
Real perturbations of complex polynomials

Jorge Iglesias, Aldo Portela

October 24, 2006

Abstract

In this article the dynamics of generic Cr (r ≥ 3) perturbations of complex
polynomials are considered. The attention is focused on the determination of
the existence of large or invariant components of the complement of the basin
of ∞, where the interesting dynamics occur.1

1 Introduction

Given a manifold M , let Endr(M) denote the set of differentiable endomorphisms
ofM , of class Cr, endowed with the Whitney or strong topology. For f ∈ Endr(M),
say that a point x is critical for f if the differential of f at x, Dfx, is not invertible.
Denote by Sf the set of critical points of f . The study of the dynamics of endo-
morphisms has caught the attention of many authors. The question of stability,
still not solved, was considered in [MP], [I], [AMS] and [DRRV]. A lot of work has
been done also because these maps have abundant appearance in applications; the
existence of critical points and multiple preimages is a source of creation of chaotic
dynamics, as many authors shown by means of numerical experiments. The one
dimensional theory was mostly considered, in the real context (see [MS]) as well as
in the complex one, beginning with the works of Fatou and Julia ([Mi], [S]). This
theory is now very rich and elegant and most conjectures have been proved. This
is not the case in higher dimensions. In the attempt to understand the dynamics
of maps with critical points in dimension two, we have considered here Cr pertur-
bations of complex polynomials. The first problem consists in the description of
the critical sets and critical values, and the regions where the number of preimages
is constant.

It is well known that great part of the dynamical structure of a complex poly-
nomial depends on the future orbits of the critical points. Properties such as

1Keywords. Critical points, real perturbations, complex polynomials.
2000 AMS subject classification: 37C05 37D05
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connectivity of the Julia set or of the basin of ∞, existence of invariant domains
and stability depend on simple assumptions about Sf . Two main difficulties arise
when a perturbation of a polynomial is considered: first, as the conformality is lost,
the usual techniques of complex analysis are no more available; on the other hand,
as will be shown later, the set of critical points becomes generically a finite union
of circles. For example, for the case of a polynomial P and a connected set K, the
number of components of P−1(K) depends on a very simple way on the relative
positions ofK and P (SP ). This problem becomes interesting and difficult when the
set of critical points is a one dimensional manifold and then the possibilities for the
intersections of K and f(Sf ) explode. One of the main questions developed in this
article consists in determine under which conditions the preimage of a connected
set is connected.
If P is a complex polynomial then the Julia set of P is connected if and only if
all the critical points of P have bounded orbit; moreover, if all the critical points
have unbounded orbit, then the Julia set of P is totally disconnected. Using some
new techniques, sometimes inspired in [RRV] and obviously unusual in the complex
domain, partial generalizations of these results will be given here.

Theorem 1. Let P be a polynomial. There exists a C1 neighborhood U of P such
that for every f ∈ U , either some critical point has unbounded orbit or the set of
points with bounded orbit is connected and simply connected.

Denote by B∞ the set of points with unbounded orbit, that is, the basin of
attraction of ∞. Strong perturbations of polynomial mappings always have ∞ as
an attractor, so the dynamics occur in the complement Bc

∞ of B∞. There exists
an open and dense set G in Endr(M) (r ≥ 3) such that, for maps in G, the critical
points are nondegenerate (see next section). The next objective is to determine
the invariant components of Bc

∞.
Theorem 2. Let h be a quadratic polynomial. There exist a C3 neighborhood U
of h such that if f ∈ U ∩ G and Bc

∞ has more than one invariant component, then
Bc
∞ has uncountably many components.
The proof of this theorem is given at the end of section 4. Note that for

a complex quadratic polynomial the fact that the critical point belongs to B∞
implies that Bc

∞ (the Julia set) is a Cantor expanding set. This is not the case for
real perturbations; indeed, in the last section will be given an example of a map
close to a quadratic polynomial such that Bc

∞ has uncountably many components
and saddle or attracting type periodic points. In that section it is also given a
sufficient condition for a map f to satisfy that Bc

∞ has uncountable many bounded
components. The set of critical points Sf of a generic perturbation f of a complex
quadratic polynomial h is a small circle (this will be proved in section 2). The set
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f−1(f(Sf )), denoted S̃f , is also contained in a small disc if f is a small perturbation
of h. If the critical point of h is not fixed (otherwise h conjugated to q(z) = z2)
then Sf and f(Sf ) will be disjoint for any perturbation. A component of Bc

∞ is
called large if it intersects Sf and f(Sf ). A set is small if it is contained in the

complement of ext(S̃f ), where ext(A) denotes the unbounded component of the
complement of A.
Theorem 3: Let h be quadratic polynomial with connected Julia set and repelling
fixed points.
a) If f is a small C1 perturbation of h and Bc

∞ contains a large component, then
it is the unique large component and is invariant. In this case, for every other
component K of Bc

∞ there exists n > 0 such that fn(K) is small.
b) If f is a generic C3 perturbation of h, then Bc

∞ contains at most two invariant
components; if it has exactly two, then one of them is a fixed point.

Part (a) says that the existence of a large component in Bc
∞ implies that it is

invariant and that every other component has a small image. This shows that the
dynamics of f is determined heavily by its behavior in this component. On the
other hand, if there is no large component of Bc

∞, then by theorem 2 there exist
uncountably many components of Bc

∞. It remains open the question if Sf ⊂ B∞
implies that Bc

∞ is a Cantor expanding set.

2 Preliminaries

In this work the strong or Whitney topology is considered. A neighborhood of
f ∈ Endr(IRn) is determined by: a continuos function ε : IRn → IR+ such that each
derivative partial order r evaluate at x is ε(x)−closed to the respective derivative of
f . For example, if f is a Cr proper map of IRn (that is, the preimage of a compact
set under f is compact or equivalently, for every sequence xn converging to ∞ it
holds that f(xn) also converges to ∞), then there exists a C0 strong neighborhood
U of f such that every g ∈ U is proper. In other words, if f has continuos extension
to the one point compactification of IRn, then g also has this property. It is also
clear that if ∞ is, in addition an attractor for the extension of f , then the same
will be true for every small C0 strong perturbation of it.
Given f ∈ Endr(M), denote by Sf the set of critical points of f . It is known, see
for example [W], that if M is two dimensional manifold, then there exists an open
and dense subset G = G(M) of Endr(M) (r ≥ 3) such that for every f ∈ G, the set
Sf of critical points of f is empty or it is a one dimensional embedded submanifold
of M . Moreover, for each critical point x of a mapping f ∈ G, there exist local
canonical forms:

Definition 2.1. Let f ∈ Endr(M), M two dimensional.
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A point x ∈ Sf is a fold if there exist neighborhoods U of x and V of f(x), and
diffeomorphism ϕ : IR2 → U and ψ : V → IR2 such that ψfϕ is equal to the map
(x, y)→ (x2, y).
A point x ∈ Sf is a cusp if there exist neighborhoods and diffeomorphism as above,
but now the composition ψfϕ equals the map (x, y)→ (x,−xy + y3).

