
Using arguments in [9] we prove in Section 3 that:

• every attracting or repelling basic sets of f meets every central segment (i.e. seg-
ment of F c

f) of length Kf ; in particular they meet every compact central leaf.
• the local central direction is contracting for every point in the attracting basic sets

and it is expanding for the points in the repelling basic sets.

Then, in Section 4 we prove:

• Let A be an attracting basic set and W s(A) its basin. Then there is an open
and dense subset U of W s(A) such that for x ∈ U the connected component of
F c
f (x) ∩W

s(A) containing x meets A. Furthermore, there is a residual subset of
U (hence of W s(A)) for which this connected component meets A in precisely one
point.

Using these properties, in Section 5, we prove that for any attractor A there are two
repellers Λ− and Λ+, called the predecessor and the successor of A, respectively, such that,
for generic point x ∈ W s(A) the closure of the connected component of F c

f (x) ∩W
s(A)

containing x is a segment [a(x), b(x)] of central leaf with a(x) ∈ Λ− and b(x) ∈ Λ+. An
analogous fact holds for generic points in the basin of repeller.

As f is an Axiom A diffeomorphism, the union of the basin of attracting basic sets is
a dense open subset of M . As a consequence one proves that for a generic point x of
M , the intersection of the (dynamically oriented) central leaf with the union of attracting
and repelling basic sets of f form a sequence xi which belongs alternately to attracting
and repelling basic sets; furthermore if xi belongs to an attractor A (resp. a repeller Λ),
then xi+1 belongs to the repeller Λ+ (resp. the attractor A+) which is the successor of A
(resp. of Λ) (see Lemma 5.3).

This relation of successor induces a family of cycles in the set of attracting and repelling
basic sets of f . We prove that there is a unique cycle (Lemma 5.4); in other words there
is an indexation Ai, Λi of the set of attractors and repellers such that Λi is the successor
of Ai and the predecessor of Ai+1. As a consequence, generic central leaves intersect the
attractors and repellers following this cycle order. One deduces (Proposition 5.1) that
the same holds for all the central leaves, up to allowing repetitions: a leaf may cut an
attractor in more than one point before crossing the successor.

Assume now that f has more than one attracting basic set, (or equivalently more than
one hyperbolic repelling basic set). We show (Corollary 7.1) that the boundary of the
basin of a repelling basic set, Λ0 is the union of two disjoint compact sets K0 and K1,
verifying that A0 ⊂ K0 and A1 ⊂ K1.

Then we build a continuous and suryective function ρ : M → S1 = R/Z mapping K0 on
0 = 1 and K1 on 1

2
. Since every segment of central leaf of length greater than Kf meets

every attractor Ai, then there exists L such that every segment of central leaf γ of length
greater than L verifies that ρ(γ) = S1.



Let Π: M̃ → M be the infinite cyclic cover of M , obtained by pullback by ρ of the
universal cover R → S1. Consider the lift F̃ c

f of the foliation F c
f on this cyclic cover. The

foliation F̃ c
f has all its leaves going uniformly from −∞ to +∞( Lemma 7.6). The same

holds for the lift of the initial foliation F c generated by the Anosov flow φ. An argument
of Schwartzman ( see [23]) allows to conclude: the flow φ admits a global section, hence
it is topologically equivalent to the suspension of an Anosov diffeomorphisms.

1. Definitions and classical results

We begin recalling some basic definitions about flows and diffeomorphisms.

1.1. Anosov flows. A good reference for basic properties of Anosov flows is [23]

Definition 1.1. Let φ : M × R → R be a C1-flow on a compact manifold M . A compact
φt−invariant set, Λ ⊂ M , is called a hyperbolic set for the flow φ if there exist a
Riemannian metric on an open neighborhood U of Λ, and 0 < λ < 1 < µ such that for all
x ∈ Λ there is a decomposition

Tx(M) = Ess
x ⊕ Euu

x ⊕ Ec
x

such that ∂tφ(x, t)|t=0 ∈ Ec
x−{0}, dim(Ec(x)) = 1, Dxφt(x)(E

i
x) ⊂ Ei

φ(x,t), with i = ss, uu,
and

‖Dxφ(x, t)|Ess(x)‖ ≤ λt for t ≥ 0

‖Dxφ(x, t)|Euu(x)‖ ≤ µt for t ≤ 0.

A C1 flow φ : M × IR →M , is called an Anosov flow if M is a hyperbolic set for φ.

Let φ be an Anosov flow on a compact manifold M . The bundles Ess and Euu are
called the strong stable and strong unstable bundles of φ. We fix k such that dimEss

x =
n− k − 1 and dimEuu

x = k for all x ∈M.
We call Ecs = Ess ⊕ Ec and Ecu = Euu ⊕ Ec the central stable and central unstable

bundles, respectively.
There are φ-invariant foliations F cs, F cu, F ss, Fuu and F c tangent to the bundles Ecs,

Ecu, Ess, Euu and Ec, respectively, and called the center stable, center unstable, strong
stable, strong unstable and central foliations, respectively. The leaves of these foliations
are C1-manifolds varying continuously in the C1 topology, but in general they fail to be
C1-foliations: the holonomy maps are in general not C1.

The leaves of the central foliation (called the central leaves) are the orbits of φ, so
that the central foliation F c is a C1 foliation. For any point x ∈ M the strong stable
leaf F ss(x) is the stable manifold W ss(x) of x, that is the set of points y such that the
distance d(φ(x, t), φ(y, t)) tends to 0 when t tends to +∞. The central stable leaf F cs(x)
is the stable manifold of the orbit of x, that is union of the strong stable leaves through
the orbit of x:

F cs(x) =
⋃

y∈F c(x)

F ss(y).



In the same way, the central unstable leaf of x is the union of the strong unstable leaves
through the orbit of x:

F cu(x) =
⋃

y∈F c(x)

F uu(y).

In particular, if O is a closed orbit of φ then, for x ∈ O the central stable and central
unstable leaves F cs(x) and F cu(x) are the stable and unstable manifolds W s(O) and
W u(O), respectively.

Assume now that the Anosov flow φ is transitive. Then :

• the periodic orbits of φ are dense in M . In other words:

{x|F c(x) is a closed set } is dense in M.

• generic points of M have a dense forward and backward orbits. That is:

{x|F c(x) is dense in M} is a residual set.

• for every point x ∈ M the central stable and central unstable leaves F cs(x) and
F cu(x) are both dense in M .

1.2. Axiom A diffeomorphisms. The proof of Theorems 1 and 2 uses many properties
of Axiom A diffeomorphisms. Here we just recall briefly some basic definition and prop-
erties of Smale’s hyperbolic theory. The reader will find more complete information on
hyperbolic dynamics in [21], [18], [11, Part 4], [16, Chapter 0].

Definition 1.2. Let f : M →M be a Cr diffeomorphism . An f -invariant set Λ is called
hyperbolic if there exists a Df -invariant decomposition of TΛM such that

TΛM = Es ⊕ Eu

and Df |Es is uniformly contracting and Df |Eu is uniformly expanding. More precisely,
there are c > 0 and λ, with 0 < λ < 1 such that for all x ∈ Λ

‖Dxf
n|Es(x)‖ < cλn

and
‖Dxf

−n|Eu(x)‖ < cλn.

A diffeomorphism f : M →M is called an Anosov diffeomorphism if M is a hyperbolic
set for f .
A diffeomorphism f : M → M satisfies the Axiom A if the non-wandering set Ω(f) is
hyperbolic and the set of periodic points is dense in Ω(f).

A compact hyperbolic set K of f is called a basic set if it is transitive (i.e. there is a
point x ∈ K whose positive orbit is dense in K) and it is the maximal invariant set of f
in a open neighborhood U of K, i.e. K =

⋂
n∈Z f

n(U). The stable manifold W s(K) of
a basic set K is the set of points whose ω-limit (limit of the forward orbit) is contained
in K; according to the shadowing lemma, W s(K) is the union of the stable manifolds
W s(x) of the points x ∈ K, where the stable manifold of x is the set of points y such
that the distance d(fn(x), fn(y)) tends to 0 when n tends to +∞. The stable manifolds
W s(x) is C1-immersion of Es(x), and is tangent at x to Es(x). Furthermore it depends
continuously on x for the C1 topology.

Smale proved in [21] that:



• the non-wandering set of an Axiom A diffeomorphism is a the union of finitely
many disjoint basic sets Ki;

• for any point x ∈ M exist i, j such that x belongs to the stable manifold of Ki

and to the unstable manifold of Kj ;
• for any i the intersection between the stable and the unstable manifold of Ki is

equal to Ki:
W s(Ki) ∩W

u(Ki) = Ki.

• some of the Ki are attractors: this means that Ki admits an open neighborhood
U such that f(Ū) ⊂ U and such that Ki =

⋂
n>0 f

n(U). The basin (i.e. stable
manifold) of the attractors are open sets whose union is dense in M .

• a repeller of f is an attractor of the Axiom A diffeomorphism f−1.

Furthermore, a basic setK is an attractor if and only if it contains its unstable manifold,
that is K = W u(K).

Remark 1.1. (1) A transitive hyperbolic attractor (i.e. an attracting basic set) has
finitely many connected components, which are exchanged by f .

(2) For any n > 0, fn is an Axiom A diffeomorphism.
(3) Any transitive hyperbolic attractor of fn is the orbit by fn of a connected compo-

nent of an attractor of f .
(4) Hence, there is n > 0 such that each transitive attractor and repeller of fn is

connected.

1.3. Partially hyperbolic diffeomorphisms. We refer to [10] and to [3, Appendix B]
for the basic properties of partially hyperbolic dynamics.

Definition 1.3. A C1 diffeomorphism f : M → M is called partially hyperbolic if there
exists a Df -invariant decomposition of

TxM = Es
x ⊕ Ec

x ⊕ Eu
x

such that the dimensions of the spaces Es
x, E

c
x, and Eu

x do not depend on x ∈M , further-
more Df |Es is uniformly contracting , Df |Eu is uniformly expanding, and the expansion
in Ec is stronger than the expansion in Es and less than the expansion in Eu. More
precisely, there are c > 0 and λ, with 0 < λ < 1 such that for all x ∈ Λ

‖Dxf
n|Es(x)‖ < cλn,

‖Dxf
−n|Eu(x)‖ < cλn,

‖Dxf
n|Es(x)‖‖Dxf

−n|Ec(x)‖ < cλn, and
‖Dxf

n|Ec(x)‖‖Dxf
−n|Eu(x)‖ < cλn.

