Regular interval Cantor sets of S^{1} and minimality

Aldo Portela

June 20, 2006

Abstract

${ }^{1}$ It is known that not every Cantor set of S^{1} is C^{1}-minimal. In this work we prove that every member of a subfamily of the called regular interval Cantor set is not C^{1}-minimal. We also prove in general, for a even large class of Cantor sets, that any member of such family can be $C^{1+\epsilon}$-minimal, for any $\epsilon>0$.

1 Introduction

If $f: S^{1} \rightarrow S^{1}$ is a diffeomorphism without periodic points, there exists a unique set $\Omega(f) \subset S^{1}$ minimal for f (we say that $\Omega(f)$ is C^{1}-minimal for f). In this case $\Omega(f)$ is a Cantor set or it is S^{1}. Up to now, the C^{1}-minimal Cantor sets that are known are the Danjoy examples and its conjugates. However we know that some families are not C^{1}-minimal. For example, in [2] Mc Duff demonstrates that the usual middle thirds Cantor set is not C^{1}-minimal and gives some conditions for a Cantor set that imply that it is not C^{1}-minimal. In [6] we can find other conditions that imply the no C^{1}-minimality too. In [5] A. Norton demonstrates that the family of the affine Cantor sets is not C^{1}-minimal too. In this work we construct new families of Cantor sets that are not C^{1}-minimal and other families of Cantor sets that are not $C^{1+\epsilon}$-minimal (for any $\epsilon>0$).

1.1 Regular interval Cantor sets

The regular interval Cantor set construction imitates the procedure utilized to obtain the usual middle thirds Cantor set. Given two sequences $\left\{m_{i}\right\}$ and $\left\{\theta_{i}\right\}$ with m_{i} a positive integer and $0<\theta_{i}<1$, we proceed as follows. In the first step we

[^0]remove m_{1} open intervals with the same measure from the circle, distributed in the same way, obtaining the closed set $K_{1}=\cup \Delta_{i_{1}}\left(i_{1}=1, \ldots, m_{1}\right)$ with Lebesgue measure $\left|K_{1}\right|=\theta_{1}$, where $\Delta_{i_{1}}$ are the connected components of K_{1}. In the second step, we remove m_{2} open intervals of the same measure from each connected component $\Delta_{i_{1}}$, distributed in the same way, obtaining the closed set $K_{2}=\cup \Delta_{i_{1} i_{2}}$ $\left(i_{2}=1, \ldots, m_{2}+1\right)$ with measure $\left|K_{2}\right|=\theta_{2}\left|K_{1}\right|$, where $\Delta_{i_{1} i_{2}}$ are the connected components of K_{2}. Proceeding inductively, we obtain, for each n, a closed set $K_{n} \subset S^{1}$, contained in K_{n-1}, with measure $\left|K_{n}\right|=\theta_{n}\left|K_{n-1}\right|$, and $K_{n}=\cup \Delta_{i_{1} \ldots i_{n}}$ $\left(i_{n}=1, \ldots, m_{n}+1\right)$, where $\Delta_{i_{1} \ldots i_{n}}$ are connected components of K_{n}. We define $K=\bigcap K_{n}$. This set is a Cantor set, and we will call regular interval Cantor set to every set K constructed in this way.

1.2 Quasi regular interval Cantor sets

Now we are going to give the construction of a family of Cantor sets that contains the regular interval Cantor sets. Given a sequence $\left\{n_{i}\right\}$ of positive integers with $\sum_{i<j} n_{i} \leq n_{j}$, we proceed as follows. In the first step we remove n_{1} open intervals of the same measure from S^{1}, obtaining a closed set $K_{1}=\bigcup \Delta_{1 i_{1}}\left(i_{1}=1, \ldots, n_{1}\right)$, where $\Delta_{1 i_{1}}$ are the connected components of K_{1}. In the second step, we remove n_{2} open intervals of the same measure form K_{1}, removing at least an interval of each connected component of K_{1}, obtaining the closed set $K_{2}=\bigcup \Delta_{2 i_{2}}$ ($i_{2}=$ $1, \ldots, n_{1}+n_{2}$), where $\Delta_{2 i_{2}}$ are the connected components of K_{2}. We do not require the intervals removed to be likewise distributed. Proceeding inductively, for each m we obtain a closed set $K_{m} \subset S^{1}$ contained in K_{m-1} and we write $K_{m}=\bigcup \Delta_{m i_{m}}$ $\left(i_{m}=1, \ldots, n_{1}+\ldots+n_{m}\right)$ where $\Delta_{m i_{m}}$ are the connected components of K_{m}. Then, we define $K=\bigcap K_{m}$. The set K is a Cantor set if, and only if, $\nu_{m}=\max \left\{\left|\Delta_{m i_{m}}\right|\right.$: $\left.i_{m}=1, \ldots, n_{1}+\ldots+n_{m}\right\} \rightarrow 0$ when $m \rightarrow \infty$. We will call quasi regular interval Cantor set to every Cantor set K constructed in this way. Note that with this procedure we do not obtain all Cantor sets of S^{1}. If $\mu_{m}=\min \left\{\left|\Delta_{m i_{m}}\right|: i_{m}=\right.$ $\left.1, \ldots, n_{1}+\ldots+n_{m}\right\}$, the number $\delta=\inf \left\{\mu_{m} / \nu_{m}: m \in \mathbf{N}\right\}$ gives an idea of the irregularity of the Cantor set K. This number depends on the set K and the procedure to obtain K. Then, we define the regularity of K as the supreme of the set of δ, taking all the possible procedures to obtain K. Note that if the Cantor set K is a regular interval Cantor set, its regularity is 1 .

2 Main results

Theorem 1. If the Cantor set K is C^{1}-minimal for a diffeomorphism f, and K^{c} has only one orbit of wandering intervals, then K is not a quasi regular interval

Cantor set.
Theorem 2. If K is a quasi regular interval Cantor set of regularity different from 0 , then K is not $C^{1+\epsilon}$-minimal for any $\epsilon>0$.

As all regular interval Cantor sets have regularity 1 then, from the previous theorem, we have the following result.

Corollary 1. If K is a regular interval Cantor set, then K is not $C^{1+\epsilon}$-minimal for any $\epsilon>0$.

If the regular interval Cantor set K has positive measure and we suppose that it is C^{1}-minimal for f we obtain several conditions for f^{\prime}. Let m_{i} be the quantity of intervals removed in the step i of the construction of K. In this case, we have the following result.

Theorem 3. If K is a regular interval Cantor set of positive measure and the sequence $\left\{m_{i}\right\}$ is not limited, then K is not C^{1}-minimal.

Definition 2.1. If K is a regular interval Cantor set, for each prime integer we define $A_{q}=\left\{i \in \mathbf{N}: m_{i}+1=0(\bmod q)\right\}$.

For the case that A_{q} is an infinite set we denote its elements by $t_{n}(n \in \mathbf{N})$, with $t_{n}<t_{n+1}$. Now we can enunciate de following result.

Theorem 4. If K is a regular interval Cantor set of positive measure and there exists a prime integer q such that A_{q} is infinite and $t_{n+1}-t_{n} \rightarrow \infty$, then K is not C^{1}-minimal.

3 Generalities

The following lemmas are going to be very useful in the demonstrations of the main results.

Definition 3.1. If $f: S^{1} \rightarrow S^{1}$ is a diffeomorphism, then for each $x \in S^{1}$ and for each positive integer n we define $F(x, n)=\sum_{i=0}^{n-1} \log f^{\prime}\left(f^{i}(x)\right)=\operatorname{lof}\left(f^{n}\right)^{\prime}(x)$.

Lemma 3.1. If the Cantor set K is C^{1}-minimal for f, then there exists $x \in K$ such that $F(x, n) \geq 0$, for all positive integer n.

Proof. We suppose by contradiction that for all $x \in K$ there exists m_{x} such that $F\left(x, m_{x}\right)<0$. By the continuity of f^{\prime}, for each $x \in K$ there exists $\delta_{x}>0$ such that for every point y in the interval $\left(x-\delta_{x}, x+\delta_{x}\right), F\left(y, m_{x}\right)<0$. As the family of intervals $\left(x-\delta_{x}, x+\delta_{x}\right)$ with $x \in K$ is a covering of K, and K is a Cantor set, then
there exists a finite refinement $\left\{I_{i}, i=1, \ldots, p\right\}$ of this covering of open intervals, disjoint two to two, that is a covering of K. So, for each I_{i} there exists $m_{i} \in \mathbf{N}$ such that for all $y \in I_{i}$ we have $F\left(y, m_{i}\right)<0$. Besides, $S^{1} \backslash \bigcup_{i=1}^{p} I_{i}$ is a finite union of closed intervals, each of which is contained in a connected component of K^{c} that we call J_{i}, with $i=1, \ldots, p$. We consider $m=\max \left\{m_{i}: i=1, \ldots, p\right\}$ and $M \geq 1$ the maximum of f^{\prime}. We consider a wandering interval T of the past of J_{1} such that $|T| M^{m}<\min \left\{\left|J_{1}\right|, \ldots,\left|J_{p}\right|\right\}$. Now we will demonstrate that if j is a positive integer then $\left|f^{j}(T)\right|<\left|J_{1}\right|$, and this is a contradiction. By the choice of T, we know that T is contained in I_{i} for some i. By the Mean Value Theorem, there exists $\theta \in I_{i}$ such that

$$
\left|f^{m_{i}}(T)\right|=|T|\left(f^{m_{i}}\right)^{\prime}(\theta) .
$$

As $F\left(\theta, m_{i}\right)<0$, we have $\left(f^{m_{i}}\right)^{\prime}(\theta)<1$ and so

$$
\left|f^{m_{i}}(T)\right|<|T| .
$$

We can repeat this process with $f^{m_{i}}(T)$ instead of T. Proceeding inductively we conclude that there exists a sequence $\nu_{1}, \nu_{2}, \ldots, \nu_{k}, \ldots$ with $\nu_{k} \in\left\{m_{1}, \ldots, m_{p}\right\}$ such that for all positive integer r

$$
\left|f^{\sum_{k=1}^{r} \nu_{k}}(T)\right|<|T| .
$$

As for all j there exists $r_{0} \geq 0$ such that $\sum_{k=1}^{r_{0}} \nu_{k} \leq j<\sum_{k=1}^{r_{0}+1} \nu_{k}$, we have

$$
\left|f^{j}(T)\right|=\left|f^{j-\sum_{k=1}^{r_{0}} \nu_{k}}\left(f^{\sum_{k=1}^{r_{0}} \nu_{k}}(T)\right)\right| \leq M^{m}|T|<\left|J_{1}\right| .
$$