Theorem 2.1. (Whitney, [W]) There exists an open and dense subset G(M) of
Endr(M) (r ≥ 3) such that for every f ∈ G(M):

• Sf is a one dimensional submanifold of M or is empty.

• Every critical point of f is a fold or a cusp.

• The set of cusp type points is isolated.

• If S
′

f is a component of Sf , then f(S
′

f ) is a curve with transversal intersec-
tions, no one of which contains the image of a cusp.

In figure 1 a sketch of the local behaviour of a map near a cusp type critical
point is shown. Observe that if V is a neighborhood of f(x), then V \ f(Sf ) is the
union of two components; in one of them, the points have three preimages near x
while in the other each point has only one preimage near x. At a cusp point x the
kernel of Dfx coincides with the tangent space of TxSf . When x is a fold the kernel
of Dfx is transverse to TxSf . Note that f−1(f(Sf )) strictly contains Sf whenever

Sf contains a cusp type point. Denote by S̃f = f−1(f(Sf )).

Proposition 1. Let M be a manifold of any dimension, compact or not, and
f ∈ Endr(M). Suppose that f is a C1 proper map. The following facts can be
easily verified:

1. The image of f , Im(f) is a closed set.

2. M \ S̃f is an open set.

3. If x ∈ Im(f) \ f(Sf ) then f−1(x) is finite.

4. If U is a connected component of M \f(Sf ) and Ak = {x ∈ U : ]f−1(x) = k}
then Ak is equal to U for some nonnegative k.

Proposition 2. . Suppose as above that f is a proper map of class C1 on a
manifold M . If V is a connected component of M \ S̃f then f(V ) is a connected
component of M \ f(Sf ) and f

∣∣
V
: V → f(V ) is a covering map.
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Figure 1:

Proof. Clearly f(V ) is contained in a component U of M \ f(Sf ). So it suffices to
prove that f(V ) is open and close in U . It is open because f is local diffeomorphism
in V . If xn ∈ V for every n > 0 and f(xn) → y ∈ U , the sequence {xn} must be
bounded because f is a proper map. If x is the limit of a subsequence of {xn}.
Then f(x) = y. Note the x ∈ V , and ∂V ⊂ S̃f ; so f(x) ∈ f(Sf ) which is absurd.
If follows that x ∈ V .

Corollary 1. If V is a connected component of M \f−1(f(Sf )) and f(V ) is simply
connected, then f

∣∣
V
: V → f(V ) is a diffeomorphism and V is simply connected.

The next step is to describe the set of critical points of a generic C3-perturbation
of a holomorphic map. Assume that z0 is a non degenerate critical point of a
holomorphic map p (non degenerate means p

′′

(z0) 6= 0).

Proposition 3. There exists a C3 neighborhood U of p and a neighborhood U of
z0 such that if f ∈ U ∩ G, then Sf ∩ U is diffeomorphic to the circle S1.

Proof. It is well known that there exists a conformal map ϕ defined in a neighbor-
hood of z0 such that q ◦ϕ = p in U , where q(z) = z2. So it suffices to suppose that
p = q and the critical point is 0.
As q(x, y) = (x2 − y2, 2xy) in real coordinates, observe that

Dq(x,y) =

(
2x −2y
2y 2x

)
and detDq = 4x2 + 4y2 = H(x, y).
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Let f be a C3 perturbation of q. Then detDf = 4x2+4y2+α(x, y) = H(x, y)+
α(x, y) = H1(x, y), where α is ε− C2 close to 0. Now, as the gradient of H1 is

∇H1 =

(
8 0
0 8

)(
x
y

)
+

(
αx
αy

)

then ∇H1 is a diffeomorphism if the perturbation is small. It follows that H1 has
a unique critical point. Therefore there are just three possibilities for H−1

1 (0):
i) H−1

1 (0) = ∅.
ii) H−1

1 (0) = {c}, and c is a critical point.
iii) 0 is a regular value of H1 and H−1

1 (0) is the union of a finite number of copies
of S1.
The first possibility is discarded by corollary 1. The second one is discarded because
f ∈ G by hypothesis. Then iii) holds; moreover H−1

1 (0) has to be only one copy of
S1 because H1 has only one critical point.

2.1 Description of the set S̃f

The final part of this section gives a description of the image of Sf , thus determining
the regions where the number of preimages is constant, and the coverings described
in proposition 2.

Proposition 4. Let f be a small generic C3-perturbation of q(z) = z2, and assume

that f
∣∣
Sf

is injective. Then Sf contains three cusp type points and R2 \ S̃f has four

bounded simply connected components. These components are simply connected,
and each one of them is one to one mapped by f onto the bounded component of
IR2 \f(Sf ). The restriction of f to the unbounded component of IR2 \ S̃f is a double
covering of IR2 \ f(Sf ).

Proof. As f is small C3−perturbation of q and it is a proper map, each point in
the unbounded component of IR2 \ f(Sf ) has two preimages. As f

∣∣
Sf

is injective,

f(Sf ) is homeomorphic to S1. As the images of the set of fold type points is dense
in f(Sf ), it is clear that each point in the bounded component of IR2 \ f(Sf ) has 0
or 4 preimages. But IR2 \ S̃f has at least one bounded components and these are
mapped to bounded component, so it follows that the points in bounded compo-
nent of IR2 \ f(Sf ) have four preimages.