The bundles Es, Ec and Eu are always continuous. The partial hyperbolicity is an C1-
open structure: if f is a partially hyperbolic then there is a C1-neighborhood U of f such
that any g ∈ U admits a (unique) partially hyperbolic structure TxM = Es

x,g⊕E
c
x,g⊕E

u
x,g

such that the dimension of the spaces are the same for f and for g. Furthermore the
bundles Es

g E
c
g and Eu

g depend continuously on g.
As in the hyperbolic case, if f is partially hyperbolic there are invariant foliations F ss

f

and Fuu
f tangent to Es

f and Eu
f , respectively, whose leaves are C1 immersed manifold. In



general there is no invariant foliation tangent to Ec (there are counter-examples when
dimEc > 1, and the existence of a central foliation is unknown for dimEc = 1). However,
the existence of a central foliation F c tangent to Ec and f invariant leads to a strong
rigidity property of f . Hirsch Pugh and Shub showed:

Theorem 3. Let f be a partially hyperbolic diffeomorphism of a compact manifold. As-
sume that f admits a C1-foliation F c

f tangent to Ec. Then, there is a C1-neighborhood U
of f such that every g ∈ U is a partially hyperbolic diffeomorphism having an invariant
central foliation F c

g ; furthermore, there is a homeomorphism hg : M → M and a constant
cg > 0 such that

hg(F
c
g) = F c

f ,

and the homeomorphism hg ◦ g ◦ h
−1
g satisfies the following property: for every x ∈ M

the point hg ◦ g ◦ h
−1
g (x) belongs to the same leaf of F c

f as f(x) and the distance between

hg ◦ g ◦ h
−1
g (x) and f(x) in the central leaf is bounded by cg:

dc(hg ◦ g ◦ h
−1
g (x), f(x)) < cg.

Finally, if the neighborhood U is small enough, then hg is close to the identity and cg
is very small.

This Theorem has been stated in [10, Theorem 7.1] with the hypothesis ” F c is plaque
expansive” instead of ”F c is C1”. However, [10, Theorem 7.2] shows that the central
foliation is always plaque expansive if it is a C1 foliation.

Finally, a partially hyperbolic diffeomorphism f is called dynamically coherent if there
are f -invariant foliations F cs

f , F cu
f an F c

f tangent to Es
f⊕E

c
f , E

u
f ⊕E

c
f and Ec

f , respectively.

1.4. C1-small perturbations of the time one map of an Anosov flow. Let φ be a
C1-Anosov flow on a compact manifold M .

We will denote by f1 : M →M, the time one diffeomorphism of φ defined as

f1(x) = φ(x, 1), ∀x ∈M.

The diffeomorphism f1 has no hyperbolic set because the direction tangent to the flow
is invariant but neither expanded nor contracted. However, it is partially hyperbolic,
the invariant bundles are those Ess, Ec and Euu of the flow φ. Furthermore, the central
foliation F c of the Anosov flow φ is a C1 foliation2. Hence one may apply Theorem 3 to
F c.

Hence there is a C1-neighborhood U of f1 such that any f ∈ U satisfies the following
properties:

(1) it is a partially hyperbolic diffeomorphism with a splitting TM = Euu
f ⊕Ec

f ⊕Euu
f

of the same dimensions as those of f1 (i.e. of φ);
(2) there is a 1-dimensional f -invariant central foliation F c

f tangent to Ec
f

(3) there is a homeomorphism hf such that hf(F
c
f) = F c

(4) furthermore, for every x ∈M the point hf ◦ f ◦ h
−1
f (x) belongs to the same leaf of

F c as f1(x), that is the leaf F c(x) of x; as a direct consequence, each leaf of F c
f is

f -invariant

2One also verify that the foliation Fcs and Fcu are plaque expansive. Theorem 3 may be applied
(independently) to each of the foliations Fc, Fcs and Fcu.



(5) finally there is a constant cf > 0 such that the distance between hf ◦ f ◦ h−1
f (x)

and f1(x) = φ(x, 1) in the central leaf is bounded by cf . As a consequence the
distance in the leaf F c

f (x) between x and f(x) is uniformly bounded.

This shows that any diffeomorphism f ∈ U belongs to the set Eφ defined in the introduc-
tion.

1.5. Perturbations of the time one map of an Anosov flow along the central

foliation. Let φ be an Anosov flow and Eφ be the set, defined in the introduction, of
partially hyperbolic diffeomorphisms f , TM = Es

f ⊕ Ec ⊕ Eu
f satisfying the following

properties:

• f has a one dimensional central foliation F c
f conjugated to the central foliation F c

of φ by a homeomorphism hf ,
• each leaf F c

f (x) is invariant by f . Furthermore, there is Kf > 0 such that, for any
x ∈ M there is a path γ ⊂ F c

f (x) with length ℓ(γ) < Kf joining x to f(x) in the
central leaf F c

f (x).

Lemma 1.1. hf ◦ f ◦ h−1
f is an homeomorphism of M of the form x 7→ φ(x, τ(x)) where

τ : M → R \ {0} is a continuous function.

Proof: First notice that τ(x) is uniquely defined by hf ◦f ◦h
−1
f (x) = φ(x, τ(x)), on non

compact central leaves. Furthermore, τ is continuous on the complement of the compact
leaves of F c.

On a compact leaf F c(x) the equation on hf ◦ f ◦ h
−1
f = φ(x, τ) admits infinitely many

solutions τi, i ∈ Z, and the difference τi − τj is precisely (i − j) times the period of the
φ-orbit F c(x). Let us show now that τ admits a unique extension on F c(x): the flow
φ has a countable family of periodic orbits then the complement of the compact leaves
of F c

f satisfies that the intersection with any connected open set of M is connected. As
a consequence, the accumulation values of τ(y) when y tends to x is an interval of R
contained in {τi}i∈Z, that is, there is a unique τi. We just proved that the function τ
admits a unique continuous extension on M .

For ending the proof of Lemma 1.1, it remains to prove that τ does not vanish. We will
use the following lemma:

Lemma 1.2. Let t : M → R be a continuous function and let ϕ : M → M be the homeo-
morphism defined by ϕ(x) = φ(x, t(x)). Assume that t(x0) = 0 for some point x0. Then
there is δ > 0 such that the δ−local stable manifold of x0 for ϕ (that is, the set of points y
such that the distance d(ϕn(y), ϕn(x)) remains smaller than δ and tends to 0 when n > 0
tends to +∞) is included in the φ orbit of x0.

Proof: Recall that φ has no fixed point, so that there is a flow box at x0. As t is very
small in the neighborhood of x0, the orbit of each point close to x0 remains in the same
local central leaf until it goes out the flow box. Choosing δ > 0 such that the ball of
radius δ centered at x0 is contained in the flow box, we get the statement of the lemma.

The partial hyperbolicity of f ensures the existence of local strong stable and strong
unstable manifolds at each point x of M and these manifolds are not contained in the



central leaf F c
f (x). This implies that every point x ∈ M has a local stable manifold for

hf ◦f ◦h
−1
f which is not contained in the φ orbit of x. One concludes that τ cannot vanish

ending the proof of Lemma 1.1.
Notation

For every f ∈ Eφ, we denote τf = τ ◦ hf . Then hf ◦ f(x) = φ(hf(x), τf (x))

Remark 1.2. (1) If f is a diffeomorphism which belongs to Eφ then its inverse f−1

belongs to Eφ too; furthermore one can choose hf−1 = hf and τf−1 = −τf ◦ f
−1.

Hence we will now assume (up to replace f by f−1), that τf > 0.
(2) If f is a diffeomorphism in Eφ then for any n > 0 the diffeomorphism fn belongs

to Eφ, with hfn = hf and τfn = τf + (τf ◦ f) + · · · (τf ◦ f
n−1).

Notice that F c is naturally oriented by the flow φ and that the foliation F c
f = h−1

f (F c)
inherits the image orientation. This orientation coincides, on the non-compact leaves,
with the orientation given by the dynamics of f , that is the leaf F c

f (x) is oriented from x
to f(x).

From now on, we choose the dynamical orientation for F c
f .

A parametrized central arc γ : [0, 1] → M is an immersion of [0, 1] in a central leaf.
Two parametrized central arcs γ1 and γ2 define the same oriented central arc if there is a
orientation preserving homeomorphism σ of [0, 1] such that γ2 = γ1 ◦ σ. The C0-topology
on the set of parametrized central arcs induces a topology, already called the C0-topology,
on the set of oriented central arcs. We denote by ℓ(γ) the length of the arc γ.

Let b ∈ F c
f(a) in the positive direction starting from a. We will denote Ca

b the arc
included in F c

f(a) between a and b.
Let us denote by D(x) the arc of central curve positively oriented and joining x to

f(x), and whose image by hf is the arc φ(hf(x), [0, τf (x)]). Notice that D(x) and Cx
f(x)

are equal with a possible exception when F c
f(x) is closed. In fact, just in the cases where

W c(x) is closed and D(x) winds around itself more than once we have that D(x) 6= Cx
f(x).

Remark 1.3. As there are finitely many compact central leaves of length less Kf , we get
that D(x) = Cx

f(x) excepted for x in finitely many closed central leaves.

The family Cx
f(x) is not a priori continuous. However, as the function x 7→ τf (x) is

continuous, the arcs D(x), x ∈M form a continuous family of compact central arcs.
By the continuity of the family D(x) , there is Kf > 0 such that the length ℓ(D(x)) is

upper bounded by Kf for every x ∈ M . Furthermore, as τf > 0 there is a lower bound
cf > 0 of ℓ(D(x)). Finally, D(f(x)) = f(D(x)). As a consequence one gets the following
properties:

Lemma 1.3. Let γ be a central arc with ℓ(γ) ≤ cf . Then for any n ∈ Z, the length
ℓ(fn(γ)) is upper bounded by Kf .

Proof: Let denote x = γ(0). Then γ ⊂ D(x). Hence fn(γ) ⊂ D(fn(x)). So ℓ(fn(γ)) ≤
ℓ(D(fn(x)) ≤ Kf .

Lemma 1.4. For any x ∈M and any y ∈ F c
f (x), there is n ∈ Z with fn(y) ∈ D(x).

Proof: Just notice that one gets a central curve with infinite length in the both positive
an negative direction by putting together the segments D(fn(x)) = fn(D(x)), which are



all of length greater than cf > 0. Hence this curve is the whole central leaf F c
f (x). So y

belongs to some fn(D(x)) that is f−n(y) ∈ D(x)

1.6. Dynamical coherence of diffeomorphisms f ∈ Eφ.
Two leaves F c

f (x) and F c
f (y) will be called asymptotic at +∞ if there are parametriza-

tions γx : R → F c
f (x) and γy : R → F c

f (x) preserving the orientation and such that the
distance d(γx(t), γy(t)) tends to 0 when t → +∞. If y ∈ F cs(x) we say that F c

f (x) and
F c
f (y) are asymptotic at +∞ in F cs(x) if the central stable distance dcs(γx(t), γy(t)) tends

to 0 when t→ +∞.
The map f is normally hyperbolic (see [10]) then there exist strong stable and strong

unstable foliations F ss
f , Fuu

f

Lemma 1.5. Consider f ∈ Eφ and hf the homeomorphism associated to f , conjugating
F c
f to F c. Then:

• there is an f -invariant foliation F cs
f tangent to the bundle Ess

f ⊕Ec
f ;

• there is an f -invariant foliation F cu
f tangent to the bundle Euu ⊕ Ec;

• for every point x the leaf F cs
f (x) contains the leaves F ss

f (x) and F c
f (x);

• for every point x the leaf F cu
f (x) contains the leaves F uu

f (x) and F c
f (x);

• F cs
f = h−1

f (F cs) and F cu
f = h−1

f (F cu).