Let K be a Cantor set of the circle and let $K^{c}=\bigcup I_{j}$, where I_{j} are the connected components of K^{c}. We define the spectrum of $K\left(E_{K}\right)$ as the orderly set $\left\{\lambda_{i}\right\}$ $\left(\lambda_{i+1}<\lambda_{i}\right)$, with λ_{i} the length of I_{j}, for some j.
Lemma 3.2. If the Cantor set K is C^{1}-minimal for f and $\lambda_{n} / \lambda_{n+1} \nrightarrow 1$, there exists $\eta>0$ and $x \in K$ such that $F(x, m) \leq-\eta$, for all positive integer m.
Proof. As $\lambda_{n} / \lambda_{n+1} \nrightarrow 1$, there exist $\epsilon_{0}>0$ and a sequence $\left\{n_{k}\right\}$ such that $1+\epsilon_{0} \leq$ $\frac{\lambda_{n_{k}}}{\lambda_{n_{k}+1}}$. Let $I_{n_{k}}$ be a connected component of K^{c} such that $\left|I_{n_{k}}\right| \geq \lambda_{n_{k}}$ and for all $j>1,\left|f^{j}\left(I_{n_{k}}\right)\right| \leq \lambda_{n_{k}+1}$. By the choice of $I_{n_{k}}$ we have that $\left|I_{n_{k}}\right| \rightarrow 0$ when $k \rightarrow \infty$. Let x be a point of accumulation of the set of the intervals $I_{n_{k}}(x \in K)$ and $\left\{k_{i}\right\}$ a sequence such that $d\left(x, I_{n_{k_{i}}}\right) \rightarrow 0$ when $i \rightarrow \infty$. Therefore, for every $m \geq 1$, there exists i sufficiently large such that

$$
1+\epsilon_{0} \leq \frac{\lambda_{n_{k_{i}}}}{\lambda_{n_{k_{i}}+1}} \leq \frac{\left|I_{n_{k_{i}}}\right|}{\mid f^{m}\left(I_{n_{k_{i}}}\right)} .
$$

Then

$$
F(x, m)=\log \left(f^{m}\right)^{\prime}(x)=\log \left(\lim _{i \rightarrow \infty} \frac{\left|f^{m}\left(I_{n_{k_{i}}}\right)\right|}{\mid\left(I_{n_{k_{i}}} \mid\right.}\right) \leq-\log \left(1+\epsilon_{0}\right) .
$$

Lemma 3.3. If the Cantor set K is C^{1}-minimal for f and $\lambda_{n} / \lambda_{n+1} \nrightarrow 1$ then for every point $x \in K, F(x, m)$ is not limited.

Proof. By the transitivity of K (for f), it is enough to demonstrate the property for any point of K. Let x and the number η be as in lemma 3.2 and suppose by contradiction that $F(x, m)$ is limited. Therefore if $y=\inf \{F(x, m): m \in \mathbf{N}\}$, there exists a positive integer p such that $|F(x, p)-y|<\eta / 2$. So

$$
\begin{equation*}
F\left(f^{p}(x), m\right)=F(x, m+p)-F(x, p)=F(x, m+p)-y-(F(x, p)-y)>\frac{-\eta}{2} \tag{1}
\end{equation*}
$$

for all positive integer m . We consider $\left\{n_{k}\right\}$ such that $f^{p+n_{k}}(x)$ has limit x when $k \rightarrow \infty$. From the uniform continuity of f^{\prime} we have that

$$
\left|F\left(f^{p}(x), p+n_{k}\right)-F\left(x, p+n_{k}\right)\right| \leq \sum_{i=0}^{p-1}\left|\log f^{\prime}\left(f^{p+n_{k}+i}(x)\right)-\log f^{\prime}\left(f^{i}(x)\right)\right|=\delta\left(n_{k}\right) \rightarrow 0
$$

when $k \rightarrow \infty$. Then

$$
F\left(f^{p}(x), p+n_{k}\right)<F\left(x, p+n_{k}\right)+\delta\left(n_{k}\right)<-\eta+\delta\left(n_{k}\right),
$$

so utilizing (1) we have a contradiction.

4 Geometric rigidity

In this section we are going to prove two geometric properties for the quasi regular interval Cantor sets and that if, we suppose that a Cantor set K of this family is C^{1}-minimal for f, we obtain rigid conditions for f^{\prime}.

Lemma 4.1. If K is a quasi regular interval Cantor set, $\mu_{n}<\frac{2 \pi}{2^{n-1}}$, for all integer $n>1$.

Proof. We are going to prove that if $\mu_{n}<\frac{2 \pi}{2^{n-1}}, \mu_{n+1}<\frac{2 \pi}{2^{n}}$. Proved this, as $\mu_{1}<2 \pi$ we have demonstrated the lemma. From the construction of K we know that there
exist integers j_{1}, j_{2} and j_{3} such that $\Delta_{n j_{1}}<\frac{2 \pi}{2^{n-1}}$ and such that $\Delta_{n+1, j_{2}}$ and $\Delta_{n+1, j_{3}}$ are contained in $\Delta_{n j_{1}}$. Therefore

$$
\min \left\{\left|\Delta_{n+1, j_{2}}\right|,\left|\Delta_{n+1, j_{3}}\right|\right\} \leq \frac{\left|\Delta_{n, j_{1}}\right|}{2}<\frac{2 \pi}{2^{n}}
$$

and from here follows the thesis.
Lemma 4.2. If K is a quasi regular interval Cantor set, $\lambda_{n} / \lambda_{n+1} \nrightarrow 1$, when $n \rightarrow \infty$.

Proof. Let $\left\{l_{i}\right\}$ be the sequence where l_{i} is the length of the open intervals removed in the step i of the construction of K. From the construction of K we have that the open intervals removed in the step n are contained in K_{n-1}, so from the previous lemma we have that $l_{n}<2 \pi / 2^{n-2}$ for $n>2$. Then, for $n>2$ we have

$$
\begin{equation*}
\#\left(\left\{\log \lambda_{i}\right\} \cap[-(n-2) \log 2+\log 2 \pi, 0]\right)<n \tag{2}
\end{equation*}
$$

Suppose by contradiction that $\lambda_{n} / \lambda_{n+1} \rightarrow 1$. Then for all $\epsilon>0$ there exists $n_{0}>0$ such that for all $n \in \mathbf{N}$

$$
0<\log \lambda_{n_{0}+n-i}-\log \lambda_{n_{0}+n+1-i}<\log (1+\varepsilon)
$$

with $i=0, \ldots, n$, so

$$
0>\log \lambda_{n_{0}+n}>\log \lambda_{n_{0}}-n \log (1+\varepsilon)
$$

Then

$$
\begin{equation*}
\#\left(\left\{\log \lambda_{i}\right\} \cap\left[\log \lambda_{n_{0}}-n \log (1+\varepsilon), 0\right]\right) \geq n_{0}+n \tag{3}
\end{equation*}
$$

Utilizing the inequalities (2) e (3) we have
$\#\left(\left\{\log \lambda_{i}\right\} \cap[-(n-2) \log 2+\log 2 \pi, 0]\right)<n<n_{0}+n \leq \#\left(\left\{\log \lambda_{i}\right\} \cap\left[\log \lambda_{n_{0}}-n \log (1+\epsilon), 0\right]\right)$.
Therefore

$$
-(n-2) \log 2+\log 2 \pi \geq \log \lambda_{n_{0}}-n \log (1+\epsilon)
$$

As this inequality is true for all $n \in \mathbf{N}$ and for all $\epsilon>0$, taking ϵ such that $\log (1+\epsilon)<\log 2$ we have a contradiction.

Lemma 4.3. If a quasi regular interval Cantor set K is C^{1}-minimal for f, there exists $x \in K$ such that $f^{\prime}(x)>1$.