Let A be the unbounded component of IR2 \ S̃f and let C be the boundary of
A. The following properties are satisfied:
i) Sf is contained in the closure of the bounded component of IR2 \ C.
ii) C is compact and connected. Assume is not connected. If C is not connected
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then fundamental group of A contains the free product of two elements. But f is a
covering form component onto complement of Sf , whose fundamental group is Z:
Absurd.
iii) C∪Sf = S̃f . It is clear that C∪Sf ⊂ S̃f . Let x ∈ S̃f ; if x /∈ Sf then f is locally
a diffeomorphism at x. It follows that f(U) intersects the unbounded component
of IR2 \ f(Sf ) that for each neighborhood U of x so x ∈ C.
iv) S̃f \ Sf is locally an arc, because f is locally invertible in S̃f \ Sf .
v)The generecity of f implies that every point in Sf is fold type or cusp type. This
implies that for every x ∈ C ∩Sf is holds that x is a cusp type point and Sf and C
are tangent at x. On the other hand, f maps each component of R2 \ A onto the
bounded component of IR2 \ f(Sf ); as this one is simply connected, it follows that
C \ Sf has exactly four components. Then there must be three cusp type point
and this proves the proposition.

Corollary 2. Let f be a generic C3 perturbation of a complex polynomial with
non degenerate critical points . If f

∣∣
Sf

is injective then each component L of Sf

contains exactly three cusp type points and there exists a neighborhood U of L such
that f−1(f(L)) ∩ U is mapped onto f(U) like in the previous proposition. (See
figure 2).

In the hypothesis of both the proposition and the corollary it was included the
assumption that the restriction of f to Sf is injective. We do not know examples
of perturbation of z2 such that f

∣∣
Sf

not injective. In [DRRV] for example, it was

proved that for generic real quadratic polynomials (each coordinates is a quadratic
polynomial of x and y) of the plane the restriction of f to Sf is injective. See
also [MST1] and [MST2] where some examples are shown of maps f drawing Sf
homeomorphic to a circle but f

∣∣
Sf

not injective.

3 When all critical points have bounded orbit

In this section the proof of Theorem 1 of the introduction is given. The techniques
are also used in subsequent sections and prove in fact a more general result that
will be explained at the end of this section.

Observe first if f ∈ End1(R2) is a strong C1-perturbation of a complex poly-
nomial, then ∞ is an attractor for f . There exists a compact disk K0 centered at
0 such that the complement Kc

0 of K0 is contained in B∞ and f−1(K0) ⊂ K0. The
proof of the first theorem is based on two simple ideas: (1) The nested sequence of
successive preimages of K0 converges to the complement of B∞, Bc

∞. (2) If K is a
connected and simply connected set that contains all the critical values of f , then
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Figure 2:

PSfrag replacements

z1 z2

z3

f(z1)f(z1) f(z2)

f(z3)

f−1(f([z1, z2]))
f−1(f([z2, z3]))

z
′

3

z
′

3

z
′

2
z

′

1

L f(L)

0
2
L
A
0
2

L

C

z1,z2,z3 are the cusp points.

f−1(K) is connected and simply connected. The statement in (2) is not necessar-
ily true when there are critical values outside of K (see figure 3) . In subsequent
sections this result will be refined.
Begin defining Kn = f−n(K0). As f is a proper map, Kn is compact for every
n ≥ 0. Given a compact set K, denote by ext(K) the unbounded component of
R2 \K and by int(K) the interior of the complement of ext(K) .

Lemma 1. If K is a compact set, then ext(f−1(K)) ⊂ f−1(ext(K)) and f−1(int(K)) ⊂
int(f−1(K)).

Proof. Let x ∈ ext(f−1(K)) and α a curve in ext(f−1(K)) joining x with ∞; in
particular, α ∩ f−1(K) = ∅. As f is proper f(α) joins f(x) with ∞, and since
f(α) ∩K = ∅ it follows that f(x) ∈ ext(K). The other statement is dual.

Remark: Figure 3 shows that it is not true in general that f−1(ext(K)) ⊂
ext(f−1(K)).

Lemma 2. The sequence of compact sets {Kn} satisfies the following properties:
i) Kn+1 ⊂ Kn, for every n ∈ IN .
ii) ext(Kn) ⊂ ext(Kn+1), for every n ∈ IN .
iii) ext(Kn) ⊂ B∞, for every n ∈ IN .
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iv) Bc
∞ = ∩n≥0Kn.

v) If Bo
∞ is the immediate basin of ∞ ( the unbounded component of B∞) then

∞⋃

n=0

ext(Kn) = Bo
∞

Proof. Parts i) and ii) are obvious. Part iii) is consequence of lemma 1. Part iv)
follows immediately by invariance of Bc

∞: f−n(Bc
∞) = Bc

∞ for every n ∈ IN . To
prove v), observe that, as ext(Kn) is connected, iii) implies that ∪∞n≥0ext(Kn) ⊂
Bo
∞. Suppose that the other inclusion does not hold. Then there exists a point x in

the boundary of ∪∞n≥0ext(Kn) such that x ∈ B0
∞. Let δ be such that B(x, δ) ⊂ B0

∞

(where B(x, δ) denotes the closed disc of center x and radius δ). Observe that
there exists n0 ∈ IN such that B(x, δ) ∩ ext(Kn) 6= ∅ for every n > n0 and B(x, δ)
is not contained in ext(Kn). Therefore B(x, δ) ∩Kn 6= ∅ for every n > n0 which
implies that fn(B(x, δ)) ∩K0 6= ∅. On the other hand, there exists n1 ∈ IN such
that fn(B(x, δ)) ⊂ ext(K0) every n > n1 because B(x, δ) ⊂ B0

∞ and B(x, δ) is
compact. But this implies that fn(B(x, δ)) ∩K0 = ∅ for every n > n1 which is a
contradiction.

Lemma 3. Suppose that K is a compact connected and simply connected set such
that every critical value of f is contained in K. Then f−1(K) is connected and
simply connected.

Proof. As f(Sf ) ⊂ K then S̃f ⊂ f−1(K); it follows that f : IR2 \ f−1(K) →
IR2 \K is a covering map. As K is simply connected, IR2 \ f−1(K) as no bounded
component (f maps bounded components to bounded components because the
critical point of f are in K). Moreover, as the homomorphism f] that f induces
on fundamental groups (f] : Π1(IR

2 \ f−1(K)) → Π1(IR
2 \K) ) is injective, then

Π1(IR
2 \ f−1(K)) is isomorphic to Z. It follows that f−1(K) is connected and

simply connected.

Remark: See figure 3 where it is shown that the hypothesis that the critical values
are contained in K is necessary.

