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Preface

Billiards are mathematical models for many physical phenomena where one
or more particles move in a container and collide with its walls and/or with each
other. The dynamical properties of such models are determined by the shape of the
walls of the container, and they may vary from completely regular (integrable) to
fully chaotic. The most intriguing, though least elementary, are chaotic billiards.
They include the classical models of hard balls studied by L. Boltzmann in the
XIX century, the Lorentz gas introduced to describe electricity in 1905, as well as
modern dispersing billiard tables due to Ya. Sinai and the stadium.

Mathematical theory of chaotic billiards was born in 1970 when Ya. Sinai pub-
lished his seminal paper [Sin70]; and now it is only 35 years old. But during these
years it grew and developed at a remarkable speed, and became a well-established
and flourishing area within the modern theory of dynamical systems and statistical
mechanics.

It is no surprise that many young mathematicians and scientists attempt to
learn chaotic billiards, in order to investigate some of them or explore related phys-
ical models. But such studies are used to be prohibitively difficult for too many
a novice and an outsider, not only because the subject itself is intrinsically quite
complex, but to a large extend because of the lack of comprehensive introductory
texts.

True, there are excellent books covering general mathematical billiards [Ta95,

KT91, KS86, GZ90, CFS82], but these barely touch upon chaotic models. There
are surveys devoted to chaotic billiards as well, see [Sin00, Sz00, CM03], but those
are expository, they only sketch selective arguments and rarely go down to ‘nuts and
bolts’. For the readers who want to look ‘under the hood’ and become professional
(and we speak of graduate students and young researchers here), there is not much
choice left: either learning from their advisors or other experts by way of personal
communication, or reading the original publications (most of them very long and
technical articles translated from Russian). Then students quickly discover that
some essential facts and techniques can only be found in the middle of long dense
papers. Worse yet, some of those facts have never even been published – they exist
as folklore.

This book attempts to present the fundamentals of the mathematical theory
of chaotic billiards in a systematic way. We cover all the basic facts, provide full
proofs, intuitive explanations and plenty of illustrations. Our book can be used
by students and self-learners – it starts with the most elementary examples and
formal definitions, and then takes the reader step by step into the depth of Sinai’s
theory of hyperbolicity and ergodicity of chaotic billiards, as well as more recent
achievements related to their statistical properties (decay of correlations and limit
theorems).

vii



viii PREFACE

The reader should be warned that our book is designed for active learning. It
contains plenty exercises of various kinds; some constitute small steps in the proofs
of major theorems, some others present interesting examples and counterexamples,
yet others are given for the reader’s practice (some exercises are actually quite
challenging). The reader is strongly encouraged to do exercises when reading the
book, as this is the best way to grasp the main concepts and eventually master the
techniques of billiard theory.

The book is restricted to two-dimensional chaotic billiards, primarily dispersing
tables by Sinai and circular-arc-tables by Bunimovich (with some other planar
chaotic billiards reviewed in the last chapter). We have several compelling reasons
for such a confinement. First, Sinai’s and Bunimovich’s billiards are the oldest and
best explored (for instance, statistical properties are established only for them and
for no other billiard model); the current knowledge of other chaotic billiards is much
less complete; the work on some of them (most notably, hard ball gases) is currently
under way and should be perhaps the subject of future textbooks. Second, the two
classes presented here constitute the core of the entire theory of chaotic billiards, all
its apparatus is built upon the original works by Sinai and Bunimovich; but their
fundamental works are hardly accessible to today’s students or researchers; there
have been no attempts to update or republish their results since the middle 1970s
(after Gallavotti’s book [Ga74]). Our book makes such an attempt. We do not
cover polygonal billiards, even though some of them are mildly chaotic (ergodic);
for surveys of polygonal billiards see [Gut86, Gut96].

We assume that the reader is familiar with standard graduate courses in math-
ematics – linear algebra, measure theory, topology, Riemannian geometry, complex
analysis, probability theory. We also assume knowledge of ergodic theory; although
the latter is not a standard graduate course, it is absolutely necessary for reading
this book; we do not attempt to cover it here, though, as there are many excellent
texts around [Wa82, Man83, KH95, Pet83, CFS82, Sin00, BrS02, Dev89,

Sin76] (see also our previous book [CM03]). For the reader’s convenience, we pro-
vide basic definitions and facts from ergodic theory, probability theory, and measure
theory in Appendices.



Symbols and notation

D billiard table Section 2.1
Γ boundary of the billiard table 2.1
Γ+ union of dispersing components of the boundary Γ 2.1
Γ− union of focusing components of the boundary Γ 2.1
Γ0 union of neutral (flat) components of the boundary Γ 2.1

Γ̃ regular part of the boundary of billiard table 2.1
Γ∗ Corner points on billiard table 2.1
` degree of smoothness of the boundary Γ = ∂D 2.1
n normal vector to the boundary of billiard table 2.3
T tangent vector to the boundary of billiard table 2.6
K (signed) curvature of the boundary of billiard table 2.1
Φt billiard flow 2.5
Ω the phase space of the billiard flow 2.5

Ω̃ Part of phase space where dynamics is defined at all times 2.5
πq , πv projections of Ω to the position and velocity subspaces 2.5
ω angular coordinate in phase space Ω 2.6
η, ξ Jacobi coordinates in phase space Ω 3.6
µΩ invariant measure for the flow Φt 2.6
F collision map or billiard map 2.9
M collision space (phase space of the billiard map) 2.9

