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Abstract. Let f : M → M be a partially hyperbolic diffeomorphism, TM = Ess ⊕
Ec ⊕ Euu such that the stable foliation F ss(f ) is minimal. We give a sufficient condition
so that this foliation remains minimal after perturbations, i.e. F ss(g) is minimal for every
g sufficiently close to f .

1. Introduction
In the theory of differentiable dynamical systems, it is an important problem to recognize
when a dynamic feature of a system is also present in all nearby systems (with respect
to some topology) and what are the conditions on the initial system that guarantee this
fact. In other words, we look for a dynamic property of a particular system which is
robust (or stable) under perturbations. As a guiding principle, a robust property should
be reflected into some property of the tangent map, that is, we look for a property on the
tangent map that guarantees that some phenomenon is robust.

There are many examples of the situation above. In particular, to start focusing on our
goal, let us mention the robust transitivity: there are many examples of transitive systems
that also remain transitive under Cr perturbations. The most well-known example is a
transitive Anosov diffeomorphism. In the category of non-hyperbolic diffeomorphisms, the
first example was given by Shub [Sh] on the torus T

4. Another one by Mañé [Ma] followed
on the torus T

3. Bonatti and Dı́az [BD] give a general geometric construction that leads to
robustly transitive systems. All these (non-hyperbolic) examples are partially hyperbolic
systems (although some new examples [BV] were shown to exhibit just a dominated
splitting): the tangent bundle TM splits into three invariant sub-bundles Ess ⊕ Ec ⊕ Euu

where vectors in Ess are forward contracted, vectors in Euu are backward contracted, and
vectors in Ec are less contracted than any vector in Ess and less expanded than vectors
in Eu (see definition below). The distributions Ess and Euu of a partially hyperbolic
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system are always uniquely integrable and lead to foliations on the manifold (i.e. a partition
of the manifold into Cr leaves) called the (strong) stable and unstable foliations.

We will show that the mentioned examples share a stronger property: not only are they
robustly transitive but also (at least) one of these foliations is robustly minimal, that is,
every leaf is dense in the manifold. Let us mention here that in [BDU] it is shown that,
C1 generically, one of the (strong) foliations of a partially hyperbolic robustly transitive
diffeomorphism on a three-dimensional manifold M3 is minimal.

In this paper we are concerned with partially hyperbolic systems for which one of the
strong foliations, say the stable one, is minimal and we will give sufficient conditions for
this foliation to remain minimal under Cr perturbations.

Let us be more precise. A diffeomorphism f : M → M is said to be partially
hyperbolic provided the tangent bundle splits into three non-trivial sub-bundles TM =
Ess ⊕ Ec ⊕ Euu which are invariant under the tangent map Df and there are numbers
0 < λ < µ < 1 such that for all x ∈ M ,

‖Df|Ess (x)‖ < λ, ‖Df −1
|Euu(x)‖ < λ, µ < ‖Df −1

|Ec(x)‖, ‖Df|Ec(x)‖ < µ−1.

It is well known (see §2) that the sub-bundles Ess and Euu are uniquely integrable
and hence we have two foliations in M called the (strong) stable one, denoted by F ss(f ),
and the (strong) unstable one, denoted by Fuu(f ), which are tangent to Ess and Euu

respectively. We shall denote by F ss(x, f ) and by Fuu(x, f ) the leaves of these foliations
passing through the point x. One of these foliations is said to be minimal provided every
leaf of this foliation is dense in M .

On the other hand, every diffeomorphism g : M → M sufficiently C1 close to a
partially hyperbolic diffeomorphism f is also partially hyperbolic and therefore it has two
invariant foliations F ss(g) and Fuu(g).

Definition 1.1. Let f : M → M be a Cr partially hyperbolic diffeomorphism. We say that
F ss(f ) is Cr -robustly minimal if there exist a Cr neighborhood U(f ) such that F ss(g) is
minimal for every diffeomorphism g ∈ U(f ).

It is not difficult to see that if (for instance) F ss(f ) is robustly minimal then f is
robustly transitive, i.e. every diffeomorphism C1 close to f is transitive.

