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Abstract

Let f : M → M be an expansive homeomorphism with dense topo-
logically hyperbolic periodic points, M a compact manifold. Then
there is a local product structure in an open and dense subset of M .
Moreover, if some topologically hyperbolic periodic point has codimen-
sion one, then this local product structure is uniform. In particular,
we conclude that the homeomorphism is conjugated to a linear Anosov
diffeomorphism of a torus.

1 Introduction

Let M be a compact connected manifold of dimension n and f : M → M
an expansive homeomorphism, that is, there exists α > 0 such that every
two points have iterates which are separated at least α from each other (the
existence of α is independent of the metric, furthermore, the notion can be
defined independently of the metric).

A paradigm of expansive homeomorphisms are Anosov diffeomorphisms.
Other class of expansive homeomorphisms are pseudoAnosov maps in sur-
faces of genus g > 2. They satisfy that Ω(f) = M and they have dense
topologically hyperbolic periodic points. In surfaces, pseudoAnosov maps
and linear Anosov homeomorphisms (that is, conjugated to a linear Anosov
diffeomorphism) describe completely expansive dynamics as was proved in
[Lew2, Hir2] obtaining a global classification of expansive homeomorphisms.
For this classification, the key step is to prove that in a reduced neighbor-
hood of every point there is a local product structure. To do this, in [Lew2] it
is proved that every point in an expansive homeomorphism has a uniformly
big connected stable and unstable set. On surfaces, in some way this is
enough to find the local product structure since proving that the connected
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sets intersect is enough (using Invariance of Domain Theorem, see [Sp]) to
find local product structure (these connected sets contain arcs and so a map
from [0, 1]2 to a neighborhood of the point can be constructed). In higher
dimensions, the existence of connected stable and unstable sets is not enough
to find a local product structure, as shown in the example from [FrRo].

A surprising result is the one of [Vie2], since it proves that in dimension
3 expansive homeomorphisms whose topologically hyperbolic periodic points
are dense, are conjugated to linear Anosov diffeomorphisms in the torus T3.
For doing this it is also very important to find a local product structure in
an open and dense subset of the manifold (see [Vie1]). Again, the technique
is to obtain intersections between stable and unstable sets of topologically
hyperbolic periodic points which are near and use Invariance of Domain
Theorem. This is not completely direct since, a priori, the size of the stable
and unstable sets of the periodic points is not controlled, and must study
separation properties of these sets to ensure the intersection. The hypothesis
of having dense topologically hyperbolic periodic points was weakened in
[Vie4] changing it for having Ω(f) = M (a necessary condition as can be
seen with the example in [FrRo]) and some smooth hypothesis (f must be a
C1+θ diffeomorphism) to use Pesin theory.

In this work we obtain local product structure in an open dense sub-
set of M when topologically hyperbolic periodic points are dense in M ; in
fact, we obtain local product structure in neighborhoods of every periodic
point. When the codimension of topologically hyperbolic periodic points is
arbitrary, this result is optimal, since in the case of a product of two pseu-
doAnosov maps the local product structure can not be defined in all the
manifold.

The somewhat strange aspect of the result from [Vie2] is that it proves
that in dimension 3 no singularities can appear, not as in the surface case
where pseudoAnosov maps are expansive with dense topologically hyperbolic
periodic points. However, this result has a nice counterpart in the theory of
Anosov diffeomorphisms where it is known that codimension one Anosov
diffeomorphisms can only exist in torus and be conjugated to a linear one
(see [Fr, New]).

Maybe this connection is not a priori obvious, but we give in this work
more evidence of it, proving that if the topologically hyperbolic periodic
points are dense in M (with dimension higher than 2) and one of them has
codimension one, then, the homeomorphism is conjugated to a linear Anosov
diffeomorphism of Tn. The reason why this does not work in dimension 2
is that we can disconnect an arc by removing from it one point and not a
disc of dimension > 1. The proof in this case is based on proving first that
singularities are finite, and then discarding their existence.
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1.1 Definitions and presentation of results

In this section we define the concepts that we use in the course of this paper
and give precise statements of the results in it.