M̃ part of M where all iterations of F are defined 2.9

M̂ part of M where all iterations of F are smooth 2.11
r, ϕ coordinates in the collision space M 2.10
µ invariant measure for the collision map F 2.12
S0 boundary of the collision space M 2.10
S±1 singularity set for the map F±1 2.10
S±n singularity set for the map F±n 2.11
S±∞ same as ∪n≥1S±n 4.11
Qn(x) connected component of M\Sn containing x 4.11
V (= dϕ/dr) slope of smooth curves in M 3.10
τ return time (intercollision time) 2.9
τ̄ mean return time (mean free path) 2.12

λ
(i)
x Lyapunov exponent at the point x 3.1
Esx, E

u
x stable and unstable tangent subspaces at the point x 3.1

Csx, Cux stable and unstable cones at the point x 3.13
Λ (minimal) factor of expansion of unstable vectors 4.4
B the curvature of wave fronts 3.7
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x SYMBOLS AND NOTATION

R collision parameter 3.6
Hk homogeneity strips 5.3
Sk lines separating homogeneity strips 5.3
k0 minimal nonzero index of homogeneity strips 5.3
MH new collision space (union of homogeneity strips) 5.4
h holonomy map 5.7
I involution map 2.14
m Lebesgue measure on lines and curves 5.9
|W | length of the curve W 4.5
|W |p length of the curve W in the p-metric 4.5
JWFn(x) Jacobian of the restriction of Fn to the curve W at the point x ∈W 5.2
rW (x) distance from x ∈W to the nearest endpoint of the curve W 4.12
rn(x) distance from Fn(x) to the nearest endpoint of the component

of Fn(W ) that contains Fn(x) 5.9
pW (x) distance from x ∈W to the nearest endpoint of W in the p-metric 4.13
ρW (x) u-SRB density on unstable manifold W 5.2
� ‘same order of magnitude’ 4.3
L ceiling function for suspension flows 2.9



CHAPTER 1

Simple examples

We start with a few simple examples of mathematical billiards, which will help
us introduce basic features of billiard dynamics. This chapter is for the complete
beginner. The reader familiar with some billiards may safely skip it – all the formal
definitions will be given in Chapter 2.

1.1. Billiard in a circle

Let D denote the unit disk x2+y2 ≤ 1. Let a point-like (dimensionless) particle
move inside D with constant speed and bounce off its boundary ∂D according to
the classical rule the angle of incidence is equal to the angle of reflection, see below.

Denote by qt = (xt, yt) the coordinates of the moving particle at time t and by
vt = (ut, wt) its velocity vector. Then its position and velocity at time t+ s can be
computed by

xt+s = xt + uts ut+s = ut

yt+s = yt + wts wt+s = wt
(1.1)

as long as the particle stays inside D (makes no contact with ∂D).
When the particle collides with the boundary ∂D = {x2 + y2 = 1}, its velocity

vector v gets reflected across the tangent line to ∂D at the point of collision, see
Fig. 1.1.

PSfrag replacements

ψ

ψ

Figure 1.1. Billiard motion in a circle.

Exercise 1.1. Show that the new (postcollisional) velocity vector is related to
the old (precollisional) velocity by the rule

(1.2) vnew = vold − 2 〈vold, n〉n,
where n = (x, y) is the unit normal vector to the circle x2 + y2 = 1 and 〈v, n〉 =
ux+ wy denotes the scalar product.

1



2 1. SIMPLE EXAMPLES

After the reflection, the particle resumes its free motion (1.1) inside the disk
D, until the next collision with the boundary ∂D. Then it bounces off again, and
so on. The motion can be continued indefinitely, both in the future and the past.

For example, if the particle runs along a diameter of the disk, its velocity vector
will get reversed at every collision; and the particle will keep running back and forth
along the same diameter forever. Other examples of periodic motion are shown on
Fig. 1.2, where the particle traverses the sides of some regular polygons.

Figure 1.2. Periodic motion in a circle.

In the studies of dynamical systems, the primary goal is to describe the evolu-
tion of the system over long time periods and its asymptotic behavior in the limit
t→ ∞. We will focus on such a description.

Let us parameterize the unit circle x2 + y2 = 1 by the polar (counterclockwise)
angle θ ∈ [0, 2π] (since θ is a cyclic coordinate, its values 0 and 2π are identified).
Also, denote by ψ ∈ [0, π] the angle of reflection as shown on Fig. 1.1.

Remark 1.2. We note that θ is actually an arc length parameter on the circle
∂D; when studying more general billiard tables D we will always parameterize the
boundary ∂D by its arc length. Instead of ψ, a reflection can also be described by
the angle ϕ = π/2−ψ ∈ [−π/2, π/2] that the postcollisional velocity vector makes
with the inward normal to ∂D. In fact, all principal formulas in this book will be
given in terms of ϕ, rather than ψ, but for the moment we proceed with ψ.

For every n ∈ Z, let θn denote the nth collision point and ψn the corresponding
angle of reflection.

Exercise 1.3. Show that

θn+1 = θn + 2ψn (mod 2π)

ψn+1 = ψn(1.3)

for all n ∈ Z.

We make two important observations now:

• All the distances between reflection points are equal.
• The angle of reflection remains unchanged.



1.1. BILLIARD IN A CIRCLE 3

Corollary 1.4. Let (θ0, ψ0) denote the parameters of the initial collision.
Then

θn = θ0 + 2nψ0 (mod 2π)

ψn = ψ0.

Every collision is characterized by two numbers: θ (the point) and ψ (the angle).
All the collisions make the collision space with coordinates θ and ψ on it. It is a
cylinder because θ is a cyclic coordinate, see Fig. 1.3. We denote the collision space
by M. The motion of the particle, from collision to collision, corresponds to a map
F : M → M, which we call the collision map. For a circular billiard it is given by
equations (1.3).