Next, we will define the key property that guarantees the robustness of a stable
foliation of a partially hyperbolic diffeomorphism: some hyperbolicity (SH) on the
central distribution Ec at some points. Before we do, let us introduce some notation:
if L : V → W is a linear isomorphism between normed vector spaces we denote by m{L}
the minimum norm of L, i.e. m{L} = ‖L−1‖−1.

Definition 1.2. (Property SH) Let f ∈ Diffr (M) be a partial hyperbolic diffeomorphism.
We say that f exhibits the property SH (or has the property SH) if there exist λ0 > 1,
C > 0 such that for any x ∈ M there exists yu(x) ∈ Fuu

1 (x, f ) (the ball of radius 1 in
Fuu(x, f ) centered at x) satisfying

m{Df n
|Ec(f �(yu(x)))

} > Cλn
0 for any n > 0, � > 0.

In other words, we require that in any disk of radius 1 in any leaf of Fuu(f ) there
is a point yu where the central bundle Ec has a uniform expanding behavior along
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the future orbit of yu. A nice image of the above is the existence of a hyperbolic set
(with Ec being part of the unstable bundle) such that the local stable manifold of this
hyperbolic set is a global section to the foliation Fuu(f ).

THEOREM A. Let r ≥ 1 and let f ∈ Diffr (M) be a partial hyperbolic diffeomorphism
satisfying Property SH and such that the (strong) stable foliation F ss(f ) is minimal. Then,
F ss(f ) is C1 (and hence Cr ) robustly minimal.

A similar result for the foliation Fuu(f ) holds provided f −1 satisfies Property SH.
As an immediate consequence we have that if f satisfies the conditions of Theorem A then
it is robustly transitive. The proof of Theorem A will be given in §4.

We will use our theorem to reconstruct the examples by Shub and Mañé (see §§5 and 6)
and showing that indeed one of the strong foliations is robustly minimal. It can be proven
also that the examples by Bonatti and Dı́az also satisfy Property SH, but to do so we
have to go into the details of their geometric construction and this exceeds the purpose
of this paper. Let us end this introduction by asking if a Cr robustly transitive partially
hyperbolic diffeomorphism must exhibit Property SH (at least generically). In other words,
is Property SH a necessary condition for generic robustly transitive partially hyperbolic
systems?

2. Preliminaries
In this section we recall some well-known results regarding partially hyperbolic systems
(that we have already mentioned in the introduction). We refer to [HPS] for a general
background on the topics we will review.

As we said in the introduction, a diffeomorphism f : M → M is partially hyperbolic
provided the tangent bundle splits into three non-trivial sub-bundles TM = Ess ⊕Ec⊕Euu

which are invariant under the tangent map Df and there are 0 < λ < µ < 1 such that for
all x ∈ M

‖Df|Ess (x)‖ < λ, ‖Df −1
|Euu(x)‖ < λ, µ < ‖Df −1

|Ec(x)‖, ‖Df|Ec(x)‖ < µ−1.

LEMMA 2.0.1. Let f ∈ Diffr (M) be a partially hyperbolic diffeomorphism. Then there
exist a Cr neighborhood of f, say U , 0 < λ < λ1 < µ1 < µ < 1 and continuous functions
Ess : U → C(M, TM), Ec : Diff(M) → C(M, TM) and Euu : U → C(M, TM) such
that, for any g ∈ U and x ∈ M , we have the following:
(1) TM = Ess

g ⊕ Ec
g ⊕ Euu

g , this decomposition is invariant under Dg and no one of
these sub-bundles is trivial;

(2) ‖Dg|Ess (x)‖ < λ1, ‖Dg−1
|Euu(x)‖ < λ1;

(3) µ1 < ‖Dg−1
|Ec(x)‖, ‖Dg|Ec(x)‖ < µ−1

1 .

The sub-bundles Ess
g and Euu

g are uniquely integrable and form two foliations F ss

and Fuu.