Definition 1.1. We say an homeomorphism f : M → M is expansive if
α > 0 exists satisfying that if x, y ∈ M are different points, then, there exists
n ∈ Z such that dist(fn(x), fn(y)) > α.

Definition 1.2. We say that a periodic point p ∈ M of period l is topo-
logically hyperbolic (p ∈ PerH) if f l is locally conjugated to the linear map
L : Rr ×Rn−r → Rr ×Rn−r given by L(x, y) = (x/2, 2y). In this case we say
that p ∈ Perr

H ⊂ PerH , we say that r is the index of p.

In our case f is expansive, so, due to results in [Lew1] (Lemma 2.7) it is
true that Per0

H = Pern
H = ∅ since no stable points exist.

We denote as Hk(A) (Hk
c (A)) the k dimensional reduced homology (co-

homology with compact support) of A with coefficients in R. As usual,
we define the stable and unstable sets of a point x ∈ M as W s(x) =
{y ∈ M : dist(fn(x), fn(y)) → 0, n → +∞} and W u(x) = {y ∈ M :
dist(fn(x), fn(y)) → 0, n → −∞}. The local stable and unstable sets (ε-
local) are defined as follows W s

ε (x) = {y ∈ M : dist(fn(x), fn(y)) ≤ ε, ∀n ≥
0} and W u

ε (x) = {y ∈ M : dist(fn(x), fn(y)) ≤ ε, ∀n ≤ 0}. We denote as
ccp(X) the connected component of X ⊂ M containing p.

We prove a separation property verified by the stable and unstable set of
a point p ∈ Perr

H . The proof of this Proposition follows the ideas in [Vie1],
[Vie2] and it is developed in section 2. The property is the following.

Proposition 1.1. Let f : M → M be an expansive homeomorphism. Then,
there exists ε > 0 such that for all x ∈ M , p ∈ Perk

H ∩Bε(x) and V ⊂ Bε(x)
homeomorphic to Rn and containing p, we have Hn−k−1(V \ Sp) ∼= R with
Sp = ccp(V ∩W s(p)).

An analogous result is verified for the unstable set.

Remark 1.1. If f : M → M is an expansive homeomorphism and z ∈ M
then, for all ε > 0 exists δ > 0 such that if Sz = ccz(W

s(z) ∩ Bδ(z)) then
Sz ⊂ W s

ε (z). See [Lew2].

Definition 1.3. We say that p ∈ M has local product structure if a map
h : Rk × Rn−k → M which is a homeomorphism over its image (p ∈ Im(h))
exists and if there exists ε > 0 such that for all (x, y) ∈ Rk×Rn−k it is verified
that h({x}×Rn−k) = W s

ε (h(x, y))∩ Im(h) and h(Rk×{y}) = W u
ε (h(x, y))∩

Im(h). We say that the local product structure is a uniform local product
structure if in addition to the previous conditions, there exists r > 0 such
that for all x ∈ M the points in Br(x) admit a local product structure.
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We remark that the points admitting a local product structure are an
open set. We call the points which do not admit a local product structure
singularities.

Theorem 1.1. Let f : M → M be an expansive homeomorphism such that
PerH = M . Then, every point in PerH admits a local product structure. In
particular, the set of points with local product structure is open and dense in
M .

Once this is obtained, in [Vie2] singularities are studied, discarding their
existence by studying the way in which the product structure is glued to-
gether in the singularity and proving that this can not happen by discarding
the possible dimensions in which that gluing may happen one by one . As
was already explained, with the product between the Anosov and the pseudo-
Ansov we see that this can not be done in dimension larger than 3, unless
we add the hypothesis of having Pern−1

H = PerH . This will be studied in
section 4.3.

It is worth observing that the fact of having a local product structure
in an open and dense subset does not imply, a priori, that the index of
the topologically hyperbolic periodic points should be constant in all the
manifold. We shall prove this is true, under the hypothesis of Theorem 1.1,
for dimensions 3 and 4. For doing that, in section 4.1 several properties of

the points in Pern−1
H are studied. The following sharper result is obtained.