Observe that F leaves every horizontal level Cψ = {ψ = const} of the cylinder
M invariant. Furthermore, the restriction of F to Cψ is a rotation of the circle Cψ
through the angle 2ψ. The angle of rotation continuously changes from circle to
circle, growing from 0 at the bottom {ψ = 0} to 2π at the top {ψ = π} (thus the
top and bottom circles are actually kept fixed by F). The cylinder M is “twisted
upward” (“unscrewed”) by the map F , see Fig. 1.3.

PSfrag replacements

0

π

θ

M

Fψ

Figure 1.3. Action of the collision map F on M.

Rigid rotation of a circle is a basic example in ergodic theory, cf. Appendix C.
It preserves the Lebesgue measure on the circle. Rotations through rational angles
are periodic, while those through irrational angles – ergodic.

Exercise 1.5. Show that if ψ < π is a rational multiple of π, i.e. ψ/π = m/n
(irreducible fraction), then the rotation of the circle Cψ is periodic with (minimal)
period n; every point on that circle is periodic with period n, i.e. Fn(θ, ψ) = (θ, ψ)
for every 0 ≤ θ ≤ 2π.

If ψ/π is irrational, then the rotation of Cψ is ergodic with respect to the
Lebesgue measure. Furthermore, it is uniquely ergodic, which means that the in-
variant measure is unique. As a consequence, for every point (ψ, θ) ∈ Cψ its images
{θ + 2nψ, n ∈ Z} are dense and uniformly distributed1 on Cψ; this last fact is
sometimes referred to as Weyl’s theorem [Pet83, pp. 49–50].

1A sequence of points xn ∈ C on a circle C is said to be uniformly distributed if for any
interval I ⊂ C we have limN→∞ #{n : 0 < n < N, an ∈ I}/N = length(I)/ length(C).
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Exercise 1.6. Show that every segment of the particle’s trajectory between
consecutive collisions is tangent to the smaller circle Sψ = {x2 + y2 = cos2 ψ}
concentric to the disk D. Show that if ψ/π is irrational, the trajectory densely fills
the ring between ∂D and the smaller circle Sψ (see Fig. 1.4).

Remark: one can clearly see on Fig. 1.4 that the particle’s trajectory looks
denser near the inner boundary of the ring (it “focuses” on the inner circle). If the
particle’s trajectory were the path of a laser ray and the border of the unit disk
were a perfect mirror, then it would feel “very hot” there, on the inner circle. For
this reason, the inner circle is called a caustic (which means “burning” in Greek).

Figure 1.4. A nonperiodic trajectory.

Exercise 1.7. Can the trajectory of the moving particle be dense is the entire
disk D? (Answer: No.)

Exercise 1.8. Does the map F : M → M preserve any absolutely continuous
invariant measure dµ = f(θ, ψ) dθ dψ on M? Answer: any measure whose density
f(θ, ψ) = f(ψ) is independent of θ is F-invariant.

Next, we can fix the speed of the moving particle due to the following facts.

Exercise 1.9. Show that ‖vt‖ = const, so that the speed of the particle
remains constant at all times.

Exercise 1.10. Show that if we change the speed of the particle, say we set
‖v‖new = c ‖v‖old with some c > 0, then its trajectory will remain unchanged, up
to a simple rescaling of time: qnew

t = qoldct and vnew
t = vold

ct for all t ∈ R.

Thus, the speed of the particle remains constant and its value is not important.
It is customary to set the speed to one: ‖v‖ = 1. Then the velocity vector at time
t can be described by an angular coordinate ωt so that vt = (cosωt, sinωt) and
ωt ∈ [0, 2π] with the endpoints 0 and 2π being identified.

Now, the collision map F : M → M represents collisions only. To describe the
motion of the particle inside D, let us consider all possible states (q, v), where q ∈ D
is the position and v ∈ S1 is the velocity vector of the particle. The space of all
states (called the phase space) is then a three-dimensional manifold Ω: = D × S1,
which is, of course, a solid torus (doughnut).

The motion of the billiard particle induces a continuous group of transforma-
tions of the torus Ω into itself. Precisely, for every (q, v) ∈ Ω and every t ∈ R the
billiard particle starting at (q, v) will come to some point (qt, vt) ∈ Ω at time t.
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Thus we get a map (q, v) 7→ (qt, vt) on Ω, which we denote by Φt. The family of
maps {Φt} is a group, i.e. Φt ◦ Φs = Φt+s for all t, s ∈ R. This family is called the
billiard flow on the phase space.

Let us consider a modification of the circular billiard. Denote by D+ the upper
half disk x2 + y2 ≤ 1, y ≥ 0, and let a point particle move inside D+ and bounce
off ∂D+. (A delicate question arises here: what happens if the particle hits ∂D+ at
(1, 0) or (−1, 0), since there is no tangent line to ∂D+ at those points? We address
this question in the next section.)

PSfrag replacements

D+

D−

Figure 1.5. Billiard in the upper half circle.

A simple trick allows us to reduce this model to a billiard in the full unit disk
D. Denote by D− the closure of D \ D+, i.e. the mirror image of D+ across the
x axis L = {y = 0}. When the particle hits L, its trajectory gets reflected across
L, but we will also draw its continuation (mirror image) below L. The latter will
evolve in D− symmetrically to the real trajectory in D+, until the latter hits L
again. Then these two trajectories will merge and move together in D+ for a while,
until the next collision with L, at which time they split again (one goes into D−

and the other into D+), etc.
It is important that the second (imaginary) trajectory never actually gets re-

flected off the line L, it just crosses L every time, thus it evolves as a billiard
trajectory in the full disk D as described above. Thus, the properties of billiard
trajectories in D+ can be easily derived from those discussed above for the full disk
D. This type of reduction is quite common in the studies of billiards.

Exercise 1.11. Prove that periodic trajectories in the half-disk D+ correspond
to periodic trajectories in the full disk D. Note, however, that the period (the
number of reflections) may differ.

