## Chaotic Billiards

## Nikolai Chernov

## Roberto Markarian

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294, USA

E-mail address: chernov@math.uab.edu
Instituto de Matemática y Estadística "Prof. Ing. Rafael Laguardia" Facultad de Ingeniería, Universidad de la República, C.C. 30, Montevideo, Uruguay

E-mail address: roma@fing.edu.uy

To Yakov Sinai on the occasion of his 70th birthday

The authors are grateful to many colleagues who have read the manuscript and made numerous useful remarks, in particular P. Balint, D. Dolgopyat, C. Liverani, G. Del Magno, and H.-K. Zhang. It is a pleasure to acknowledge the warm hospitality of IMPA (Rio de Janeiro), where the final version of the book was prepared. We also thank the anonymous referees for helpful comments. Last but not the least, the book was written at the suggestion of Sergei Gelfand and thanks to his constant encouragement. The first author was partially supported by NSF grant DMS-0354775 (USA). The second author was partially supported by a Proyecto PDT-Conicyt (Uruguay).

## Contents

Preface ..... vii
Symbols and notation ..... ix
Chapter 1. Simple examples ..... 1
1.1. Billiard in a circle ..... 1
1.2. Billiard in a square ..... 5
1.3. A simple mechanical model ..... 9
1.4. Billiard in an ellipse ..... 11
1.5. A chaotic billiard: pinball machine ..... 15
Chapter 2. Basic constructions ..... 19
2.1. Billiard tables ..... 19
2.2. Unbounded billiard tables ..... 22
2.3. Billiard flow ..... 23
2.4. Accumulation of collision times ..... 24
2.5. Phase space for the flow ..... 26
2.6. Coordinate representation of the flow ..... 27
2.7. Smoothness of the flow ..... 29
2.8. Continuous extension of the flow ..... 30
2.9. Collision map ..... 31
2.10. Coordinates for the map and its singularities ..... 32
2.11. Derivative of the map ..... 33
2.12. Invariant measure of the map ..... 35
2.13. Mean free path ..... 37
2.14. Involution ..... 38
Chapter 3. Lyapunov exponents and hyperbolicity ..... 41
3.1. Lyapunov exponents: general facts ..... 41
3.2. Lyapunov exponents for the map ..... 43
3.3. Lyapunov exponents for the flow ..... 45
3.4. Hyperbolicity as the origin of chaos ..... 48
3.5. Hyperbolicity and numerical experiments ..... 50
3.6. Jacobi coordinates ..... 51
3.7. Tangent lines and wave fronts ..... 52
3.8. Billiard-related continued fractions ..... 55
3.9. Jacobian for tangent lines ..... 57
3.10. Tangent lines in the collision space ..... 58
3.11. Stable and unstable lines ..... 59
3.12. Entropy ..... 60
3.13. Proving hyperbolicity: cone techniques ..... 62
Chapter 4. Dispersing billiards ..... 67
4.1. Classification and examples ..... 67
4.2. Another mechanical model ..... 69
4.3. Dispersing wave fronts ..... 71
4.4. Hyperbolicity ..... 73
4.5. Stable and unstable curves ..... 75
4.6. Proof of Proposition 4.29 ..... 77
4.7. More continued fractions ..... 83
4.8. Singularities (local analysis) ..... 86
4.9. Singularities (global analysis) ..... 88
4.10. Singularities for type B billiard tables ..... 91
4.11. Stable and unstable manifolds ..... 93
4.12. Size of unstable manifolds ..... 95
4.13. Additional facts about unstable manifolds ..... 97
4.14. Extension to type B billiard tables ..... 99
Chapter 5. Dynamics of unstable manifolds ..... 103
5.1. Measurable partition into unstable manifolds ..... 103
5.2. u-SRB densities ..... 104
5.3. Distortion control and homogeneity strips ..... 107
5.4. Homogeneous unstable manifolds ..... 109
5.5. Size of H-manifolds ..... 111
5.6. Distortion bounds ..... 113
5.7. Holonomy map ..... 118
5.8. Absolute continuity ..... 121
5.9. Two growth lemmas ..... 125
5.10. Proofs of two growth lemmas ..... 127
5.11. Third growth lemma ..... 132
5.12. Fundamental theorem ..... 136
Chapter 6. Ergodic properties ..... 141
6.1. History ..... 141
6.2. Hopf's method: heuristics ..... 141
6.3. Hopf's method: preliminaries ..... 143
6.4. Hopf's method: main construction ..... 144
6.5. Local ergodicity ..... 147
6.6. Global ergodicity ..... 151
6.7. Mixing properties ..... 152
6.8. Ergodicity and invariant manifolds for billiard flows ..... 154
6.9. Mixing properties of the flow and 4-loops ..... 156
6.10. Using 4-loops to prove K-mixing ..... 158
6.11. Mixing properties for dispersing billiard flows ..... 160
Chapter 7. Statistical properties ..... 163
7.1. Introduction ..... 163
7.2. Definitions ..... 163
7.3. Historic overview ..... 167
7.4. Standard pairs and families ..... 169
7.5. Coupling lemma ..... 172
7.6. Equidistribution property ..... 175
7.7. Exponential decay of correlations ..... 176
7.8. Central Limit Theorem ..... 179
7.9. Other limit theorems ..... 184
7.10. Statistics of collisions and diffusion ..... 186
7.11. Solid rectangles and Cantor rectangles ..... 190
7.12. A 'magnet' rectangle ..... 193
7.13. Gaps, recovery, and stopping ..... 197
7.14. Construction of coupling map ..... 200
7.15. Exponential tail bound ..... 205
Chapter 8. Bunimovich billiards ..... 207
8.1. Introduction ..... 207
8.2. Defocusing mechanism ..... 207
8.3. Bunimovich tables ..... 209
8.4. Hyperbolicity ..... 210
8.5. Unstable wave fronts and continued fractions ..... 214
8.6. Some more continued fractions ..... 216
8.7. Reduction of nonessential collisions ..... 220
8.8. Stadia ..... 223
8.9. Uniform hyperbolicity ..... 227
8.10. Stable and unstable curves ..... 230
8.11. Construction of stable and unstable manifolds ..... 232
8.12. u-SRB densities and distortion bounds ..... 235
8.13. Absolute continuity ..... 238
8.14. Growth lemmas ..... 242
8.15. Ergodicity and statistical properties ..... 248
Chapter 9. General focusing chaotic billiards ..... 251
9.1. Hyperbolicity via cone techniques ..... 252
9.2. Hyperbolicity via quadratic forms ..... 254
9.3. Quadratic forms in billiards ..... 255
9.4. Construction of hyperbolic billiards ..... 257
9.5. Absolutely focusing arcs ..... 260
9.6. Continued fractions ..... 265
9.7. Singularities ..... 266
9.8. Application of Pesin and Katok-Strelcyn theory ..... 270
9.9. Invariant manifolds and absolute continuity ..... 273
9.10. Ergodicity via 'regular coverings' ..... 274
Afterword ..... 279
Appendix A. Measure theory ..... 281
Appendix B. Probability theory ..... 291
Appendix C. Ergodic theory ..... 299
Index ..... 309

Bibliography

## Preface

Billiards are mathematical models for many physical phenomena where one or more particles move in a container and collide with its walls and/or with each other. The dynamical properties of such models are determined by the shape of the walls of the container, and they may vary from completely regular (integrable) to fully chaotic. The most intriguing, though least elementary, are chaotic billiards. They include the classical models of hard balls studied by L. Boltzmann in the XIX century, the Lorentz gas introduced to describe electricity in 1905, as well as modern dispersing billiard tables due to Ya. Sinai and the stadium.

Mathematical theory of chaotic billiards was born in 1970 when Ya. Sinai published his seminal paper [Sin70]; and now it is only 35 years old. But during these years it grew and developed at a remarkable speed, and became a well-established and flourishing area within the modern theory of dynamical systems and statistical mechanics.

It is no surprise that many young mathematicians and scientists attempt to learn chaotic billiards, in order to investigate some of them or explore related physical models. But such studies are used to be prohibitively difficult for too many a novice and an outsider, not only because the subject itself is intrinsically quite complex, but to a large extend because of the lack of comprehensive introductory texts.

True, there are excellent books covering general mathematical billiards [Ta95, KT91, KS86, GZ90, CFS82], but these barely touch upon chaotic models. There are surveys devoted to chaotic billiards as well, see [Sin00, Sz00, CM03], but those are expository, they only sketch selective arguments and rarely go down to 'nuts and bolts'. For the readers who want to look 'under the hood' and become professional (and we speak of graduate students and young researchers here), there is not much choice left: either learning from their advisors or other experts by way of personal communication, or reading the original publications (most of them very long and technical articles translated from Russian). Then students quickly discover that some essential facts and techniques can only be found in the middle of long dense papers. Worse yet, some of those facts have never even been published - they exist as folklore.

This book attempts to present the fundamentals of the mathematical theory of chaotic billiards in a systematic way. We cover all the basic facts, provide full proofs, intuitive explanations and plenty of illustrations. Our book can be used by students and self-learners - it starts with the most elementary examples and formal definitions, and then takes the reader step by step into the depth of Sinai's theory of hyperbolicity and ergodicity of chaotic billiards, as well as more recent achievements related to their statistical properties (decay of correlations and limit theorems).

The reader should be warned that our book is designed for active learning. It contains plenty exercises of various kinds; some constitute small steps in the proofs of major theorems, some others present interesting examples and counterexamples, yet others are given for the reader's practice (some exercises are actually quite challenging). The reader is strongly encouraged to do exercises when reading the book, as this is the best way to grasp the main concepts and eventually master the techniques of billiard theory.

The book is restricted to two-dimensional chaotic billiards, primarily dispersing tables by Sinai and circular-arc-tables by Bunimovich (with some other planar chaotic billiards reviewed in the last chapter). We have several compelling reasons for such a confinement. First, Sinai's and Bunimovich's billiards are the oldest and best explored (for instance, statistical properties are established only for them and for no other billiard model); the current knowledge of other chaotic billiards is much less complete; the work on some of them (most notably, hard ball gases) is currently under way and should be perhaps the subject of future textbooks. Second, the two classes presented here constitute the core of the entire theory of chaotic billiards, all its apparatus is built upon the original works by Sinai and Bunimovich; but their fundamental works are hardly accessible to today's students or researchers; there have been no attempts to update or republish their results since the middle 1970s (after Gallavotti's book [Ga74]). Our book makes such an attempt. We do not cover polygonal billiards, even though some of them are mildly chaotic (ergodic); for surveys of polygonal billiards see [Gut86, Gut96].