Theorem 1.2. Let f : M → M be an expansive homeomorphism verifying
PerH = M . Then, Pern−1

H = PerH or Pern−1
H = ∅. Analogously for Per1

H .

Corollary 1.1. Let f : M → M be an expansive homeomorphism of a
manifold of dimension 3 or 4 with PerH(f) = M . Then, every topologically
hyperbolic point has the same index.

Proof. In dimension 3 we have PerH = Per1
H ∪Per2

H (see [Lew1], Lemma
2.7, no stable points can exist); the Theorem 1.2 concludes the proof. In
dimension 4, we have PerH = Per1

H∪Per2
H∪Per3

H and since Per1
H∪Per2

H = ∅
implies PerH = Per2

H the proof finishes by using the Theorem 1.2.
�

Finally, in section 4.3 we study the singularities in the case of having
one topologically hyperbolic point of index n − 1 (or 1), discarding their
existence and concluding that there is a uniform local product structure in
all the manifold.

Definition 1.4. Let f : M → M be a homeomorphism, we say it verifies
the pseudo orbit tracing property if for all α > 0 exists K > 0 such that if
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{xn}n∈Z verifies dist(xn, f(xn−1)) < α (i.e. it is an α−pseudo-orbit) then
there exists x ∈ M such that dist(fn(x), xn) < K for all n ∈ Z (i.e. x
K−shadows the pseudo orbit).

Theorem 1.3. Let f : M → M be an expansive homeomorphism verifying
PerH = M and Pern−1

H 6= ∅ or Per1
H 6= ∅ . Then, there is a uniform local

product structure in all the manifold. In particular, the pseudo orbit tracing
property is verified.

In dimension 3, in [Vie3] the uniform local product structure is used
for proving that M = T3 and concluding that f must be conjugated to a
linear Anosov diffeomorphism. In higher dimensions, as far as we know,
there are no published results which ensure that a manifold with uniform
local product structure of codimension one is a torus. However, our results
give a codimension one foliation transversal to a dimension one foliation.
It is known from the work of Franks that if the foliations are differentiable
this implies that the manifold is a torus. This is also the case without the
differentiability assumption. The proof is a straightforward adaptation of the
work in [Vie3] and [Fr]. However, we shall sketch how to adapt the proof for
the sake of completeness. We then have the following Corollary, which is the
main result of this paper.

Corollary 1.2. Let f : M → M be an expansive homeomorphism verifying
PerH = M . Suppose Pern−1

H 6= ∅ or Per1
H 6= ∅. Then, M = Tn and f is

conjugated to a linear Anosov diffeomorphism.

Proof. In dimension 2 it is a consequence of the work of Lewowicz [Lew2].
In higher dimensions it is consequence of the Theorem 1.3 and a result of
Hiraide ([Hir1]) which ensures that an expansive homeomorphism in Tn with
the pseudo orbit tracing property is conjugated to a linear Anosov diffeo-
morphism. The proof that M = Tn is sketched at the Appendix of this
work.

�
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2 Separation properties

In this section, with the help of the ideas in [Vie1], we prove the Proposition
1.1.

The following Lemma is a general homological property of euclidean
spaces.

Lemma 2.1. Let B be a set homeomorphic to Rn and F ⊂ B a closed
connected set homeomorphic to an open set of Rk. Then, Hn−k−1(B\F ) ∼= R.

Proof. Let U = B \ F . We then have the following long exact sequence
of homology:

. . . → Hl(B) → Hl(B, U) → Hl−1(U) → Hl−1(B) → . . .

We know Hl(B) = 0 (recall we work with reduced homology), so, we have
Hl(B, U) ∼= Hl−1(U).

In particular, it is true that Hn−k(B, U) ∼= Hn−k−1(U). Using the duality
Theorem of Alexander-Pontryagin we also deduce that Hn−k(B, U) ∼= Hk

c (F )
(see [Sp]). Applying the same Theorem, now to (F, ∅), we can conclude that
H0(F, ∅) ∼= Hk

c (F ). Therefore, we can deduce (using that H0(F, ∅) ∼= R since
F is connected) that Hn−k−1(U) ∼= R as we desired.