Proof. From the previous lemma, we know that there exists $\epsilon_{0}>0$ and a crescent sequence of positive integers $\left\{n_{j}\right\}$ such that $\lambda_{n_{j}} / \lambda_{n_{j}+1}>1+\epsilon_{0}$, for all n_{j}. Let I be a connected component of K^{c}. Then, the family $\left\{f^{-n}(I)\right\}$ with $i \in \mathbf{N}$ is a family of open intervals, disjoint two to two, so $\left|f^{-n}(I)\right| \rightarrow 0$ when $n \rightarrow \infty$. Therefore, if j is sufficiently large there exists $p(j) \in \mathbf{N}$ such that $\left|f^{-p(j)}(I)\right| \leq \lambda_{n_{j}+1}$ and $\left|f^{-p(j)+1}(I)\right| \geq \lambda_{n_{j}}$. Then, we have

$$
\begin{equation*}
\frac{\left|f^{-p(j)+1}(I)\right|}{\left|f^{-p(j)}(I)\right|} \geq \frac{\lambda_{n_{j}}}{\lambda_{n_{j}+1}}>1+\epsilon_{0} . \tag{4}
\end{equation*}
$$

Utilizing the Mean Value Theorem, we know that there exists a point $\theta_{p(j)} \in$ $f^{-p(j)}(I)$ such that

$$
\left|f^{-p(j)+1}(I)\right|=f^{\prime}\left(\theta_{p(j)}\right)\left|f^{-p(j)}(I)\right|
$$

so

$$
\begin{equation*}
\frac{\left|f^{-p(j)+1}(I)\right|}{\left|f^{-p(j)}(I)\right|}=f^{\prime}\left(\theta_{p(j)}\right) . \tag{5}
\end{equation*}
$$

From (4) and (5) we have

$$
\begin{equation*}
f^{\prime}\left(\theta_{p}\right)>1+\varepsilon_{0} . \tag{6}
\end{equation*}
$$

If x is an accumulation point of the set $\left\{f^{-p(j)}(I)\right\}$, it is an accumulation point of the set $\left\{\theta_{p(j)}\right\}$ too and, as $f \in C^{1}$, we have that $f^{\prime}\left(\theta_{p}\right) \rightarrow f^{\prime}(x)$ when $j \rightarrow \infty$, so from (6) we obtain that $f^{\prime}(x)>1$.

If K is a quasi regular interval Cantor set and $y \in K$ we denote by K_{n}^{y} the connected component of K_{n} that contains y. The following observations will be of use for the demonstrations of the next lemmas.

1. If K is a quasi regular interval Cantor set, C^{1}-minimal for f, for all $\epsilon>0$ there exists a positive integer $n(\epsilon)$ such that if $n>n(\epsilon)$ and x_{1}, x_{2} belong to the same connected component of K_{n},

$$
\frac{1}{1+\varepsilon}<\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime}\left(x_{2}\right)}<1+\varepsilon .
$$

2. For all positive integer n and all point $x \in K$ there exists a positive number v such that if λ is an element of the spectrum of K, smaller than v, there exists a connected component of K^{c}, of length λ, contained in $K_{n}^{f(x)}$ such that its preimage is contained in K_{n}^{x}.

Lemma 4.4. If the quasi regular interval Cantor set K is C^{1}-minimal for f and x is any point in K, then for all $\epsilon>0$ and for all integer m if I is a connected component of K^{c} of length so small as necessary, there exists a connected component I^{*} of K^{c} such that

$$
\frac{\left(f^{\prime}(x)\right)^{m}}{1+\varepsilon}<\frac{\left|I^{*}\right|}{|I|}<\left(f^{\prime}(x)\right)^{m}(1+\varepsilon) .
$$

Proof. First we suppose that $m \geq 0$. We consider $\epsilon_{1}>0$ sufficiently small and $n=n\left(\epsilon_{1}\right)$ as in observation 1 . Let K_{n} be as in the construction of K. If I is a connected component of K^{c} of length sufficiently small, there exists I_{1}, connected component of K^{c} too, contained in K_{n}^{x} such that its length is $|I|$. From the Mean Value Theorem we have that there exists $\theta \in I_{1}$ such that

$$
\left|f\left(I_{1}\right)\right|=f^{\prime}(\theta)\left|I_{1}\right|=f^{\prime}(\theta)|I| .
$$

As $\theta \in K_{n}^{x}$, utilizing observation 1 we have

$$
\frac{f^{\prime}(x)}{1+\epsilon_{1}}<\frac{\left|f\left(I_{1}\right)\right|}{|I|}<f^{\prime}(x)\left(1+\epsilon_{1}\right) .
$$

If I is sufficiently small we can repeat this procedure with $f\left(I_{1}\right)$ instead of I. Then there exists I_{2}, connected component of K^{c}, such that

$$
\frac{f^{\prime}(x)}{1+\epsilon_{1}}<\frac{\left|f\left(I_{2}\right)\right|}{\left|f\left(I_{1}\right)\right|}<f^{\prime}(x)\left(1+\epsilon_{1}\right) .
$$

Proceeding inductively we conclude that there exist I_{3}, \ldots, I_{m}, connected components of K^{c}, such that

$$
\frac{f^{\prime}(x)}{1+\epsilon_{1}}<\frac{\left|f\left(I_{i+1}\right)\right|}{\left|f\left(I_{i}\right)\right|}<f^{\prime}(x)\left(1+\epsilon_{1}\right),
$$

with $i=1, \ldots, m-1$. So

$$
\begin{equation*}
\frac{\left(f^{\prime}(x)\right)^{m}}{\left(1+\epsilon_{1}\right)^{m}}<\frac{\left|f\left(I_{m}\right)\right|}{|I|}<\left(f^{\prime}(x)\right)^{m}\left(1+\epsilon_{1}\right)^{m} . \tag{7}
\end{equation*}
$$

Given $\epsilon>0$ we choose $\epsilon_{1}>0$ such that $\left(1+\epsilon_{1}\right)^{m}<1+\epsilon$. Then, from (7) follows the thesis. In the case $m<0$ we proceed as follows. If I is a connected component of K^{c}, sufficiently small, there exists I_{1}, connected component of K^{c} too, of length $|I|$, contained in $K_{n}^{f(x)}$ such that $f^{-1}\left(I_{1}\right)$ is contained in K_{n}^{x}. Therefore, there exists $\theta \in I_{1}$ such that

$$
\left|f^{-1}\left(I_{1}\right)\right|=\left(f^{-1}\right)^{\prime}(\theta)\left|I_{1}\right|=\frac{\left|I_{1}\right|}{f^{\prime}\left(f^{-1}(\theta)\right)}
$$

As $f^{-1}(\theta) \in K_{n}^{x}$, from observation 1 we have

$$
\frac{1}{\left(1+\epsilon_{1}\right) f^{\prime}(x)}<\frac{\left|f^{-1}\left(I_{1}\right)\right|}{\left|I_{1}\right|}=\frac{1}{f^{\prime}\left(f^{-1}(\theta)\right)}<\frac{1+\epsilon_{1}}{f^{\prime}(x)}
$$

So, proceeding as in the first case we obtain the desired result.
Lemma 4.5. If the quasi regular interval Cantor set K is C^{1}-minimal for f, f^{\prime} restricted to K is constant by parts. Even more, if the set of values of f^{\prime} restricted to K is $\left\{a_{1}, \ldots, a_{n}\right\}$, then $\log a_{i} / \log a_{j} \in \mathbb{Q}\left(a_{j} \neq 1\right)$.

Proof. Let ϵ_{0} and $\left\{n_{j}\right\}$ be as in the proof of lemma 4.3. We need to prove that $A=\left\{f^{\prime}(x): x \in K\right\}$ is a finite set. We suppose by contradiction that A is a infinite set. As f^{\prime} is continuous in S^{1}, the set A has point of accumulation. From here we conclude that there exist $a, b \in K, a \neq b$, such that

$$
\begin{equation*}
\frac{1}{1+\epsilon_{0}}<\frac{f^{\prime}(a)}{f^{\prime}(b)}<1 \tag{8}
\end{equation*}
$$

Let ϵ_{1} be a positive number such that

$$
1+\epsilon_{1}<\min \left\{\sqrt{\frac{f^{\prime}(b)}{f^{\prime}(a)}}, \sqrt{\left(1+\epsilon_{0}\right) \frac{f^{\prime}(a)}{f^{\prime}(b)}}\right\}
$$

From observation 1 we have that there exists $n\left(\varepsilon_{1}\right)$ such that if x_{1} and x_{2} are in the same connected component of $K_{n\left(\epsilon_{1}\right)}$,

$$
\begin{equation*}
\frac{1}{1+\epsilon_{1}}<\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime}\left(x_{2}\right)}<1+\epsilon_{1} \tag{9}
\end{equation*}
$$

Let I_{1} be a connected component of K^{c} contained in the connected component of $K_{n\left(\epsilon_{1}\right)}$ that contains the point a. From the construction of K we have that $K_{n\left(\epsilon_{1}\right)}^{c}$ only contains a finite quantity of connected components of K^{c}. By the Mean Value Theorem, there exists $\theta_{1} \in I_{1}$ such that

$$
\left|f\left(I_{1}\right)\right|=\left|I_{1}\right| f^{\prime}\left(\theta_{1}\right)
$$

Utilizing 9 , and that θ_{1} and a are in the same connected component of $K_{n\left(\epsilon_{1}\right)}$, we have

$$
\begin{equation*}
\frac{\left|I_{1}\right| f^{\prime}(a)}{1+\epsilon_{1}}<\left|f\left(I_{1}\right)\right|<\left|I_{1}\right|\left(1+\epsilon_{1}\right) f^{\prime}(a) . \tag{10}
\end{equation*}
$$

If $\left|I_{1}\right|$ is sufficiently small there exists I_{2}, connected component of $S^{1} \backslash K$, of length $\left|f\left(I_{1}\right)\right|$, such that $f^{-1}\left(I_{2}\right)$ is in the connected component of $K_{n\left(\varepsilon_{1}\right)}$ that contains b (observation 2). Utilizing the Mean Value Theorem there exists $\theta_{2} \in I_{2}$ such that

$$
\left|f^{-1}\left(I_{2}\right)\right|=\left|I_{2}\right|\left(f^{-1}\right)^{\prime}\left(\theta_{2}\right)=\frac{\left|I_{2}\right|}{f^{\prime}\left(f^{-1}\left(\theta_{2}\right)\right)} .
$$