We assume that the reader is familiar with standard graduate courses in mathematics - linear algebra, measure theory, topology, Riemannian geometry, complex analysis, probability theory. We also assume knowledge of ergodic theory; although the latter is not a standard graduate course, it is absolutely necessary for reading this book; we do not attempt to cover it here, though, as there are many excellent texts around [Wa82, Man83, KH95, Pet83, CFS82, Sin00, BrS02, Dev89, Sin76] (see also our previous book [CM03]). For the reader's convenience, we provide basic definitions and facts from ergodic theory, probability theory, and measure theory in Appendices.

## Symbols and notation

| D | billiard table | Section 2.1 |
| :---: | :---: | :---: |
| $\Gamma$ | boundary of the billiard table | 2.1 |
| $\Gamma_{+}$ | union of dispersing components of the boundary $\Gamma$ | 2.1 |
| $\Gamma_{-}$ | union of focusing components of the boundary $\Gamma$ | 2.1 |
| $\Gamma_{0}$ | union of neutral (flat) components of the boundary $\Gamma$ | 2.1 |
| $\tilde{\Gamma}$ | regular part of the boundary of billiard table | 2.1 |
| $\Gamma_{*}$ | Corner points on billiard table | 2.1 |
| $\ell$ | degree of smoothness of the boundary $\Gamma=\partial \mathcal{D}$ | 2.1 |
| $n$ | normal vector to the boundary of billiard table | 2.3 |
| T | tangent vector to the boundary of billiard table | 2.6 |
| $\mathcal{K}$ | (signed) curvature of the boundary of billiard table | 2.1 |
| $\Phi^{t}$ | billiard flow | 2.5 |
| $\Omega$ | the phase space of the billiard flow | 2.5 |
| $\tilde{\Omega}$ | Part of phase space where dynamics is defined at all times | 2.5 |
| $\pi_{q}, \pi_{v}$ | projections of $\Omega$ to the position and velocity subspaces | 2.5 |
| $\omega$ | angular coordinate in phase space $\Omega$ | 2.6 |
| $\eta, \xi$ | Jacobi coordinates in phase space $\Omega$ | 3.6 |
| $\mu_{\Omega}$ | invariant measure for the flow $\Phi^{t}$ | 2.6 |
| $\mathcal{F}$ | collision map or billiard map | 2.9 |
| $\mathcal{M}$ | collision space (phase space of the billiard map) | 2.9 |
| $\mathcal{M}$ | part of $\mathcal{M}$ where all iterations of $\mathcal{F}$ are defined | 2.9 |
| $\hat{\mathcal{M}}$ | part of $\mathcal{M}$ where all iterations of $\mathcal{F}$ are smooth | 2.11 |
| $r, \varphi$ | coordinates in the collision space $\mathcal{M}$ | 2.10 |
| $\mu$ | invariant measure for the collision map $\mathcal{F}$ | 2.12 |
| $\mathcal{S}_{0}$ | boundary of the collision space $\mathcal{M}$ | 2.10 |
| $\mathcal{S}_{ \pm 1}$ | singularity set for the map $\mathcal{F}^{ \pm 1}$ | 2.10 |
| $\mathcal{S}_{ \pm n}$ | singularity set for the map $\mathcal{F}^{ \pm n}$ | 2.11 |
| $\mathcal{S}_{ \pm \infty}$ | same as $\cup_{n \geq 1} \mathcal{S}_{ \pm n}$ | 4.11 |
| $\mathcal{Q}_{n}(x)$ | connected component of $\mathcal{M} \backslash \mathcal{S}_{n}$ containing $x$ | 4.11 |
| $\mathcal{V}$ | ( $=d \varphi / d r$ ) slope of smooth curves in $\mathcal{M}$ | 3.10 |
| $\tau$ | return time (intercollision time) | 2.9 |
| $\bar{\tau}$ | mean return time (mean free path) | 2.12 |
| $\lambda_{x}^{(i)}$ | Lyapunov exponent at the point $x$ | 3.1 |
| $E_{x}^{s}, E_{x}^{u}$ | stable and unstable tangent subspaces at the point $x$ | 3.1 |
| $\mathcal{C}_{x}^{s}, \mathcal{C}_{x}^{u}$ | stable and unstable cones at the point $x$ | 3.13 |
| $\Lambda$ | (minimal) factor of expansion of unstable vectors | 4.4 |
| $\mathcal{B}$ | the curvature of wave fronts | 3.7 |

$\mathcal{R} \quad$ collision parameter ..... 3.6
$\mathbb{H}_{k} \quad$ homogeneity strips ..... 5.3
$\mathbb{S}_{k} \quad$ lines separating homogeneity strips ..... 5.3
$k_{0} \quad$ minimal nonzero index of homogeneity strips ..... 5.3
$\mathcal{M}_{\mathbb{H}} \quad$ new collision space (union of homogeneity strips) ..... 5.4
h holonomy map ..... 5.7
I involution map ..... 2.14
m Lebesgue measure on lines and curves ..... 5.9
$|W| \quad$ length of the curve $W$ ..... 4.5
$|W|_{p} \quad$ length of the curve $W$ in the p-metric ..... 4.5
$\mathcal{J}_{W} \mathcal{F}^{n}(x)$ Jacobian of the restriction of $\mathcal{F}^{n}$ to the curve $W$ at the point $x \in W$ ..... 5.2
$r_{W}(x) \quad$ distance from $x \in W$ to the nearest endpoint of the curve $W$ ..... 4.12
$r_{n}(x) \quad$ distance from $\mathcal{F}^{n}(x)$ to the nearest endpoint of the component of $\mathcal{F}^{n}(W)$ that contains $\mathcal{F}^{n}(x)$ ..... 5.9
$p_{W}(x) \quad$ distance from $x \in W$ to the nearest endpoint of $W$ in the p-metric ..... 4.13
$\rho_{W}(x) \quad u$-SRB density on unstable manifold $W$ ..... 5.2
$\asymp \quad$ 'same order of magnitude' ..... 4.3
$L \quad$ ceiling function for suspension flows ..... 2.9

## CHAPTER 1

## Simple examples

We start with a few simple examples of mathematical billiards, which will help us introduce basic features of billiard dynamics. This chapter is for the complete beginner. The reader familiar with some billiards may safely skip it - all the formal definitions will be given in Chapter 2.

### 1.1. Billiard in a circle

Let $\mathcal{D}$ denote the unit disk $x^{2}+y^{2} \leq 1$. Let a point-like (dimensionless) particle move inside $\mathcal{D}$ with constant speed and bounce off its boundary $\partial \mathcal{D}$ according to the classical rule the angle of incidence is equal to the angle of reflection, see below.

Denote by $q_{t}=\left(x_{t}, y_{t}\right)$ the coordinates of the moving particle at time $t$ and by $v_{t}=\left(u_{t}, w_{t}\right)$ its velocity vector. Then its position and velocity at time $t+s$ can be computed by

$$
\begin{align*}
x_{t+s} & =x_{t}+u_{t} s & & u_{t+s}=u_{t} \\
y_{t+s} & =y_{t}+w_{t} s & & w_{t+s}=w_{t} \tag{1.1}
\end{align*}
$$

as long as the particle stays inside $\mathcal{D}$ (makes no contact with $\partial \mathcal{D}$ ).
When the particle collides with the boundary $\partial \mathcal{D}=\left\{x^{2}+y^{2}=1\right\}$, its velocity vector $v$ gets reflected across the tangent line to $\partial \mathcal{D}$ at the point of collision, see Fig. 1.1.


Figure 1.1. Billiard motion in a circle.
EXERCISE 1.1. Show that the new (postcollisional) velocity vector is related to the old (precollisional) velocity by the rule

$$
\begin{equation*}
v^{\text {new }}=v^{\text {old }}-2\left\langle v^{\text {old }}, n\right\rangle n \tag{1.2}
\end{equation*}
$$

where $n=(x, y)$ is the unit normal vector to the circle $x^{2}+y^{2}=1$ and $\langle v, n\rangle=$ $u x+w y$ denotes the scalar product.

After the reflection, the particle resumes its free motion (1.1) inside the disk $\mathcal{D}$, until the next collision with the boundary $\partial \mathcal{D}$. Then it bounces off again, and so on. The motion can be continued indefinitely, both in the future and the past.

For example, if the particle runs along a diameter of the disk, its velocity vector will get reversed at every collision; and the particle will keep running back and forth along the same diameter forever. Other examples of periodic motion are shown on Fig. 1.2, where the particle traverses the sides of some regular polygons.


Figure 1.2. Periodic motion in a circle.

In the studies of dynamical systems, the primary goal is to describe the evolution of the system over long time periods and its asymptotic behavior in the limit $t \rightarrow \infty$. We will focus on such a description.

Let us parameterize the unit circle $x^{2}+y^{2}=1$ by the polar (counterclockwise) angle $\theta \in[0,2 \pi]$ (since $\theta$ is a cyclic coordinate, its values 0 and $2 \pi$ are identified). Also, denote by $\psi \in[0, \pi]$ the angle of reflection as shown on Fig. 1.1.

Remark 1.2. We note that $\theta$ is actually an arc length parameter on the circle $\partial \mathcal{D}$; when studying more general billiard tables $\mathcal{D}$ we will always parameterize the boundary $\partial \mathcal{D}$ by its arc length. Instead of $\psi$, a reflection can also be described by the angle $\varphi=\pi / 2-\psi \in[-\pi / 2, \pi / 2]$ that the postcollisional velocity vector makes with the inward normal to $\partial \mathcal{D}$. In fact, all principal formulas in this book will be given in terms of $\varphi$, rather than $\psi$, but for the moment we proceed with $\psi$.

For every $n \in \mathbb{Z}$, let $\theta_{n}$ denote the $n$th collision point and $\psi_{n}$ the corresponding angle of reflection.

Exercise 1.3. Show that

$$
\begin{align*}
\theta_{n+1} & =\theta_{n}+2 \psi_{n} \quad(\bmod 2 \pi) \\
\psi_{n+1} & =\psi_{n} \tag{1.3}
\end{align*}
$$

for all $n \in \mathbb{Z}$.
We make two important observations now:

- All the distances between reflection points are equal.
- The angle of reflection remains unchanged.