�

Lemma 2.2. Let f : M → M be an expansive homeomorphism. Then,
there exists ε > 0 such that for all p ∈ Perr

H exists φ : Dr → W s(p) a
surjective homeomorphism over its image satisfying that: φ(0) = p and that
for all y : [0, 1] → Dr continuous such that y(0) = 0 and y(1) ∈ ∂Dr exists
s ∈ (0, 1] such that φ ◦ y(s) /∈ Bε(p).

Proof. Expansivity ensures the existence of ε > 0 such that for every
connected set C with diameter smaller than ε satisfying that the diameter of
fn(C) is bigger than the constant of expansivity for some n ≤ 0, then, the
diameter of fm(C) is bigger than ε for all m < n.

If this affirmation were false there would exist connected sets Cn with
diameter smaller than 1/n and numbers kn > 0 and ln > kn verifying that
the diameter of f−kn(Cn) is bigger than the expansivity constant and the
diameter of f−ln(Cn) smaller than 1/n. Using the uniform continuity of f
we obtain that kn → +∞ and ln − kn → +∞. Connectedness of Cn and its
iterates allows us to find points xn and yn in f−mn(Cn) (with 0 ≤ mn ≤ ln
and ln −mn →∞) such that α/2 ≤ d(xn, yn) < α and d(f i(xn), f i(yn)) < α
for all −ln + m ≤ i ≤ m. Considering limit points of the sequences xn and
yn we contradict the expansivity of f .
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Without loss of generality we can suppose that p is a fixed point and
we can consider the conjugation h : Dr → W s(p) between f and the linear
hyperbolic map. Also, we know that there exists N < 0 such that for all
x ∈ h(∂Dr) ⊂ W s(p) exists n ∈ [N, 0] satisfying fn(x) /∈ B(p, α) (if not,
we can find points in h(∂Dr) which stay in B(p, α) for an arbitrarily large
quantity of iterates of f , taking limit points of that sequences we contradict
expansivity). We then define φ : Dr → W s(p) by φ(x) = fN ◦ h(x). Then,
for every y connecting p with φ(∂Dr) we have that y([0, 1]) is a connected
set of diameter bigger than ε. For this ε the Theorem works.

�

Proof of Proposition 1.1. After what we have already proved, to
conclude the proof, it is enough to prove that if we have a homeomorphism
over its image φ : Dk → Rn such that φ(0) = 0 and such that for every curve
y : [0, 1] → Dk verifying y(0) = 0 and y(1) ∈ ∂Dk satisfies that φ ◦ y([0, 1])
is not contained in Bε(0), so, considering X, the connected component of 0
in φ−1(Bε(0)) we have Hn−k−1(Bε(0) \ φ(X)) = R.

In order to do this, let F = φ(X) and B = Bε(0). Since B is open, we
have that φ−1(B) is an open set of Dk. Since Dk is locally arcconnected,
X, being a connected component of an open set is open in Dk and locally
arcconnected. This implies that it is arcconnected.

We have that X ∩ ∂Dk = ∅ since in the other case a curve joining 0 with
∂Dk whose image by φ would be included in B would exist. Then, F is
homeomorphic to an open set of Rk. Since X is a connected component, X
is closed in φ−1(B) so F is closed in B. Lemma 2.1 implies the thesis.

�

3 Local product structure

The construction of a local product structure is strongly based on proving
that stable and unstable sets of the periodic points intersect. This allows us
to define a map between W s

ε (p) ×W u
ε (p) and a neighborhood of p which is

a homeomorphism by the invariance of domain theorem and has the desired
properties. In this section we prove that this intersection occurs for periodic
points close to a given one.