The argument used proves in fact a more general result:
Let f be a proper self mapping of R2. Assume that ∞ is attracting for f and that
B∞ does not contain critical point. Then Bc

∞ is simply connected.
Proof of theorem 1: If every critical point has bounded orbit, it suffices to show
that Kn is connected and simply connected for all n ∈ IN , because Bc

∞(f) = ∩Kn
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Figure 3:

(lemma 2, iv)). To prove this, proceed by induction: indeed, K0 is a disc, and as
Sf ⊂ Bc

∞(f), then Sf and also f(Sf ) are contained in Kn for every n. Then apply
the previous lemma.

Corollary 3. Let P be a complex polynomial such that every finite critical point
is contained in the basin of a finite attractor. Then there exists a neighborhood
U ⊂ End1(R2) of P such that Bc

∞(f) is connected and simply connected for every
f ∈ U .

Proof. This follows by the theorem because in the above case, every critical point
of f is contained in the basin of a finite attractor, and so Sf ⊂ Bc

∞(f).

Corollary 4. Let f be a small C3-perturbation of a holomorphic polynomial with
non degenerate critical points. If B∞ ∩ Sf 6= ∅ then B0

∞ ∩ f(Sf ) 6= ∅.

Proof. Let n0 ∈ IN be the first number such that Kn0
does not contain f(Sf ).

Applying the lemma 3 Kn0
is simply connected. Therefore f(Sf ) \ Kn0

⊂ B0
∞.
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4 Preimages of connected sets

In this section it is assumed that B∞ contains critical points. In this case there
exists some n > 0 such that Kn = f−n(K0) (defined in the previous section) does
not contain the set of critical values. It becomes important to determine when
the preimage of a connected set is connected. Note in figure 3 that if a connected
set K has disconnected intersection with the interior of f(Sf ), then f

−1(K) is not
connected, but only one of the components of f−1(K), say K1, is surjective, in the
sense that f(K1) = K.
Observe that for a polynomial P it is easy to determine the number of components
of P−1(K) for any connected set K: it dependes on the relative location of the
critical values. For example, if P is a quadratic polynomial and K is bounded and
connected, then P−1(K) is connected if and only if the critical value of P does
not belong to the unbounded component of Kc, and P−1(K) has two components
otherwise. The remaining of this section is devoted to determine a similar result
for perturbation of quadratic polynomials.

It will be assumed throughout this section that f is a generic C3 perturbation
of some quadratic polynomial and that the restriction of f to Sf is injective.

Definition 4.1. A quadruple (∆, z1, z2, z3) will be called a triangle if
-∆ is homeomorphic to the disc and its boundary homeomorphic to S1.
- z1, z2, z3 are different points in the boundary of ∆.

Whenever no confusion is possible, say ∆ is a triangle without specifying the
tree points. The points z1, z2, z3 are called the vertices of ∆ and the three closed
curves [zi, zj ] in the boundary of ∆ are called the sides of ∆.

Definition 4.2. A subset K of the plane connects a triangle ∆ if K ∩∆ contains
a component which intersects the three sides of ∆.

The following result, of intuitive meaning, is central in the development of the
techniques.

Lemma 4. Let K be a compact connected subset of R2 and ∆ a triangle. Then
exactly one of following conditions hold:

• K connects ∆.

• Kc connects ∆.

Proof. The proof is divided in several claims.
Claim 1 : The lemma is true if K is a finite union of discs. Suppose first that
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K connects ∆. Then (as K is finite union of discs) there exists a simple curve
α : [0, 1] → K ∩ ∆ such that α intersects each side of ∆ in exactly one point.
It is clear that ∆ \ α has three components, no one of which intersects the three
sides of ∆. Hence Kc does not connect ∆. Suppose now that K does not connect
∆. Then there exists a finite disjoint collection of regions, diffeomorphic to closed
discs, V = {Vi} satisfying the following properties:

1. There exist at most three elements of V that intersect more than one side of
∆ and no one of them intersect the three sides.

2. If Vi ∈ V intersects two sides, then Vi contains the common vertex of these
two sides.

3. The intersection Vi ∩ ∂∆ is connected for every Vi ∈ V.

4. K ∩∆ ⊂ ∪Vi.

Figure 4:
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Observe that the quotient space ∆/ ∼ where x ∼ y iff there exists Vi ∈ V
containing both x and y is again a triangle (the vertices are the three Vi that contain
a vertex of ∆ ). As no point of this triangle belongs to the quotient projection of
K, it follows that Kc connects ∆/ ∼, but this implies that it connects ∆. To prove
de existence of such V suppose first that K1 is a component of K ∩∆ containing
points of [z1, z2] and [z1, z3]; then there exists a simple closed curve γ ⊂ K1 joining
[z1, z2] with [z1, z3] (here it is used that K is finite union of discs). Note that
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∆ \ γ has two connected components, one of them contains z1. Define Ṽ1 as the
set of points x such that there exists a curve γx as above leaving x and z1 at the
same side. Analogously define Ṽ2 and Ṽ3. These sets are open, connected, simply
connected and disjoint (because the contrary assumption implies that K connects).

Next define disjoints regions V1, V2, V3 containing Ṽ1, Ṽ2 and Ṽ3 respectively.
Again using the fact that K is a finite union of discs one can easily see that

for each side there exists a region Vj such that Vj contains all the components of
K ∩∆ that intersect only this side; this can be done in such a way that V contains
(at most) six disjoint elements.
Claim 2: There exists a nested sequence of compacts setsKn such thatK =

⋂
Kn

and each Kn is a finite union of discs. For the proof, just take Kn from a cover of
K with discs of radio 1/n.
Claim 3: If everyKn connects ∆ thenK connects ∆. AsK1 connects, there exists
a component K1

1 of K1 that connects ∆ and this is unique because the theorem is
known for finite union of discs. For the same reason there exits a component K1

2

of K2 ⊂ K1 such that K1
2 connects ∆. Obviously K1

2 ⊂ K1
1 . By induction, there

exits a nested sequence K1
n of compact connected sets each one of which connects

∆. Then the intersection
⋂
K1
n = K1 is connected, is contained in K, and connects

∆.
Now the proof the theorem finishes a follows:
If K does not connect ∆, be claim 3 there exists n such that Kn does not connect
∆; by claim 1, Kc

n connects ∆; so Kc ⊃ Kc
n also connects ∆.