Corollary 1.4. Let $\left(\theta_{0}, \psi_{0}\right)$ denote the parameters of the initial collision. Then

$$
\begin{aligned}
\theta_{n} & =\theta_{0}+2 n \psi_{0} \quad(\bmod 2 \pi) \\
\psi_{n} & =\psi_{0}
\end{aligned}
$$

Every collision is characterized by two numbers: $\theta$ (the point) and $\psi$ (the angle). All the collisions make the collision space with coordinates $\theta$ and $\psi$ on it. It is a cylinder because $\theta$ is a cyclic coordinate, see Fig. 1.3. We denote the collision space by $\mathcal{M}$. The motion of the particle, from collision to collision, corresponds to a map $\mathcal{F}: \mathcal{M} \rightarrow \mathcal{M}$, which we call the collision map. For a circular billiard it is given by equations (1.3).

Observe that $\mathcal{F}$ leaves every horizontal level $\mathcal{C}_{\psi}=\{\psi=$ const $\}$ of the cylinder $\mathcal{M}$ invariant. Furthermore, the restriction of $\mathcal{F}$ to $\mathcal{C}_{\psi}$ is a rotation of the circle $\mathcal{C}_{\psi}$ through the angle $2 \psi$. The angle of rotation continuously changes from circle to circle, growing from 0 at the bottom $\{\psi=0\}$ to $2 \pi$ at the top $\{\psi=\pi\}$ (thus the top and bottom circles are actually kept fixed by $\mathcal{F}$ ). The cylinder $\mathcal{M}$ is "twisted upward" ("unscrewed") by the map $\mathcal{F}$, see Fig. 1.3.


Figure 1.3. Action of the collision map $\mathcal{F}$ on $\mathcal{M}$.
Rigid rotation of a circle is a basic example in ergodic theory, cf. Appendix C. It preserves the Lebesgue measure on the circle. Rotations through rational angles are periodic, while those through irrational angles - ergodic.

EXERCISE 1.5. Show that if $\psi<\pi$ is a rational multiple of $\pi$, i.e. $\psi / \pi=m / n$ (irreducible fraction), then the rotation of the circle $\mathcal{C}_{\psi}$ is periodic with (minimal) period $n$; every point on that circle is periodic with period $n$, i.e. $\mathcal{F}^{n}(\theta, \psi)=(\theta, \psi)$ for every $0 \leq \theta \leq 2 \pi$.

If $\psi / \pi$ is irrational, then the rotation of $\mathcal{C}_{\psi}$ is ergodic with respect to the Lebesgue measure. Furthermore, it is uniquely ergodic, which means that the invariant measure is unique. As a consequence, for every point $(\psi, \theta) \in \mathcal{C}_{\psi}$ its images $\{\theta+2 n \psi, \quad n \in \mathbb{Z}\}$ are dense and uniformly distributed ${ }^{1}$ on $\mathcal{C}_{\psi}$; this last fact is sometimes referred to as Weyl's theorem [Pet83, pp. 49-50].

[^0]Exercise 1.6. Show that every segment of the particle's trajectory between consecutive collisions is tangent to the smaller circle $S_{\psi}=\left\{x^{2}+y^{2}=\cos ^{2} \psi\right\}$ concentric to the disk $\mathcal{D}$. Show that if $\psi / \pi$ is irrational, the trajectory densely fills the ring between $\partial \mathcal{D}$ and the smaller circle $S_{\psi}$ (see Fig. 1.4).

Remark: one can clearly see on Fig. 1.4 that the particle's trajectory looks denser near the inner boundary of the ring (it "focuses" on the inner circle). If the particle's trajectory were the path of a laser ray and the border of the unit disk were a perfect mirror, then it would feel "very hot" there, on the inner circle. For this reason, the inner circle is called a caustic (which means "burning" in Greek).


Figure 1.4. A nonperiodic trajectory.

EXERCISE 1.7. Can the trajectory of the moving particle be dense is the entire disk $\mathcal{D}$ ? (Answer: No.)

EXERCISE 1.8. Does the $\operatorname{map} \mathcal{F}: \mathcal{M} \rightarrow \mathcal{M}$ preserve any absolutely continuous invariant measure $d \mu=f(\theta, \psi) d \theta d \psi$ on $\mathcal{M}$ ? Answer: any measure whose density $f(\theta, \psi)=f(\psi)$ is independent of $\theta$ is $\mathcal{F}$-invariant.

Next, we can fix the speed of the moving particle due to the following facts.
Exercise 1.9. Show that $\left\|v_{t}\right\|=$ const, so that the speed of the particle remains constant at all times.

ExErcise 1.10. Show that if we change the speed of the particle, say we set $\|v\|_{\text {new }}=c\|v\|_{\text {old }}$ with some $c>0$, then its trajectory will remain unchanged, up to a simple rescaling of time: $q_{t}^{\text {new }}=q_{c t}^{\text {old }}$ and $v_{t}^{\text {new }}=v_{c t}^{\text {old }}$ for all $t \in \mathbb{R}$.

Thus, the speed of the particle remains constant and its value is not important. It is customary to set the speed to one: $\|v\|=1$. Then the velocity vector at time $t$ can be described by an angular coordinate $\omega_{t}$ so that $v_{t}=\left(\cos \omega_{t}, \sin \omega_{t}\right)$ and $\omega_{t} \in[0,2 \pi]$ with the endpoints 0 and $2 \pi$ being identified.

Now, the collision map $\mathcal{F}: \mathcal{M} \rightarrow \mathcal{M}$ represents collisions only. To describe the motion of the particle inside $\mathcal{D}$, let us consider all possible states $(q, v)$, where $q \in \mathcal{D}$ is the position and $v \in S^{1}$ is the velocity vector of the particle. The space of all states (called the phase space) is then a three-dimensional manifold $\Omega$ : $=\mathcal{D} \times S^{1}$, which is, of course, a solid torus (doughnut).

The motion of the billiard particle induces a continuous group of transformations of the torus $\Omega$ into itself. Precisely, for every $(q, v) \in \Omega$ and every $t \in \mathbb{R}$ the billiard particle starting at $(q, v)$ will come to some point $\left(q_{t}, v_{t}\right) \in \Omega$ at time $t$.

Thus we get a map $(q, v) \mapsto\left(q_{t}, v_{t}\right)$ on $\Omega$, which we denote by $\Phi^{t}$. The family of $\operatorname{maps}\left\{\Phi^{t}\right\}$ is a group, i.e. $\Phi^{t} \circ \Phi^{s}=\Phi^{t+s}$ for all $t, s \in \mathbb{R}$. This family is called the billiard flow on the phase space.

Let us consider a modification of the circular billiard. Denote by $\mathcal{D}_{+}$the upper half disk $x^{2}+y^{2} \leq 1, y \geq 0$, and let a point particle move inside $\mathcal{D}_{+}$and bounce off $\partial \mathcal{D}_{+}$. (A delicate question arises here: what happens if the particle hits $\partial \mathcal{D}_{+}$at $(1,0)$ or $(-1,0)$, since there is no tangent line to $\partial \mathcal{D}_{+}$at those points? We address this question in the next section.)


Figure 1.5. Billiard in the upper half circle.
A simple trick allows us to reduce this model to a billiard in the full unit disk $\mathcal{D}$. Denote by $\mathcal{D}_{-}$the closure of $\mathcal{D} \backslash \mathcal{D}_{+}$, i.e. the mirror image of $\mathcal{D}_{+}$across the $x$ axis $L=\{y=0\}$. When the particle hits $L$, its trajectory gets reflected across $L$, but we will also draw its continuation (mirror image) below $L$. The latter will evolve in $\mathcal{D}_{-}$symmetrically to the real trajectory in $\mathcal{D}_{+}$, until the latter hits $L$ again. Then these two trajectories will merge and move together in $\mathcal{D}_{+}$for a while, until the next collision with $L$, at which time they split again (one goes into $\mathcal{D}_{-}$ and the other into $\mathcal{D}_{+}$), etc.

It is important that the second (imaginary) trajectory never actually gets reflected off the line $L$, it just crosses $L$ every time, thus it evolves as a billiard trajectory in the full disk $\mathcal{D}$ as described above. Thus, the properties of billiard trajectories in $\mathcal{D}_{+}$can be easily derived from those discussed above for the full disk $\mathcal{D}$. This type of reduction is quite common in the studies of billiards.

Exercise 1.11. Prove that periodic trajectories in the half-disk $\mathcal{D}_{+}$correspond to periodic trajectories in the full disk $\mathcal{D}$. Note, however, that the period (the number of reflections) may differ.

Exercise 1.12. Investigate the billiard motion in a quarter of the unit disk $x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0$.

### 1.2. Billiard in a square

Here we describe another simple example - a billiard in the unit square $\mathcal{D}=$ $\{(x, y): 0 \leq x, y \leq 1\}$, see Fig. 1.6. The laws of motion are the same as before, but this system presents new features.

First of all, when the moving particle hits a vertex of the square $\mathcal{D}$, the reflection rule (1.2) does not apply (there is no normal vector $n$ at a vertex). The particle


Figure 1.6. Billiard in a square.
then stops and its trajectory terminates. We will discuss this exceptional situation later, first we consider regular trajectories that never hit the vertices.

Let $v_{t}=\left(u_{t}, w_{t}\right)$ denote the velocity vector of the moving particle at time $t$ (in the $x, y$ coordinates). If it hits a vertical side of $\mathcal{D}$ at time $t$, then $u_{t}$ changes sign $\left(u_{t+0}=-u_{t-0}\right)$ and $w_{t}$ remains unchanged. If the particle hits a horizontal side of $\mathcal{D}$, then $w_{t}$ changes sign $\left(w_{t+0}=-w_{t-0}\right)$ and $u_{t}$ remains unchanged. Thus,

$$
\begin{equation*}
u_{t}=(-1)^{m} u_{0} \quad \text { and } \quad w_{t}=(-1)^{n} w_{0} \tag{1.4}
\end{equation*}
$$

where $m$ and $n$ denote the number of collisions with vertical and, respectively, horizontal sides of $\mathcal{D}$ during the time interval $(0, t)$.

ExErcise 1.13. Show that if $u_{0} \neq 0$ and $w_{0} \neq 0$ (and assuming the particle never hits a vertex), then all the four combinations $\left( \pm u_{0}, \pm w_{0}\right)$ appear along the particle's trajectory infinitely many times.

Next we make use of the trick shown on Fig. 1.5. Instead of reflecting the trajectory of the billiard particle in a side of $\partial \mathcal{D}$, we reflect the square $\mathcal{D}$ across that side and let the particle move straight into the mirror image of $\mathcal{D}$. If we keep doing this at every collision, our particle will move along a straight line through the multiple copies of $\mathcal{D}$ obtained by successive reflections (the particle "pierces" a chain of squares, see Fig. 1.7). This construction is called the unfolding of the billiard trajectory. To recover the original trajectory in $\mathcal{D}$, one folds the resulting string of adjacent copies of $\mathcal{D}$ back onto $\mathcal{D}$.