Let ∆m = {(x1, . . . xm+1) ∈ Rm+1 : xi ≥ 0 x1 + . . . xm+1 = 1} the
canonical simplex of dimension m. We denote γ =

∑
i aiσi to a m−chain,

where σi : ∆m → V (ai ∈ R). In the course of this section, γ denotes the
chain and the union of the images of σi indifferently.
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Lemma 3.1. For all x ∈ M , there exists ε > 0 such that if V ⊂ Bε(x) is
homeomorphic to Rn and p ∈ V ∩ Perl

H then there exists a cycle γ ⊂ Up

which is non trivial in the n− l − 1 dimensional homology of V \ Sp (where
Sp = ccp(V ∩ W s(p)) and Up = ccp(V ∩ W u(p))). Furthermore, given K
compact in V we can choose γ so that γ ⊂ V \K.

Proof. Because of Proposition 1.1 we know that ε0 > 0 exists verifying
that Hn−l−1(V \Sp) 6= 0. Let γ be a cycle such that its n− l− 1 dimensional
homology class [γ] is non trivial. Since Hn−l−1(V ) = 0 we can suppose γ = ∂η
where η is a n− l dimensional chain in V.

Say η =
∑i=j

i=1 aiσi with σi : ∆n−l → V (ai ∈ R).
Besides, we can suppose that σi and ∂σi are topologically transversal to

Sp so that the set of points of intersection between every σi and Sp is finite
and such that ∂σi ∩Sp = ∅. Given ε1 > 0, using barycentric subdivision (see
[Sp]), we can also suppose diam(σi) < ε1. We observe that if σi∩Sp = ∅ then
∂σi is trivial in H(V \ Sp). So, by choosing ε1 small enough we can suppose
that each σi intersects Sp in yi only for i = 1, ..., j.

Let h : U ⊂ Rn → M the local conjugation with the hyperbolic map, in
a neighborhood of p. Intersecting with V we have that h(U) ⊂ V and by
iteration of f we can suposse that is a neighborhood of Sp.

We can think U ⊂ V ⊂ Rn (with the identification given by h) , Sp ⊂
Rl × {p2} and Up ⊂ {p1} × Rn−l where p = (p1, p2).

We can choose ε1 smaller so that Bε1(yi) ⊂ U
Since yi ∈ σi and diam(σi) < ε1 we have σi ⊂ Bε1(yi). Let hi

t : Rl×Rn−l →
Rl×Rn−l continuous given by hi

t(a+y1
i , b) = (ta+y1

i , b) with t ∈ [0, 1] where
yi = (y1

i , y
2
i ).

Then, for t ∈ [0, 1], hi
t ◦ ∂σi does not intersect Sp and is contained in V .

Also, we have hi
1 ◦ ∂σi = ∂σi and hi

0 ◦ ∂σi ⊂ {y1
i } × Rn−l. Since h0 ◦ ∂σi is

homotopic to ∂σi we have they are both homologous in V \ Sp.
For every i = 1, ..., j let βi : [0, 1] → Sp be a continuous curve such that

β(0) = yi and β(1) = p. If we choose a smaller ε1 again, we have Bε1(βi) ⊂ U
for all i = 1, ..., j.

Now, we consider gi
t : Rn → Rn, another homotopy, given by gi

t(z) =
z+βi(t)−yi. It verifies that gi

t(h0◦∂σi) does not intersect Sp for all t ∈ [0, 1],
gi
0 = idRn and gi

1(yi) = p so
∑i=j

i=1 aig
i
1 ◦ hi

0 ◦ ∂σi ⊂ Up, and since gi
t is a

homotopy, it is homologous to γ =
∑i=j

i=1 ai∂σi which is non trivial in the

homology of V \ Sp. We call γ to
∑i=j

i=1 aig
i
1 ◦ hi

0 ◦ ∂σi.

To see that there is a cycle homologous to γ outside of every compact set
in V , we will use the map of the Lemma 2.2 φ : Dn−l ⊂ Rn−l → M which
verifies that Up = φ(X) where X = cc0(φ

−1(V )). Consider a subdivision of
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Rn−l in simplexes of dimension n − l and diameter smaller than ρ. Let us
say Rn−l =

⋃∞
i=1 θi and that 0 ∈ Rn−l is in the interior of θ0.