If K connects ∆ then Kn connects ∆ for every n. This implies, again by claim 1,
that for every n Un = Kc

n does not connect ∆. But each Un is open and the sequence
is increasing; so a compact set contained in U =

⋃
n≥0 Un must be contained in

some Un. If U connects ∆, then there is a compact subset of U that connects ∆,
but this is absurd. It follows that U = Kc does not connect ∆.

Start assuming that f ∈ G, with f a small C3-perturbation of z2+c. Recall that
in this case f(Sf ) is closed curve with a finite number of transverse intersections,
each one of which contains no cusp.

Definition 4.3. The set A is a surjective component of f−1(B) if A is a connected
component of f−1(B) and f(A) = B.

Proposition 5. Let f be a generic map such that Sf is diffeomorphic to the circle
S1. If K is a compact connected set and intersects ext(f(Sf )), then f

−1(K) has at
most two surjective components. The other components of f−1(K) are contained

in int(S̃f ) .
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Recall S̃f = f−1(f(Sf )). This set is small if f is a small perturbation of complex

polynomial. A set is called small if it is contained in int(S̃f ). Some previous results
will be needed to prove this proposition

Lemma 5. Let {Kn} be a nested sequence of compact connected sets and K =
∩Kn. If for every n there exists a surjective component K1

n+1 of f−1(Kn) such
that K1

n+1 ⊂ K1
n, then there exists a surjective component K1 of f−1(K).

Proof. K = ∩Kn is compact and connected. If K1 = ∩K1
n then K1 is a compact

and connected subset of f−1(K). Let x ∈ K; for every n there exists yn ∈ K1
n such

that f(yn) = x. If y is the limit of a convergent subsequence of {yn}, then y ∈ K1
n

for every n whence y ∈ K1. By continuity f(y) = x. This implies the lemma.

Lemma 6. Let α be a simple open curve, transverse to f(Sf ), not containing im-
ages of cusps and intersecting ext(f(Sf )). Then f−1(α) has a finite number of
connected components. The surjective components of f−1(α) are those that inter-

sect ext(S̃f ). Therefore f
−1(α) has at most two surjective components.

Proof. First observe that the hypothesis imply that f−1(α) is a finite union of

simple curves. Let β be a component of f−1(α) that intersects ext(S̃f ). Let

x ∈ β∩ext(S̃f ). As β is a simple curve, fix a parametrization of β : [0, 1]→ R2 and

let t0 be such that β(t0) = x. If β is contained in ext(S̃f ) then is clear that f(β) = α

and the result follows because f is a covering map form ext(S̃f ) in ext(f(Sf )).

Suppose that there exists t1 > t0 such that β(t1) ∈ ∂S̃f . Without loss of generality
it can be also assumed that f(β(ti)) = α(si), i = 0, 1 with s1 > s0. Let s(t) be
a continuous function of t such that f(β(t)) = α(s(t)). It is claimed now that for
every t > t1 s(t) ≥ s(t1) = s1. Observe that s(t) is increasing whenever β(t) does
not belong to int(Sf ). If the claim is not true, then f(β(t)) must cross α(s1) at
a point t2 > t1 and with s decreasing in a neighborhood of t2, which implies that
β(t2) ∈ Sf ; this is absurd because f(int(Sf )) ⊂ int(f(Sf )). This proves the claim.
The claim implies that β is not closed and so the image of the extreme points of β
under f must be the extreme points of α. The last assertion is now obvious since
every point in ext(f(Sf )) has two preimages. This implies the lemma.

Proof of proposition 5 : Using lemma 5, if suffices to prove the proposition
for K equal a finite union of discs. In this case K is arcwise connected and the
assertion follows from the lemma 6.

Next assume that f
∣∣
Sf

is injective. Then f(Sf ) is homeomorphic to S1, and it

contains three cusp type points as proved in proposition 4 and its corollary. Form

14



now on ∆ will be the closure of the bounded component of R2 \ f(Sf ) with the
images of the cusps as vertices.

Obs: If C ⊂ ∆ is connected and connects ∆ then f−1(C) is connected. The
main result of this section is

Proposition 6. Let K be a compact connected set such that K ∩ ext(∆) 6= ∅.
a) If ext(K) does not connect ∆, then f−1(K) has only one surjective component.
b) If ext(K) connects ∆, then f−1(K) has two surjective components.

c) Every non surjective component of f−1(K) is contained in int(S̃f ).

The proof of this proposition needs the following result:

Lemma 7. If the connected set K is a finite union of discs that connects ∆, then
there exists a unique component K1 of f−1(K) such that f(K1) = K.

Proof. Let C be the component of K ∩∆ that connects ∆.
If K1 is a surjective component of f−1(K) then K1 must contain the connected

set f−1(C). This proves the uniqueness. Now let x ∈ K and α be a curve in
K that contains x and intersects C, having also a finite intersection with ∂∆. By
the previous lemma 6, there is a curve contained in f−1(α) that contains x and
intersects f−1(C). So the component of f−1(K) that contains f−1(C) is surjective.

Proof of proposition 6:
(a) Suppose first that K connects ∆. Construct a nested sequence of compacts
sets Kn as in the proof of lemma 4 (claim 2). As each Kn is a finite union of
discs, the lemma 7 implies that there exists K1

n, component of f−1(Kn), such that
f(K1

n) = Kn and the sequence K1
n is decreasing. Now apply lemma 5 to obtain K1.

The set K1 is determined by the condition K1 ⊃ f−1(C) where C is the component
of K ∩∆ that connects ∆. This shows that K1 is unique.

Suppose now that K does not connect ∆ (and neither ext(K) connects ∆).
Without loss of generality it can be also assumed that K is a finite union of discs.
Then there exists a simple closed curve α contained in K, containing a point
x ∈ ext(∆) and whose interior contains a connected set C that connects ∆. It is
claimed now that f−1(α) has only one surjective component. To prove this, define
K̃ = int(α); as K̃ connects, the first part implies that f−1(K̃) has only one sur-

jective component, denoted K̃1. Let δ be the boundary of the bounded component
of R2 \ K̃. Observe that this is a connected set. Moreover, f(δ) ⊂ α and the two
preimages of x are contained in δ. Then, using lemma 6, it follows that f−1(α)
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has only one surjective component and the claim is proved. Now let y ∈ K. Then
there exists a curve β ⊂ K joining y with a point z ∈ α. Now using lemma 6 and
the claim above the proof of (a) is concluded.
(b) As ext(K) connects ∆, there exists an injective curve α : [0,+∞) → R2 such
that α ⊂ ext(K), α([0, 1)) connects ∆ and |α(t)| → ∞ as t→ +∞. It is easily seen
that f−1(α) disconnects the plane in the sense that R2 \ f−1(α) has two connected
components H1 and H2. From proposition 5, it follows that f−1(K) contains ex-
actly one surjective component K i in each H i such that f(Ki) = K.
(c) Is immediate consequence of lemma 6.
This sequence of results gave a topological insight into the structure of the preim-
ages of a set. The next results is the first conclusion of the results previously
obtained.