We denote the copies of $\mathcal{D}$ by

$$
\begin{equation*}
\mathcal{D}_{m, n}=\{(x, y): m \leq x \leq m+1, n \leq y \leq n+1\} \tag{1.5}
\end{equation*}
$$

ExERCISE 1.14. Show that if $m$ and $n$ are even, then the folding procedure transforms $\mathcal{D}_{m, n}$ back onto $\mathcal{D}=\mathcal{D}_{0,0}$ by translations $x \mapsto x-m$ and $y \mapsto y-n$, thus preserving orientation of both $x$ and $y$. If $m$ is odd, then the orientation of $x$ is reversed (precisely, $x \mapsto m+1-x$ ). If $n$ is odd, then the orientation of $y$ is reversed (precisely, $y \mapsto n+1-y$ ). Observe that these rules do not depend on the particular trajectory that was originally unfolded.

The squares $\mathcal{D}_{m, n}$ with $m, n \in \mathbb{Z}$ tile, like blocks, the entire plane $\mathbb{R}^{2}$. Any regular billiard trajectory unfolds into a directed straight line on the plane, and any directed line (which avoids the sites of the integer lattice) folds back into a billiard trajectory. A trajectory hits a vertex of $\mathcal{D}$ iff the corresponding line runs into a site of the integer lattice.


Figure 1.7. Unfolding a billiard trajectory.

The structure of blocks $\mathcal{D}_{m, n}$ with the respective folding rules is clearly periodic, in which the $2 \times 2$ square

$$
\mathbb{K}_{2}=\{(x, y): 0 \leq x, y \leq 2\}
$$

plays the role of a fundamental domain - the entire plane is covered by parallel translations of $\mathbb{K}_{2}$. Thus the standard projection of $\mathbb{R}^{2}$ onto $\mathbb{K}_{2}$ transforms unfolded trajectories into directed straight lines on the $2 \times 2$ torus Tor $^{2}$ (the latter is obtained by identifying the opposite sides of the square $\mathbb{K}_{2}$ ). The billiard in the unit square $\mathcal{D}$ thus reduces to the simple linear flow on a flat $2 \times 2$ torus Tor $^{2}$, in which points move with constant (unit) velocity vectors.

The linear flow on a flat torus is one of the standard examples in ergodic theory, cf. Appendix C and $[\mathbf{K H 9 5}, \mathbf{P e t 8 3 , ~ S i n 7 6 ] . ~ I t s ~ m a i n ~ p r o p e r t i e s ~ a r e ~ t h e s e : ~}$

- if a trajectory has rational slope $d y / d x \in \mathbb{Q}$, then it is periodic (it runs along a closed geodesic);
- if a trajectory has irrational slope $d y / d x \notin \mathbb{Q}$, then it is dense (its closure is the whole torus).
This translates into the following alternative for regular billiard trajectories in the unit square $\mathcal{D}$ :

Corollary 1.15. If $w_{0} / u_{0} \in \mathbb{Q}$, then the corresponding regular billiard trajectory in the unit square $\mathcal{D}$ is periodic. If $w_{0} / u_{0} \notin \mathbb{Q}$, then the corresponding regular billiard trajectory is dense.

EXERCISE 1.16. Extend this result to the billiard in a rectangle $\mathcal{R}$ with sides $a$ and $b$. Answer: a regular billiard trajectory in $\mathcal{R}$ is periodic iff $\left(a w_{0}\right) /\left(b u_{0}\right) \in \mathbb{Q}$, otherwise it is dense. Hint: transform the rectangle into the unit square by scaling the coordinates: $(x, y) \mapsto(x / a, y / b)$. Argue that the billiard trajectories in $\mathcal{R}$ will be thus transformed into those in $\mathcal{D}$.

Exercise 1.17. Extend the above result to billiards in the following polygons: an equilateral triangle, a right isosceles triangle, a right triangle with the acute angle $\pi / 6$, and a regular hexagon. What is common about these polygons? (Note that the billiard in a hexagon does not reduce to a geodesic flow on a torus; does it reduce to a geodesic flow on another manifold?).

The phase space of the billiard system in the unit square $\mathcal{D}$ is the threedimensional manifold $\Omega=\mathcal{D} \times S^{1}$, cf. the previous section. The billiard flow $\Phi^{t}$ is defined for all times $-\infty<t<\infty$ on regular trajectories. On exceptional trajectories (which hit a vertex of $\mathcal{D}$ at some time), the flow is only defined until the trajectory terminates in a vertex.

EXERCISE 1.18. Show that the set of exceptional trajectories is a countable union of 2D surfaces in $\Omega$.

We see that the set of exceptional trajectories is negligible in the topological and measure-theoretic sense (it has zero Lebesgue measure and is an $F_{\sigma}$ set, i.e. a countable union of nowhere dense closed subsets), but still its presence is bothersome. For the billiard in a square, though, one can get rid of them altogether by extending the billiard flow by continuity:

Exercise 1.19. Show that the flow $\Phi^{t}$ can be uniquely extended by continuity to all exceptional trajectories. In that case every trajectory hitting a vertex of $\mathcal{D}$ will simply reverse its course and run straight back, see Fig. 1.8.


Figure 1.8. Extension of the flow near a vertex.
The above extension defines the billiard flow $\Phi^{t}$ on the entire phase space $\Omega$ and makes it continuous everywhere. We will assume this extension in what follows. We remark, however, that in generic billiards such nice extensions are rarely possible see Section 2.8.

Now, the action of the flow $\Phi^{t}$ on the phase space $\Omega$ can be fully described as follows. For every unit vector $v_{0}=\left(u_{0}, w_{0}\right) \in S^{1}$, consider the set

$$
\mathcal{L}_{v_{0}}=\left\{(q, v) \in \Omega: \quad q \in \mathcal{D}, v=\left( \pm u_{0}, \pm w_{0}\right)\right\}
$$

(the two signs are, of course, independent). Due to (1.4), each set $\mathcal{L}_{v_{0}}$ remains invariant under the flow $\Phi^{t}$.

Suppose first that $u_{0} \neq 0$ and $v_{0} \neq 0$, then $\mathcal{L}_{v_{0}}$ is the union of four squares, obtained by "slicing" $\Omega$ at the four "levels" corresponding to the vectors $\left( \pm u_{0}, \pm w_{0}\right)$, see Fig. 1.9.

ExERCISE 1.20. Check that the four squares constituting the set $\mathcal{L}_{v_{0}}$ can be glued together along their boundaries and obtain a smooth closed surface without boundary (a $2 \times 2$ torus) $\mathbb{T}_{v_{0}}^{2}$, on which the billiard flow will coincide with the linear flow along the vector $v_{0}$ (i.e. the flow on $\mathbb{T}_{v_{0}}^{2}$ will be defined by differential equations $\dot{x}=u_{0}, \dot{y}=w_{0}$ ). Hint: the assembly of the torus $\mathbb{T}_{v_{0}}^{2}$ from the squares of $\mathcal{L}_{v_{0}}$ is very similar to the reduction of the billiard dynamics in $\mathcal{D}$ to the geodesic flow on the $2 \times 2$ torus described above (in fact, these two procedures are equivalent).


Figure 1.9. Four squares constituting $\mathcal{L}_{v_{0}}$.

Now, it is a standard fact in ergodic theory, cf. Appendix C, that the linear flow on a 2 D torus defined by $\dot{x}=u_{0}, \dot{y}=w_{0}$ is periodic if $w_{0} / u_{0} \in \mathbb{Q}$ and ergodic (furthermore, uniquely ergodic) if $w_{0} / u_{0} \notin \mathbb{Q}$. In the latter case every trajectory is dense and uniformly distributed ${ }^{2}$ on the torus.

In the two remaining cases (first $u_{0}=0$, and second $w_{0}=0$ ) the set $\mathcal{L}_{v_{0}}$ consists of just two squares. We leave their analysis to the reader as an easy exercise.

This fully describes the action of the flow $\Phi^{t}: \Omega \rightarrow \Omega$ for the billiard in the unit square.

### 1.3. A simple mechanical model

As a motivation for the study of billiards, one usually describes a simple model of two moving particles in a one-dimensional container. It reduces to a billiard in a right triangle, which is similar to a billiard in a square. We describe this model here, see also [CFS82, CM03].

Consider a system of two point particles of masses $m_{1}$ and $m_{2}$ on a unit interval $0 \leq x \leq 1$. The particles move freely and collide elastically with each other and with the 'walls' at $x=0$ and $x=1$. Let $x_{1}$ and $x_{2}$ denote the positions of the particles and $u_{1}$ and $u_{2}$ their velocities. Since the particles collide upon contact, their positions remain ordered, we assume that $x_{1} \leq x_{2}$ at all times.


Figure 1.10. Two particles in a unit interval.
Next we describe collisions. When a particle hits a wall, it simply reverses its velocity. When the two particles collide with each other, we denote by $u_{i}^{-}$the precollisional velocity and by $u_{i}^{+}$the postcollisional velocity of the $i$ th particle, $i=$ 1,2 . The law of elastic collisions requires the conservation of the total momentum, i.e.

$$
m_{1} u_{1}^{+}+m_{2} u_{2}^{+}=m_{1} u_{1}^{-}+m_{2} u_{2}^{-}
$$

[^1]and the total kinetic energy, i.e.
\[

$$
\begin{equation*}
m_{1}\left[u_{1}^{+}\right]^{2}+m_{2}\left[u_{2}^{+}\right]^{2}=m_{1}\left[u_{1}^{-}\right]^{2}+m_{2}\left[u_{2}^{-}\right]^{2} . \tag{1.6}
\end{equation*}
$$

\]

Solving these equations gives

$$
u_{1}^{+}=u_{1}^{-}+\frac{2 m_{2}}{m_{1}+m_{2}}\left(u_{2}^{-}-u_{1}^{-}\right)
$$

and

$$
u_{2}^{+}=u_{2}^{-}+\frac{2 m_{1}}{m_{1}+m_{2}}\left(u_{1}^{-}-u_{2}^{-}\right)
$$

(we recommend the reader derives these formulas for an exercise). Note that if $m_{1}=m_{2}$, then the particles simply exchange their velocities: $u_{1}^{+}=u_{2}^{-}$and $u_{2}^{+}=$ $u_{1}^{-}$.