THEOREM 2.1. Let U be as in Lemma 2.0.1. Then, for each g ∈ U there are two partitions
F ss(g) and Fuu(g) of M such that for each x ∈ M the elements of the partitions that
contain x, denoted by F ss(x, g) and Fuu(x, g), are C1 submanifolds (called leaves) such
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that TxF ss(x, g) = Ess
g (x) and TxFuu(x, g) = Euu

g (x). These submanifolds depend
continuously (on compact subsets) on x ∈ M and g ∈ U .

These submanifolds F ss(x, g) and Fuu(x, g) inherit the Riemannian metric on M .
We shall denote by F ss

r (x, g) (respectively Fuu
r (x, g)) the ball in F ss(x, g) (respectively

Fuu(x, g)) of radius r centered at x.
The sub-bundle Ecu = Ec ⊕ Euu (called center-unstable) is not (in general) integrable.

However, we can choose a continuous family of locally invariant manifolds tangent to it.
Let dim Ecu = l and denote by Iε the ball of radius ε in R

l .

LEMMA 2.0.2. Let U be as in Lemma 2.0.1. There exists a continuous map � : M ×U →
Emb1(I1,M) such that, if we set Wcu

ε (x, g) = �(x, g)Iε , then the following hold:

(1) TxW
cu
ε (x, g) = Ecu(x, g);

(2) given ε > 0 there exists r = r(ε) such that g−1(Wcu
r (x, g)) ⊂ Wcu

ε (g−1(x), g).

For the sake of simplicity we shall identify Wcu
ε (x, g) with the ball of radius ε in

Wcu
1 (x, g).

LEMMA 2.0.3. Let U be as in Lemmas 2.0.1 and 2.0.2. Given 0 < λ < λ1 < 1 there
exists r0 such that if g ∈ U and x ∈ M satisfy

n∏

j=0

‖Dg−1
|Ecu(g−j (x))

‖ < λn, 0 ≤ n ≤ m,

then g−m(Wcu
r0

(x, g)) ⊂ Wcu
λm

1 r0
(g−m(x), g).

Proof. Let c > 0 be such that cλ < λ1 and let ε be such that if dist(z, y) < ε then

c−1 <
‖Dg−1

|Ecu(z)‖
‖Dg−1

|Ecu(y)‖
< c. (1)

Let ε be such that if z ∈ Wcu
ε0

(y, g) then dist(z, y) < ε. Let r0 = r(ε0) from Lemma 2.0.2.
It follows that g−1(Wcu

r0
)(x, g) ⊂ Wcu

ε0
(g−1(x), g). On the other hand, by (1), we conclude

that

g−1(Wcu
r0

)(x, g) ⊂ Wcu
λ1r0

(g−1(x), g) ⊂ Wcu
r0

(g−1(x), g).

Arguing by induction up to m the result follows. �

3. Robustness of Property SH
In this section we prove that Property SH persists under slight perturbations.

THEOREM 3.1. Let f ∈ Diffr (M) be a partially hyperbolic diffeomorphisms exhibiting
Property SH. Then, there are U(f ), C′ > 0 and σ > 1 such that for any g ∈ U it follows
that for any x ∈ M there exist yu ∈ Fuu

1 (x, g) satisfying

m{Dgn
|Ec(g�(yu))

} > C′σn for any n > 0, � > 0.
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Proof. Observe that to prove the theorem it is enough to find U and k0 such that for any
x ∈ M there exist yu ∈ Fuu

2 (x, g) satisfying

m{Dg
k0n

|Ec(gk0�(yu))
} > 2n for any n > 0, � > 0. (2)

Changing f by a power of itself, we can assume that there is λ0 > 1 such that for any
x ∈ M there exists yu ∈ Fuu

1 (x) such that

m{Df n
|Ec(f �(yu))

} > λn
0

for any n > 0, � > 0. We define the set Hu
λ0

(f ) as

Hu
λ0

(f ) = {
y ∈ M : m{Df n

|Ec(f �(y))
} ≥ λn

0 for n > 0, � > 0
}
. (3)

Observe that this set is closed and Fuu
1 (x) ∩ Hu

λ0
(f ) is not empty.