Exercise 1.12. Investigate the billiard motion in a quarter of the unit disk
x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

1.2. Billiard in a square

Here we describe another simple example – a billiard in the unit square D =
{(x, y) : 0 ≤ x, y ≤ 1}, see Fig. 1.6. The laws of motion are the same as before, but
this system presents new features.

First of all, when the moving particle hits a vertex of the square D, the reflection
rule (1.2) does not apply (there is no normal vector n at a vertex). The particle
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Figure 1.6. Billiard in a square.

then stops and its trajectory terminates. We will discuss this exceptional situation
later, first we consider regular trajectories that never hit the vertices.

Let vt = (ut, wt) denote the velocity vector of the moving particle at time t (in
the x, y coordinates). If it hits a vertical side of D at time t, then ut changes sign
(ut+0 = −ut−0) and wt remains unchanged. If the particle hits a horizontal side of
D, then wt changes sign (wt+0 = −wt−0) and ut remains unchanged. Thus,

(1.4) ut = (−1)mu0 and wt = (−1)nw0,

where m and n denote the number of collisions with vertical and, respectively,
horizontal sides of D during the time interval (0, t).

Exercise 1.13. Show that if u0 6= 0 and w0 6= 0 (and assuming the particle
never hits a vertex), then all the four combinations (±u0,±w0) appear along the
particle’s trajectory infinitely many times.

Next we make use of the trick shown on Fig. 1.5. Instead of reflecting the
trajectory of the billiard particle in a side of ∂D, we reflect the square D across
that side and let the particle move straight into the mirror image of D. If we keep
doing this at every collision, our particle will move along a straight line through
the multiple copies of D obtained by successive reflections (the particle “pierces”
a chain of squares, see Fig. 1.7). This construction is called the unfolding of the
billiard trajectory. To recover the original trajectory in D, one folds the resulting
string of adjacent copies of D back onto D.

We denote the copies of D by

(1.5) Dm,n = {(x, y) : m ≤ x ≤ m+ 1, n ≤ y ≤ n+ 1}
Exercise 1.14. Show that if m and n are even, then the folding procedure

transforms Dm,n back onto D = D0,0 by translations x 7→ x −m and y 7→ y − n,
thus preserving orientation of both x and y. If m is odd, then the orientation of
x is reversed (precisely, x 7→ m + 1 − x). If n is odd, then the orientation of y is
reversed (precisely, y 7→ n+ 1− y). Observe that these rules do not depend on the
particular trajectory that was originally unfolded.

The squares Dm,n with m,n ∈ Z tile, like blocks, the entire plane R2. Any
regular billiard trajectory unfolds into a directed straight line on the plane, and
any directed line (which avoids the sites of the integer lattice) folds back into a
billiard trajectory. A trajectory hits a vertex of D iff the corresponding line runs
into a site of the integer lattice.
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PSfrag replacements

D D10

D11 D21

D31 D41

D42 D52

Figure 1.7. Unfolding a billiard trajectory.

The structure of blocks Dm,n with the respective folding rules is clearly periodic,
in which the 2 × 2 square

K2 = {(x, y) : 0 ≤ x, y ≤ 2}
plays the role of a fundamental domain – the entire plane is covered by parallel
translations of K2. Thus the standard projection of R2 onto K2 transforms unfolded
trajectories into directed straight lines on the 2×2 torus Tor2 (the latter is obtained
by identifying the opposite sides of the square K2). The billiard in the unit square
D thus reduces to the simple linear flow on a flat 2× 2 torus Tor2, in which points
move with constant (unit) velocity vectors.

The linear flow on a flat torus is one of the standard examples in ergodic theory,
cf. Appendix C and [KH95, Pet83, Sin76]. Its main properties are these:

• if a trajectory has rational slope dy/dx ∈ Q, then it is periodic (it runs
along a closed geodesic);

• if a trajectory has irrational slope dy/dx /∈ Q, then it is dense (its closure
is the whole torus).

This translates into the following alternative for regular billiard trajectories in
the unit square D:

Corollary 1.15. If w0/u0 ∈ Q, then the corresponding regular billiard trajec-
tory in the unit square D is periodic. If w0/u0 /∈ Q, then the corresponding regular
billiard trajectory is dense.

Exercise 1.16. Extend this result to the billiard in a rectangle R with sides
a and b. Answer: a regular billiard trajectory in R is periodic iff (aw0)/(bu0) ∈ Q,
otherwise it is dense. Hint: transform the rectangle into the unit square by scaling
the coordinates: (x, y) 7→ (x/a, y/b). Argue that the billiard trajectories in R will
be thus transformed into those in D.

Exercise 1.17. Extend the above result to billiards in the following polygons:
an equilateral triangle, a right isosceles triangle, a right triangle with the acute
angle π/6, and a regular hexagon. What is common about these polygons? (Note
that the billiard in a hexagon does not reduce to a geodesic flow on a torus; does
it reduce to a geodesic flow on another manifold?).
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The phase space of the billiard system in the unit square D is the three-
dimensional manifold Ω = D × S1, cf. the previous section. The billiard flow
Φt is defined for all times −∞ < t < ∞ on regular trajectories. On exceptional
trajectories (which hit a vertex of D at some time), the flow is only defined until
the trajectory terminates in a vertex.

Exercise 1.18. Show that the set of exceptional trajectories is a countable
union of 2D surfaces in Ω.

We see that the set of exceptional trajectories is negligible in the topological
and measure-theoretic sense (it has zero Lebesgue measure and is an Fσ set, i.e. a
countable union of nowhere dense closed subsets), but still its presence is bother-
some. For the billiard in a square, though, one can get rid of them altogether by
extending the billiard flow by continuity:

Exercise 1.19. Show that the flow Φt can be uniquely extended by continuity
to all exceptional trajectories. In that case every trajectory hitting a vertex of D
will simply reverse its course and run straight back, see Fig. 1.8.