The variables $x_{i}$ and $u_{i}$ are actually inconvenient, we will work with new variables defined by

$$
\begin{equation*}
q_{i}=x_{i} \sqrt{m_{i}} \quad \text { and } \quad v_{i}=d q_{i} / d t=u_{i} \sqrt{m_{i}} \tag{1.7}
\end{equation*}
$$

for $i=1,2$. Now the positions of the particles are described by a point $\mathbf{q}=$ $\left(q_{1}, q_{2}\right) \in \mathbb{R}^{2}$ (it is called a configuration point). The set of all configuration points (called the configuration space) is the right triangle

$$
\mathcal{D}=\left\{\mathbf{q}=\left(q_{1}, q_{2}\right): 0 \leq q_{1} / \sqrt{m_{1}} \leq q_{2} / \sqrt{m_{2}} \leq 1\right\} .
$$

The velocities of the particles are described by the vector $\mathbf{v}=\left(v_{1}, v_{2}\right)$. Note that the energy conservation law (1.6) implies that $\|\mathbf{v}\|=$ const, thus we can set $\|\mathbf{v}\|=1$.

The state of the system is described by a pair $(\mathbf{q}, \mathbf{v})$. The configuration point $\mathbf{q}$ moves in $\mathcal{D}$ with velocity vector $\mathbf{v}$. When the first particle collides with the wall $\left(x_{1}=0\right)$, the configuration point hits the left side $q_{1}=0$ of the triangle $\mathcal{D}$. When the second particle collides with the wall $\left(x_{2}=1\right)$, the point $\mathbf{q}$ hits the upper side $q_{2} / \sqrt{m_{2}}=1$ of $\mathcal{D}$. When the particles collide with each other, the point $\mathbf{q}$ hits the hypotenuse $q_{1} / \sqrt{m_{1}}=q_{2} / \sqrt{m_{2}}$ of $\mathcal{D}$.

Exercise 1.21. Prove that the velocity vector v changes at collisions so that it gets reflected at $\partial \mathcal{D}$ according to the law 'the angle of incidence is equal to the angle of reflection'.

Thus, the motion of the configuration point $\mathbf{q}$ is governed by the billiard rules. Hence the evolution of the mechanical model of two particles in a unit interval reduces to billiard dynamics in a right triangle.

If $m_{1}=m_{2}$, we obtain a billiard in a right isosceles triangle, which readily reduces to a billiard in a square, see Exercise 1.17. For generic mass ratio $m_{1} / m_{2}$, we obtain a billiard in a generic right triangle, which may be rather complicated (such billiards are not covered in our book).

One complication arises when a billiard trajectory hits a corner point of $\mathcal{D}$. Hitting the vertex of the right angle corresponds to an event when both particles simultaneously collide with opposite walls; then their further motion is clearly well defined, thus the billiard trajectory can easily be continued (cf. Exercise 1.19).

However, hitting the vertex of an acute angle of $\mathcal{D}$ corresponds to an event when both particles simultaneously collide with the same wall (either $x=0$ or $x=1$ ). In this case, for generic $m_{1}$ and $m_{2}$, the billiard flow cannot be extended by continuity, as nearby trajectories hitting the two adjacent sides in different order will come back to $\mathcal{D}$ along different lines, see Fig. 1.11.


Figure 1.11. The right triangle $\mathcal{D}$; hitting the vertex of an acute angle.

In mechanical terms, hitting the vertex of an acute angle of $\mathcal{D}$ corresponds to a multiple collision. Such exceptional events usually cannot be resolved by the laws of classical mechanics.

### 1.4. Billiard in an ellipse

We proceed to yet another simple example that admits a completely elementary analysis - the billiard in an ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

with some $a>b>0$. In fact, it was this example that Birkhoff described in the very first book on mathematical billiards in 1927 [ $\mathbf{B i 2 7}$, Chapter VIII].

We denote by $\mathcal{D}$ the domain bounded by the ellipse (it will be our billiard table). Let $F_{1}$ and $F_{2}$ denote the foci of the ellipse, observe that they lie on the $x$ axis. The ellipse is the locus of points $A \in \mathbb{R}^{2}$ such that

$$
\operatorname{dist}\left(A, F_{1}\right)+\operatorname{dist}\left(A, F_{2}\right)=\text { const. }
$$

Exercise 1.22. Let $A \in \partial \mathcal{D}$ and $L$ denote the tangent line to the ellipse at $A$. Prove that the segments $A F_{1}$ and $A F_{2}$ make equal angles with $L$. (This fact is known in projective geometry as Poncelet theorem.) Hint: reflect the point $F_{2}$ across the tangent line $L$ and show that its image will lie on the line $A F_{1}$.

Thus, if a billiard trajectory passes through one focus, then it reflects at a point $A \in \partial \mathcal{D}$ on the ellipse and runs straight into the other focus. Such a trajectory will then pass through a focus after every reflection, see Fig. 1.12.


Figure 1.12. A trajectory passing through the foci.

ExERCISE 1.23. Show that every trajectory passing through the foci $F_{1}$ and $F_{2}$ converges to the major axis of the ellipse (the $x$ axis).

By the way, the major and the minor axes of the ellipse are clearly two periodic trajectories - they run back and forth between their endpoints.

In Section 1.1 we used the coordinates $\psi$ and $\theta$ to describe collisions in a circular billiard, and the cyclic coordinate $\theta$ was actually the arc length parameter on the circle (Remark 1.2). Here we use two coordinates $\psi$ and $r$, where $\psi$ is the same angle of reflection as in Section 1.1 and $r$ is an arclength parameter on the ellipse. We choose the reference point $r=0$ as the rightmost point $(a, 0)$ on the ellipse and orient $r$ counterclockwise. Note that $0 \leq r \leq|\partial \mathcal{D}|$ and $0 \leq \psi \leq \pi$.

The collision space $\mathcal{M}$ is again a cylinder whose base is the ellipse and whose height is $\pi$. It is shown on Fig. 1.13 as a rectangle $[0,|\partial \mathcal{D}|] \times[0, \pi]$, but we keep in mind that the left and right sides of this rectangle must be identified. The motion of the billiard particle, from collision to collision, induces the collision map $\mathcal{F}: \mathcal{M} \rightarrow \mathcal{M}$.

ExERCISE 1.24. Verify that the trajectories passing through the foci lie on a closed curve on the surface $\mathcal{M}$. Determine its shape. Answer: it is the $\infty$-shaped curve on Fig. 1.13 that separates the white and grey areas.

Thus, the trajectories passing through the foci make a special (one-dimensional) family in $\mathcal{M}$.


Figure 1.13. The collision space of elliptic billiard.

Exercise 1.25. Show that if the trajectory of the billiard particle crosses the segment $F_{1} F_{2}$ joining the foci, then it reflects at $\partial \mathcal{D}$ and crosses this segment again. Similarly, if the trajectory crosses the major axis beyond the segment $F_{1} F_{2}$, say to the left of it, then after one or more reflections at $\partial \mathcal{D}$ it will cross the major axis to the right of this segment, etc.

The previous exercise shows that there are trajectories of two types: those crossing the inner segment $F_{1} F_{2}$ of the major axis after every reflection (we call them inner trajectories) and those going around this segment (we call them outer trajectories).

ExERCISE 1.26. Verify that the inner trajectories fill the white area on Fig. 1.13, and outer trajectories fill the grey area.

The following is the most important property of elliptic billiards:
Theorem 1.27. For every outer trajectory there is an ellipse with foci $F_{1}$ and $F_{2}$ that is tangent to each link of that trajectory. For every inner trajectory there is a hyperbola with foci $F_{1}$ and $F_{2}$ that is tangent to each link (or its linear extension) of that trajectory.

Proof. We only prove the first statement (about the outer trajectories), the proof of the second is similar. The argument is pretty elementary and illustrated on Fig. 1.14. Here $A_{1} A$ and $A_{2} A$ are two successive links of an outer trajectory. The points $B_{1}$ and $B_{2}$ are obtained by reflecting the foci $F_{1}$ and $F_{2}$ across the lines $A_{1} A$ and $A_{2} A$, respectively. The four angles $\angle B_{1} A A_{1}, \angle A_{1} A F_{1}, \angle F_{2} A A_{2}$ and $\angle A_{2} A B_{2}$ are equal. Hence the triangles $A B_{1} F_{2}$ and $A B_{2} F_{1}$ are congruent, in particular $\left|B_{1} F_{2}\right|=\left|B_{2} F_{1}\right|$. Therefore

$$
\left|F_{1} C_{1}\right|+\left|F_{2} C_{1}\right|=\left|F_{1} C_{2}\right|+\left|F_{2} C_{2}\right|
$$

where $C_{1}$ and $C_{2}$ are the points of intersection of $A_{1} A$ with $B_{1} F_{2}$ and $A_{2} A$ with $B_{2} F_{1}$, respectively. Thus, the points $C_{1}$ and $C_{2}$ belong to the same ellipse with foci $F_{1}$ and $F_{2}$, and the lines $A_{1} A$ and $A_{2} A$ are tangent to that ellipse.


Figure 1.14. Proof of Theorem 1.27.

If every link of a billiard trajectory is tangent to a certain given curve, then that curve is called a caustic. Fig. 1.15 shows an elliptic caustic for an outer trajectory and a hyperbolic caustic for an inner trajectory. The term 'caustic' is borrowed from optics, where it means a curve on which light rays focus after being reflected off a mirror (we have seen caustics in circular billiards in Section 1.1). Fig. 1.15 demonstrates the concentration of rays on caustics (compare it to Fig. 1.4).

All the trajectories tangent to one elliptic caustic lie on a closed curve in the collision space $\mathcal{M}$. Such curves are shown as 'horizontal waves' in the white area on Fig. 1.13 (remember that the left and right sides of the rectangle need be identified). Every such curve is obviously invariant under the map $\mathcal{F}$.


Figure 1.15. Elliptic and hyperbolic caustics in the elliptic billiard.
ExERCISE 1.28. On each invariant curve the map $\mathcal{F}$ is conjugate to a rigid circle rotation through some angle (that angle is called the rotation number). Show that the rotation number changes continuously and monotonically with the invariant curve. Hint: consider two outer trajectories starting at the same point $A_{0} \in \partial \mathcal{D}$ but with distinct elliptical caustics; denote by $A_{n}^{\prime}$ the reflection points of the trajectory whose elliptical caustic is smaller and by $A_{n}^{\prime \prime}$ those of the other trajectory; observe that the sequence $\left\{A_{n}^{\prime}\right\}$ will move along the ellipse faster than $\left\{A_{n}^{\prime \prime}\right\}$ does, see Fig. 1.16.