Proof: We first prove that, for every x ∈ M the image h−1
f (F cs(hf(x))) of the leaf of F cs

through hf(x) contains the leaves F ss
f (x) and F c

f (x). Notice that F cs(hf (x)) contains the

leaf F c(hf(x)), and h−1
f (F c(hf(x))) = F c

f (x), by definition of hf . Hence h−1
f (F cs(hf(x)))

contains F c
f (x).

Consider y ∈ F ss
f (x). Then the distance d(fn(x), fn(y)) tends to 0 when n→ +∞. As

the central distance dc(fn(x), fn+1(x)) and dc(fn(y), fn+1(y)) are uniformly bounded, it
follows that the oriented leaves F c

f (y) and F c
f (x) are asymptotic (when one follows the fo-

liation in the positive direction). This property persists by conjugacy so that the oriented
leaves F c(hf (y)) and F c(hf (x)) are asymptotic. This means that hf (y) ∈ F cs(hf(x)).
Hence y ∈ h−1

f (F cs(hf (x))), proving the claim.
This implies that the dimension of Es

f ⊕ Ec
f = 1 + dimEs

f is less than (or equal to)
the dimension of Es ⊕ Ec = 1 + dimEs. In the same way one proves that the image
h−1
f (F cu(hf(x))) contains the leaves F uu

f (x) and F c
f (x), implying dim(Eu

f ) ≤ dimEu. One
conclude that dimEs

f = dimEs and dimEu
f = dimEu.

One deduces that h−1
f (F cs(hf (x))) is a C1-immersed submanifold tangent to Es

f⊕E
c
f (x).

Let us denote F cs
f = h−1

f (F cs). It is a foliation tangent to Es
f ⊕Ec

f and subfoliated by F c
f

and F ss
f . As the leaves of F c

f are each f -invariant , each leaf of F cs
f is invariant.

Analogously it can be proven that F cu
f = h−1

f (F c) is a foliation tangent to Eu
f ⊕Ec

f and
subfoliated by F c

f and Fuu
f .

Lemma 1.6. For every point x ∈ M , the central stable leaf F cs
f (x) is the union of the

strong stable leaves crossing the central leaf F c
f (x).

F cs
f (x) =

⋃

y∈F c
f
(x)

F ss
f (y)



In the same way,

F cu
f (x) =

⋃

y∈F c
f
(x)

F uu
f (y).

Proof: We proved the inclusion
⋃
y∈F c

f
(x) F

ss
f (y) ⊂ F cs

f (x). It remains to prove the

converse inclusion.
Using Lemma 1.5 one can prove that there is δ > 0 such that, for every x ∈ M the ball

Bcs
f (x, δ) of radius δ centered at x in the leaf F cs

f (x) is contained in
⋃
y∈F c

f
(x) F

ss
f (y).

Now consider y ∈ F cs
f (x). By Lemma 1.5 the points hf (x) and hf (y) belongs to the

same central stable leaf of the flow φ. This means that the central leaf of φ through hf(x)
and hf(y) are asymptotic at +∞ in F cs(hf (x)).

Let tn such that hf(f
n(y)) = φ(hf (y), tn). Since tn → ∞ it follows that there exist t′n

such that the distance dcs(φ(hf(y), tn), φ(hf(x), t
′
n)) (in the central stable leaf F cs(hf(x)))

tends to 0. Let xn = h−1
f (φ(hf(x), t

′
n)). As a consequence xn ∈ F c

f (x) and one can

prove that for n→ +∞, the distance dcsf (fn(y), xn) (in the leaf F cs
f (x) = h−1

h (F cs(hf(x)))
tends to 0. In particular this distance is less that δ for large n. As a consequence,
fn(y) belongs to the strong stable leaf through the point x′n ∈ F c

f (x). One conclude:
y ∈ F ss

f (f−n(x′n)) ⊂
⋃
z∈F c

f
(x) F

ss
f (z), proving the converse inclusion.

Lemma 1.7. Let x be a point of M and γ : [0, 1] → F c
f (x) be a path in the central leaf

trough x, such that γ(0) = x. Let y be a point of F ss
f (x). Then there is a unique path

σ : [0, 1] → F c
f (y) such that σ(0) = y and for every t ∈ [0, 1] one has σ(t) ∈ F ss

f (γ(t)).

Proof: First notice that it is enough to prove Lemma 1.7 for central paths whose
length is upper bounded by some constant c: one deduces the general case by cutting γ
is pieces of length smaller that c.

Now, given some fixed constant c, there is ε(c) > 0 such that the conclusion of
Lemma 1.7 holds with the following hypotheses:

• γ is a central path with length ℓ(γ) < c, γ(0) = x
• y is a point in F ss

f (x) such that the distance dss(x, y) (in F ss
f (x)) is less than ε(c).

Let γ be a parametrized arc of length less that cf , where cf is defined as before
Lemma 1.3. Let x = γ(0) and let y be a point of F ss

f (x). By Lemma 1.3 we have that
for any n ∈ N, ℓ(fn(γ)) ≤ Kf . There is n > 0 such that the distance dss(fn(x), fn(y) (in
the leaf F ss

f (fn(x)) is less that ε(Kf). So there is a central arc σ̃ ⊂ F c
f (f

n(y)) such that
σ̃(0) = fn(y) and σ̃(t) ∈ F ss

f (fn(γ(t))). One denotes σ = f−n(σ̃). It is a central arc in
F s
f (y) starting at σ(0) = y and σ(t) ∈ F ss

f (γ(t)).

In Lemma 1.7, we say that σ is the image of γ by the holonomy of the foliation F ss
f from

x to y and we denote σ = Hss
f (γ, y). Next lemma asserts that action of the holonomy of

F ss
f on central arcs is continuous:

Lemma 1.8. Given K1, K2 > 0 , the map (γ, y) 7→ Hss
f (γ, y) is a continuous map, from

the space of pairs (γ, y) where γ is a central arc with ℓ(γ) ≤ K1 and y ∈ F ss
f (γ(0)) satisfies

dss(γ(0), y) ≤ K2, to the space of central arcs.



Proof: As for Lemma 1.7, cutting γ in pieces of length less that cf and iterating
positively by f , it is enough to show Lemma 1.8 for segment γ of length bounded by Kf ,
and with dss(γ(0), y) less that an arbitrarily small ε > 0. Then the statement follows by
working in foliated charts of the foliation F c

f .
Assume now that the Anosov flow φ is transitive. As we have seen, the periodic orbits

are dense, the orbits of generic points are dense, all the central stable or unstable leaves
are dense. All these properties holds for any f ∈ Eφ:

{x|F c
f (x) is a closed set} is dense in M

and
{x|F c

f (x) is dense in M} is a residual set.

For any x ∈M , F cs
f (x) and F cu

f (x) are dense.

2. Periodic orbits and compact central leaves

From now on, φ is a transitive Anosov flow on a compact manifold, f1 denotes the time
one map of φ, and f ∈ Eφ is an Axiom A diffeomorphism, with τf > 0. Let us denote by
F c
f (x) or by W c(x) the leaf of the central foliation through the point x. From now on, we

choose the dynamical orientation for F c
f .

We denote by k the dimension of Euu
f and by per(f) the set of periodic points of f .

The metric induced by the Riemannian metric on the leaves of F c
f will be denoted dc.

Analogously we define ds and du.
Consider x ∈ Ω(f). As Ω(f) is hyperbolic, the central direction Ec

f(x) is contained
either in the unstable or in the stable space at x. In the first case, there is a neighborhood
F cu
f,loc(x) of x in F cu

f (x) which coincides with the local unstable manifold W u
loc(x). In the

second case, F cs
f,loc(x) coincides with the local stable manifold W s

loc(x).

Remark 2.1. If x is a periodic point of f then the central leaf Ec
f (x) is compact, because

each central leaf is f -invariant and τf is strictly positive. Indeed hf(x) is a periodic point
of φ; a period of hf(x) is the sum of the τf (y) for y in the f -orbit of x.

Next proposition asserts that, conversely, every compact central leaf contains periodic
orbits of f :

Proposition 2.1. If O = F c
f (x) is a closed curve then

• the rotation number of f |O is rational
• there exists at least two periodic points in O with different indices
• the points in Ω(f) ∩O are the periodic ones.

Proof:
Let O = F c

f (x) be a closed curve. Let us prove that the rotation number of f |O
is rational. Assume, by contradiction that it is irrational. Then there exists a unique
minimal set I ⊂ O which is not periodic. As I ⊂ Ω(f) and f is Axiom A, I is hyperbolic
and included in a basic set Λ.
Besides, ∀y ∈ O, α(y) = ω(y) = I, where α(y)(ω(y)) is the set of limit points of {fn(y)}
when n→ −∞ (n→ +∞) (See, for example [5] page 34). Hence

y ∈W s(I) ∩W u(I) ⊂W s(Λ) ∩W u(Λ) ⊂ Λ,



therefore y ∈ Ω(f). Then O ⊂ Λ ⊂ Ω(f) and it follows that f |O is expansive which leads
to a contradiction with the nonexistence of one dimensional expansive diffeomorphism
(See [12]).

Hence, f |O has periodic points since the rotation number is rational. Since f is Axiom
A, all the periodic points are hyperbolic and (restricted to O) are alternately attractors
or repellers. An attractor (resp.repeller) point correspond in M to periodic saddle whose
stable manifold has dimension equal to dimEs + 1 (resp. dimEs): hence O contains
periodic orbits of different indices.

All the points in Ω(f) ∩ O must be periodic, otherwise, if there were a nonperiodic
point, x ∈ Ω(f) ∩ O then the invariance of Ω(f) ∩ O implies that α(x) and ω(x) would
be periodic points of different indices so they would be in different basic sets. This is a
contradiction with the fact that a non-wandering point of an Axiom A diffeomorphism
must have the α and the ω limit set in the same basic set.

Let O be a compact leaf of F c
f . Then the stable manifold W s(O) of O is the set of

points whose ω-limit set is included in O. Let us state some properties of W s(O)

Remark 2.2.

• The leaf O is a normally hyperbolic invariant compact manifold. As a consequence
W s(O) is the union of the strong stable leaves through O.

• Hence, according to Lemma 1.6, W s(O) is the leaf of F cs
f containing O.

• We have seen that every leaf of F cs
f is dense in M ; so the stable manifold W s(O)

is dense in M .
• The stable manifold W s(O) is the union of the stable manifolds of the periodic

points in O. More precisely, let per(O) denote per(f) ∩ O, the set of periodic
points contained in O. Then

W s(O) =
⋃

x∈per(O)

W s(x).

One defines analogously the invariant manifold W u(O) of O and it satisfies the corre-
sponding properties.