Figure 1.8. Extension of the flow near a vertex.

The above extension defines the billiard flow Φt on the entire phase space Ω and
makes it continuous everywhere. We will assume this extension in what follows. We
remark, however, that in generic billiards such nice extensions are rarely possible –
see Section 2.8.

Now, the action of the flow Φt on the phase space Ω can be fully described as
follows. For every unit vector v0 = (u0, w0) ∈ S1, consider the set

Lv0 = {(q, v) ∈ Ω: q ∈ D, v = (±u0,±w0)}
(the two signs are, of course, independent). Due to (1.4), each set Lv0 remains
invariant under the flow Φt.

Suppose first that u0 6= 0 and v0 6= 0, then Lv0 is the union of four squares,
obtained by “slicing” Ω at the four “levels” corresponding to the vectors (±u0,±w0),
see Fig. 1.9.

Exercise 1.20. Check that the four squares constituting the set Lv0 can be
glued together along their boundaries and obtain a smooth closed surface without
boundary (a 2×2 torus) T2

v0
, on which the billiard flow will coincide with the linear

flow along the vector v0 (i.e. the flow on T2
v0

will be defined by differential equations

ẋ = u0, ẏ = w0). Hint: the assembly of the torus T2
v0

from the squares of Lv0 is
very similar to the reduction of the billiard dynamics in D to the geodesic flow on
the 2 × 2 torus described above (in fact, these two procedures are equivalent).
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v0

Figure 1.9. Four squares constituting Lv0 .

Now, it is a standard fact in ergodic theory, cf. Appendix C, that the linear
flow on a 2D torus defined by ẋ = u0, ẏ = w0 is periodic if w0/u0 ∈ Q and ergodic
(furthermore, uniquely ergodic) if w0/u0 /∈ Q. In the latter case every trajectory is
dense and uniformly distributed2 on the torus.

In the two remaining cases (first u0 = 0, and second w0 = 0) the set Lv0 consists
of just two squares. We leave their analysis to the reader as an easy exercise.

This fully describes the action of the flow Φt : Ω → Ω for the billiard in the
unit square.

1.3. A simple mechanical model

As a motivation for the study of billiards, one usually describes a simple model
of two moving particles in a one-dimensional container. It reduces to a billiard in
a right triangle, which is similar to a billiard in a square. We describe this model
here, see also [CFS82, CM03].

Consider a system of two point particles of massesm1 and m2 on a unit interval
0 ≤ x ≤ 1. The particles move freely and collide elastically with each other and
with the ‘walls’ at x = 0 and x = 1. Let x1 and x2 denote the positions of the
particles and u1 and u2 their velocities. Since the particles collide upon contact,
their positions remain ordered, we assume that x1 ≤ x2 at all times.PSfrag replacements

0 1x1 x2

Figure 1.10. Two particles in a unit interval.

Next we describe collisions. When a particle hits a wall, it simply reverses
its velocity. When the two particles collide with each other, we denote by u−

i the
precollisional velocity and by u+

i the postcollisional velocity of the ith particle, i =
1, 2. The law of elastic collisions requires the conservation of the total momentum,
i.e.

m1u
+
1 +m2u

+
2 = m1u

−
1 +m2u

−
2

2A line xt on a 2D torus Tor2 is said to be uniformly distributed if for any rectangle R ⊂ Tor2

we have limT→∞ m
`

{t : 0 < t < T, xt ∈ R}
´

/T = area(R)/ area(Tor2), here m is the Lebesgue

measure on R.
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and the total kinetic energy, i.e.

(1.6) m1[u
+
1 ]2 +m2[u

+
2 ]2 = m1[u

−
1 ]2 +m2[u

−
2 ]2.

Solving these equations gives

u+
1 = u−1 +

2m2

m1 +m2
(u−2 − u−1 )

and

u+
2 = u−2 +

2m1

m1 +m2
(u−1 − u−2 )

(we recommend the reader derives these formulas for an exercise). Note that if
m1 = m2, then the particles simply exchange their velocities: u+

1 = u−2 and u+
2 =

u−1 .
The variables xi and ui are actually inconvenient, we will work with new vari-

ables defined by

(1.7) qi = xi
√
mi and vi = dqi/dt = ui

√
mi

for i = 1, 2. Now the positions of the particles are described by a point q =
(q1, q2) ∈ R2 (it is called a configuration point). The set of all configuration points
(called the configuration space) is the right triangle

D = {q = (q1, q2) : 0 ≤ q1/
√
m1 ≤ q2/

√
m2 ≤ 1}.

The velocities of the particles are described by the vector v = (v1, v2). Note that
the energy conservation law (1.6) implies that ‖v‖ = const, thus we can set ‖v‖ = 1.

The state of the system is described by a pair (q,v). The configuration point
q moves in D with velocity vector v. When the first particle collides with the wall
(x1 = 0), the configuration point hits the left side q1 = 0 of the triangle D. When
the second particle collides with the wall (x2 = 1), the point q hits the upper side
q2/

√
m2 = 1 of D. When the particles collide with each other, the point q hits the

hypotenuse q1/
√
m1 = q2/

√
m2 of D.

Exercise 1.21. Prove that the velocity vector v changes at collisions so that
it gets reflected at ∂D according to the law ‘the angle of incidence is equal to the
angle of reflection’.

Thus, the motion of the configuration point q is governed by the billiard rules.
Hence the evolution of the mechanical model of two particles in a unit interval
reduces to billiard dynamics in a right triangle.