From the choice of I_{2} we have that $f^{-1}\left(\theta_{2}\right)$ and b are in the same connected component of $K_{n\left(\varepsilon_{1}\right)}$; so applying (9) we obtain

$$
\frac{\left|f\left(I_{1}\right)\right|}{f^{\prime}(b)} \frac{1}{1+\epsilon_{1}} \leq\left|f^{-1}\left(I_{2}\right)\right| \leq \frac{\left|f\left(I_{1}\right)\right|}{f^{\prime}(b)}\left(1+\epsilon_{1}\right) .
$$

From this last inequality and (10) we have

$$
\frac{\left|I_{1}\right|}{\left(1+\epsilon_{1}\right)^{2}} \frac{f^{\prime}(a)}{f^{\prime}(b)} \leq\left|f^{-1}\left(I_{2}\right)\right| \leq\left|I_{1}\right|\left(1+\epsilon_{1}\right)^{2} \frac{f^{\prime}(a)}{f^{\prime}(b)},
$$

and therefore, by the choice of ϵ_{1} we have

$$
1<\frac{\left|I_{1}\right|}{\left|f^{-1}\left(I_{2}\right)\right|}<1+\epsilon_{0} .
$$

Summarizing, we have proved that if I is a connected component of $S^{1} \backslash K$ with length sufficiently small, there exists another connected component I^{*} of K^{c} such that

$$
1<|I| /\left|I^{*}\right|<1+\epsilon_{0} .
$$

Taking I, of length $\lambda_{n_{j}}$, sufficiently small we have

$$
1+\epsilon_{0}>\frac{|I|}{\left|I^{*}\right|} \geq \frac{\lambda_{n_{j}}}{\lambda_{n_{j}+1}}>1+\epsilon_{0}
$$

and this is a contradiction. Then, A is a finite set.
Now, we suppose by contradiction that there exist i and j such that $\log a_{i} / \log a_{j} \notin$ Q. We are going to prove (as in the previous case) that if I is a connected component of K^{c} of length sufficiently small, there exists another connected component I^{*} of K^{c} such that

$$
1<|I| /\left|I^{*}\right|<1+\varepsilon_{0}
$$

and we have a contradiction again. As $\log a_{i} / \log a_{j} \notin \mathscr{Q}$ then for all $\epsilon_{1}>0$ there exist integers m and n such that

$$
-\epsilon_{1}<m \log a_{i}-n \log a_{j}<0,
$$

so there exist $x, y \in K$ such that

$$
\begin{equation*}
e^{-\epsilon_{1}}<\left(f^{\prime}(x)\right)^{m}\left(f^{\prime}(y)\right)^{-n}<1 . \tag{11}
\end{equation*}
$$

From lemma 4.4 we have that given $\epsilon_{2}>0$ and I, connected component of K^{c}, sufficiently small, there exist I^{*} and $I^{* *}$ such that

$$
\begin{equation*}
\frac{\left(f^{\prime}(x)\right)^{m}}{1+\epsilon_{2}}<\frac{\left|I^{* *}\right|}{|I|}<\left(f^{\prime}(x)\right)^{m}\left(1+\epsilon_{2}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(f^{\prime}(x)\right)^{-n}}{1+\epsilon_{2}}<\frac{\left|I^{*}\right|}{\left|I^{* *}\right|}<\left(f^{\prime}(x)\right)^{-n}\left(1+\epsilon_{2}\right) \tag{13}
\end{equation*}
$$

Utilizing 11, 12 and 13 we have

$$
\begin{equation*}
\frac{\left(f^{\prime}(x)\right)^{-m}\left(f^{\prime}(y)\right)^{n}}{\left(1+\epsilon_{2}\right)^{2}}<\frac{|I|}{\left|I^{*}\right|}<\frac{\left(1+\epsilon_{2}\right)^{2}}{e^{-\epsilon_{1}}} . \tag{14}
\end{equation*}
$$

We take ϵ_{2} such that

$$
\frac{\left(f^{\prime}(x)\right)^{-m}\left(f^{\prime}(y)\right)^{n}}{\left(1+\epsilon_{2}\right)^{2}}>1
$$

and ϵ_{1} such that

$$
\frac{\left(1+\epsilon_{2}\right)^{2}}{e^{-\epsilon_{1}}}<1+\epsilon_{0}
$$

So, from 14 we have proved what we want.

5 Proof of the theorem 1

For the proof of theorem 1 we need the following two lemmas.
Lemma 5.1. If $x \in S^{1}$ and $R_{\theta}: S^{1} \rightarrow S^{1}$ is the rotation of angle θ (irrational in $\pi)$, for all positive integer m there exists $n>m$ such that the set $A_{n}=\left\{R_{\theta}^{i}(x)\right.$: $i=0, \ldots, n\}$ determines a division of S^{1} in intervals with two possible lengths.

Proof. We are going to construct a sequence $n_{1}<n_{2}<\ldots<n_{k}<\ldots$ such that $A_{n_{k}}$ has the desired properties for all k. We can take $n_{1}=1$. We suppose that n_{k} is already known. We denote $x_{j}=R_{\theta}^{j}(x)$. Let T_{1}, \ldots, T_{p} (with the same length) and J_{1}, \ldots, J_{q} (with the same length) be the open intervals that determine the partition $A_{n_{k}}$ in S^{1}. We can always order the intervals so that $f\left(T_{i}\right)=T_{i+1}$ and $f\left(J_{j}\right)=J_{j+1}$. Now we consider the point $x_{n_{k}+1}$. If we assume $\left|T_{i}\right|<\left|J_{j}\right|$, the point $x_{n_{k}+1}$ belongs to J_{1}. Even more, this point and the extreme of J_{1}, different from x,
determine an interval of length $\left|T_{1}\right|$. This shows that, in general, the point $x_{n_{k}+j}$ belongs to $J_{j}(j=1, \ldots, q)$, determining, with one of the extremes of J_{k}, an interval of length $\left|T_{1}\right|$. Therefore, we can take $n_{k+1}=n_{k}+q$, so that $A_{n_{k+1}}$ has the desire properties.

Lemma 5.2. If $f: S^{1} \rightarrow S^{1}$ is a continuous function and R_{θ} is the rotation of irrational angle θ, for all point $x \in S^{1}$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{0 \leq i \leq n} f\left(R_{\theta}^{i}(x)\right)=\int_{S^{1}} f d x .
$$

Proof. By Birkhoff theorem (see [4]) the affirmation is true for almost every point (with regard to Lebesgue measure in S^{1}). Therefore, by the uniform continuity of f, for all $x \in S^{1}$ and $\varepsilon>0$ there exists y such that

1. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{0 \leq i \leq n} f\left(R_{\theta}^{i}(y)\right)=\int_{S^{1}} f d x$.
2. $\left|f\left(R_{\theta}^{i}(x)\right)-f\left(R_{\theta}^{i}(y)\right)\right|<\epsilon$.

Adding, we obtain

$$
\left|\frac{1}{n} \sum_{0 \leq i \leq n} f\left(R_{\theta}^{i}(x)\right)-\frac{1}{n} \sum_{0 \leq i \leq n} f\left(R_{\theta}^{i}(y)\right)\right|<\epsilon,
$$

so the affirmation follows.
To continue we give the proof of theorem 1 .
Proof. We suppose by contradiction, that there exists a quasi regular interval Cantor set K, C^{1}-minimal for f, and that K^{c} has only one orbit of wandering intervals. Let $h: S^{1} \rightarrow S^{1}$ be the semiconjugate such that $h \circ f=R_{\theta} \circ h$, with $R_{\theta}: S^{1} \rightarrow S^{1}$ the rotation of angle θ (irrational in π). From lemma 4.5 we have that there exists a covering of K formed by closed intervals H_{1}, \ldots, H_{r}, disjoint two to two, such that $f^{\prime} / H_{i} \bigcap K=a_{i}$. It is possible to choose the intervals H_{i} so that each connected component of the complement of $\bigcup_{i=1}^{r} H_{i}$ is a connected component of K^{c}. If L_{1}, \ldots, L_{r} are the connected components of the complement of $\bigcup_{i=1}^{r} H_{i}$, then the image of each L_{i} by h is a point y_{i}. As f has only one orbit of wandering intervals, then the points y_{i} are in the same orbit in the rotation R_{θ}. Let $A_{m}, T_{1}, \ldots, T_{p}$, J_{1}, \ldots, J_{q} be as in lemma 5.1 such that $\left\{y_{1}, \ldots, y_{r}\right\} \subset A_{m}$. Now, we define

$$
g: \bigcup_{1}^{p} T_{i} \cup \bigcup_{1}^{q} J_{j} \rightarrow \mathbb{R}
$$

such that $g(x)=f^{\prime}\left(h^{-1}(x)\right)$ (note that g is well defined even in the case that $h^{-1}(x)$ is an interval). By the choice of the intervals T_{i} and J_{j} we have that g is constant in each of them. Even more, if y is a point of S^{1} such that $h(y)$ does not belong to $\bigcup_{j \in \mathbf{N}} R_{\theta}^{-j}\left(A_{m}\right)$ (preorbit of the extremes of the intervals T_{i} and J_{j}) then

$$
F(y, n)=\sum_{i=0}^{n-1} \log \left(g\left(R_{\theta}^{i}(h(y))\right)\right)
$$