3. Properties of attracting and repelling basic sets.

We include some statement in the present section that have been published in ([9]),
assuming some extra hypotheses. Their proofs include simple ideas that are essential in
the proof of the main theorem.

Let us recall that, as f is an Axiom A diffeomorphism, there is a finite number of
attractors and repellers basic sets. We will show here that each attractor and each repeller
meets every central leaf (so it looks like a complete cross section of the Anosov flow) .

Let A denote an attractor basic set of the spectral decomposition of f . Notice that
A 6= M because f is not an Anosov diffeomorphism. According to the remarks 1.1 and
1.2, every positive iterate fn is an Axiom A diffeomorphism in Eφ and there is n > 0 such
that every transitive attractor and repeller is connected. Hence, up to replacing f by fn

we may assume that A is connected.
Recall that we denote dimEuu

f = k.



Lemma 3.1. dim(W s(x)) = n− k, ∀x ∈ A

Proof: By hypotheses dim(Ess
φ ) = n − k − 1. For every x ∈ A, either its local

central leaf F c
f,loc(x) is expanding (i.e. dim(W s(x)) = n− k − 1), or its local central leaf

is contracting (i.e. dim(W s(x)) = n− k).
Consider a periodic point x ∈ A ∩ per(f). We have seen that it central leaf F c

f (x) is a
closed curve.

We argue by contradiction, assuming that the central direction Ec
f (x) is unstable. Since

A is an attractor it contains its unstable manifold; in particular one hasW u(x) ⊂ A; hence
the local central leaf F c

f,loc(x) is contained in A (See Figure 1).

x′

x

Figure 1.

Consider now the dynamic of f restricted to the circle F c
f (x). The f -orbit of x is a

repeller for these dynamic. A point y ∈ F c
f,loc(x) has positive iterates which converge to

an attracting point x′ of f |
Fc
f
(x)

. The set A is closed and f -invariant then x′ belongs to

A. But dim(W s(x′)) = n− k (because the central direction Ec
f (x

′) is contracting on the
orbit of x′). It follows that there exist two periodic points of different indices in A, which
contradicts the hyperbolicity of A.

Then the local central leaf is stable for every point in A and the claim follows.
Recall that Kf > 0 is an upper bound of the length of D(x), for x ∈M .

Lemma 3.2. It holds that

• For every closed curve O in F c
f there exists a periodic point p ∈ A ∩O.

• In every central arc γ with length(γ) ≥ Kf , there exists a point p ∈ γ ∩ A.
In particular, every leaf of F c

f intersects A.

Proof: According to Remark 2.2 the stable manifold W s(O) is dense in M . Since
W s(A) is an open set, there exists y in the intersection W s(O) ∩W s(A). By Remark 2.2
there is a periodic point x ∈ O such that y ∈ W s(x) ∩W s(A). Hence x ∈ A, proving
A ∩ O 6= ∅.

As A is f -invariant, the whole orbit of x is contained in A. By Lemma 1.4, for every
y ∈ O, the arc D(y) contains at least one point of the orbit of x: hence, for every point
y in a compact central leaf, the segment D(y) meets A.

Then A meets D(y) for every y in the dense subset of M equal to the union of the
closed central leaves. Since the family of arcs D(z), z ∈ M is a continuous family of
compact arcs and A is compact, it follows that A ∩D(z) 6= ∅ for every z ∈M .



Remark 3.1. Analogously we can show that there exists q ∈ O ∩Λ, where Λ is a repeller
set. Moreover, in every segment γ of a central curve with length(γ) ≥ Kf , there exists a
periodic point q ∈ γ ∩ Λ.

As a direct consequence of Remark 3.1 one gets that every leaf of the central foliation
”goes away ” from the basin of attraction of any attractor.

Corollary 3.1. In every leaf of F c
f there exists at least one point outside of W s(A).

Lemma 3.3. For every attractor basic set A, every repeller basic set Λ, and every compact
central segment γ, the intersections γ ∩A and γ ∩ Λ are finite sets.

Proof: Each central leaf is contracting at each point of the attracting basic sets. One
deduces that there is c > 0 such that, for any two distinct points x, y ∈ A in the same
central leaf, the central distance dc(f−n(x), f−n(y)) is larger than c for every n > 0 large
enough.

We will show that , for any x ∈M the intersection A ∩D(x) is finite.
Consider x ∈ M and {xi} in A ∩D(x), such that x0 < x1 < x2 < . . . < xl in the given

orientation of D(x).
Then there exists ni ∈ IN , i = 1, . . . l verifying that ℓ(f−ni(C

xi−1
xi )) > c, for all n ≥ ni.

So for n ≥ supi ni one gets ℓ(f−n(D(x)) = ℓ(D(f−n(x))) is larger than l · c. However

ℓ(D(f−n(x))) ≤ Kf by definition of Kf . So l ≤
Kf
c

, ending the proof of the claim.
Consider now a compact central segment γ, and let x be the origin of γ. Then there is

i > 0 such that γ is contained in
⋃i

1D(f j(x)). Hence γ ∩ A is finite. One proves in the
same way (using positive iterations instead of negative ones) that γ ∩ Λ is finite.

4. Properties of the central foliation in the basin of A.

Let A be an attractor of f . The aim of this section is to show that:

• For x in an open and dense subset of the basin W s(A), the connected component
of x in W c(x) ∩W s(A) contains at least a point yx ∈ A (Lemma 4.5).

• For generic points in W s(A) the connected component of x in W c(x) ∩W s(A))
contains exactly one point in A: the set

{x ∈W s(A)|♯{conn. comp. of x in (W c(x) ∩W s(A)) ∩ A} = 1}

is a residual set of W s(A) (Lemma 4.6).

In order to get these properties we introduce, for every x ∈W s(A), the entering point
S̃A(x) and the exit point SA(x) of its center leaf F c

f (x) in W s(A), as follows:

Definition 4.1. We denote by SA : W s(A) → ∂W s(A) the map defined by: SA(x) is the
nearest point of the central leaf of x ∈ W s(A) in the positive direction which is not in
W s(A), i.e.,

SA(x) = sup{y ∈ F c
f (x)|C

x
y ⊂W s(A)}

In the same way S̃A : W s(A) → ∂W s(A) is the map defined by: S̃A(x) is the nearest
point of the central leaf of x ∈W s(A) in the negative direction which is not in W s(A).



By Corollary 3.1, every segment of central leaf with length greater than Kf contains

points out of W s(A) so that that maps SA and S̃A are well defined.

We denote by Ŵ c(x) = C
S̃A(x)
SA(x) the arc of central curve which is the closure of the

connected component of W c(x) ∩W s(A) which contains x. Notice that the interior of
this segment is contained, by definition, in W s(A), so that its length is bounded by Kf .

Lemma 4.1. If x ∈ W s(A) belongs to a compact central leaf, then Ŵ c(x) cuts A in

exactly one point. Furthermore SA(x) and S̃A(x) are periodic points for which the central
direction is expanding.

Proof: If x ∈W s(A) is periodic, then x ∈ A; furthermore, by the proof of Lemma 3.1
the intersection W s(x) ∩ F c

f (x) is an interval in W s(A) ending at two periodic points of
index different from the index of x, hence out of W s(A). Finally, by Proposition 2.1 x

is the unique non-wandering point in that open interval, so that Ŵ c(x) is the closure of
W s(x) ∩ F c

f (x).
If F c

f (x) is compact but x is not periodic, it belongs to the stable manifold of a periodic

point y ∈ F c
f (x) = F c

f (y), and Ŵ c(x) is the closure of W s(y) ∩ F c
f (y).

Lemma 4.2. Let ℓ+(x) and ℓ−(x), x ∈W s(A), denote the length of the central arcs C
SA(x)
x

and Cx
S̃A(x)

respectively. The maps x 7→ ℓ+(x) and x 7→ ℓ−(x) are lower semicontinuous.

Proof: This is a classical consequence of the compactness of the complement of W s(A):
let xn ∈W s(A) be a sequence converging to x. As the length ℓ+ is uniformly bounded by
Kf , by considering a subsequence, one may assume that the central arcs Cxn

SA(xn) converge

to a central arc Cx
y , with ℓ(Cx

y ) = lim ℓ+(xn), where ℓ(C) is the length of the arc C.
Moreover, y /∈W s(A). Hence Cx

SA(x) is a sub arc of Cx
y , proving ℓ+(x) ≤ lim ℓ+(xn). This

proves that ℓ+ is lower semi-continuous, and the proof of the semi continuity of ℓ− is
identical.

We denote by Q ⊂W s(A) the set of points such that the map x 7→ Ŵ c(x) is continuous
at x; this is equivalent to the fact that both ℓ− and ℓ+ are continuous at x. Let us state
some properties of the sets Q :

Remark 4.1. (1) Q is invariant by f .
(2) As semicontinuous maps are continuous on generic points, the set Q is residual

in W s(A).

(3) if x ∈ Q then the open arc Ŵ c(x) \ {S̃A(x), SA(x)} is contained in Q.

(4) if x, y ∈ W s(A) belong to the same strong stable leaf, then Ŵ c(y) is the image

of Ŵ c(x) by the holonomy map of the foliation F ss
f from F c

f (x) to F c
f (y). As a

consequence of the continuity of the holonomy map ( see Lemma 1.8)
(5) if x ∈ Q then the strong stable leaf F ss

f (x) is contained in Q.

Remark 4.2. T. For any α > 0 let us denote by Ũα ⊂ W s(A) the set of points x such
that there is a neighborhood Vx,α of x verifying ℓ+(y) < ℓ+(x) + α and ℓ−(y) < ℓ−(x) + α
for every y ∈ Vx,α. Since the functions ℓ− and ℓ+ are lower semi-continuous, positive and

upper bounded by Kf it follows that Ũα is dense in W s(A) for any α > 0.



We denote by Uα the dense subset of W s(A) defined by Uα =
⋃
α′<α Ũα′ .

Lemma 4.3. For any α > 0 the set Uα is an open and dense subset of W s(A).

Proof: Let x be a point of Uα. By definition of Uα there is 0 < α′ < α such

that x belongs to Ũα′ . Fixe 0 < ǫ < α − α′. Since the functions ℓ− and ℓ+ are lower

semi-continuous, it follows that there exists an open neighborhood of x, Ũ ǫ, such that if

y ∈ Ũ ǫ then ℓ+(y) > ℓ+(x) − ǫ and ℓ−(y) > ℓ−(x) − ǫ. Since x belongs to Ũα′ , there is
a neighborhood Vx,α′ of x verifying ℓ+(y) < ℓ+(x) + α′ and ℓ−(y) < ℓ−(x) + α′ for every
y ∈ Vx,α.

Let y ∈ Vx,α ∩ U
ǫ. We will show that y ∈ Uα. Let z ∈ Vx,α′, then ℓ+(z) < ℓ+(x) + α′

and ℓ−(z) < ℓ−(x) + α′. Since y ∈ U ǫ we have that ℓ+(z) < ℓ+(y) + ǫ + α′ < ℓ+(y) + α
and ℓ−(z) < ℓ−(y)+ ǫ+α < ℓ−(y)+α, hence y ∈ Uα and Uα is an open subset of W s(A).