Proof of Theorem 2:

If the critical point of h is fixed and f is small generic C3-perturbation of h
then, by proposition 3, Bc

∞(f) is simply connected. Then the critical point of h
is not fixed and then Sf ∩ f(Sf ) = ∅ and the fixed points of f belong to ext(∆)
(because f is small perturbation of h).
As f has fixed points Bc

∞ has at least one invariant connected component. Note
that as f is a generic C3 perturbation of a quadratic polynomial, its set of critical
point is homeomorphic to S1.
Recall from the previous section that there exists a sequence Kn = f−n(K0) of
compact sets such that K0 is a disc. The properties of this sequence are collected
in lemma 2. Next define a sequence {K1

j } as follows (this family can be either finite

or infinite). Let K1
0 = K0; as K0 is a big disc, so f(Sf ) ⊂ K0 and this implies that

f−1(K1
0 ) has exactly one component K1

1 such that f(K1
1 ) = K1

0 (see lemma 3).
If f−1(K1

1 ) has two surjective components the construction is stopped; other-
wise, use proposition 5 to define K1

2 as the unique component of f−1(K1
1 ) such

that f(K1
2 ) = K1

1 . Again, using proposition 5 and that K2 ⊂ K1 it comes that
K1

2 ⊂ K1
1 ⊂ K1

0 . If f−1(K1
2 ) has two surjective components the construction is

stopped. Otherwise, and analogous to the first step, there exists K1
3 ⊂ K1

2 with
K1

3 the unique surjective component of f−1(K3). An obvious induction argument
gives a nested sequence of connected set {K1

n}.
Case a) The family {K1

n} is infinite.
If p and r are the fixed points of f , using the proposition 5, it follows that the sets
f−1(p) = {p, p′} and f−1(r) = {r, r′} are contained in K1

n, for all n ∈ IN (because p
and r are not in int(f(Sf ))). ThenM = ∩K1

n is an invariant component of Bc
∞ and

the fixed points belong to it. Suppose that there exists another invariant component
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N of Bc
∞. As M 6= N there exists n0 ∈ IN such that N is contained in a compo-

nent Ki
n0

of Kn0
different of K1

n0
. By the construction of {Kn} and the proposition

5, there exists k ∈ IN such that fk(Ki
n0
) ⊂ int((̃Sf ). Then N ⊂ int((̃Sf ) and

f(N) = N ⊂ int(f(Sf )), which is absurd because int(S̃f ) ∩ int(f(Sf )) = ∅ if f is
a sufficiently small perturbation.
Case b) The family {K1

n} is finite.
In this case, there exists n0 ∈ IN such that f−1(K1

n0
) has two surjective compo-

nents H1 and H2 contained in Kn0
. These two preimages are contained in K1

n0
by

the same argument used in the case (a). As Hi ⊂ K1
n0

for i = 1, 2, it follows each
f−1(Hi) has two connected components contained in H1 ∪ H2 and whose images
give the correspondingHi. It follows that f

−n(Hi) has at least 2
n components. The

construction follows standard arguments giving uncountable many components of
Bc
∞.

Corollary 5. Let f ∈ G be a small C3-perturbation of a quadratic polynomial such
that the restriction of f to Sf is injective. If the immediate basin of ∞ connects

∆ = intf(Sf ) then the complement of B∞ has uncountably many components.

Proof. It is sufficient to prove that the family {K1
n} is finite.

If the family is infinite then, by proposition 6 (b), ext(K1
n) does not connect for

every n ∈ IN . As B0
∞ connects so there exists n0 ∈ IN such that ext(Kn) connects.

Therefore ext(K1
n) connects and this is a contradiction.

Corollary 6. Let f ∈ G be a small C3-perturbation of a quadratic polynomial. If
M is an invariant component of Bc

∞ then M contains a fixed point.

Proof. If the family {K1
n} is infinite then there exists only one invariant component

and this component contain both fixed points. If the family is finite then there
exists two invariant components, each one of which contains a fixed point.

In the last section it will be shown that the condition in the hypothesis of
corollary 5 do not imply that Bc

∞ is totally disconnected.

5 Invariant components of B
c
∞

The attention is focused on the determination of the existence of large components
in Bc

∞, (that is a component that intersects both Sf and f(Sf )), and in the study
of the invariant components of the complement of B∞.

The construction of the previous section will be used; start with a quadratic
polynomial hc(z) = z2+c such that the critical point 0 does not belong to B∞(hc).
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(Otherwise, the Julia set Jc of hc is totally disconnected and the same holds for
every small C1 perturbation). Therefore the Julia set of hc is connected. For each
c ∈ C, let Kc denote the filled-in Julia set of hc, i.e., the set of points having
bounded forward orbit. In this case there exists a conformal map Φc : {|z| > 1} →
S2 \ Kc, a conjugacy between q(z) = z2 and hc such that hcΦc = Φcq. It is also
assumed that the fixed points of hc are repellors. It follows that hc(0) 6= 0 and
then Sf ∩ f(Sf ) = ∅ for every small perturbation f of hc.

The main ingredient in the proof of theorem 3 will be the following result of
Douady and Hubbard (see [S]). Let R(θ) = Φc({re2πiθ : r > 1} for 0 ≤ θ < 1.
Each R(θ) is called the external ray of angle θ for hc.

Theorem 5.1. (Douady-Hubbard) If θ is rational then R(θ) lands at a point of the
Julia set of h, this means that limr→1+ Φc(re

2πiθ) exists and belongs to Jc. This
point is periodic or eventually periodic. Conversely, every repelling or parabolic
periodic point of the Julia set of hc is the landing point of a finite number of
external rays, all with rational angles.