If m1 = m2, we obtain a billiard in a right isosceles triangle, which readily
reduces to a billiard in a square, see Exercise 1.17. For generic mass ratio m1/m2,
we obtain a billiard in a generic right triangle, which may be rather complicated
(such billiards are not covered in our book).

One complication arises when a billiard trajectory hits a corner point of D.
Hitting the vertex of the right angle corresponds to an event when both particles
simultaneously collide with opposite walls; then their further motion is clearly well
defined, thus the billiard trajectory can easily be continued (cf. Exercise 1.19).

However, hitting the vertex of an acute angle of D corresponds to an event
when both particles simultaneously collide with the same wall (either x = 0 or
x = 1). In this case, for generic m1 and m2, the billiard flow cannot be extended by
continuity, as nearby trajectories hitting the two adjacent sides in different order
will come back to D along different lines, see Fig. 1.11.
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PSfrag replacements

q1

q2

D

Figure 1.11. The right triangle D; hitting the vertex of an acute angle.

In mechanical terms, hitting the vertex of an acute angle of D corresponds to a
multiple collision. Such exceptional events usually cannot be resolved by the laws
of classical mechanics.

1.4. Billiard in an ellipse

We proceed to yet another simple example that admits a completely elementary
analysis – the billiard in an ellipse

x2

a2
+
y2

b2
= 1

with some a > b > 0. In fact, it was this example that Birkhoff described in the
very first book on mathematical billiards in 1927 [Bi27, Chapter VIII].

We denote by D the domain bounded by the ellipse (it will be our billiard
table). Let F1 and F2 denote the foci of the ellipse, observe that they lie on the x
axis. The ellipse is the locus of points A ∈ R2 such that

dist(A,F1) + dist(A,F2) = const.

Exercise 1.22. Let A ∈ ∂D and L denote the tangent line to the ellipse at
A. Prove that the segments AF1 and AF2 make equal angles with L. (This fact
is known in projective geometry as Poncelet theorem.) Hint: reflect the point F2

across the tangent line L and show that its image will lie on the line AF1.

Thus, if a billiard trajectory passes through one focus, then it reflects at a point
A ∈ ∂D on the ellipse and runs straight into the other focus. Such a trajectory will
then pass through a focus after every reflection, see Fig. 1.12.

PSfrag replacements

F1

F2

Figure 1.12. A trajectory passing through the foci.
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Exercise 1.23. Show that every trajectory passing through the foci F1 and
F2 converges to the major axis of the ellipse (the x axis).

By the way, the major and the minor axes of the ellipse are clearly two periodic
trajectories – they run back and forth between their endpoints.

In Section 1.1 we used the coordinates ψ and θ to describe collisions in a circular
billiard, and the cyclic coordinate θ was actually the arc length parameter on the
circle (Remark 1.2). Here we use two coordinates ψ and r, where ψ is the same
angle of reflection as in Section 1.1 and r is an arclength parameter on the ellipse.
We choose the reference point r = 0 as the rightmost point (a, 0) on the ellipse and
orient r counterclockwise. Note that 0 ≤ r ≤ |∂D| and 0 ≤ ψ ≤ π.

The collision space M is again a cylinder whose base is the ellipse and whose
height is π. It is shown on Fig. 1.13 as a rectangle [0, |∂D|] × [0, π], but we keep
in mind that the left and right sides of this rectangle must be identified. The
motion of the billiard particle, from collision to collision, induces the collision map
F : M → M.

Exercise 1.24. Verify that the trajectories passing through the foci lie on a
closed curve on the surface M. Determine its shape. Answer: it is the ∞-shaped
curve on Fig. 1.13 that separates the white and grey areas.

Thus, the trajectories passing through the foci make a special (one-dimensional)
family in M.

PSfrag replacements

ψ

r
0 |∂D|

π

Figure 1.13. The collision space of elliptic billiard.

Exercise 1.25. Show that if the trajectory of the billiard particle crosses the
segment F1F2 joining the foci, then it reflects at ∂D and crosses this segment again.
Similarly, if the trajectory crosses the major axis beyond the segment F1F2, say to
the left of it, then after one or more reflections at ∂D it will cross the major axis
to the right of this segment, etc.

The previous exercise shows that there are trajectories of two types: those
crossing the inner segment F1F2 of the major axis after every reflection (we call
them inner trajectories) and those going around this segment (we call them outer
trajectories).
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Exercise 1.26. Verify that the inner trajectories fill the white area on Fig. 1.13,
and outer trajectories fill the grey area.

The following is the most important property of elliptic billiards:

Theorem 1.27. For every outer trajectory there is an ellipse with foci F1 and
F2 that is tangent to each link of that trajectory. For every inner trajectory there is
a hyperbola with foci F1 and F2 that is tangent to each link (or its linear extension)
of that trajectory.

Proof. We only prove the first statement (about the outer trajectories), the
proof of the second is similar. The argument is pretty elementary and illustrated
on Fig. 1.14. Here A1A and A2A are two successive links of an outer trajectory.
The points B1 and B2 are obtained by reflecting the foci F1 and F2 across the
lines A1A and A2A, respectively. The four angles ∠B1AA1, ∠A1AF1, ∠F2AA2

and ∠A2AB2 are equal. Hence the triangles AB1F2 and AB2F1 are congruent, in
particular |B1F2| = |B2F1|. Therefore

|F1C1| + |F2C1| = |F1C2| + |F2C2|,

where C1 and C2 are the points of intersection of A1A with B1F2 and A2A with
B2F1, respectively. Thus, the points C1 and C2 belong to the same ellipse with foci
F1 and F2, and the lines A1A and A2A are tangent to that ellipse. �

PSfrag replacements
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A

Figure 1.14. Proof of Theorem 1.27.