Remark 4.3. Clearly, Q is contained in Uα for all α > 0. More precisely, Q =
⋂
α Uα.

Lemma 4.4. There is a dense open subset U of W s(A) such that for every closed central
leaf O the intersection O ∩ U is contained in Q.

Proof: We just sketch the proof which is done in details in [9, lemma 2.4]. Let δf > 0
such that 2δf is less than the infimum distance between two different basic sets of f , and
we denote U = Uδf . Consider a closed leaf O and x ∈ O ∩ U . We argue by contradiction
assuming that x is not a continuity point of ℓ+.

Hence there is a sequence of points xn converging to x such that ℓ+(xn) converge but
lim ℓ+(xn) 6= ℓ+(x); as ℓ+ is lower-semicontinuous this implies that lim ℓ+(xn) > ℓ+(x).
The closed central curves are dense in M and ℓ+ is lower semi continuous, hence there are
yn close to xn such that F c

f (yn) is closed and ℓ+(yn) ≥ ℓ+(xn)−
1
n
. From Lemma 4.1 above,

the point zn = SA(yn) is a periodic point for which the central direction is expanding; in
particular it belongs to Ω(f). Up to choosing a subsequence, one may assume that the arcs
Cyn
zn converge to some arc γ strictly larger than Cx

SA(x), and joining x to a point z = lim zn.

As Ω(f) is compact, the point z is non-wandering. As z belongs to the closed leaf O this
implies that z is a periodic point; furthermore the central direction is expanding along
the orbit of z. So z has the same index as the periodic point SA(x). Consider σ be the arc
joining SA(x) to z and obtained by removing Cx

SA(x) to γ. The central arc σ is joining two

periodic points with the same index in O (and its length is not 0). As the periodic points
in O are alternately attracting and repelling, σ contains a periodic point with different
index, which implies that ℓ(σ) > δf . So we proved lim ℓ+(yn) > ℓ+(x)+δf and lim yn = x,
which contradicts x ∈ U .

Lemma 4.5. For every point x ∈ U = Uδf the arc Ŵ c(x) meets A:

Ŵ c(z) ∩A 6= ∅

Proof: Consider x ∈ U and xn → x a sequence of points converging to x and whose

central leaf is compact. According to Lemma 4.1, Ŵ c(xn) contains a unique periodic point
yn in A and its extremities are periodic points z−n and z+

n for which the central direction



is expanding. In particular, by definition of δf (see the proof of the previous lemma), the
distances d(yn, z

+
n ) and d(yn, z

−
n ) are larger that 2δf .

Since the length of Cyn
zn+ and Czn−

yn are bounded, up to considering a subsequence we
may assume that the points z−n , yn and z+

n converge to points z−, y and z+, such that
the distance d(y, z+) and d(y, z−) are larger that 2δf . The points z− and z+ are on the
central leaf of x, and by definition of the set U the central distance between them and
the extremities S̃A(x) and SA(x) is less that δf , respectively. Furthermore, the point y

belongs to the arc Cz+

z− and it is at distance larger than 2δf from the extremities, so that

y ∈ Ŵ c(x). Finally y belongs to A by compactness of A, ending the proof.

Corollary 4.1. For x ∈ Q, Ŵ c(x)∩A 6= ∅. Furthermore, the extremities S̃A and SA are
non-wandering points for which the central direction is expanding.

Proof: The first part follows from Q ⊂ U . The second part comes from the proof

of Lemma 4.5: as x is a continuity point of the map z 7→ Ŵ c(z), the points z− = lim z−n
and z+ = lim z+

n (in the notation of the proof of Lemma 4.5) coincides with S̃A(x) and
SA(x), respectively. Furthermore, z− and z+ are limit of periodic points hence are non-
wandering. As f is axiom A, the points z− and z+ belong to the same basic sets as z−n
and z+

n , respectively, for large n. Hence the central direction is expanding along the orbit
of z− and z+, ending the proof.

Lemma 4.6. Let DA be the subset of points of Q verifying that the intersection Ŵ c(x)∩A
is exactly one point. Then DA ⊂ Q is residual in Q (hence in U and in W s(A)).

Proof: According to Lemma 4.5, for every x ∈ U the intersection Ŵ c(x) ∩ A is not
empty.

Let αx denote the smallest arc in Ŵ c(x) containing Ŵ c(x)∩A, and let a(x) denote the
length a(x) = ℓ(αx). We will show that the restriction of the function x 7→ a(x) to Q is
upper semi continuous:

Fix x ∈ Q and consider a sequence xn ∈ Q converging to x. Then the points z−n =
S̃A(xn) and z+

n = SA(xn) are non-wandering and the central direction is expanding along
their orbits. As a consequence, the distance between the extremities of αn = α(xn) and
the points z+

n and z−n is larger that 2δf . Up to considering a subsequence one may assume
that the central arcs αn converge to a central arc α. Notice that the extremities of α
belong to A, by compactness of A.

By definition of Q the segments Ŵ c(xn) converge to Ŵ c(x), so that α ⊂ Ŵ c(x). As the
extremities of α belong to A one deduces α ⊂ α(x). This proves lim a(xn) ≤ a(x) and so
the upper semi continuity of the function a restricted to Q.

Now Lemma 4.4 asserts that the points in U whose central leaf is closed belong to Q.
The union of the closed central leaf is dense in M , hence in the open set U . Furthermore

Lemma 4.1 asserts that, for x ∈ U on a closed central leaf, Ŵ c(x)∩A is exactly one point,
so that a(x) = 0. The restriction of the function a to Q is an upper continuous function
which vanishes on a dense subset, so there is a residual subset DA of Q (hence of W s(A)
because Q is residual in W s(A)), on which a vanishes. This means that for every x ∈ DA

the intersection Ŵ c(x) ∩ A is exactly one point.



Remark 4.4. Recall that, if x ∈ Q then the interior of the arc Ŵ c(x) is contained in Q.

Hence, by definition of DA, x ∈ DA then the interior of the arc Ŵ c(x) is contained in
DA.

Lemma 4.7. The set of periodic points x ∈ DA is dense in the attractor A.

Proof: Recall that, every periodic point in Q belongs to A. Consider a periodic point
x in the open set U . Then A ∩ U contains a neighborhood of x in A, hence A ∩ U is a
non-empty open subset of A. The periodic points are dense in A, so they are dense in the
open set A ∩ U of A. Since the periodic points in A ∩ U are included in Q, the periodic
points of Q are dense in A ∩ U .

Let VA be the set of periodic point in DA. Since VA = DA ∩ per(f) = Q ∩ per(f), we
get that VA is dense in A ∩ U . Notice that VA in invariant by f . So VA in dense in the
union of the iterates f i(A ∩ U), i ∈ Z.

As A is transitive,
⋃
i∈Z f

i(A∩U)is a dense open subset of A, proving that VA is dense
in A.

5. Predecessor and successor of an attractor

Lemma 5.1. Let A be a transitive attractor of f . There are transitive repellers Λ− and
Λ+ such that S̃A(x) ∈ Λ− and SA(x) ∈ Λ+ for every x ∈ Q (where Q ⊂ W s(A) is the

residual subset of continuity points of the function x 7→ Ŵ c(x)).

Proof: Fix x ∈ Q. Corollary 4.1 asserts that SA(x) and S̃A(x) are non-wandering

points. Then, the closure Im(SA|Q) of the image of SA restricted to Q, is a compact
invariant set included in the non wandering set.

By Lemma 4.5, we know that the image Im(SA|Q) of SA restricted to Q is equal to the
image of SA restricted to Q ∩ A.

Since the set of dense orbits is a residual set of A, it follows that there exists x ∈ A∩Q
such that {fn(x)}n∈N is dense in A. Then {fn(x)}n∈N is dense in A ∩ Q. As the map
SA is continuous restricted to Q, the sequence {SA(fn(x))}n∈N is dense in SA(A ∩ Q)

and in SA(A ∩Q). As SA(fn(x)) = fn(SA(x)), we have that there exists a dense orbit in

Im(SA|A ∩Q) = Im(SA|Q). Hence, there exists a basic set Λ+ such that Im(SA|Q) ⊂ Λ+.

In the same way there is a basic set Λ− containing Im(S̃A|Q). It remains to prove that
Λ+ and Λ− are repellers.

Fix a point x ∈ Q. Remark 4.1 claims that Q is invariant by the foliation F ss
f and

that, for y ∈ F ss
f (x) the arc Ŵ c(y) is the image by holonomy of F ss

f of the arc Ŵ c(x).
Conversely, a point z ∈ F ss

f (SA(x)) is the end point of an arc which is the image by

holonomy of F ss
f of Ŵ c(x). This arc is of the form Ŵ c(y) for some y ∈ F ss

f (x). So z is
the image SA(y) with y ∈ Q. Hence z ∈ Λ+.

As a consequence, F ss
f (SA(x)) is contained in Λ+. This implies that Λ+ is a repeller.

One proves in the same way that Λ− is a repeller.

Putting together Lemma 5.1 and Lemma 4.6 one gets:



Corollary 5.1. For every transitive attractor A there are two transitive repellers Λ− and
Λ+ with the following property:

For x ∈ DA the arc Ŵ c(x) meets Ω(f) in exactly S̃A(x) ∈ Λ−, SA(x) ∈ Λ+ and exactly

one point in A in the interior of Ŵ c(x).

Definition 5.1. Following the notation of the previous lemma, Λ− and Λ+ are called the
predecessor and the successor of A respectively.

Remark 5.1. Analogously we can prove the following:
Let Λ be a transitive repeller. There are two transitive attractors A− and A+ and a

residual set DΛ of W u(Λ), such that for every x ∈ DΛ one has:

• the connected component of (W u(Λ) ∩W c(x)) that contains x intersects Ω(f) in
just a point which belongs to Λ.

• Let C
a(x)
b(x) be the closure of connected component of W u(Λ) ∩W c(x) that contains

x, then a(x) ∈ A−, b(x) ∈ A+.

We call A− and A+ the predecessor and the successor of Λ, respectively.

Next Lemma proves that our definitions of successor and predecessor of attractors and
repellers are coherent:

Lemma 5.2. A repeller Λ is the successor (resp. the predecessor) of an attractor A if
and only if A is the predecessor (resp. the successor) of Λ.