Notice that there exist λ1, 1 < λ1 < λ0, ε0 > 0 and U0(f ) such that

if x ∈ Hu
λ0

(f ), y ∈ M and g ∈ U0(f )

satisfy dist(f i(x), gi(y)) < ε0 for 0 ≤ i ≤ n,

then m{Dgk
|Ec(gj (y))

} > λk
1 for 0 ≤ j ≤ n and 0 ≤ k ≤ n − j.

(4)

Next, we choose a positive integer m0 such that for any g ∈ U0 and x ∈ M it follows
that

Fuu
2 (gm0(x), g) ⊂ gm0(Fuu

ε0/2(x, g)). (5)

Afterwards, we consider n0 such that for any g ∈ U0 and z ∈ M it follows that

λ
n0
1 sup{m{Dg

m0|Ec
z
} : z ∈ M} > 2. (6)

Now, given ε0 from (4) and n0 from (6) we take ε1 and U1 ⊂ U0 such that for any
g ∈ U1 we have

if dist(x, y) < ε1 then dist(gi(z), f i(y)) < ε0/2 for 1 ≤ i ≤ n0. (7)

Moreover, we can choose U2 ⊂ U1 such that

if g ∈ U2 then dist(Fuu
1 (x, g),Hλ0(f )) < ε1 for any x ∈ M. (8)

Set k0 = m0 +n0 where m0 and n0 are as in (5) and (6) respectively. We will prove that
for g ∈ U = U2 and k0 we have (2) for some yu ∈ Fuu

2 (x, g) and any x ∈ M . In order
to find such a point yu we will proceed by induction to construct sequences {zu

n}n≥0 and
{xn}n≥0 such that:
(i) zu

j+1 ∈ Fuu
1 (gk0(zu

j ), g) for 0 ≤ j ≤ n − 1;
(ii) xj ∈ Hu

λ0
(f );

(iii) dist(zu
j , xj ) < ε1.

Assume for the moment that we have already constructed such sequences and set
yu
n = g−k0n(zu

n). Let us show that yu
n ∈ Fuu

2 (x, g) and for any 0 ≤ j ≤ n, 0 < i ≤ n − j

we have
m{Dg

k0i

|Ec(gk0j (yu
n))

} > 2i . (9)
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First observe that, from (5), g−k0(zu
n) ∈ Fuu

ε0/2(z
u
n−1) ⊂ Fuu

2 (gk0(zu
n−2)). By induction, it

follows that g−k0(j−1)(zu
n) ∈ Fuu

2 (gk0(zu
n−j )) and hence yu

n ∈ Fuu
2 (x, g). Moreover, again

by (5), we have that g−m0−k0(j−1)(zu
n) ∈ Fuu

ε0/2(g
n0(zu

j )). Therefore, for l = j, . . . , i − 1
and d = 0, 1, . . . , n0 we have

dist(gd+k0l(yu
n), gd(zu

l )) < ε0/2.

On the other hand, since dist(zu
l , xl) < ε1, from (7) we conclude that dist(gd(zu

l ),

f d(xl)) < ε0/2 and so
dist(gd+k0l (yu

n), f d(xl)) < ε0.

Thus, using (4) and (6) we get m{Dg
k0

|Ec(gk0l (yu
n ))

} > 2 and (9) follows. The desired point yu

is obtained as any accumulation point of the sequence {yu
n}.

To finish the proof of our theorem we have just to show how to construct
the sequences {zu

n} and {xn}. However, the construction is straightforward: since
dist(Fuu

1 (x, g),Hu
λ0

(f )) < ε1 pick zu
0 ∈ Fuu

1 (x, g) and x0 ∈ Hu
λ0

(f ) such that

dist(zu
0, x0) < ε1. Once we have constructed zu

j and xj , pick zu
j+1 ∈ Fuu

1 (gk0(zu
j ), g)

and xj+1 ∈ Hu
λ0

(f ) such that dist(zu
j+1, xj+1) < ε1. �

4. Proof of Theorem A
Let f be a partially hyperbolic diffeomorphism satisfying Property SH and such that the
(strong) stable foliation F ss is minimal, i.e. every leaf F ss(x, f ) is dense in M . We have
to show that there is a neighborhoodU(f ) such that for every g ∈ U(f ) the (strong) stable
foliation of g is dense, i.e. every leaf F ss(x, g) is dense.