If every link of a billiard trajectory is tangent to a certain given curve, then that
curve is called a caustic. Fig. 1.15 shows an elliptic caustic for an outer trajectory
and a hyperbolic caustic for an inner trajectory. The term ‘caustic’ is borrowed
from optics, where it means a curve on which light rays focus after being reflected
off a mirror (we have seen caustics in circular billiards in Section 1.1). Fig. 1.15
demonstrates the concentration of rays on caustics (compare it to Fig. 1.4).

All the trajectories tangent to one elliptic caustic lie on a closed curve in the
collision space M. Such curves are shown as ‘horizontal waves’ in the white area on
Fig. 1.13 (remember that the left and right sides of the rectangle need be identified).
Every such curve is obviously invariant under the map F .
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Figure 1.15. Elliptic and hyperbolic caustics in the elliptic billiard.

Exercise 1.28. On each invariant curve the map F is conjugate to a rigid circle
rotation through some angle (that angle is called the rotation number). Show that
the rotation number changes continuously and monotonically with the invariant
curve. Hint: consider two outer trajectories starting at the same point A0 ∈ ∂D but
with distinct elliptical caustics; denote by A′

n the reflection points of the trajectory
whose elliptical caustic is smaller and by A′′

n those of the other trajectory; observe
that the sequence {A′

n} will move along the ellipse faster than {A′′
n} does, see

Fig. 1.16.

The action of the map F on each invariant curve can be analyzed explicitly
and the rotation number can be computed analytically, see [Be01, Sections 2.5 and
3.2], but we will not go that far.

PSfrag replacements

A
′

1

A
′

2

A
′′

1

A
′′

2

A0

Figure 1.16. Exercise 1.28.

Next, all the trajectories tangent to one hyperbolic caustic lie on two closed
curves in M, one inside each half of the ∞-shaped grey domain. Such curves
appear as ovals on Fig. 1.13. The map F transforms each oval onto an identical
oval within the other half of the ∞-shaped grey domain. Thus the union of the two
identical (symmetric) ovals will be invariant under F , and each oval separately will
be invariant under F2.

Therefore, the collision space M of an elliptical billiard is completely foliated
by invariant curves. In this sense, the elliptical billiard is similar to those in a circle
and in a square. In physics, such models belong to a special class: if the phase
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space of a system is foliated by one-dimensional invariant submanifolds, the system
is said to be integrable; the dynamics in such a system is completely regular. Thus,
billiards in circles, squares and ellipses are completely regular.

1.5. A chaotic billiard: pinball machine

The simple examples were given in the previous sections for the sake of intro-
duction of some basic features of billiards to the novice reader. But they should not
be taken as typical; in fact their dynamical characteristics are quite special and in
a sense opposite to those of chaotic billiards that will be covered in the rest of the
book. Here we will take a glimpse at something that happens in chaotic billiards.

Imagine you are playing a pinball machine. A small ball shoots from a cannon
in the right bottom corner of a rectangular table, then it bounces off the edges until
it either hits the target (then you win) or falls through an opening in the bottom
(goes down the drain, then you lose). The target might be a special figure on the
table that registers the hit when the ball touches it. To prevent direct hits, assume
the target is screened from the cannon, and hitting the screen is forbidden by the
rules. Then the ball has to bounce off the edges before reaching the target, see
Fig. 1.17. It is quite an unusual pinball machine, but for us it is a good starting
example.

Figure 1.17. A pinball machine. The target is the grey disk
screened from the cannon by a dark grey arc.

Suppose you can rotate the cannon to change the angle at which the ball shoots
out. After you miss once, you can adjust the shooting angle and send the ball more
accurately into the target. This is a relatively easy task (illustrated on Fig. 1.17), as
the trajectory of the ball (in a rectangular billiard) is very simple and predictable.
Also, you do not need to aim with absolute precision:

Exercise 1.29. Suppose the target is a disk of radius r and the moving ball is
a point particle. Let L denote the distance covered by the ball from the cannon to
the target. Show that if the shooting angle is off by less than r/L (radians), then
the ball still hits the target.

Now let us make the task more realistic and challenging by installing some
bumpers (round pillars) all over the table, see Fig. 1.18, so that our moving ball
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will bounce between the bumpers on its way to the target (or down the drain).
Anyone who played real pinball machines can easily imagine such a process.

Figure 1.18. A pinball machine with bumpers (dark grey disks).

Would it be easy to adjust the cannon on this new table? Obviously, not. The
route of the ball is complicated and almost unpredictable, as it may bounce off
different bumpers. Even finding the right sequence of bumpers that the ball needs
to hit before it reaches the target (and avoids the screen) is not a simple task.
Professional billiard players solve a similar problem when trying the send a ball to
a pocket, so that it hits one or more other balls.

Furthermore, the cannon must be aimed with almost ultimate precision, as a
tiny error in the shooting angle may send the ball rolling down along a completely
wrong path. This is illustrated on Fig. 1.19 where just two successive bounces are
shown; it is quite clear that the instability of the ball’s motion increases with every
subsequent reflection off a bumper. Again, professional billiard players know that
if their ball needs to hit more than one other balls before sending one of them into
a pocket, their task is very difficult. Furthermore, if the ball must hit three or more
other balls, the task is almost impossible.

A rectangular table with round bumpers installed on it is a classical example of
a chaotic billiard. The motion of the billiard particle on such a table is complicated
and unpredictable. To a naked eye, it may look like a wild dance between the
walls of the table, without any pattern or logic (that is why pinball machines are
so attractive!). The lack of predictability is characteristic for chaotic billiards.

Furthermore, slight changes in the initial position and/or velocity of the particle
quickly lead to large deviations (such as that on Fig. 1.19), so after just a few
collisions with bumpers two trajectories, initially very close together, will separate
and move far apart from each other, as if they are unrelated. This instability (also
known as sensitivity to initial conditions) is another characteristic feature of chaotic
billiards (and chaotic dynamics in general).