The action of the map $\mathcal{F}$ on each invariant curve can be analyzed explicitly and the rotation number can be computed analytically, see [Be01, Sections 2.5 and 3.2 ], but we will not go that far.


Figure 1.16. Exercise 1.28.
Next, all the trajectories tangent to one hyperbolic caustic lie on two closed curves in $\mathcal{M}$, one inside each half of the $\infty$-shaped grey domain. Such curves appear as ovals on Fig. 1.13. The map $\mathcal{F}$ transforms each oval onto an identical oval within the other half of the $\infty$-shaped grey domain. Thus the union of the two identical (symmetric) ovals will be invariant under $\mathcal{F}$, and each oval separately will be invariant under $\mathcal{F}^{2}$.

Therefore, the collision space $\mathcal{M}$ of an elliptical billiard is completely foliated by invariant curves. In this sense, the elliptical billiard is similar to those in a circle and in a square. In physics, such models belong to a special class: if the phase
space of a system is foliated by one-dimensional invariant submanifolds, the system is said to be integrable; the dynamics in such a system is completely regular. Thus, billiards in circles, squares and ellipses are completely regular.

### 1.5. A chaotic billiard: pinball machine

The simple examples were given in the previous sections for the sake of introduction of some basic features of billiards to the novice reader. But they should not be taken as typical; in fact their dynamical characteristics are quite special and in a sense opposite to those of chaotic billiards that will be covered in the rest of the book. Here we will take a glimpse at something that happens in chaotic billiards.

Imagine you are playing a pinball machine. A small ball shoots from a cannon in the right bottom corner of a rectangular table, then it bounces off the edges until it either hits the target (then you win) or falls through an opening in the bottom (goes down the drain, then you lose). The target might be a special figure on the table that registers the hit when the ball touches it. To prevent direct hits, assume the target is screened from the cannon, and hitting the screen is forbidden by the rules. Then the ball has to bounce off the edges before reaching the target, see Fig. 1.17. It is quite an unusual pinball machine, but for us it is a good starting example.


Figure 1.17. A pinball machine. The target is the grey disk screened from the cannon by a dark grey arc.

Suppose you can rotate the cannon to change the angle at which the ball shoots out. After you miss once, you can adjust the shooting angle and send the ball more accurately into the target. This is a relatively easy task (illustrated on Fig. 1.17), as the trajectory of the ball (in a rectangular billiard) is very simple and predictable. Also, you do not need to aim with absolute precision:

ExERCISE 1.29. Suppose the target is a disk of radius $r$ and the moving ball is a point particle. Let $L$ denote the distance covered by the ball from the cannon to the target. Show that if the shooting angle is off by less than $r / L$ (radians), then the ball still hits the target.

Now let us make the task more realistic and challenging by installing some bumpers (round pillars) all over the table, see Fig. 1.18, so that our moving ball
will bounce between the bumpers on its way to the target (or down the drain). Anyone who played real pinball machines can easily imagine such a process.


Figure 1.18. A pinball machine with bumpers (dark grey disks).
Would it be easy to adjust the cannon on this new table? Obviously, not. The route of the ball is complicated and almost unpredictable, as it may bounce off different bumpers. Even finding the right sequence of bumpers that the ball needs to hit before it reaches the target (and avoids the screen) is not a simple task. Professional billiard players solve a similar problem when trying the send a ball to a pocket, so that it hits one or more other balls.

Furthermore, the cannon must be aimed with almost ultimate precision, as a tiny error in the shooting angle may send the ball rolling down along a completely wrong path. This is illustrated on Fig. 1.19 where just two successive bounces are shown; it is quite clear that the instability of the ball's motion increases with every subsequent reflection off a bumper. Again, professional billiard players know that if their ball needs to hit more than one other balls before sending one of them into a pocket, their task is very difficult. Furthermore, if the ball must hit three or more other balls, the task is almost impossible.

A rectangular table with round bumpers installed on it is a classical example of a chaotic billiard. The motion of the billiard particle on such a table is complicated and unpredictable. To a naked eye, it may look like a wild dance between the walls of the table, without any pattern or logic (that is why pinball machines are so attractive!). The lack of predictability is characteristic for chaotic billiards.

Furthermore, slight changes in the initial position and/or velocity of the particle quickly lead to large deviations (such as that on Fig. 1.19), so after just a few collisions with bumpers two trajectories, initially very close together, will separate and move far apart from each other, as if they are unrelated. This instability (also known as sensitivity to initial conditions) is another characteristic feature of chaotic billiards (and chaotic dynamics in general).

In practical terms, the best thing the player can do in our game is to shoot randomly and watch the ball running all over the table bouncing around between bumpers - there will always be a chance that it hits the target 'by accident'. This is essentially a game of chance, just like flipping a coin, rolling a die, or playing cards. We will see in Chapters 6 and 7 that the motion in a chaotic billiard is indeed essentially random and is best described in terms of probability theory.


Figure 1.19. A ball bouncing off two bumpers: a slight error in the initial shooting angle results in a dramatic deflection in the end.

Our toy example actually has a lot in common with a classical model of statistical physics, called the Lorentz gas. In that model, a small ball (electron) bounces between large fixed disks (molecules) that make a regular periodic (crystalline) structure. We will present it in Chapter 5.6.

We will not attempt to go beyond this very informal introduction to the realm of chaotic billiards, leaving all formalities till further chapters. Interested readers may find a more extensive description of chaotic billiards, including computer illustrations, in [Be01, Section 1.1].

## Index

Absolute continuity, 103, 119-121, 143, $144,169,192,195,197,223,238,242$, $250,273,274,276$
Alignment (of singularity lines), 87, 110, 232
Almost Sure Invariance Principle (ASIP), 184, 185
Autocorrelations, 165
Bernoulli property, 69, 141, 153, 154, 157, $160,163,207,278,304,305,307$
Birkhoff ergodic theorem, 36, 44, 59, 60, $145,164,189,301,306$
Borel-Cantelli lemma, 97, 112, 293
Bounded horizon, 26, 27, 35, 37, 67, 72, 88, 189
Brownian motion, 184
Cardioid, 258, 278
Central Limit Theorem (CLT), 164-167, $179,183,184,186,187,249,294,295$
Circle rotation, 3, 13, 163, 303
Cones (stable and unstable), 62-65, 73, 74, $76,83,86,178,211,212,216,224,252$, 253, 260, 263-266, 276, 277
Continuation (of singularity lines), 89, 110, 232, 241
Continued fractions, 55, 56, 83-85, 214, 216, 217, 220-222, 265, 266
Cusps, 20, 24, 25, 27, 38, 67, 75, 267, 269
Decay of correlations, 165-168, 176, 178, 179, 249, 292, 293, 302
Diffusion in Lorentz gas, 188-190, 249
Distortion bounds, 103, 113-115, 124, 133, 139, 169, 170, 197, 203, 223, 235-238, 241, 242, 250

Entropy, 60-62, 104, 163, 207, 266, 271, 305-307

Finite horizon, 26, 27, 35, 37, 67, 72, 88, 189
Focusing point, 54-57, 62, 208, 214, 220, $223,227,232,260,261$

Global ergodicity, 147, 151, 274, 278
Grazing collisions, 23, 29, 30, 33, 84, 86, 88-90, 92, 129, 267

H-components (homogeneous components), $117,118,125-135,137,139,170,172$, 193-198, 200-204
H-manifolds (homogeneous manifolds), 109-114, 121, 136, 138, 147, 148, 150, $170,172,174,177,178,186,190-193$, 195-197, 200, 201, 205
Hausdorff metric, 194
Holonomy map, 118-121, 125, 144, 159, 169, 201, 238, 239, 242, 250, 274
Homogeneity strips, 108, 109, 129, 130, $138,149,169,236$
Hopf chain, 142-144, 147, 148, 156, 157
Hyperbolicity (nonuniform), 43, 64, 95, $141,144,166,220,242,250,270$
Hyperbolicity (uniform), 43, 64, 65, 74, 75, $95,96,103,106,108,114,115$, 119-121, 123, 125, 128, 139, 141, 166, 213, 227, 229, 231, 236-239, 242, 243, 247, 248

Integrability (of foliations), 157, 249
Involution, 38, 43, 73, 86, 245, 262
K-mixing (Kolmogorov mixing), 104, 153, $154,157,158,160,163,278,304,305$, 307

Lindeberg condition, 182, 295
Local ergodicity, 147, 149, 151, 152, 274-278
Lorentz gas, 17, 68, 187, 189, 249
Lyapunov exponents, 41, 43, 44, 46, 48, 49, $52,59-63,74,143,154,255,270$

Mean free path, 36, 37, 61, 62, 187, 189
Mirror equation, 56, 106, 252
Oseledets theorem, 41-43, 60, 143, 270, 272
p-metric (p-norm), 58, 59, 74-76, 97, 98, 112, 218, 223, 227-229, 234

Pesin entropy formula, 38, 61
Pinsker partition ( $\sigma$-algebra), 104, 158, 160, 305, 307, 308
Proper crossing, 194-196
Proper family, 172, 173, 175-177, 193-195, 197, 198, 200, 203

Quadratic forms, 64, 254-257, 260, 270, 274, 277

Rectangle, 173
Rectangle (Cantor), 190-196, 199, 200
Rectangle (solid), 190, 191, 195
Regular coverings, 141, 250, 251, 274, 275
Stadium, 210, 219, 224, 227, 229, 230, 232, 233, 235, 236, 238, 242-245, 247-249, 251
Standard pair, 169-173, 175, 176, 194-197, 199, 201
Suspension flow, $31,61,154,156,157,186$
Time reversibility, $73,76,85,95,104,110$, $122,136-138,155,220,232,240$
u -SRB measures and densities, 104-108, $110,113,170,172,177,223,235$

Weak Invariance Principle (WIP), 184, 185
Weakly stable (unstable) manifolds, 156 , 157