Denote by p and r the fixed points of hc. The fixed external ray R(0) lands
at a fixed point of hc; let it be r. There is also an external ray that is not fixed,
landing at p. It is a periodic orbit {θ1, . . . , θn} of q such that the external rays
αi = R(θi) land at p. Then R2 \∪ni=1αi is the union of n regions {Ri}; on the other
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side, there exist n regions Si which are determined in the complement of the unit
disc by the rays θi. It is clear that each of the regions Ri correspond to a unique
Si. It is not true that the image of Ri under Φ

−1
c is Si, because Φ−1

c is defined in
Ri \Kc. However it makes sense to say that a point x ∈ Kc \ {p} correspond to a
component Si, because such a point is contained in a unique region Ri. Denoting
by Ji = J ∩Ri, it comes that J \ {p} = ∪ni=1Ji.

Observe that −p is the other preimage of p and that the external rays αi have
preimages α

′

i landing at −p. Denote by R
′

i the components of the complement of
the union of the α

′

i . Denote also by θ
′

i the preimages under q of the angles θi and
by S

′

i the components of the complement of the rays θ
′

i.

Lemma 8. The following statements hold for hc:
(a) The critical point 0 of hc and its image hc(0) cannot belong to the same Ji.
(b) The points r and 0 belong to the same Ri, but to different R

′

i, and the points p
and r belong to different R

′

i.
(c) Let R

′

ir
the component of R2 \ ∪α′

i which contains r. If CL = {hnc (0) : n ∈ IN}
is contained in (R

′

ir
)c, then there exists a finite set Λ ⊂ Bc

∞(hc) such that every

point x ∈ Bc
∞(hc)\Λ, in R′

ir
leaves this component under iteration of hc (i.e. there

exists n such that hnc (x) /∈ R
′

ir
).

Figure 6:
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Proof. (a) Observe that q−1(Si) has two surjective components, each one of which is
contained in some Sj . Note also that q−1(Si) ⊂ Si is false, because this would imply
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that q has two fixed rays in Si. Note also that simple arguments of connectivity
imply that the same applies to the regions Ri (even though the conjugacy does not
extend from Ri to Si).
Suppose by contradiction that 0 and hc(0) belong to the same component Ri. As
0 is the unique preimage of hc(0) it follows that h−1

c (Ri) ⊂ Ri; but this is not
possible because it implies that q−1(Si) ⊂ Si, where Si = Φ−1

c (Ri \Kc).
(b) There exists at most one Si containing both preimages of another component
(such an Si must correspond to an angle greater than π). This actually occurs in
the case under consideration, because the component that correspond to hc(0) must
have both preimages in the component Si0 that correspond to 0. Now observe that
as the length of Si0 is greater than π, it contains at least one component of each
q−1(Sj) for j = 1, ..., n. In particular, the fixed ray of q belongs to this component
because q−1(Si0) has a surjective component contained in Si0 . It follows that r and
0 belong to the same component Ri0 of R2 \ ∪αi.
Observe also that one of the components of the preimage of Si0 (the one containing
the fixed ray) is contained in Si0 but 0 does not correspond to this component by
part (a). It follows that 0 and r belong to different components R

′

i. Now using
that p and −p are symmetric (so p and 0 belong to the same R

′

i), it follows that p
and r belong to different R

′

i.
(c) Let Λ = {x ∈ R

′

ir
∩ Bc

∞(hc) : hnc (x) ∈ R
′

ir
, ∀n ∈ IN}. Observe that Λ is a

compact set and is contained in R
′

ir
. Then CL ∩ Λ = ∅. This implies that Λ is a

hyperbolic set (see [MS]) and hc : Λ→ Λ is bijective, therefore Λ is a finite set.

It will be proved next that there exists a sequence of open sets Gk such that

n⋃

i=1

αi =
⋂

k≥1

Gk and Gk+1 ⊂ Gk for every k ≥ 0.

Let B(p, δ) be the disc centered at p, with radius δ small enough such that

h−1
c (B(p, r)) ∩B(p, r) ⊂ B(p, r) for every r ≤ δ. For 1 ≤ i ≤ n let Vi be a

sector containing the ray θi. Denote by σi and ςi the sides of Vi (see figure 7) and
V = ∪ni=1Vi. It can Vi be taken such that:
i) q−1(V ) ∩ V ⊂ V .
ii) The end point of Φc(σi) and Φc(ςi) belongs in B(p, δ).
If G0 = Φc(V )∪B(p, δ), then it is clear that h−1

c (G0)∩G0 = G1 satisfies G1 ⊂ G0.
The claim follows easily by induction, defining Gk = h−1

c (Gk−1) ∩Gk−1.
Now the initial map hc will be perturbed. Suppose that f is a map C1 close

to hc such that the closure of f−1(G0) ∩ G0 = G̃1 is contained in G0. It is then

clear that there exists a sequence G̃k such that f(G̃k+1) = G̃k and G̃k+1 ⊂ G̃k. Let
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Figure 7:
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C = ∩G̃k; then C is invariant under f and connected and contains pf the analytic
continuation of p. The main property of C is that C \ pf is contained in B∞(f):
Indeed, this is trivial if x /∈ B(p, δ); when x ∈ B(p, δ) there exists m such that
fm(x) /∈ B(p, δ). By invariance of C and B∞(f) the assertion follows. Thus the
following result was completely proved:

Lemma 9. For every small C1 perturbation f of hc there exists a connected set C
such that:
a) C separates the plane.
b) pf ∈ C.
c) C \ {pf} ⊂ B∞(f).
d) C is invariant.

Now denote by R1, ..., Rn the components of the complement of C and by
R

′

1, ..., R
′

n the components of the complement of C
′

, where C
′

is f−1(C) \ C. The
same conclusions of the lemma 8 hold for f .

Corollary 7. If f is small perturbation of hc:
a) Sf and f(Sf ) belong to different component R.
b) pf and rf belong to different R

′

.

As hc(z) = z2 + c has no attracting fixed point, it is clear that c = hc(0) 6= 0.
If f is C1 close to hc, then Sf ∩ f(Sf ) = ∅. Thus a way of saying that a connected
set M is large is to prove that it intersect both Sf and f(Sf ).

Definition 5.1. A connected setM is large for f ifM∩Sf 6= ∅ andM∩f(Sf ) 6= ∅.