Claim:

$$
\int_{\left(\cup T_{i}\right) \cup\left(\cup J_{j}\right)} \log g d x=0 .
$$

We suppose by contradiction that $\int_{\left(\cup T_{i}\right) \cup\left(\cup J_{j}\right)} \log g d x \neq 0$. Supposing that

$$
\int_{\left(\cup T_{i}\right) \cup\left(\cup J_{j}\right)} \log g d x>0,
$$

we have that there exists a continuous function $g_{1}: S^{1} \rightarrow S^{1}$ such that $g_{1}<g$ and $\int_{S^{1}} \log g_{1} d x>0$. So, by lemma 5.2 we have that given $x \in S^{1}$ and $k>0$ there exists $n=n(x, k)$ such that $\sum_{i=0}^{n-1} \log \left(g_{1}\left(R_{\theta}^{i}(x)\right)\right)>k$. Therefore, if $x \in K$ and $h(x) \notin \bigcup_{j \in \mathbf{N}} R_{\theta}^{-j}\left(A_{m}\right)$ we have that for each $k>0$ there exists a positive integer n such that

$$
\begin{equation*}
F(x, n)=\sum_{i=0}^{n-1} \log \left(g\left(f^{i}(x)\right)\right) \geq \sum_{i=0}^{n-1} \log \left(g_{1}\left(R_{\theta}^{i}(h(x))\right)\right)>k \tag{15}
\end{equation*}
$$

As for each point $x \in K$ there exists a positive integer s such that $h\left(f^{s}(x)\right)$ does not belong to $\bigcup_{j \in \mathbf{N}} R_{\theta}^{-j}\left(A_{m}\right)$, taking k sufficiently large and applying (15) for the point $h\left(f^{s}(x)\right)$, we have that there exists a positive integer n such that

$$
F(x, n)>0 .
$$

Therefore, the result obtained contradicts lemma 3.2. If

$$
\int_{S^{1}} \log g d x<0,
$$

working in analogous form we have that for every $x \in K$ there exists a positive integer n such that $F(x, n)<0$. This result contradicts lemma 3.1. Then we have proved the claim. Now, we are going to prove that

$$
\begin{equation*}
\int_{\bigcup T_{i}} \log g d x=\int_{\bigcup J_{j}} \log g d x=0 \tag{16}
\end{equation*}
$$

We denote $a_{i}=g / T_{i}$ e $b_{j}=g / J_{j}$. Then
$\int_{\left(\cup T_{i}\right) \cup\left(\cup J_{j}\right)} \log g d x=\sum\left|T_{i}\right| \log a_{i}+\sum\left|J_{j}\right| \log b_{j}=\left|T_{1}\right| \sum \log a_{i}+\left|J_{1}\right| \sum \log b_{j}=0$.
If $\sum \log a_{i} \neq 0$, from lemma 4.5 we have $\sum \log b_{j} / \sum \log a_{i} \in \mathbb{Q}$. So, by (17) we have that $\left|T_{1}\right| /\left|J_{1}\right| \in \mathbb{Q}$ and this is a contradiction because the extremes of the intervals T_{i} and J_{j} are in a same orbit of the irrational rotation R_{θ}. Then

$$
\sum \log b_{j}=\sum \log a_{i}=0 .
$$

Now, let $y \in K$ be such that $x=h(y) \in T_{1}$. From the construction of the intervals T_{i} and J_{j} we have that $R_{\theta}^{p+1}(x)$ belongs to T_{1} or J_{1}. If $R_{\theta}^{p+1}(x)$ belongs to T_{1}, then $R_{\theta}^{2 p+1}(x)$ belongs to T_{1} or J_{1}. If $R_{\theta}^{p+1}(x)$ belongs to J_{1}, then $R_{\theta}^{p+q+1}(x)$ belongs to T_{1} or J_{1}. Proceeding inductively we have that there exists a crescent sequence n_{k} such that $n_{k+1}-n_{k}$ only takes values p and q and $R_{\theta}^{n_{k}+1}(x)$ belongs to T_{1} or J_{1}. Therefore, from (16) we have that $F\left(y, n_{k}\right)=0$, for all k. Finally, given a positive integer n there exists k_{0} such that $n_{k_{0}} \leq n<n_{k_{0}+1}$ and therefore,

$$
F(y, n)=F\left(y, n_{k_{0}}\right)+F\left(f^{n_{k_{0}}}(y), n-n_{k_{0}}\right)=F\left(f^{n_{k_{0}}}(y), n-n_{k_{0}}\right) .
$$

As $n-n_{k_{0}}$ is limited, $F(y, n)$ is limited too and this contradicts lemma 3.3, and the proof is finished.

6 Covering and levels

Note that if the quasi regular interval Cantor set K is C^{1}-minimal for f, for each positive integer n we have that if I is a connected component of K^{c}, so small as necessary, I and $f(I)$ are contained in K_{n}.

Definition 6.1. The positive integer s is the level of an interval $I \subset S^{1}$, if I was removed from the construction of K in step s (we denote $s=\mathcal{L}(I)$).

Lemma 6.1. If $\left\{\mathcal{T}_{i j}\right\}$, with $j \in \mathbf{N}$ and $i=1, \ldots, n$, is a family of closed intervals contained in S^{1} such that $\nu_{j}=\max \left\{\left|\mathcal{T}_{i j}\right| ; i=1, . ., n\right\}$ has limit 0 when $j \rightarrow \infty$, there exist a positive integer k and a finite set of intervals $\left\{\mathcal{J}_{t}\right\}$, disjoint two to two, contained in S^{1}, such that $\mathcal{A}=\bigcup \mathcal{J}_{t} \supset \bigcup_{i=1}^{n} \mathcal{T}_{i k}$ and every interval of \mathcal{A}^{c} has a greater measure than the measure of \mathcal{A}.

Proof. For the demonstration we will use finite induction in n. If $n=1$ the demonstration is immediate. We suppose that the property is true for $n \geq 1$ and
we are going to prove that the property is true for $n+1$. For each $j \in \mathbf{N}$, we denote by $\mathcal{B}_{j}=\bigcup_{i=1}^{n+1} \mathcal{T}_{i j}$ and by $\mathcal{Y}_{s j}\left(s=1, \ldots, n_{j}\right.$, with $\left.n_{j} \leq n+1\right)$ the connected components of the complement of \mathcal{B}_{j}. We will divide the demonstration in two cases. First, we suppose that $a_{j}=\min \left\{\left|\mathcal{Y}_{k j}\right| ; k=1, \ldots, n_{j}\right\}$ does not have limit 0 when $j \rightarrow \infty$. Then, there exist $\epsilon>0$ and a crescent sequence $\left\{j_{t}\right\}$ such that $a_{j_{t}},>\epsilon$ for all t. By hypothesis we know that $\nu_{j} \rightarrow 0$ when $j \rightarrow \infty$, then there exists $r \in \mathbf{N}$ such that $\nu_{j_{r}}<\epsilon /(n+1)$, so

$$
\left|\mathcal{B}_{j_{r}}\right| \leq \sum_{i=1}^{n+1}\left|\mathcal{T}_{i j_{r}}\right|<(n+1) \frac{\epsilon}{n+1}=\epsilon
$$

As $a_{j_{r}}>\epsilon$, we have that every interval of the complement of $\mathcal{B}_{j_{r}}$ has greater length than $\left|\mathcal{B}_{j_{r}}\right|$. If we define the intervals \mathcal{J}_{t} as the connected components of $\mathcal{B}_{j_{r}}$, we have proved the step of the induction in this case. Now, we suppose that $a_{j} \rightarrow 0$ when $j \rightarrow \infty$. We denote by \mathcal{Y}_{j}^{*} one of the connected components of the complement of \mathcal{B}_{j} such that its length is a_{j}. We can suppose, without loss of generality, that \mathcal{Y}_{j}^{*} is the interval $\operatorname{Arc}\left(\mathcal{T}_{1 j}, \mathcal{T}_{2 j}\right) \backslash\left(\mathcal{T}_{1 j} \cup \mathcal{T}_{2 j}\right)$ (considering j sufficiently large and reordering the intervals $\mathcal{T}_{i j}$ as necessary). Now we consider the family of intervals $\mathcal{T}_{i j}^{*}$ defined as follows. We take

$$
\mathcal{T}_{1 j}^{*}=\mathcal{T}_{1 j} \cup \mathcal{Y}_{j}^{*} \cup \mathcal{T}_{2 j}
$$

and for $i=2, \ldots, n$

$$
\mathcal{T}_{i, j}^{*}=\mathcal{T}_{i+1, j}
$$

Then by the inductive hypothesis there exist a number k and a family of intervals \mathcal{J}_{t} that satisfy the lemma for the intervals $\mathcal{T}_{i j}^{*}$. The number k and the family of intervals \mathcal{J}_{t} obtained for the family of intervals $\mathcal{T}_{i j}^{*}$ satisfy the conclusion of the lemma for the family of intervals $\mathcal{T}_{i j}$, too. This establishes the step of induction and the proof concludes.

If the point x is the extreme of a connected component of K^{c} of level s_{0}, for each integer $s>s_{0}$ we denote by I_{s} the connected component of K^{c} closest to x. Note that if s is sufficiently large then I_{s} is unique.

Definition 6.2. Let x be the extreme of a connected component of K^{c} of level s_{0}. For each integer $s>s_{0}$ we define

$$
\varphi_{x}(s)=s-\mathcal{L}\left(f\left(I_{s}\right)\right)
$$

Lemma 6.2. If the quasi regular interval Cantor set K, of regularity different from 0 , is C^{1}-minimal for f and x is the extreme of a connected component of K^{c} of level s_{0}, then φ_{x} is upper limited.