## Bibliography

[Ab59] L. M. Abramov, On the entropy of a flow (in Russian), Dokl. Akad. Nauk SSSR 128 (1959), 873-875.
[Al69] V. M. Alekseev, Quasi random dynamical systems, Mat. USSR Sbornik 7 (1969), 1-43
[An67] D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967).
[Ar89] V. I. Arnold, Mathematical methods of classical mechanics, Springer, New York, 1989.
[AS67] D. V. Anosov \& Ya. G. Sinai, Some smooth ergodic systems, Russ. Math. Surv. 22 (1967), 103-167.
[AW67] R. Adler \& B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. USA 57 (1967), 1573-1576.
[Ba00] V. Baladi, Positive transfer operators and decay of correlations. World Scientific, River Edge, N. Y. (2000).
[BCST02] P. Balint, N. Chernov, D. Szasz, and I. P. Toth, Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem, Ann. H. Poincaré 3 (2002), 451482.
[BCST03] P. Balint, N. Chernov, D. Szasz, and I. P. Toth, Geometry of multidimensional dispersing billiars, Astérisque, 286 (2003), 119-150.
[BD87] R. Burton \& M. Denker, On the central limit theorem for dynamical systems, Trans. AMS 302 (1987), 715-726.
[Be01] A. Berger, Chaos and chance, Walter de Gruyter, Berlin, 2001.
[BG06] P. Balint \& S. Gouezel, Limit theorems in the stadium billiard, preprint.
[Bi27] G. D. Birkhoff, Dynamical systems, A.M.S. Colloquium Publications, New York (1927).
[B192] P. M. Bleher Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon, J. Stat. Phys. 66 (1992), 315-373.
[BLPS92] L. A. Bunimovich, C. Liverani, A. Pellegrinotti \& Y. Suhov, Ergodic systems of $n$ balls in a billiard table, Comm. Math. Phys. 146 (1992), 357-396.
[BL02] X. Bressaud \& C. Liverani Anosov diffeomorphism and coupling, Ergod. Th. Dynam. Syst., 22 (2002), 129-152.
[Bou60] N. Bourbaki Éléments de mathématique. XXV. Part 1. Livre VI: Intégration. Chap. 6: Intégration vectorielle. Actualites scientifiques et industrielles. 1281. Paris: Hermann (1960).
[Bow70] R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725-747.
[Bow75] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math. 470, Springer, Berlin, 1975.
[BP01] L. Barreira \& Ya. Pesin, Lyapunov exponents and smooth ergodic theory, Univ. Lect. Series, 23, AMS, Providence, 2001.
[BrS02] M. Brin \& G. Stuck, Introduction to Dynamical Systems, Cambridge U. Press, 2002.
[BS73] L. A. Bunimovich, \& Ya. G. Sinai, On a fundamental theorem in the theory of dispersing billiards, Math. USSR Sbornik 19 (1973), 407-423.
[BS80] L. A. Bunimovich \& Ya. G. Sinai, Markov partitions for dispersed billiards, Comm. Math. Phys. 78 (1980), 247-280.
[BS81] L. A. Bunimovich \& Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers, Comm. Math. Phys. 78 (1981), 479-497.
[BS96] L. A. Bunimovich \& H. Spohn Viscosity for a periodic two disk fluid: an existence proof, Comm. Math. Phys. 176 (1996), 661-680.
[BR97] L. A. Bunimovich \& J. Rehácek, Nowhere dispersing 3D billiards with non-vanishing Lyapunov exponents, Comm. Math. Phys. 189 (1997), 729-757.
[BR98a] L. A. Bunimovich \& J. Rehácek, On the ergodicity of many-dimensional focusing billiards. Classical and quantum chaos. Ann. H. Poincaré 68 (1998), 421-448.
[BR98b] L. A. Bunimovich \& J. Rehácek, How high-dimensional stadia look like, Comm. Math. Phys. 197 (1998), 277-301.
[BSC90] L. A. Bunimovich, Ya. G. Sinai \& N. I. Chernov, Markov partitions for twodimensional billiards, Russ. Math. Surv. 45 (1990), 105-152.
[BSC91] L. A. Bunimovich, Ya. G. Sinai \& N. I. Chernov, Statistical properties of twodimensional hyperbolic billiards, Russ. Math. Surv. 46 (1991), 47-106.
[Bu74a] L. A. Bunimovich, On billiards close to dispersing, Math. USSR. Sb. 23 (1974), 45-67.
[Bu74b] L. A. Bunimovich, The ergodic properties of certain billiards. Funk. Anal. Prilozh. 8 (1974), 73-74.
[Bu79] L. A. Bunimovich, On ergodic properties of nowhere dispersing billiards, Comm. Math. Phys. 65 (1979), 295-312.
[Bu90] L. A. Bunimovich, A theorem on ergodicity of two-dimensional hyperbolic billiards, Comm. Math. Phys. 130 (1990), 599-621.
[Bu92] L. A. Bunimovich, On absolutely focusing mirrors, In Ergodic Theory and related topics, III (Güstrow, 1990). Edited by U. Krengel et al., Lecture Notes in Math. 1514, Springer, Berlin (1992), 62-82.
[Bu00] L. A. Bunimovich, Hyperbolicity and astigmatism, J. Stat. Phys. 101 (2000), 373-384.
[BY00] M. Benedicks \& L.-S. Young, Markov extentions and decay of correlations for certain Hénnon maps, Astérisque 261 (2000), 13-56.
[CCG] G. Casati, G. Comparin \& I. Guarneri, Decay of correlations in certain hyperbolic systems, Phys. Rev. A 26 (1982), 717-719.
[CD06] N. Chernov \& D. Dolgopyat, Brownian Brownian motion - I, manuscript.
[CFS82] I. P. Cornfeld, S. V. Fomin, \& Ya. G. Sinai, Ergodic theory, Fundamental Principles of Mathematical Sciences, 245, Springer-Verlag, New York, 1982.
[Ch93] N. I. Chernov, On local ergodicity in hyperbolic systems with singularities, Funct. Anal. Appl., 27 (1993), 51-54.
[Ch95] N. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems, Prob. Th. Rel. Fields 101 (1995), 321-362.
[CH96] N. Chernov \& C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli, Ergod. Th. Dynam. Syst., 16 (1996), 19-44.
[Ch97] N. Chernov, Entropy, Lyapunov exponents, and mean free path for billiards, J. Stat. Phys. 88 (1997), 1-29.
[Ch99] N. Chernov, Decay of correlations and dispersing billiards, J. Stat. Phys. 94 (1999), 513-556.
[Ch01] N. Chernov, Sinai billiards under small external forces, Ann. H. Poincaré, 2 (2001), 197-236.
[Ch02] N. Chernov, Invariant measures for hyperbolic dynamical systems, In: Handbook of Dynamical Systems, 1A, 321-407, North-Holland, Amsterdam, 2002.
[Ch06a] N. Chernov, Regularity of local manifolds in dispersing billiards, to appear in Math. Phys. Electr. J. (2006).
[Ch06b] N. Chernov, Advanced statistical properties of dispersing billiards, to appear in J. Stat. Phys. (2006).
[CM92] N. I. Chernov \& R. Markarian, Entropy of non-uniformly hyperbolic plane billiards, Bol. Soc. Bras. Mat. 23 (1992) 121-135.
[CM03] N. Chernov \& R. Markarian, Introduction to the ergodic theory of chaotic billiards, 2nd Ed., IMPA, Rio de Janeiro, Brasil, 2003.
[CM06] N. Chernov \& R. Markarian, Dispersing billiards with cusps, in preparation.
[CY00] N. I. Chernov \& L.-S. Young, Decay of correlations of Lorentz gases and hard balls. In Hard ball systems and Lorentz gas, D. Szász, editor, Springer, Berlin (2000), 89-120.
[CZ05] N. Chernov \& H.-K. Zhang, Billiards with polynomial mixing rates, Nonlinearity 18 (2005), 1527-1553.
[Den89] M. Denker, The central limit theorem for dynamical systems, Dyn. Syst. Ergod. Th. Banach Center Publ., 23, PWN-Polish Sci. Publ., Warsaw, 1989.
[Dev89] R. Devaney, An introduction to chaotic dynamical systems, 2nd Ed., Addison-Wesley, New York, 1989.
[DLL92] R. de la Llave, Smooth conjugacy and $S-R-B$ measures for uniformly and nonuniformly hyperbolic systems. Comm. Math. Phys. 150 (1992), 289-320.
[DM01] G. Del Magno, Ergodicity of a class of truncated elliptical billiard, Nonlinearity 14 (2001), 1761-1786.
[DMM03] G. Del Magno \& R. Markarian, Bernoulli elliptical stadia, Comm. Math. Phys. 233 (2003), 211-230.
[DMM06] G. Del Magno \& R. Markarian, On the Bernoulli property of planar hyperbolic billiards, preprint (2006).
[Dob68a] R. L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Th. Prob. Appl. 13 (1968), 197-224.
[Dob68b] R. L. Dobrushin, Gibbsian random fields for lattice systems with pairwise interaction, Funct. Anal. Appl. 2 (1968), 292-301.
[Dob68c] R. L. Dobrushin, The problem of uniqueness of a Gibbsian random field and the problem of phase transitions, Funct. Anal. Appl. 2 (1968), 302-312.
[Don91] V. Donnay, Using integrability to produce chaos: billiards with positive entropy, Comm. Math. Phys. 141 (1991), 225-257.
[ET86] Dependence in probability and statistics. A survey of recent results. Ed. E. Eberlein and M. Taqqu. Progress in Probability and Statistics, 11, Birkhuser, Boston, MA, 1986.
[FM88] B. Friedman \& R. F. Martin, Behavior of the velocity autocorrelation function for the periodic Lorentz gas, Physica D 30 (1988), 219-227.
[Ga74] G. Gallavotti, Lectures on the billiards. In Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle., Wash., 1974), Lect. Notes Phys. 38, Springer, Berlin(1975), 236-295.
[GG94] P. Garrido \& G. Gallavotti, Billiards correlation function, J. Stat. Phys. 76 (1994), 549-585.
[GKT95] G. Galperin, T. Krger, \& S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. 169 (1995), 463-473.
[GO74] G. Gallavotti \& D. S. Ornstein, Billiards and Bernoulli schemes, Comm. Math. Phys. 38 (1974), 83-101.
[Gur65] B. M. Gurevich, Construction of increasing partitions for special flows, Th. Prob. Appl. 10 (1965), 627-645.
[Gut86] E. Gutkin, Billiards in polygons, Physica D 19 (1986), 311-333.
[Gut96] E. Gutkin, Billiards in polygons: survey of recent results, J. Stat. Phys. 83 (1996), 7-26.
[GZ90] G. A. Galperin \& A. N. Zemlyakov, Mathematical billiards, Kvant 77, Nauka, Moscow, 1990.
[Had01] J. Hadamard, Sur l'itération et les solutions asymptotiques des équations différentielles, Bull. Soc. Math. France 29 (1901), 224-228.
[Hal77] B. Halpern, Strange billiard tables, Trans. AMS 232 (1977), 297-305.
[Ho39] E. Hopf, Statistik der geodetischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 91 (1939), 261-304