In practical terms, the best thing the player can do in our game is to shoot
randomly and watch the ball running all over the table bouncing around between
bumpers – there will always be a chance that it hits the target ‘by accident’. This
is essentially a game of chance, just like flipping a coin, rolling a die, or playing
cards. We will see in Chapters 6 and 7 that the motion in a chaotic billiard is
indeed essentially random and is best described in terms of probability theory.
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Figure 1.19. A ball bouncing off two bumpers: a slight error in
the initial shooting angle results in a dramatic deflection in the
end.

Our toy example actually has a lot in common with a classical model of statis-
tical physics, called the Lorentz gas. In that model, a small ball (electron) bounces
between large fixed disks (molecules) that make a regular periodic (crystalline)
structure. We will present it in Chapter 5.6.

We will not attempt to go beyond this very informal introduction to the realm
of chaotic billiards, leaving all formalities till further chapters. Interested read-
ers may find a more extensive description of chaotic billiards, including computer
illustrations, in [Be01, Section 1.1].
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197-236.
[Ch02] N. Chernov, Invariant measures for hyperbolic dynamical systems, In: Handbook of

Dynamical Systems, 1A, 321–407, North-Holland, Amsterdam, 2002.
[Ch06a] N. Chernov, Regularity of local manifolds in dispersing billiards, to appear in Math.

Phys. Electr. J. (2006).
[Ch06b] N. Chernov, Advanced statistical properties of dispersing billiards, to appear in J.

Stat. Phys. (2006).
[CM92] N. I. Chernov & R. Markarian, Entropy of non-uniformly hyperbolic plane billiards,

Bol. Soc. Bras. Mat. 23 (1992) 121–135.
[CM03] N. Chernov & R. Markarian, Introduction to the ergodic theory of chaotic billiards,

2nd Ed., IMPA, Rio de Janeiro, Brasil, 2003.
[CM06] N. Chernov & R. Markarian, Dispersing billiards with cusps, in preparation.
[CY00] N. I. Chernov & L.-S. Young, Decay of correlations of Lorentz gases and hard balls. In

Hard ball systems and Lorentz gas, D. Szász, editor, Springer, Berlin (2000), 89–120.
[CZ05] N. Chernov & H.-K. Zhang, Billiards with polynomial mixing rates, Nonlinearity 18

(2005), 1527–1553.
[Den89] M. Denker, The central limit theorem for dynamical systems, Dyn. Syst. Ergod. Th.

Banach Center Publ., 23, PWN–Polish Sci. Publ., Warsaw, 1989.



BIBLIOGRAPHY 313

[Dev89] R. Devaney, An introduction to chaotic dynamical systems, 2nd Ed., Addison-Wesley,
New York, 1989.

[DLL92] R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-
uniformly hyperbolic systems. Comm. Math. Phys. 150 (1992), 289–320.

[DM01] G. Del Magno, Ergodicity of a class of truncated elliptical billiard, Nonlinearity 14

(2001), 1761–1786.
[DMM03] G. Del Magno & R. Markarian, Bernoulli elliptical stadia, Comm. Math. Phys. 233

(2003), 211–230.
[DMM06] G. Del Magno & R. Markarian, On the Bernoulli property of planar hyperbolic bil-

liards, preprint (2006).
[Dob68a] R. L. Dobrushin, The description of a random field by means of conditional probabil-

ities and conditions of its regularity, Th. Prob. Appl. 13 (1968), 197–224.
[Dob68b] R. L. Dobrushin, Gibbsian random fields for lattice systems with pairwise interaction,

Funct. Anal. Appl. 2 (1968), 292–301.
[Dob68c] R. L. Dobrushin, The problem of uniqueness of a Gibbsian random field and the

problem of phase transitions, Funct. Anal. Appl. 2 (1968), 302–312.
[Don91] V. Donnay, Using integrability to produce chaos: billiards with positive entropy,

Comm. Math. Phys. 141 (1991), 225–257.
[ET86] Dependence in probability and statistics. A survey of recent results. Ed. E. Eberlein

and M. Taqqu. Progress in Probability and Statistics, 11, Birkhuser, Boston, MA,
1986.

[FM88] B. Friedman & R. F. Martin, Behavior of the velocity autocorrelation function for the
periodic Lorentz gas, Physica D 30 (1988), 219–227.

[Ga74] G. Gallavotti, Lectures on the billiards. In Dynamical systems, theory and applica-
tions (Rencontres, Battelle Res. Inst., Seattle., Wash., 1974), Lect. Notes Phys. 38,
Springer, Berlin(1975), 236-295.

[GG94] P. Garrido & G. Gallavotti, Billiards correlation function, J. Stat. Phys. 76 (1994),
549–585.

[GKT95] G. Galperin, T. Krger, & S. Troubetzkoy, Local instability of orbits in polygonal and
polyhedral billiards, Comm. Math. Phys. 169 (1995), 463–473.

[GO74] G. Gallavotti & D. S. Ornstein, Billiards and Bernoulli schemes, Comm. Math. Phys.
38 (1974), 83-101.

[Gur65] B. M. Gurevich, Construction of increasing partitions for special flows,
Th. Prob. Appl. 10 (1965), 627–645.

[Gut86] E. Gutkin, Billiards in polygons, Physica D 19 (1986), 311–333.
[Gut96] E. Gutkin, Billiards in polygons: survey of recent results, J. Stat. Phys. 83 (1996),

7–26.
[GZ90] G. A. Galperin & A. N. Zemlyakov, Mathematical billiards, Kvant 77, Nauka, Moscow,

1990.
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[Sim04] N. Simányi Proof of the ergodic hypothesis for typical hard ball systems, Ann. H.
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