From Theorem 3.1 we know that there exists a neighborhood U1(f ) and C > 0, 1 < σ

such that for every g ∈ U1 and x ∈ M there exists a point yu ∈ Fuu
1 (x, g) such that

m{Dgn
|Ec(g�(yu))

} > Cσn for any n > 0, � > 0. (10)

We may assume that C = 1 (otherwise we take a fixed power of every g ∈ U1(f )).
Let λ = σ−1 and fix 0 < λ < λ1 < 1 and let r0 be as in Lemma 2.0.3.

On the other hand, fix a number δ > 0 arbitrarily small. Since the stable foliation
F ss(f ) is minimal there exists K1 > 0 such that F ss

K1
(x, f ) is δ/2 dense, meaning that

F ss
K1

(x, f ) ∩ B(z, δ/2) �= ∅ for every x, z ∈ M . On the other hand, if δ is small enough, it
follows that if y ∈ B(z, δ/2) then F ss

δ (y, f )∩Wcu
r0/2(z, f ) �= ∅. Thus, setting K := K1+δ,

we may assume that F ss
K (x, f ) ∩ Wcu

r0/2(z, f ) �= ∅ for every x, z ∈ M . Hence there exists
a neighborhood U(f ) ⊂ U1(f ) such that for every g ∈ U(f ) and x, z ∈ M the following
holds:

F ss
2K(x, g) ∩ Wcu

r0
(z, g) �= ∅. (11)

Let us prove that for g ∈ U(f ) the stable foliation F ss(g) is minimal. For this
purpose, fix x ∈ M and U an open subset of M . Let z ∈ U and let β > 0 be such
that Fuu

β (z, g) ⊂ U . Take n0 such that gn0(Fuu
β (z, g)) ⊃ Fuu

1 (gn0(z), g). Consider the
point yu ∈ Fuu

1 (gn0(z), g) given by Theorem 3.1 and let η > 0 be such that

g−n0(Wcu
η (yu, g)) ⊂ U. (12)
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Next, choose a positive integer m such that λm
1 r0 < η and set k = n0 + m. From (11) we

have that

F ss
2K(gk(x), g) ∩ Wcu

r0
(gm(yu), g) �= ∅. (13)

Since Ecu = Ec ⊕ Eu and this decomposition is dominated, there is L > 0 such that
‖Dg−n

|Ecu‖ ≤ L sup{‖Dg−n
|Eu‖, ‖Dg−n

|Ec ‖}. For the sake of simplicity, we will assume that
L = 1. From (10) we know that

n∏

j=0

‖Dg−1
|Ec(gm(yu))‖ < λn, 0 ≤ n ≤ m

and therefore
n∏

j=0

‖Dg−1
|Ecu(gm(yu))

‖ < λn, 0 ≤ n ≤ m.

From Lemma 2.0.3 we conclude that

g−m(Wcu
r0

(gm(yu), g)) ⊂ Wcu
λm

1 r0
(yu, g) ⊂ Wcu

η (yu, g)

and hence, using (12), we have g−k(Wcu
r0

(gm(yu), g)) ⊂ U . Finally, this and (13) imply
that F ss(x, g) ∩ U �= ∅ and the proof of Theorem A is completed.

5. Shub’s example on T
4

Here we will show that Shub’s example of a non-hyperbolic robustly transitive
diffeomorphism on T

4 can also be derived from our methods.

Let f : T
2 → T

2 be an Anosov diffeomorphism having two fixed points p and q .
Since f is Anosov, T T

2 = Ess ⊕ Euu with ‖Df|Ess ‖ < λ < 1 and ‖Df −1
|Euu‖ < λ.

Now, consider a smooth family of torus diffeomorphisms gx : T
2 → T

2 indexed in
x ∈ T

2 such that the following hold:

• T T
2 = Es(gx) ⊕ Ec(gx) invariant under D(gx) and such that ‖D(gx)|Es (gx)‖ <

µ < µ1 < 1 and µ < µ1 < ‖D(gx)|Ec(gx)‖ ≤ µ−1;
• for all x ∈ T

2, gx preserves a cone field Cs and Ccu;
• gp is Anosov and gq is a DA (derived from Anosov) map;
• gx(p) = p for every x and p is an attractor for gq .