Proof. As the regularity of K is not 0 , there exists a procedure that determines K such that $\delta=\inf \left\{\mu_{m} / \nu_{m}: m \in \mathbf{N}\right\}>0$. We suppose by contradiction that for each $k>0$ there exists a positive integer s_{k}, such that $\varphi\left(s_{k}\right)=s_{k}-\mathcal{L}\left(f\left(I_{s_{k}}\right)\right)>k$. We denote $r_{k}=\mathcal{L}\left(f\left(I_{s_{k}}\right)\right)$. By the construction of K we have that $\mu_{s_{k}} \leq 2^{-k} \mu_{r_{k}}$. If $I_{s_{k}}=\left(a_{k}, b_{k}\right)$, with a_{k} between x and b_{k}, we have that there exists $\theta_{k} \in\left[x, a_{k}\right]$ such that $d\left(f(x), f\left(a_{k}\right)\right)=f^{\prime}\left(\theta_{k}\right) d\left(x, a_{k}\right)$. So
$d\left(f(x), f\left(a_{k}\right)\right) \leq f^{\prime}\left(\theta_{k}\right) \nu_{s_{k}} \leq f^{\prime}\left(\theta_{k}\right) \frac{\mu_{s_{k}}}{\delta} \leq \frac{f^{\prime}\left(\theta_{k}\right)}{\delta} 2^{-k} \mu_{r_{k}} \leq \frac{f^{\prime}\left(\theta_{k}\right)}{\delta} 2^{-k} d\left(f(x), f\left(a_{k}\right)\right)$.
From here it follows that $f^{\prime}\left(\theta_{k}\right) \rightarrow \infty$ when $k \rightarrow+\infty$, and this is a contradiction.

7 Proof of the theorem 2

Proof. We suppose by contradiction that there exists $\epsilon>0$ and a diffeomorphism f, of class $C^{1+\epsilon}$ such that K is minimal for f. By lemmas 4.5 and 4.3 we have that there exist a positive integer n_{0} and a point x, extreme of a connected component of K^{c}, such that:

1. the restriction of f^{\prime} to K is constant in each connected component of $K_{n_{0}}$.
2. $f^{\prime}(x)=\nu>1$.
3. by the continuity of f^{\prime} we have that if n_{0} is sufficiently large, for every connected component I of K^{c}, contained in $K_{n_{0}}^{x}$ (connected component of $K_{n_{0}}$ that contains x), we have that $|f(I)|>|I|$, so $f(I)$ and I have different level.

Given a positive integer n we denote by $I_{n}=\left(a_{n}, b_{n}\right)$ the interval of level $n+n_{0}$ contained in $K_{n_{0}}^{x}$ nearest to x. We fix m and for each integer $n>m$ we consider the family of intervals $\left\{I_{n}^{j}\right\}_{j \in \mathbf{N}}$ with the following properties:

1. the interval $I_{n}^{0}=I_{n}$.
2. the interval I_{n}^{j} is the connected component of K^{c} with the same level that the level of $f\left(I_{n}^{j-1}\right)$ nearest to x (in the proof we are going to work with a finite quantity of these).

Let $q=\max \{\mathcal{L}(I)-\mathcal{L}(f(I))\}$ be the integer given by lemma 6.2. We define $p_{n}=\min \left\{j: \mathcal{L}\left(I_{n}^{j}\right) \leq \mathcal{L}\left(I_{m+q-1}\right)=n_{0}+m+q-1\right\}$. We need to prove that the set $D_{n}=\left\{j: \mathcal{L}\left(I_{n}^{j}\right) \leq \mathcal{L}\left(I_{m+q-1}\right)\right\}$ is not empty. We suppose by contradiction that D_{n} is empty. Then, for all j we have that $\left|I_{n}^{j-1}\right|<\left|I_{n}^{j}\right|$ and that I_{n}^{j} is between x and I_{m+q-1} and this is a contradiction. So D_{n} is not empty. Now, we consider the finite family $\left\{I_{n}^{j}\right\}$ with $j=1, \ldots, p_{n}$. By lemma 6.2 follows that $n_{0}+m+q>\mathcal{L}\left(I_{n}^{p_{n}}\right) \geq n_{0}+m$. By the Mean Value Theorem we know that there exist $\theta_{j} \in I_{n}^{j}, j=0, \ldots, p_{n}-1$ such that
$\left|f\left(I_{n}^{j}\right)\right|=f^{\prime}\left(\theta_{j}\right)\left|I_{n}^{j}\right|=\left|I_{n}^{j+1}\right|$. Therefore,

$$
\begin{equation*}
\left|I_{n}\right|=\frac{\left|I_{n}^{p_{n}}\right|}{f^{\prime}\left(\theta_{0}\right) \ldots f^{\prime}\left(\theta_{p_{n}-1}\right)} . \tag{18}
\end{equation*}
$$

We denote $r_{j}=\mathcal{L}\left(I_{n}^{j}\right)$, with $j=0, \ldots, p_{n}-1$. Note that as $i \neq j, r_{i} \neq r_{j}$ and $r_{j} \geq m+n_{0}$, for every j. For every j, we have that θ_{j} and x are in the same connected component of $K_{r_{j}-1}$, so from lemma 4.1 and if r_{j} is sufficiently large we have

$$
\left|\theta_{j}-x\right|<\frac{2}{\delta 2^{r_{j}-2}}
$$

Therefore, as f is the class $C^{1+\varepsilon}$ (this is $\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq \widetilde{k}|x-y|^{\epsilon}$) we have

$$
\begin{equation*}
1-\frac{k}{\nu} \frac{1}{2^{\left(r_{j}-2\right) \epsilon}}<\frac{f^{\prime}\left(\theta_{j}\right)}{\nu}<1+\frac{k}{\nu} \frac{1}{2^{\left(r_{j}-2\right) \epsilon}}, \tag{19}
\end{equation*}
$$

where $k=\widetilde{k}\left(\frac{2}{\delta}\right)^{\epsilon}$. From (18) e (19) we have

$$
\frac{\left|I_{n}^{p_{n}}\right|}{\nu^{p_{n}}} \prod_{i=0}^{p_{n}-1}\left\{1+\frac{k}{\nu}\left(\frac{1}{2^{r_{i}-2}}\right)^{\epsilon}\right\}^{-1} \leq\left|I_{n}\right| \leq \frac{\left|I_{n}^{p_{n}}\right|}{\nu^{p_{n}}} \prod_{i=0}^{p_{n}-1}\left\{1-\frac{k}{\nu}\left(\frac{1}{2^{r_{i}-2}}\right)^{\epsilon}\right\}^{-1} .
$$

Therefore,

$$
\begin{equation*}
\log \left|I_{n}^{p_{n}}\right|-p_{n} \log \nu-P_{2}(m) \leq \log \left|I_{n}\right| \leq \log \left|I_{n}^{p_{n}}\right|-p_{n} \log \nu-P_{1}(m) \tag{20}
\end{equation*}
$$

where

$$
P_{1}(m)=\sum_{j=m+n_{0}}^{\infty} \log \left\{1-\frac{k}{\nu}\left(\frac{1}{2^{j-2}}\right)^{\epsilon}\right\} \leq \log \prod_{i=0}^{p_{n}-1}\left\{1-\frac{k}{\nu}\left(\frac{1}{2^{r_{i}-2}}\right)^{\epsilon}\right\}<0
$$

and

$$
P_{2}(m)=\sum_{j=m+n_{0}}^{\infty} \log \left\{1+\frac{k}{\nu}\left(\frac{1}{2^{j-2}}\right)^{\epsilon}\right\} \geq \log \prod_{i=0}^{p_{n}-1}\left\{1+\frac{k}{\nu}\left(\frac{1}{2^{r_{i}-2}}\right)^{\epsilon}\right\}>0 .
$$

For each m we define the set $A_{m}=\left\{\log \left|I_{r}\right| ; r>m\right\}$ (the difference between this set and the set $\left\{\log \lambda_{i}\right\}$ is a finite quantity of elements). Now, we consider the quotient $A_{m} / \log \nu \cdot \mathbb{R}=\mathcal{A}_{m}$ as a subset of the affine manifold $\mathcal{S}=\mathbb{R} / \log \nu \cdot \mathbb{R}$ that is isomorphic to S^{1}. From the inequality (20) we have that for each m there exists a finite quantity of closed intervals $\mathcal{T}_{m j}, j=1, \ldots, q$, contained in \mathcal{S} such that $\bigcup_{j=1}^{q} \mathcal{T}_{m j} \supset \mathcal{A}_{m}$ and $a_{m}=\max \left\{\left|\mathcal{T}_{m j}\right| ; j=1, \ldots, q\right\}=P_{2}(m)-P_{1}(m)$. From the definitions of $P_{1}(m)$ and $P_{2}(m)$ follows that a_{m} has limit 0 when $m \rightarrow \infty$. From lemma 6.1 we know that there exist m_{0} and a family of intervals \mathcal{J}_{k} contained in \mathcal{S}, with $k=1, \ldots, h$, such that

$$
\mathcal{A}_{m_{0}} \subset \bigcup_{j=1}^{q} \mathcal{T}_{m_{0} j} \subset \bigcup \mathcal{J}_{k}=\mathcal{M}
$$

and every connected component of the complement of \mathcal{M} has greater length than $|\mathcal{M}|$. If we consider the lifting of the previous sets we have that there exist a number $\delta>0$ and a family of intervals $\left[\alpha_{s}, \beta_{s}\right]$, with $\alpha_{s} \leq \beta_{s}$ e $\beta_{s+1}<\alpha_{s}, s=$ $1, \ldots, \infty$ (they are the lifting of the intervals \mathcal{J}_{t}) such that $A_{m_{0}} \subset \bigcup_{s=1}^{\infty}\left[\alpha_{s}, \beta_{s}\right]$ and $\alpha_{s}-\beta_{s+1}<\beta_{s}-\alpha_{s}+\delta$. It is easy to see that this condition implies the Mc Duff condition and this is a contradiction (see Proposition 4.2 in [2]) .