Proof: Consider a repeller Λ and its predecessor A. Let x0 be a point of DΛ. By
definition of the predecessor of Λ, the point y0 = S̃Λ(x) belongs to A. Let δ > 0 such that
δ < δf (recall that 2δf is the infimum distance between two basic sets) and such that the
ball B(y0, δ) is contained in W s(A). We fix a point x1 in the interior of Cy0

x0
at distance

less than δ/2 of y0: more precisely we require ℓ(Cy0
x1

) < δ/2. As x1 belongs to the interior
of the connected component of (W u(Λ) ∩W c(x0)) that contains x0 one gets:

• x1 belongs to W u(Λ)

• x1 is a continuity point of the function x 7→ ℓ(C
S̃Λ(x)
x ),

• S̃Λ(x1) = y0

As a consequence, there is an open neighborhood V of x1 such that, for every x ∈ V
one has:

• x ∈W u(Λ) ∩W s(A)

• the arc C
S̃Λ(x)
x is contained in B(y0, δ) ⊂W s(A)

• ℓ(C
S̃Λ(x)
x ) < 3

4
δ

As the sets DA and DΛ are residual in W s(A) and W u(Λ), respectively, they are both
residual em V . Hence DA ∩ DΛ ∩ V 6= ∅. Choose x ∈ DA ∩ DΛ ∩ V , and let us denote
y− = S̃Λ(x) ∈ A, y+ = SΛ(x). By definition of DΛ the interior of the arc Cy−

y+ meets Ω(f)
in an unique point z ∈ Λ.

By definition of V the arc Cy−
x is contained in W s(A) hence is disjoint from Λ. Hence

the point x belongs to the interior of the central arc Cy−
z ; furthermore the interior of this

arc is disjoint from Ω(f). As x belongs to DA, this implies that z = SA(x) and that Λ is
the successor of A.



Denote by XA and XR the sets of transitive attractors and repellers of f , respectively.
These sets are finite, and the function which maps an attractor to its successor induces
a bijection between this two sets. Furthermore, the function on XA ∪ XR which maps
any element to its successor is a permutation of XA ∪XR. An orbit of this permutation
will be called a cycle of attractors repellers. The cycles of attractors and repellers form a
partition of XA ∪XR (we will see at Lemma 5.4 that there is a unique cycle).

Remark 5.2. Let A and Λ be a transitive attractor and a transitive repeller of f . Then

W s(A) ∩W u(Λ) 6= ∅ ⇐⇒ (A is the predecessor or the successor of Λ)

Lemma 5.3. There is a residual set D of M such that, ∀x ∈ D:

(1) the intersection F c
f (x)∩Ω(f) is contained in the union of the transitive attractors

and repellers of f ;
(2) Furthermore, considering an orientation preserving parametrization of F c

f (x) by R,
then F c

f (x)∩Ω(f) is an increasing sequence {xi, i ∈ Z} such that limi→−∞ xi = −∞
and limi→+∞ xi = +∞;

(3) the points xi belongs alternately to an attractor or to a repeller; for fixing the idea,
we can chose the indexation such that ai = x2i belongs to an attractor Ai and
ri = x2i+1 belongs to a repeller Λi, for all i ∈ Z.

(4) with the notation above, the attractor Ai is the predecessor of the repeller Λi and
the successor of the repeller Λi−1.

(5) Moreover, the interior of the central arc Cai
ri

is included in W u(Λi)∩W
s(Ai), and

the interior of Cri
ai+1

is included in W u(Λi) ∩W
s(Ai+1).

Proof: Let A be an attractor and DA be the set defined in Lemma 5.1. Let MA = {x ∈
W s(A)|x /∈ DA}. Since DA is a residual set in W s(A) by Lemma 5.1 then we have that
MA is a meagre set (First Baire category). For every x ∈ DA we have that the interior of

the arc Ŵ c(x) is contained in DA, therefore for every x ∈ MA we have that the interior

of Ŵ c(x) is contained in MA.
Let MA = ∪x∈MA

F c
f (x) be the union of the whole central leaves through MA. We will

show that MA is meagre. For that, consider the homeomorphism hf conjugating F c
f to

the central foliation F c of the flow φ. Let denote by ϕt, for t ∈ R the homeomorphism
defined by ϕt(x) = h−1

f φ(hf(x), t), that is the conjugated by hf of the time t of the flow
φ. Notice that ϕt is a topological flow whose orbits are the central leaves of F c

f .
As ϕt is a homeomorphism, one gets that ϕt(MA) is meagre for all t. As the union of

countably many meagre sets is a meagre set, one gets that
⋃
t∈Q ϕt(MA) is a meagre set.

One conclude the claim by noticing that MA =
⋃
t∈Q ϕt(MA): in fact for every x ∈ M

the set {ϕt(x), t ∈ Q} is dense in the leaf F c
f (x). However, if x belongs to MA then, by

definition, F c
f (x) contains a point y ∈MA hence it contains the open arc interior of Ŵ c(y).

Notice that there is t ∈ Q such that ϕt(x) belongs to this open arc. This means that x
belongs to ϕ−t(MA) hence to

⋃
t∈Q ϕt(MA). This proves MA ⊂

⋃
t∈Q ϕt(MA), implying

that MA is meagre (the other inclusion is straightforward , and we will not use it).



Analogously we construct the sets MAi for every attractor Ai and MΛi for every repeller
Λi. Since there exist finitely many attractors and repellers we have that

Υ = ∪i=1,...,nMΛi ∪ MAi

is meagre.
Notice that the union

⋃
A attractor of f W

s(A) of the basin of the transitive attractor

of f is a dense open subset of M and in the same way the union
⋃

Λ repeller of f W
u(Λ)

of the basins of the repellers is a dense open set
Let denote

D =




⋃

A attractor of f

W s(A) ∪
⋃

Λ repeller of f

W u(Λ)


 \ Υ.

It follows that D is a residual set of M .
Furthermore, for every x ∈ D we have that each connected component of W c(x) ∩

W s(Ai) is included in DAi for every attractor Ai; in the same way, each connected com-
ponent of W c(x)∩W u(Λj) is included in DΛj for every attractor Λj. Moreover there is one
attractor or one repeller such that x belongs to the basin of it. For instance x ∈W s(A0).
As x ∈ DA0 the connected component of x in W c(x) ∩W s(A0) is an open central arc
which meets A0 in a (unique) point x0 = a0; furthermore the origin x−1 = r−1 of the
oriented arc belongs the predecessor Λ−1 of A0 and its end point is a point x1 = r0 in the
successor Λ0 of A0. Now, r−1 belongs to DΛ−1 and r0 belongs to DΛ0 ; this allows to build
inductively the sequence (ai, ri) , ai in the successor of ri−1 and ri in the successor of ai,
and by construction the open central arc joining ai to ri is contained in W u(Λi)∩W

s(Ai)
and the open central arc joining ai−1 to ri is contained in W u(Λi) ∩W

s(Ai−1).
For ending the proof it remains to remark that the central distance between xi and xi+1

is larger than δf so that the union of the arc Cxi
xi+1 cover the whole central leaf F c

f (x).

Lemma 5.4. There exists an unique cycle of attractors and repellers.

Proof: Notice that, in Lemma 5.3, for any x ∈ D the central leaf F c
f (x) meets Ω(f)

along the sequence {ai, ri} and the corresponding sequence of attractors repellers Ai,Λi

is exactly one cycle of attractors and repellers.
However, according to Lemma 3.2, the central leaf F c

f (x) meets every attractor in XA

and every repeller in XΛ: as a consequence, there is an unique cycle of attractors and
repellers. In other words, the notion of successor induces a cyclic order on the set of
attractors and repellers of f .

Let k denote the number of attractors of f . There is an indexation Ai,Λi, i ∈ Z/kZ, of
the attractors and repellers of f such that Λi is the successor of Ai and the predecessor
of Ai+1.

So, the central leaves through the residual set D visit all the attractors and repellers,
following the cyclic order on XA ∪ XR given the notion of successor. Next lemma show
that this property holds for all central leaf, if we allow repetition (i.e. a central leaf may
cross an attractor or a repeller in more than one point before crossing its successor):

Proposition 5.1. Let A0,Λ0, ...Ak−1,Λk−1 be the sequence of attractors and repellers with
the indexation compatible with the cycle.



Then for every x ∈M , F c(x)∩(∪i∈Z/kZAi∪Λi) is a sequence ...ai1, ..., a
i
ni
, ri1, ..., r

i
mi
, ai+1

1 ...
such that {ai1, ...., a

i
ni
} ⊂ Ai, {r

i
1, ...., r

i
mi
} ⊂ Λi.

Proof:
Consider two points x, y in the same central leaf F c

f (x) such that the segment Cx
y is

positively oriented. Assume that x belongs to an attractor Ai, and y belongs to an
attractor or a repeller K which is neither Ai nor the successor Λi of Ai. We will prove
that Cx

y ∩ Λi 6= ∅.
According to Lemma 4.7 there is a sequence of periodic points xn ∈ DAi converging to

x and a sequence of points yn ∈ F c
f (xn) such that the arcs Cxn

yn converge to Cx
y . For n

large enough, the points yn belongs to the basin of K. However, according to Lemma 4.7,
the point zn = SAi(xn) belongs to the successor Λi of Ai and the interior of the arc Cxn

zn is
contained in W s(Ai)∩W

u(Λi), hence disjoint from the basin of K. As a consequence, yn
does not belong to Cxn

zn , so that zn belongs to the arc Cxn
yn . Now, any accumulation point

z of the sequence zn is a point of Λi in Cx
y .

Let γ be the connected component of the intersection of any central leaf with any basin
of an attractor( or repeller). Since l(γ) is bounded by Kf , Lemma 3.3 implies that there
is finitely many points in the intersection of γ with the attractor (or the repeller). One
concludes that every compact central arc meets (∪i∈Z/kZAi ∪ Λi) on a finite set, so that
the intersection F c

f (x) is a sequence of points going from infinity to infinity.

6. the basins of the attractors and the repellers

In what follows, we will look at the relative positions of the basins of the attractors an
repellers, the closures of these basins, and the interiors of these closures.

All the results in this section related to attractors admit analogous version for repellers.
For instance:

Remark 6.1. The basins of two different attractors Ai, Aj are disjoint open sets. As

a direct consequence, the closure W s(Ai) is disjoint from the interior of the closure

IntW s(Aj). On the other hand, the union of the closures of the basins cover M , (in

formula: M ⊂
⋃k
i=0W

s(Ai)). As a consequence one gets

Int
(
W s(Ai)

)
= M \

⋃

j 6=i

W s(Aj), and

W s(Ai) = M \ Int

(
⋃

j 6=i

W s(Aj)

)

Let α, β : M → M be the maps defined as follows, for every x in M such that x is
not included in any attractor or repeller set, α(x) is the first point in its central leaf in
the negative direction verifying that it is in any attractor or in any repeller and β(x)
is the first point in its central leaf in the positive direction verifying that it is in any
attractor or in any repeller. In the case that x belongs to a attractor or a repeller we
define α(x) = β(x) = x.

According to Proposition 5.1, either α(x) and β(x) belong to the same (attracting or
repelling) basic set, or β(x) belongs to the successor of the basic set containing α(x).



Lemma 6.1. Assume that α(x) or β(x) belong to an attractor A. Then x ∈ Int(W s(A)).

In the same way, if α(x) or β(x) belong to a repeller Λ, then x ∈ Int(W u(Λ)).