[Ho40] E. Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus, II, Math. Annalen 117 (1940), 590-608.
[HP70] M. Hirsch \& C. Pugh, Stable manifolds and hyperbolic sets. In: Global analysis, Proc. Symp. in Pure Math., 14, AMS, Providence, R. I., 1970, pp. 133-163.
[Hu01] H. Hu, Statistical properties of some almost hyperbolic systems In: Smooth ergodic theory and its applications (Seattle, WA, 1999), 367-384, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001.
[IL71] I. A. Ibragimov \& Y. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, 1971.
[KB94] A. Katok \& K. Burns, Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergod. Th. Dynam. Syst. 14 (1994), 757-785.
[KH95] A. Katok \& B. Hasselblatt, Introduction to the modern theory of dynamical systems. Cambridge U. Press (1995).
[KM81] I. Kubo \& H. Murata, Perturbed billiard systems II, Bernoulli properties, Nagoya Math. J. 81 (1981), 1-25.
[KMS86] S. Kerckhoff, H. Masur \& J. Smillie, Ergodiciy of billiard flows and quadratic differentials, Ann. Math. 124 (1986), 293-311.
[KS86] A. Katok \& J.-M. Strelcyn, with the collaboration of F. Ledrappier \& F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lect. Notes Math., 1222, Springer, New York (1986).
[KSS90] A. Krámli, N. Simányi \& D. Szász, A "transversal" fundamental theorem for semidispersing billiards, Comm. Math. Phys., 129 (1990), 535-560
[KSS91] A. Krámli, N. Simányi \& D. Szász, The K-Property of Three Billiard Balls, Ann. Math., 133 (1991), 37-72
[KSS92] A. Krámli, N. Simányi \& D. Szász, The K-property of four billiard balls, Comm. Math. Phys. 144 (1992), 107-142.
[KT91] V. V. Kozlov \& D. V. Treshchëv, Billiards. A genetic introduction to the dynamics of systems with impacts. Translations of Mathematical Monographs, 89 AMS, Providence, RI (1991).
[La73] V. F. Lazutkin, On the existence of caustics for the billiard ball problem in a convex domain, Math. USSR Izv. 7 (1973), 185-215.
[Led84] F. Ledrappier, Propriétés ergodiques des mesures de Sinai, IHES Public. Math., 59 (1984), 163-188.
[Leo61] V. P. Leonov, On the dispersion of time-dependent means of a stationary stochastic process, Th. Probab. Appl., 6 (1961), 87-93.
[LMM86] R. de la Llave, J. Marco, and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation, Ann. Math. 123 (1986), 537-611.
[Lo05] H. A. Lorentz, The motion of electrons in metallic bodies, Proc. Amst. Acad. 7 (1905), 438-453.
[LR69] O. E. Lanford \& D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), 194-215.
[LS82] F. Ledrappier \& J.-M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Erg. Th. Dynam. Syst., 2 (1982), 203-219.
[LW95] C. Liverani \& M. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.) 4, Springer, Berlin (1995), 130202.
[Mac83] J. Machta, Power law decay of correlations in a billiard problem, J. Stat. Phys. 32 (1983), 555-564.
[Man83] R. Mañe, Introducao à Teoria Ergódica. IMPA, Rio de Janeiro (1983). English Ed. Ergodic theory and differentiable dynamics, Springer, Berlin, Heidelberg, New York (1987).
[Mar88] R. Markarian, Billiards with Pesin region of measure one, Comm. Math. Phys. 118 (1988), 87-97.
[Mar93a] R. Markarian, The fundamental theorem of Sinai-Chernov for dynamical systems with singuularities. In Dynamical Systems. Santiago de Chile 1990, R. Bamón, R. Labarca, J. Lewowicz, and J. Palis, editors, Longman, Harlow (1993), 131-158.
[Mar93b] R. Markarian, New ergodic billiards: exact results, Nonlinearity 6 (1993), 819-841.
[Mar94] R. Markarian, Non-uniformly hyperbolic billiards, Ann. Fac. Sci. Toulouse Math. 3 (1994), 223-257.
[Mat75] G. Matheron, Random sets and integral geometry, J. Wiley \& Sons, New York, 1975.
[Mar04] R. Markarian, Billiards with polynomial decay of correlations, Erg. Th. Dynam. Syst. 24 (2004), 177-197.
[ME81] N. Martin \& J. England, Mathematical theory of entropy, Addison-Wesley, Reading, Mass., 1981.
[MOP96] R. Markarian, S. Oliffson \& S. Pinto, Chaotic properties of the elliptical stadium, Comm. Math. Phys., 174 (1996), 661-679.
[Os68] V. I. Oseledec, A multiplicative ergodic theorem, Trans. Moskow Math. Soc., 19 (1968), 197-231.
[OW98] D. S. Ornstein \& B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Erg. Th. Dynam. Syst. 18 (1998), 441-456.
[Pes76] Ya. B. Pesin, Families of invariant manifolds corresponding to non zero Characteristic exponent Math. USSR Izvestija 10 (1976), 1261-1305.
[Pes77a] Ya. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surv. 32:4 (1977), 55-114.
[Pes77b] Ya. B. Pesin, Description of $\pi$-partition of a diffeomorphism with invariant measure, Math. Notes 22 (1977), 506-515.
[Pes92] Ya. B. Pesin, Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergod. Th. Dynam. Sys. 12 (1992), 123-151.
[PeS82] Ya. B. Pesin \& Ya. G. Sinai, Gibbs measures for partially hyperbolic attractors, Erg. Th. Dynam. Sys. 2 (1982), 417-438.
[Pet83] K. Petersen, Ergodic theory, Cambridge U. Press, 1983.
[PhS75] W. Philipp \& W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Memoir. AMS 161 (1975).
[PP90] W. Parry \& M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268pp.
[Re95] J. Rehácek, On the ergodicity of dispersing billiards, Rand. Comput. Dynam. 3 (1995), 35-55.
[Ro49] V. Rokhlin, On the fundamental ideas of measure theory, AMS Transl. Ser. 1, 10, 1-52, AMS, Providence, RI, 1952.
[Ro67] V. Rohlin, Lectures on the entropy theory of transformations with invariant measure. Uspehi Mat. Nauk, 22 (1967), 3-56.
[Ru76] D. Ruelle, A measure associated with Axiom-A attractors, Amer. J. Math. 98 (1976), 619-654.
[Ru78] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, Mass. 1978.
[Ru79] D. Ruelle, Ergodic theory of differentiable dynamical systems, Publ. Math. IHES, 50 (1979), 27-58.
[Sa76] L. A. Santaló, Integral Geometry and geometric probability, Addison Wesley, Reading, Mass., 1976.
[SC87] Ya. G. Sinai \& N. I. Chernov, Ergodic properties of some systems of 2-dimensional discs and 3-dimensional spheres, Russ. Math. Surv. 42 (1987), 181-207.
[Sim99] N. Simányi, Ergodicity of hard spheres in a box, Ergod. Th. Dynam. Syst. 19 (1999), 741-766.
[Sim03] N. Simányi Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems, Invent. Math. 154 (2003), 123-178.
[Sim04] N. Simányi Proof of the ergodic hypothesis for typical hard ball systems, Ann. H. Poincaré 5 (2004), 203-233.
[Sin66] Ya. G. Sinai, Classical dynamic systems with countably-multiple Lebesgue spectrum. II., Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966) 15-68; also AMS Trans. 68 (1968), 34-88.
[Sin68a] Ya. G. Sinai, Markov partitions and C-diffeomorphisms, Funct. Anal. Appl. 2 (1968), 61-82.
[Sin68b] Ya. G. Sinai, Construction of Markov partitions, Funct. Anal. Appl. 2 (1968), 245253.
[Sin70] Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math. Surv. 25 (1970), 137-189.
[Sin72] Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surv. 27 (1972), 21-69.
[Sin76] Ya. G. Sinai, Introduction to Ergodic Theory. Princeton U. Press, Princeton (1976).
[Sin79] Ya. G. Sinai, Development of Krylov's ideas, Afterword to N. S. Krylov, Works on the foundations of statistical physics. Princeton U. Press, Princeton, N. J. (1979), 239-281.
[Sin00] Dynamical Systems, Ergodic Theory and Applications, Encycl. Math. Sciences, 100, Ed. Ya. G. Sinai, Springer, Berlin, 2000.
[St86] J.-M. Strelcyn, Plane billiards as smooth dynamical systems with singularities, In: Lect. Notes Math., 1222, Springer, New York (1986), pp. 199-278.
[SV04] D. Szász \& T. Varjú, Markov towers and stochastic properties of billiards. In: Modern dynamical systems and applications, 433-445, Cambridge U. Press, Cambridge, 2004.
[Sz92] D. Szász, On the K-property of some planar hyperbolic billiards, Comm. Math. Phys. 145 (1992), 595-604.
[Sz00] Hard ball systems and Lorentz gas, D. Szász, editor, Springer, Berlin, 2000.
[Ta95] S. Tabachnikov, Billiards. Panor. Synth. No. 1, SMF, Paris (1995).
[Va92] S. Vaienti Ergodic properties of the discontinuous sawtooth map, J. Stat. Phys. 67 (1992), 251-269.
[Wa82] P. Walters, An introduction to ergodic theory. Springer, New York (1982).
[Wo85] M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergod. Th. Dynam. Syst. 5 (1985), 145-161.
[Wo86] M. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys. 105 (1986), 391-414.
[Wo94] M. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem, J. Differ. Geom. 40 (1994), 155-164.
[Yo98] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. 147 (1998), 585-650.
[Yo99] L.-S. Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153188.
[ZE97] G. M. Zaslavsy \& M. Edelman, Maxwell's demon as a dynamical system, Phys. Rev. E 56 (1997), 5310-5320.


[^0]:    ${ }^{1}$ A sequence of points $x_{n} \in \mathcal{C}$ on a circle $\mathcal{C}$ is said to be uniformly distributed if for any interval $I \subset \mathcal{C}$ we have $\lim _{N \rightarrow \infty} \#\left\{n: 0<n<N, a_{n} \in I\right\} / N=$ length $(I) /$ length $(\mathcal{C})$.

[^1]:    ${ }^{2}$ A line $x_{t}$ on a 2D torus Tor ${ }^{2}$ is said to be uniformly distributed if for any rectangle $R \subset$ Tor ${ }^{2}$ we have $\lim _{T \rightarrow \infty} \mathbf{m}\left(\left\{t: 0<t<T, x_{t} \in R\right\}\right) / T=\operatorname{area}(R) /$ area $\left(\right.$ Tor $\left.^{2}\right)$, here $\mathbf{m}$ is the Lebesgue measure on $\mathbb{R}$.