8 Proof of the theorems 3 and 4

We will begin proving certain lemmas that will be of utility in the demonstrations of theorems 3 and 4. If I and J are sets contained in $S^{1} \backslash K$, we denote by $\operatorname{Arc}(I, J)$ the smaller arch that contains I and J.

Lemma 8.1. Let K be a regular interval Cantor set and let I_{1}, I_{2}, I_{3} and I_{4} be connected components of $S^{1} \backslash K$, disjoint two to two, removed in steps n_{1}, n_{2}, n_{3} and n_{4} of the construction of K, respectively. If $n_{4} \geq \max \left\{n_{1}, n_{2}, n_{3}\right\}$ and $\operatorname{Arc}\left(I_{3}, I_{4}\right) \backslash$ $\left(I_{3} \cup I_{4}\right)$ is a connected component of $K_{n_{4}}$, there exists a positive integer m such that $\left|K \cap \operatorname{Arc}\left(I_{1}, I_{2}\right)\right|=m\left|K \cap \operatorname{Arc}\left(I_{3}, I_{4}\right)\right|$.

Proof. From the construction of K, we know that $I_{1}, I_{2}, I_{3}, I_{4} \subset S^{1} \backslash K_{n_{4}}$, so $\operatorname{Arc}\left(I_{1}, I_{2}\right) \cap K_{n_{4}}$ is a union of m connected components of $K_{n_{4}}$, that we denote by $K_{n_{4}}^{1}, \ldots, K_{n_{4}}^{m}$. Then

$$
\operatorname{Arc}\left(I_{1}, I_{2}\right) \cap K=\left(\operatorname{Arc}\left(I_{1}, I_{2}\right) \cap K_{n_{4}}\right) \cap K=\left(\bigcup_{i=1}^{m} K_{n_{4}}^{i}\right) \cap K .
$$

Therefore, $\left|\operatorname{Arc}\left(I_{1}, I_{2}\right) \cap K\right|=\sum_{i=1}^{m}\left|K_{n_{4}}^{i} \cap K\right|$. So, by the construction of K, we have

$$
\begin{equation*}
\left|\operatorname{Arc}\left(I_{1}, I_{2}\right) \cap K\right|=m\left|K_{n_{4}}^{1} \cap K\right| . \tag{21}
\end{equation*}
$$

As $\operatorname{Arc}\left(I_{3}, I_{4}\right) \backslash\left(I_{3} \cup I_{4}\right)$ is a connected component of $K_{n_{4}}$ then

$$
\begin{equation*}
\left|K_{n_{4}}^{1} \cap K\right|=\left|\left(\operatorname{Arc}\left(I_{3}, I_{4}\right) \backslash\left(I_{3} \cup I_{4}\right)\right) \cap K\right|=\left|\operatorname{Arc}\left(I_{3}, I_{4}\right) \cap K\right| . \tag{22}
\end{equation*}
$$

Then from (21) e (22) we have

$$
\left|K \cap \operatorname{Arc}\left(I_{1}, I_{2}\right)\right|=m\left|K \cap \operatorname{Arc}\left(I_{3}, I_{4}\right)\right| .
$$

Lemma 8.2. If the regular interval Cantor set K, of positive measure, is C^{1} minimal for f and $f^{\prime}(x)>1$ for $x \in K, f^{\prime}(x)$ is a positive integer.

Proof. Let $\epsilon_{0},\left\{n_{j}\right\}$ and $\left\{\lambda_{n_{j}}\right\}$ be as in the proof of lemma 3.2, and we consider $\epsilon_{1}=\min \left\{\epsilon_{0}, f^{\prime}(x)-1\right\}$. By lemma 4.5 and the construction of K we know that there exists a positive integer n such that f^{\prime} is constant in the intersection of K with each connected component of K_{n} and if n is sufficiently large, by the continuity of f^{\prime} we have

$$
\frac{1}{1+\epsilon_{1}}<\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime}\left(x_{2}\right)}<1+\epsilon_{1}
$$

with x_{1} and x_{2} in the same connected component of K_{n}. Without loss of generality, we can suppose that x is an extreme of a connected component I of K^{c} such that I and $f(I)$ are contained in $S^{1} \backslash K_{n}$. We consider j_{0} such that $\lambda_{n_{j_{0}}}$ is smaller than the length of some connected components of K^{c} contained in K_{n}. For each $j>j_{0}$ we consider I_{j} as the connected component K^{c} contained in K_{n}^{x} (connected component of K_{n} that contains x) nearest to x and $\left|I_{j}\right| \geq \lambda_{n_{j}}$. Then, we have that $\left|I_{j}\right| \rightarrow 0$ and $d\left(x, I_{j}\right) \rightarrow 0$ when $j \rightarrow \infty$. This implies that there exists a positive integer j_{1} such that if $j \geq j_{1}$ then $f\left(I_{j}\right)$ is contained in $K_{n}^{f(x)}$. By the choice of ϵ_{1} we have that

$$
\begin{equation*}
d\left(f(x), f\left(I_{j}\right)\right)>\frac{f^{\prime}(x)}{1+\epsilon_{1}} d\left(x, I_{j}\right) \geq d\left(x, I_{j}\right) . \tag{23}
\end{equation*}
$$

Now, we will demonstrate that if $j \geq j_{1}$ there does not exist another connected component of K^{c} with length $\left|f\left(I_{j}\right)\right|$, contained in $K_{n}^{f(x)}$ and within $f(x)$ and $f\left(I_{j}\right)$. By contradiction we suppose that there exists I^{*} in the previous conditions. Then $f^{-1}\left(I^{*}\right)$ is between x and I_{j}. By the Mean Value Theorem we know that there exists $\theta^{*} \in f^{-1}\left(I^{*}\right)$ and $\theta_{j} \in I_{j}$ such that $\left|f^{-1}\left(I^{*}\right)\right|=\frac{\left|I^{*}\right|}{f^{\prime}\left(\theta^{*}\right)}$ and $\left|f\left(I_{j}\right)\right|=f^{\prime}\left(\theta_{j}\right)\left|I_{j}\right|$ so
$\left|f^{-1}\left(I^{*}\right)\right|=\frac{f^{\prime}\left(\theta_{j}\right)}{f^{\prime}\left(\theta^{*}\right)}\left|I_{j}\right|$. As θ^{*} and θ_{j} are in the same connected component of K_{n}, we have

$$
\frac{\left|I_{j}\right|}{1+\epsilon_{1}}<\left|f^{-1}\left(I^{*}\right)\right|<\left|I_{j}\right|\left(1+\epsilon_{1}\right)
$$

so

$$
\left|f^{-1}\left(I^{*}\right)\right|>\frac{\left|I_{j}\right|}{1+\epsilon_{1}}>\frac{\left|I_{j}\right|}{1+\epsilon_{0}} \geq \frac{\lambda_{n_{j}}}{1+\epsilon_{0}}>\lambda_{n_{j}+1} .
$$

From here we conclude that $\left|f^{-1}\left(I^{*}\right)\right| \geq \lambda_{n_{j}}$ and this contradicts the definition of I_{j}. More over, utilizing (23) we have that if $f\left(I_{j}\right)$ was removed in the step n_{1} and I_{j} was removed in the step $n_{2}, n<n_{1}<n_{2}$. This observation allows us to apply lemma 8.1, so there exists $p \in \mathbf{N}$ such that

$$
\begin{equation*}
\left|K \cap \operatorname{Arc}\left(f(x), f\left(I_{j}\right)\right)\right|=p\left|K \cap \operatorname{Arc}\left(x, I_{j}\right)\right| . \tag{24}
\end{equation*}
$$

As f^{\prime} restrict to $K \cap \operatorname{Arc}\left(x, I_{j}\right)$ is constant, then

$$
\begin{equation*}
\left|f\left(K \cap \operatorname{Arc}\left(x, I_{j}\right)\right)\right|=f^{\prime}(x)\left|K \cap \operatorname{Arc}\left(x, I_{j}\right)\right|=\mid K \cap \operatorname{Arc}\left(f(x), f\left(I_{j}\right) \mid .\right. \tag{25}
\end{equation*}
$$

Therefore, from (24) e (25) and utilizing that $|K|>0$ we have that $1<f^{\prime}(x)=$ $p \in \mathbf{N}$ and this concludes the proof.