Proof: Let prove the Lemma for α(x) ∈ A. The other cases are analogous. If x = α(x)
that is x ∈ A, the point x admits a neighborhood contained in W s(A) ending the proof.
Let us now assume that x 6= α(x), and then x 6= β(x). Let K be the attractor or repeller

containing β(x). We fix two points y0, z0 in the interior of the arc C
α(x)
β(x) in such a way

that the arc Cy0
z0 is positively oriented, the point x belongs to Cy0

z0 , the point y0 belongs
to W s(A) and z0 belongs to the basin of K.

Consider two disk ∆y0 and ∆z0 , transverse to the foliation F c
f and centered at y0 and z0,

respectively. Up to shrinking the disks ∆y0 and ∆z0 , one may assume that the holonomy
map of the foliation F c

f along the path Cy0
z0

is well defined and it is a homeomorphism
h : ∆y0 → ∆z0 . For y ∈ ∆y0 we denote by γy the central arc Cy

h(y). The family γy is a

continuous family of central arcs and γy0 = Cy0
z0

. Notice that the union Vx =
⋃
y∈∆y0

γy is

a neighborhood of x.
By construction, the segment γy0 is disjoint from the compact set obtained as the union

of all the attracting and repelling basic sets of f , hence, up to shrinking once more ∆y0

one may assume that every arc γy, y ∈ ∆y0 , is disjoint from the union of the transitive
attractors and repellers of f . Recall that the set D is residual and saturated for the
central foliation F c

f ; as a direct consequence, D meets any transverse section ∆ of F c
f in

a residual subset of ∆. In particular generic points y ∈ ∆y0 belong to D. Lemma 5.3
implies that for y ∈ D ∩ ∆y0 , the arc γy is contained in W s(A). As W s(A) is open, and
the union of the γy, y ∈ D ∩ ∆y0 is dense in Vx, one gets that W s(A) ∩ Vx is a dense

open subset of Vx. This implies that Vx ⊂ W s(A) and then x ∈ IntW s(A), concluding
the proof of the lemma.

Lemma 6.2. Assume that both α(x) and β(x) belong to an attractor A, and let Λ− and
Λ+ be the predecessor and the successor of A. Then

(1) For any transitive repeller Λ of f one has

x ∈W u(Λ) ⇐⇒ Λ ∈ {Λ−,Λ+}

(2) Hence:

x ∈W u(Λ−) ∩W u(Λ+) ∩ Int
(
W u(Λ−) ∪W u(Λ+)

)
.

Proof: As α(x) ∈ A there is a sequence of periodic point points yn ∈ DA converging
to α(x). Then the points zn = SA(yn) belongs to Λ+ and the interior of the arc γn = Cyn

zn
is contained in W u(Λ+). Up to considering a subsequence, one may assume that the arc
γn converges to a central arc γ = Cy

z beginning at y = α(x). Notice that z ∈ Λ+ and γ ⊂

W u(Λ+). As there is no points of Λ+ in the arc C
α(x)
β(x) one gets that C

α(x)
β(x) ⊂ γ ⊂W u(Λ+).

So x ∈W u(Λ+). Using β(x) instead of α(x) one prove in the same way that x ∈W u(Λ−).

For concluding the proof of the lemma, it remains to show x ∈ Int
(
W u(Λ−) ∪W u(Λ+)

)
.

Notice that M is the union of the closure of the basins of the transitive repellers of f .



Hence

M \
⋃

Λ∈XR\{Λ−,Λ+}

W u(Λ) ⊂ Int
(
W u(Λ−) ∪W u(Λ+)

)
.

For concluding the proof of the lemma, it is enough to prove that x /∈W u(Λ), for every
repeller Λ different from Λ+ and Λ−.

Let Λ be a repeller such that x ∈W u(Λ). According to Lemma 6.1 the point x belongs
to the interior of the closure of W s(A). One deduce that W u(Λ) meets the interior of
the closure of W s(A). As W u(Λ) is an open set, this implies that W u(Λ) ∩W s(A) 6= ∅.
Remark 5.2 implies that Λ ∈ {Λ+,Λ−} ending the proof.

Corollary 6.1. Let A be a transitive attractor. Then a point x belongs to W s(A) if and
only if {α(x), β(x)} ⊂ Λ− ∪ A ∪ Λ+.

Proof: First assume that {α(x), β(x)} ⊂ Λ− ∪ A ∪ Λ+. If α(x) or β(x) belong to

A, Lemma 6.1 asserts that x belongs to the interior of W s(A). Otherwise, α(x), β(x) ∈
Λ− ∪ Λ+; assume for instance α(x), β(x) ∈ Λ−. The version of Lemma 6.2 for repellers
implies that x belongs to the intersections of the closures of the basins of the predecessor
and of the successor of Λ−. In particular, x ∈W s(A).

Conversely, consider a point x such that {α(x), β(x)} 6⊂ Λ− ∪ A ∪ Λ+. If α(x) or

β(x) belong to an attractor Ai 6= A then Lemma 6.1 implies that x ∈ Int(W s(Ai))

which is disjoint from W s(A). In the other case there is Λi /∈ {Λ−,Λ+} such that
α(x), β(x) ∈ Λi. Then the version of Lemma 6.2 for repellers implies that x belongs

to Int
(
W s(Ai) ∪W s(Ai+1)

)
which is disjoint from W s(A) by remark 6.1, because A /∈

{Ai, Ai+1}.

Corollary 6.2. Let A be a transitive attractor, Λ− its predecessor and Λ+ its successor.
Then:

W s(A) ⊂ Int(W u(Λ−) ∪W u(Λ+).

Proof: Consider x ∈ W s(A). We know from Corollary 6.1 that {α(x), β(x)} ⊂
Λ− ∪A ∪ Λ+.

If α(x) or β(x) belongs to Λ− ∪Λ+ then Lemma 6.1 implies that x ∈ Int
(
W u(Λ−)

)
∪

Int
(
W u(Λ+)

)
⊂ Int(W u(Λ−) ∪W u(Λ+). Otherwise, α(x) and β(x) belong to A; then

Lemma 6.2 claims that x ∈ Int(W u(Λ−) ∪W u(Λ+), which concludes the proof.

Lemma 6.3. It holds that
W s(Ai) ∩W s(Aj) 6= ∅ if and only if either Ai = Aj or there is a repeller set Λ such

that {Ai, Aj} = {A−, A+} where A− is the predecessor of Λ and A+ is its successor. In
other words,

W s(Ai) ∩W s(Aj) 6= ∅ ⇐⇒ |i− j| ≤ 1



Proof: Assume that Ai 6= Aj and consider x ∈ W s(Ai) ∩W s(Aj). Then Lemma 6.1
implies that neither α(x) nor β(x) can belong to Ai ∪ Aj. So Corollary 6.1 implies
that α(x), β(x) belong to a repeller Λ which needs to be not only the successor or the
predecessor of Ai but the successor or the predecessor of Aj , as well. It follows that
{Ai, Aj} = {A−, A+} where A− is the predecessor of Λ and A+ is its successor.

Conversely, if Ai and Aj are the predecessor and the successor of Λ, then W s(Ai) ∩

W s(Aj) contains Λ.

Lemma 6.4. Given any attractor A and any repeller Λ,

W s(A) ∩W u(Λ) 6= ∅ ⇐⇒ Λ is the successor or the predecessor of A.

Proof: Let Λ− and Λ+ be the predecessor and the successor of A, respectively. Ac-

cording to Corollary 6.2 one hasW s(A) ⊂ Int(W u(Λ−) ∪W u(Λ+). If W s(A)∩W u(Λ) 6= ∅

then Int(W u(Λ−) ∪W u(Λ+) ∩W u(Λ) 6= ∅, implying that Λ ∈ {Λ−,Λ+}.
The converse implication is a direct consequence of the definition of successor or pre-

decessor.

7. Axiom A diffeomorphisms in Eφ with more than one attractors and

repellers

We now assume that f ∈ Eφ is an Axiom A diffeomorphism having at least two transitive
attractors. We consider the attractors Ai and the repellers Λi, i ∈ Z/kZ, k > 1, Λi being
the successor or Ai and the predecessor of Ai+1.

Lemma 7.1. For every i, the boundary ∂W u(Λi) is

∂W u(Λi) =
(
W u(Λi−1) ∩W u(Λi)

)
∪
(
W u(Λi) ∩W u(Λi+1)

)

Proof: Just notice that the W u(Λj) are compact sets, equal to the closure of they

interior, of interior pairwise disjoints, and whose union is M . Hence Int
(
W u(Λi)

)
is

the complement of
⋃
j 6=iW

u(Λj), and ∂W u(Λi) = W u(Λi) ∩
⋃
j 6=iW

u(Λj). The ver-

sion of Lemma 6.3 for repeller sets implies that W u(Λi) ∩
⋃
j 6=iW

u(Λj) = W u(Λi) ∩(
W u(Λi−1) ∪W u(Λi+1)

)
(because W u(Λi)∩W u(Λj) = ∅ if j /∈ {i− 1, i, i+ 1}), conclud-

ing the proof.
Next lemma states some properties of the boundaries of the closures of the basins of

the attractors and repellers:

Lemma 7.2.

(1) The boundary ∂W u(Λi) is contained in W s(Ai) ∪W s(Ai+1).

(2) Moreover, ∂W u(Λi) ∩W s(Ai) =
(
W u(Λi−1) ∩W s(Λi)

)
∩W s(Ai); let Ki denote

this compact set;

(3) ∂W u(Λi)∩W s(Ai+1) is the compact set Ki+1 =
(
W u(Λi) ∩W u(Λi+1)

)
∩W s(Ai+1)



(4) for every i, the compact set Ki is contained in Int
(
W s(Ai)

)
;

(5) the compact set Ki is characterized by

x ∈ Ki ⇐⇒ α(x), β(x) ∈ Ai

Proof: The version of Corollary 6.1 for repeller sets asserts that x ∈ W u(Λi) if and

only if α(x) and β(x) belong to Ai∪Λi∪Ai+1. As a consequence, x ∈W u(Λi−1)∩W u(Λi)
if and only if {α(x), β(x)} ⊂ (Ai−1 ∪ Λi−1 ∪ Ai) ∩ (Ai ∪ Λi ∩ Ai+1).

If k 6= 2, (Ai−1 ∪ Λi−1 ∪ Ai) ∩ (Ai ∪ Λi ∩Ai+1) = Ai. So

x ∈W u(Λi−1) ∩W u(Λi) ⇐⇒ {α(x), β(x)} ⊂ Ai.

Then, Lemma 6.1 implies that, for all i ∈ Z/kZ, W u(Λi−1) ∩ W u(Λi) is contained

in IntW s(Ai). Analogously W u(Λi) ∩ W u(Λi+1) is contained in IntW s(Ai+1). Then
Lemma 7.1 implies (1).