We assume (taking a power of f if necessary) that λ < µ. Next, we define the map
on T

4 which is the candidate to be robustly transitive:

F : T
2 × T

2 → T
2 × T

2, F (x, y) = (f (x), gx(y)).

It is not difficult to see that F is partially hyperbolic T(x,y)T
4 = Ess(x, y)⊕Es(x, y)⊕

Ec(x, y)⊕Eu(x, y). We set Es = Ess ⊕Es . Let us show that the stable foliation (tangent
to Ess ⊕ Es ) is minimal. First observe that

Ws({p} × T
2) =

⋃

z∈T2

Wss(p, z) = Wss(p, f ) × T
2
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and hence is dense in T
2 × T

2. Moreover, since gp is Anosov, we have that

Ws(p, z) =
⋃

y∈Ws(z,gp)

Wss(p, y)

is dense on T
2 × T

2 for all (p, z) ∈ {p} × T
2.

On the other hand, for every (z,w) ∈ T
2 × T

2 we have that

Wuu((z,w)) ∩ Ws({p} × T
2) �= ∅.

From this it follows that the stable foliation F ss (whose leaves are tangent to Ess ⊕ Es) is
minimal.

Finally, as we observed above for some ε > 0 and r > 0 we have for every
(z,w) ∈ T

2 × T
2 that

Wuu
ε ((z,w)) ∩ Ws

r ({p} × T
2) �= ∅, (14)

which implies (since gp is Anosov and DF|{0}×Ec(p,z) is uniformly expanding in the future)
that Property SH is satisfied, i.e. if yu is a point in the intersection given by (14) we may
find constants C > 0 and σ > 1 such that

DFn
/Ec(Fm(yu)) > Cσn for all n,m ≥ 0

(recall that here Ec is one-dimensional). Thus, F : T
4 → T

4 as above is in the hypothesis
of Theorem A and so the stable foliation of F is robustly minimal and therefore F is
robustly transitive. Since F has a hyperbolic periodic point of index 2 and another one of
index 3 we conclude that F is non-hyperbolic.

6. Mañé’s example on T
3

In this section we will prove that certain DA (derived from Anosov) maps on T
n have

the stable foliation robustly minimal and hence they are robustly transitive. This is an
alternative approach to the one given by Mañé in [Ma].

Let f : T
n → T

n be an Anosov diffeomorphism such that T T
n = Ess ⊕ Eu ⊕ Euu,

none of the above trivial (and hence n ≥ 3). Since f is Anosov (on a torus) it is transitive
and so the stable foliation is minimal. Let p be a fixed point of f and let U(p) be a small
open ball containing p. Let gt : T

n → T
n,−1 ≤ t ≤ 0, be a smooth isotopy, supported

in U and such that gt is Anosov for t < 0, g0 is not Anosov but conjugated to f, and
T T

n = Ess(gt ) ⊕ Ec(gt ) ⊕ Euu(gt ). It follows that F ss(g0) is minimal. Let 0 < λ < 1
be such that ‖D(gt )

−1
|Euu‖ < λ. By replacing f by a power of itself we may assume that

λ < 1/4. Now, if the ball U(p) is small enough, we have that for any x ∈ T
n there is

a point zx ∈ Fuu
1 (x, g0) such that Fuu

1/4(zx) ∩ U = ∅. Therefore, we have that in any
Fuu

1 (x, g0) there is a point yu whose forward orbit never meets U . Since the maximal
invariant set outside U, ⋂

n∈Z
g0(T

n\U)

is hyperbolic (recall that the support of the isotopy is inside U ), we conclude that
g0 satisfies Property SH. Therefore F ss(g0) is robustly minimal and g0 is robustly
transitive. Notice that there are DA maps as close as we wish to g0 and therefore
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we have DA maps on T
n such that their (strong) stable foliation is robustly minimal

(and so they are robustly transitive).
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