To continue we will give the proof of theorem 3.
Proof. We suppose, by contradiction, that K is C^{1}-minimal for f and $\left\{m_{i}\right\}$ is not limited. By lemmas 4.3 and 8.2 we know that there exists an extreme of a wandering interval I, that we call x, such that $f^{\prime}(x)=p \in \mathbf{N}$ with $p>1$. Therefore, by the uniform continuity of f^{\prime} and by lemma 4.1 we know that there exists $n_{0} \in \mathbf{N}$ such that $f^{\prime} /\left(K \cap K_{n_{0}}^{x}\right)=p$, where $K_{n_{0}}^{x}$ is the connected component of $K_{n_{0}}$ that contains x. As $\left\{m_{i}\right\}$ is not limited, there exists i_{0} sufficiently large such that $m_{i_{0}}>p+2$. Let $J_{i_{0}}$ be the interval of level i_{0} nearest to x and $K_{i_{0}}^{x}=\left[x, y_{i_{0}}\right]$ (connected component of $K_{i_{0}}$ that contains x). As f^{\prime} restricted to $K \cap K_{n_{0}}^{x}$ is p, then

$$
\left|f\left(K \cap K_{i_{0}}^{x}\right)\right|=\left|K \cap\left[f(x), f\left(y_{i_{0}}\right)\right]\right|=p\left|K \cap K_{i_{0}}^{x}\right| .
$$

Utilizing that K has positive measure we have that the interval $\left[f(x), f\left(y_{i_{0}}\right)\right]$ contains exactly p connected components of $K_{i_{0}}$. As $f(x)$ is an extreme of $f(I)$ (its level is greater than i_{0}, if i_{0} is sufficiently large) and in step i_{0} we removed more than $p+2$ intervals, the level of $f\left(J_{i_{0}}\right)$ is i_{0}. Therefore $\left|J_{i_{0}}\right|=\left|f\left(J_{i_{0}}\right)\right|$. Besides, we have that $J_{i_{0}} \subset K_{i_{0}-1}$ and $\left|K_{i_{0}-1}\right| \rightarrow 0$ when $i_{0} \rightarrow \infty$. But then, utilizing the continuity of f^{\prime}, we know that if i_{0} is sufficiently large $\left|J_{i_{0}}\right|<\left|f\left(J_{i_{0}}\right)\right|$, and this is a contradiction.

The following lemmas will be of utility for the demonstration of theorem 4.
Lemma 8.3. If the regular interval Cantor set K, of positive measure, is C^{1} minimal for f, and there exists $x \in K$ and a positive integer $p(p>1)$ such that $f^{\prime}(x)=p$, then p is multiple of $m_{i}+1$ for an i sufficiently large.

Proof. From lemma 4.5 we can suppose that x is an extreme of a connected component of K^{c}. We denote by $I_{i}=\left(a_{i}, b_{i}\right)$ the connected component of K^{c} of level i nearest to x (if i is sufficiently large, I_{i} is determined). Then, $f\left(\left[x, a_{i}\right]\right)$ contains exactly p connected components of K_{i}, so the level of $f\left(I_{i}\right)$ is less than or equal to i. If i is sufficiently large we have that $\left|f\left(I_{i}\right)\right|>\left|I_{i}\right|$, so the level of $f\left(I_{i}\right)$ is less than i. Therefore, the quantity of connected components of K_{i} that contains $f\left(\left[x, a_{i}\right]\right)$ is multiple of $m_{i}+1$.

Lemma 8.4. If K is a regular interval Cantor set of positive measure, $\frac{l_{n}}{\sigma_{n}} \rightarrow 0$ when $n \rightarrow \infty$, where σ_{n} is the length of the connected components of K_{n} and l_{n} is the length of the open intervals removed in step n of the construction of K.

Proof. From the construction of K we have that $|K|=\lim _{n \rightarrow \infty} \theta_{1} \ldots . \theta_{n}>0$, so $\theta_{n} \rightarrow 1$. If x is an extreme of some open interval that was removed in step j, then for all $n>j+1$ we have

$$
\theta_{n}=\frac{\left|K_{n}\right|}{\left|K_{n-1}\right|}=\frac{\left|K_{n}^{x}\right|\left(m_{n}+1\right)}{\left|K_{n-1}^{x}\right|}=\frac{\left|K_{n}^{x}\right|\left(m_{n}+1\right)}{\left|K_{n}^{x}\right|\left(m_{n}+1\right)+m_{n} l_{n}}
$$

so $\frac{l_{n}}{\left|K_{n}^{x}\right|} \rightarrow 0$ when $n \rightarrow+\infty$.

To continue we will give the proof of theorem 4.
Proof. We suppose by contradiction that K is C^{1}-minimal for f. Let x, I, p and n_{0} be as in the proof of theorem 3. For each $i>n_{0}$, we denote by $J_{i}=\left(y_{i}, z_{i}\right)$ the wandering interval of level i nearest to $f(x)$. By hypothesis, there exists a positive integer n_{0} such that if $n \geq n_{0}, t_{n+1}-t_{n}>3 p$.
Claim 1: For all $i>t_{n_{0}}$, if $f^{-1}\left(J_{i}\right)$ is the interval of level j nearest to x then $f^{-1}\left(J_{j}\right)$ is not the interval of level $k=\mathcal{L}\left(f^{-1}\left(J_{j}\right)\right)$ nearest to x. We suppose by contradiction that $f^{-1}\left(J_{j}\right)$ is not in the desired conditions. Therefore $\left[x, f^{-1}\left(y_{i}\right)\right]$ is a connected component of K_{j} and $\left[x, f^{-1}\left(y_{j}\right)\right]$ is a connected component of K_{k}. Then $\left(m_{i+1}+1\right) \ldots\left(m_{j}+1\right)=p$ and $\left(m_{j+1}+1\right) \ldots\left(m_{k}+1\right)=p$. Utilizing lemma 8.3 and that q is a prime number we have that there exist less than two elements of the set $\left\{\left(m_{i+1}+1\right), \ldots,\left(m_{j}+1\right), \ldots,\left(m_{k}+1\right)\right\}$ that are multiple of q. As this set doest not have more than $2 p$ elements, if i is sufficiently large we have a contradiction.

Then we have demonstrated claim 1.
Claim 2: If i is sufficiently large there exists $k>i$ such that

$$
\frac{\left|J_{k}\right|}{\left|K_{k}^{f(x)}\right|}>\frac{3}{2} \frac{\left|J_{i}\right|}{\left|K_{i}^{f(x)}\right|}
$$

By the Mean Value Theorem, for all i, there exist θ_{1} and θ_{2} (they depend on i) contained in $\left[x, f^{-1}\left(z_{i}\right)\right]$ such that $\left|J_{i}\right|=\left|f^{-1}\left(J_{i}\right)\right| f^{\prime}\left(\theta_{1}\right)$ and $\left|\left(f(x), y_{i}\right)\right|=$ $\left|\left(x, f^{-1}\left(y_{i}\right)\right)\right| f^{\prime}\left(\theta_{2}\right)$. Then

$$
\begin{equation*}
\frac{\left|J_{i}\right|}{\left|K_{i}^{f(x)}\right|}=\frac{\left|J_{i}\right|}{\left|\left(f(x), y_{i}\right)\right|}=\frac{f^{\prime}\left(\theta_{1}\right)}{f^{\prime}\left(\theta_{2}\right)} \frac{\left|f^{-1}\left(J_{i}\right)\right|}{\left|\left(x, f^{-1}\left(y_{i}\right)\right)\right|} \rightarrow \frac{\left|f^{-1}\left(J_{i}\right)\right|}{\left|\left(x, f^{-1}\left(y_{i}\right)\right)\right|} \tag{26}
\end{equation*}
$$

when $i \rightarrow \infty$. We have two possibilities.

1. If $f^{-1}\left(J_{i}\right)$ is the interval nearest to x of level $j=\mathcal{L}\left(f^{-1}\left(J_{i}\right)\right)$, from claim 1 , we have that $f^{-1}\left(J_{j}\right)$ is not the interval of level $k=\mathcal{L}\left(f^{-1}\left(J_{j}\right)\right)$ nearest to x, therefore $\left|\left(x, f^{-1}\left(y_{j}\right)\right)\right|>2 .\left|K_{k}^{x}\right|$. Then, utilizing (26),

$$
\frac{\left|J_{i}\right|}{\left|K_{i}^{f(x)}\right|} \rightarrow \frac{\left|J_{j}\right|}{\left|K_{j}^{f(x)}\right|} \rightarrow \frac{\left|J_{k}\right|}{\left|\left(x, f^{-1}\left(y_{j}\right)\right)\right|}<\frac{\left|J_{k}\right|}{2\left|K_{k}^{f(x)}\right|}
$$

when $i \rightarrow \infty$. So, it follows claim 2 .
2. If $f^{-1}\left(J_{i}\right)$ is not the interval nearest to x of level $k=\mathcal{L}\left(f^{-1}\left(J_{i}\right)\right),\left|\left(x, f^{-1}\left(y_{i}\right)\right)\right|>$ $2 .\left|K_{k}^{x}\right|$. So the demonstration follows in analogous form to the previous item.

From claim 2 we have that $\frac{\left|J_{n}\right|}{\left|K_{n}^{f(x)}\right|} \nrightarrow 0$ when $n \rightarrow \infty$ and this contradicts lemma 8.4.

Acknowledgment: This work is part of my PHD thesis. I would like to thank my Advisor, Edson de Faria, not only for our helpful discussions and his many useful remarks on mathematical structure and style, but also for his constant encouragement. I would like to thank Alvaro Rovella and Jorge Iglesias, too for our helpful discussions.

References

[1] A. Denjoy, Sur les courbes défines par les équations différentielles à la surface du tore, J. de Math Pure et Appl. (9), 11 (1932), p.333-375.
[2] D. McDuff, C^{1}-minimal subset of the circle, Ann. Inst. Fourier, Grenoble. 31 (1981), 177-193.
[3] M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S., 49 (1979), 5-234.
[4] R. Mañé, Introdução à teoria ergódica, Projeto Euclides, 14. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, (1983).
[5] A. Norton, Denjoy minimal sets are far from affine, Ergod. Th. \& Dynam. Sys. 22 (2002), 1803-1812.
[6] A. Portela, Some condictions that imply the no C^{1}-minimality for Cantor sets in S^{1}, Submitted to the Bulletin Braz. Math. Society.

> A. Portela,
> Instituto de Matemática, Facultad de Ingeniería, CC30, CP 11300, Universidad de la Republica, Montevideo, Uruguay,
> aldo@fing.edu.uy

[^0]: ${ }^{1}$ Partially supported by PEDECIBA-Uruguay