Proof of Theorem 3:
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a) By lemma 8, the points 0 and hc(0) belong to different components of J \{p},
where J is the Julia set of hc and p its fixed point. The same holds for the map f
if U1 is sufficiently small. Therefore, if M is a component of Bc

∞(f) that intersects
both Sf and f(Sf ), then pf ∈M ,( because by lema 9M cannot intersect C outside
pf ). This implies the uniqueness of M . Also f(M) is connected, contains pf and
is contained in Bc

∞(f) so f(M) ⊂ M . The last assertion follows form proposition
6

b) From corollary 6 it follows that there exists at most two invariant components
of B∞(f), each one of which contains a fixed point. Asume now that there exists
Mpf

6= Mrf
two invariant components of Bc

∞(f) such that Mpf
contains pf and

Mrf
contains rf . We are going to prove that Mrf

= {rf}.
That p

′

f /∈Mrf
is obvious since f(p

′

f ) = pf and Mpf
∩Mrf

= ∅. It follows that the
wholeMrf

is contained in the component R
′

j of R
2\C ′

that contains rf . Let V be a
neighborhood of r such that for every perturbation of hc, the analytic continuation
of this fixed point rf is contained in V and f

∣∣
V
is conjugate to its linear part. This

is used only to assert that if Mrf
⊂ V then Mrf

= {rf}.
If CL = {hnc (0) : n ∈ IN} is contained in (R

′

i)
c, then using the lemma 8 (c), we

have that Λ is a hyperbolic finite set. This implies that Mrf
is contained in V , so

Mrf
= {rf}. If CL is not contained in (R

′

i)
c, so there exists n0 ∈ IN such that

that hc(0) and hn0
c (0) belong to different components R

′

. Thus if f is close to hc
then f(Sf ) and fn0(Sf ) are contained in different components of R2 \ (C ′

). As
f(M) ⊂M and intersects both f(Sf ) and f

n0(Sf ), it follows that M contains p
′

f ,

and then K1
n has only one surjective preimage for every n. This implies that in

fact Mpf
=Mrf

.

Corollary 8. Let f be a C3 perturbation of hc(z) = z2+c with c ∈ (−2, c0) (where
c20+c0+(1−√1− 4c0)/2) = 0 and c0 ' −3/2). If Bc

∞(f) has one large component
M then M is the unique invariant component.

Proof. The condition on c implies that hc(0) and h
2
c(0) belong to different compo-

nents R
′

. Thus if f is close to hc then f(Sf ) and f
2(Sf ) are contained in different

components of R2 \ (C ′

). As f(M) ⊂ M and intersects both f(Sf ) and f2(Sf ),
follows that M contains p

′

f , and then K1
n has only one surjective preimagen for

every n. This implies, that in fact Mpf
=Mrf

.

Example : It will be shown now that there exists a map f , perturbation of z2 − 2
such that:

• The set of critical points of f is connected and f
∣∣
Sf

is one to one.

• The immediate basin of ∞ connects f(Sf ).
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• The complement of B∞ has uncountably many components but is not totally
disconnected, in fact, it contains a hyperbolic periodic point which is not a
repellor.

This map will be found near the family:

f(λ,µ,ε)(x, y) = (x2 − y2 − 2 + λy + µ, (2− ε)xy).

The set of critical point is L = {(x, y) : x2 + y2− (λ/2)y = 0}. The cusp are (0, 0)
and (±

√
3λ/8, 3λ/8). One of the fixed point of f is (p, 0), close to (2, 0); note that

as f(x, 0) = (x2−2+µ, 0) then {(x, 0) : |x| > p} is contained in B∞(f). Moreover,
as µ will be negative, then the intersection of Bc

∞(f) with the real axis will be a
Cantor set. It is easy to see that for every λ, (0, λ/2) ∈ Sf and that µ can be
chosen negative in such way that f 2(0, λ/2) = (p, 0).
It is claimed now that exists ε > 0 such that B0

∞(f) connects f(Sf ); in fact it
will be proved that it connects f 2(Sf ), which is equivalent to the above. A simple
calculation shows that

Figure 8:PSfrag replacements
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is tangent to f2(Sf ) at the point (p, 0). If follows that a eigenvectors of

Df(p,0) =

(
2p λ
0 (2− ε)p

)

are (1, 0) associated to the eigenvalue 2p and (−λ, εp)) associated to the eigenvalue
(2− ε)p < 2p. Choose ε so that w is not an eigenvector of Df(r,0).

Thus the situation is as in the figure 8. Now the claim can easily be proved.
As was noted above, B0

∞ contains {(x, 0) : |x| > p}. This implies that the image
f2(0, 0) of the cusp (0, 0) belongs to B0

∞. So it remains to prove that the opposite
side of the triangle f2(Sf ) can be connected to f 2(0, 0) within B0

∞∩f(∆). To prove
this take a small segment L contained in B∞ and transverse to the real axis at a
point (x0, 0) with x0 > p. There is a sequence Ln of preimages of L converging to
p, and as the eigenvector (−λ, εp) is associated to the weak eigenvalue of Df(p,0), it
follows that the tangent to Ln is close to this direction when n is large. Therefore
Ln intersects the side of f 2(Sf ) that contains (p, 0). This proves the claim. So
B0
∞ connects the triangle f(Sf ) and it follows that Bc

∞ has uncountably many
components (by corollary 5). On the other hand, recall that a critical point (0, λ/2)
is preperiodic, namely its second image is (p, 0). But the unstable set of (p, 0)
contains the point (0, λ/2); thus there exists a critical homoclinic orbit associated
to (p, 0). Let f0 be a C

1 map of a manifoldM and z0 a repelling fixed point of f0. A
point x0 ∈M is homoclinic to z0 if there exists m > 0 such that xm = fm0 (x0) = z0
and a sequence {xn}n<0 (preorbit of x0) such that f(xn−1) = xn and xn → z0, to
n → −∞. The orbit {xn}−∞<n≤m is called homoclinic to z0; if the at least one of
point is a critical point of f , then the orbit {xn} is critical homoclinic to z0.

Then the following, a generalization of a well knout one dimensional result, will
be used here:

Theorem 5.2. [A] Let x0 be homoclinic to a fixed repellor z0 for a map f0. Then
in any generic one parameter family {fµ} through f0 there exists close to 0 a
parameter µ0 such that fµ0

has a critical periodic point.

Then by a result previous, it follows that there exists a perturbation f
′

of f
such that a critical point of f

′

is periodic. Of course, the property that B0
∞(f)

connects f(Sf ) is open, so the perturbation can be made small orden to obtain
that B0

∞(f
′

) still connects the triangle f
′

(Sf ′ ). A final perturbation can be made
to make the critical periodic point hyperbolic. This finishes the construction.
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