From Lemma 6.4, we have that W u(Λi−1)∩W s(Ai+1) = ∅ and W u(Λi+1)∩W s(Ai) = ∅,
then (2), (3) and (4) hold. To prove (5) is enough to show that if α(x), β(x) ∈ Ai then
x ∈ Ki, but this is a consequence of Lemma 6.1 and Lemma 6.2.

If k = 2, (Ai−1 ∪ Λi−1 ∪ Ai) ∩ (Ai ∪ Λi ∩Ai+1) = Ai ∪ Ai+1 = A0 ∪ A1. So

x ∈W u(Λi−1) ∩W u(Λi) ⇐⇒ {α(x), β(x)} ⊂ Ai ∪ Ai+1

Notice that as a consequence of Lemma 6.1 {α(x), β(x)} ⊂ Ai ∪ Ai+1 if and only
if {α(x), β(x)} ⊂ Ai or {α(x), β(x)} ⊂ Ai+1. Then, Lemma 6.1 implies that, for all

i ∈ Z/2Z, W u(Λi−1) ∩W u(Λi) is contained in IntW s(Ai) ∪ IntW s(Ai+1). All the items
of the lemma follow immediately.

By the last claim of the previous Lemma and by the definition of Ki, it follows

Remark 7.1. Any connected component of the intersection of a central leaf with Ki is
either a point in Ai or it is a central arc whose both extremities belong to Ai.

As a direct consequence of Lemma 7.2 one has

Corollary 7.1. For all different i, j in Z/kZ, Ki and Kj are disjoint compact sets and

∂W u(Λi) = Ki ∪Ki+1. Furthermore

K0 ∪K1 = ∂W u(Λ0) = ∂

(
⋃

i6=0

W u(Λi)

)

Let θ : M → [0, 1] denote a continuous function such that θ−1(0) = K0 and θ−1(1) =

K1: for instance one can choose θ defined by θ(x) = d(x,K0)
sup{d(x,K0),d(x,K1)}

. We denote by

ρ : M → S1 = R/Z the map defined as follows:

• for x ∈W u(Λ0), ρ(x) is the class modulo Z of 1
2
θ(x).

• for x ∈
⋃
i6=0W

u(Λi), ρ(x) is the class modulo Z of 1 − 1
2
θ(x).



The map ρ(x) is well defined: if x ∈ W u(Λ0) ∩
⋃
i6=0W

u(Λi) then either x ∈ K0 and

ρ(x) = 0 = 1 ∈ S1 or x ∈ K1 and ρ(x) = 1
2
. The map ρ is continuous restricted to both

compact sets W u(Λ0) and
⋃
i6=0W

u(Λi) whose union is M , hence is continuous on M .

Let us consider the universal cover π : R → S1. Let Π: M̃ → M be the pull back of
the covering π by ρ. Recall that there is a commutative diagram

M̃
ρ̃
→ R

Π ↓ ↓ π

M
ρ
→ S1

Lemma 7.3. Let γ : [0, 1] →M be a central arc such that x = γ(0) belongs to A0, y = γ(1)
belongs to A1, and γ is disjoint from Λi for i 6= 0. Let γ̃ be a lift of γ on M̃ and let denote
x̃ = γ̃(0) ∈ Π−1(x) and ỹ = γ̃(1) ∈ Π−1(y). Then ρ̃(ỹ) − ρ̃(x̃) = 1

2
.

Proof: By hypotheses, ρ(x) = 0 and ρ(y) = 1
2
. We just need to prove that ρ(γ) is

contained in the arc [0, 1
2
] of S1 = R/Z (hence is equal to that arc). For that, it is enough

to see that γ is contained in W u(Λ0). Proposition 5.1 and the fact that γ joins the point
x ∈ A0 to y ∈ A1 without crossing Λi for i 6= 0 implies that, for any z ∈ γ one has
{α(z), β(z)} ⊂ A0 ∪ Λ0 ∪ A1. We conclude using Corollary 6.1 that z ∈ W u(Λ0), ending
the proof.

Lemma 7.4. Let γ : [0, 1] → M be a central arc such that x = γ(0) belongs to A1,
y = γ(1) belongs to A0, and γ is disjoint from Λ0. Let γ̃ be a lift of γ on M̃ and let denote
x̃ = γ̃(0) ∈ Π−1(x) and ỹ = γ̃(1) ∈ Π−1(y). Then ρ̃(ỹ) − ρ̃(x̃) = 1

2
.

Proof: This time, ρ(x) = 1
2

and ρ(y) = 1 = 0 ∈ S1. We just need to prove that ρ(γ)

is contained in the arc [1
2
, 1] of S1 = R/Z. In other words, we have to prove that γ is

disjoint from Int
(
W u(Λ0)

)
, that is it is included in

⋃
i6=0W

u(Λi). Proposition 5.1 and

the fact that γ joins the point x ∈ A1 to y ∈ A0 without crossing Λ0 implies that, for any
z ∈ γ , α(z) /∈ Λ0 and β(z) /∈ Λ0. Using the fact that β(z) belongs either to the basic
set containing α(z) or to its successor, one shows that there is i 6= 0 in Z/kZ such that
{α(z), β(z)} ⊂ Ai ∪Λi ∪Ai+1. We conclude using the version of Corollary 6.1 for repeller

sets that z ∈W u(Λi) (with i 6= 0), ending the proof.

Lemma 7.5. Let γ : [0, 1] → M be a central arc meeting A0 and A1 at most at its
extremities (in formula: γ ∩ (A0 ∪ A1) ⊂ {γ(0), γ(1)}). Let γ̃ be a lift of γ on M̃ and let
denote x̃ = γ̃(0) ∈ Π−1(x) and ỹ = γ̃(1) ∈ Π−1(y). Then |ρ̃(ỹ) − ρ̃(x̃)| ≤ 1

2
.

Proof: We will prove that, either γ ⊂W u(Λ0) or γ ∩ IntW u(Λ0) = ∅. Recall that the

boundary ∂W u(Λ0) is the union K0 ∪K1. From Remark 7.1, we have that any connected
component of the intersection of a central leaf with K0 is either a point in A0 or a central
arc whose both extremities belong to A0. As the interior of γ is disjoint from A0 we get
that γ is either contained in K0 or its interior is disjoint from K0. The same holds for K1.
So either γ is contained in ∂W u(Λ0) (hence in W u(Λ0)) or the interior of γ is disjoint from

∂W u(Λ0); in that case the interior of γ is either contained in IntW u(Λ0) or is disjoint

from W u(Λ0), ending the proof.



We denote by F̃ c
c the lift on M̃ of the foliation F c

f . Given a point x ∈ M we denote by
γx : R → M the infinite positively oriented central arc, parametrized by the arc length,
such that γx(0) = x. Consider x̃ ∈ Π−1(x). We denote by γx̃ the lift of γx on M̃ with
γx̃(0) = x̃. Recall that Kf is an upper bound of the length of the central arc D(x), for
every x ∈M .

Lemma 7.6. For every point x̃ ∈ M̃ and for any ℓ > 4Kf , the map ϕx = ρ̃ ◦ γx̃ : R → R
satisfies

ϕx(t+ ℓ) ≥ ϕx(t) + 1.

In particular, limt→−∞ ϕx(t) = −∞ and limt→+∞ ϕx(t) = +∞.

Proof: Let x be the projection of x̃ on M . Let γ be the restriction of γx to [0, 4Kf ],

and let γ̃ be the lift of γ on M̃ starting at x̃. We want to prove ρ̃(γ̃(4Kf))− ρ̃(γ̃(0)) ≥ 1.
For that, using Proposition 5.1 we write γ as being the concatenation γ0 · γ1 · · · γm · γm+1

where :

• γ0 is a central arc starting at x and joining x to the first point of γ in A0 ∪A1.
• by the proof of Lemma 7.5 for i ∈ {1, . . . , m}, γi is either

– a central arc joining a point of A0 to a point of A1 included in W u(Λ0) and
then it is disjoint of Λi, for i 6= 0, or

– a central arc joining a point of A1 to a point of A0 included in the complement
of IntW u(Λ0) and then it is disjoint of Λ0,

• γm+1 is the arc in γ joining the last point of γ in A0 ∪A1 to γ(4Kf )

Lemmas 7.3 7.4 7.5 imply that

ρ̃(γ̃(4Kf)) − ρ̃(γ̃(0)) ≥
m

2
− 1.

Recall that each arc D(z), z ∈ M meets any attractor and any repeller and its length
is less than Kf . So every arc D(z) contains at least one segment either joining A0 to A1

or joining A1 to A0. As the length of γ is larger that 4Kf it contains at least 4 disjoint
arcs of the form D(z). Hence m ≥ 4, ending the proof.

Let ψ : M×R → M be a smooth flow, C1-close to φ so that every non-zero time map of
the flow ψ belongs to Eφ. Let h : M → M be an homeomorphism such that h(F c

ψ) = F c
f .

Let denote ρψ = h◦ρ : M → S1. Let Πψ : M̃ψ →M be the pull-back by ρψ of the universal

cover π : R → S1, and ρ̃ψ : M̃ψ → R be the lift of ρψ. Notice that ρ̃ψ splits in a product

ρ̃ψ = ρ̃ ◦ h̃, where h̃ : M̃ψ → M̃ is a lift of h. One has the following abelian diagram:

M̃ψ

ρ̃ψ
−→ R

h̃

ց M̃
ρ̃

ր
Πψ ↓ Π ↓ ↓ π

M
h
→ M

ρ
→ S1

Let ψ̃ be the lift of the flow ψ on M̃ψ. Then one gets

Corollary 7.2. There is L > 0 such that for every x ∈ M̃ψ one has:

ρ̃ψ(ψ̃(x, L)) − ρ̃ψ(x) > 1.



Then a nice argument of Schwartzman (see [23, Teorema 5.1]) allows us to conclude
the proof of Theorem 2. We reproduce here this argument for completeness:

Proof of Theorem 2: Let µ : M → S1 be a smooth map C0-close to the map ρψ,

and µ̃ be the lift of µ on M̃ψ. If µ is close enough to ρψ, for every x ∈ M̃ψ one has

µ̃(ψ̃(x, L)) − µ̃(x) > 1.

For x ∈ M̃ψ let us denote

λ̃(x) =
1

L

∫ L

0

µ(ψ̃(x, t))dt.

Notice that λ̃ : M̃ψ → R is a smooth function which projects on M in a map λ : M → S1.

Furthermore, for any x ∈ M̃ψ the derivative of λ̃ along the ψ̃-orbit is

∂

∂t
λ̃(ψ(x, t))|t=0 = µ̃(ψ̃(x, L)) − µ̃(x) >

1

L
> 0.

This proves that the map λ : M → S1 is a submersion and that the orbits of ψ are
transverse to the fibers; let denote by N the fiber of this fibration. So, ψ (hence also φ)
is topologically equivalent to a suspension of a diffeomorphism g of N , which inherit the
hyperbolic structure of the flow (the stable and unstable bundles of g are the intersections
of the corresponding bundles for ψ with TN); so g is an Anosov diffeomorphism and the
transitivity of ψ implies the transitivity of g.
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