If we consider a neighborhood B ⊂ V of p with linear structure as before,
we know that Hn−l−1(B \ Sp) ∼= R. So, we have that there exists a non zero
a ∈ R such that γ = a∂(φ ◦ θ0) in Hn−l−1(B \ Sp) and in particular also in
Hn−l−1(V \ Sp). Let η1 = θ0 −

∑
θi⊂X θi.

We observe that ∂(φ◦η1) is a trivial cycle in V \Sp. So, a−1γ is homologous
to γ′ = ∂φ ◦ (

∑
θi⊂X θi) =

∑
θi⊂X φ ◦ ∂θi.

To conclude the proof is enough to observe that we can suppose
∑

θi⊂X ∂θi ⊂
Bρ(∂X) and use the fact that φ is uniformly continuous. This is true because
every boundary in Bρ(∂X) is cancelled for being trivial in homology and we
can take θi to have arbitrarily small diameter. Given a compact set in V ,
considering an adequate ρ we conclude the proof.

�

Corollary 3.1. With the same hypothesis that the previous Lemma, if p ∈
Pern−1

H then Sp separates V in two connected components V1 and V2. Also, p
separates Up in two connected components U1 and U2 such that U1 ⊂ V1 and
U2 ⊂ V2.

Proof. Due to the fact that we are working with reduced homology, the
previous Lemma implies that V \ Sp has two connected components V1 and
V2. Moreover, Up is homeomorphic to R, so Up \ {p} has two connected com-
ponents U1 and U2. Let us suppose that U1, U2 ⊂ V1. Since V1 is connected,
we have that every γ ⊂ U1 ∪ U2 would be trivial in the homology of V \ Sp,
contradicting the previous Lemma.

�
We will repeatedly make use of the following Lemma concerning the semi-

continuous variation of stable and unstable sets (see [Lew2]).

Lemma 3.2. Let f : M → M be an expansive homeomorphism. Then, given
ε > 0 and x ∈ M , there exists δ > 0 verifying that if dist(x, y) < δ then,
W s

ε (y) ∈ Bε(W
s
ε (x)).

Proof. Otherwise, there would exist ε > 0 and xn → x such that yn ∈
W s

ε (xn) ∩ Bε(W
s
ε (x))c exist. If we consider z limit point of yn we have a

contradiction, since

dist(fk(z), fk(x)) = lim
n→+∞

dist(fk(yn), fk(xn)) ≤ ε

with z 6= x and k ∈ Z.
�
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Another result we will repeatedly make use of refers to the distance be-
tween local stable and unstable sets of the points (see [Vie1] also). We think
of it as ensuring “big angles” between the local stable and unstable sets.

Lemma 3.3. Let f : M → M be an expansive homeomorphism. Given
V ⊂ U neighborhoods of x and ρ small enough, there exist a neighborhood
W ⊂ V of x such that if y, z ∈ W we have dist(Sy∩(U \V ), Uz∩(U \V )) > ρ
(where Sy = ccy(W

s(y) ∩ U and Uz = ccz(W
u(z) ∩ U).

Proof. Otherwise, there would be points yn and zn converging to x and
such that dist(Syn ∩ (U \ V ), Uzn ∩ (U \ V )) < 1/n. Taking a limit point
an ∈ Syn ∩ (U \ V ) (choosen to verify dist(an, Uzn ∩ (U \ V )) < 1/n) we
find a point x such that dist(fk(x), fk(x)) ≤ ε < α ∀k ∈ Z contradicting
expansivity.

�
In the following Proposition we prove that the index of topologically hy-

perbolic periodic points is locally constant and that if two of them are close
enough then their local stable and unstable sets intersect. As was already
mentioned, this is the key step for obtaining the local product structure.

Proposition 3.1. Let f : M → M be an expansive homeomorphism. Then

1. for all k = 1, ..., n− 1, Perk
H is open in PerH and

2. for all p ∈ PerH exists open neighborhoods of p, V1 and V2 such that
for all q ∈ PerH ∩ V1 we have Sq ∩ Up 6= ∅ and Uq ∩ Sp 6= ∅, where
Sx = ccx(W

s(x) ∩ V2), Ux = ccx(W
u(x) ∩ V2).

Proof. Let p ∈ Perk
H , ε > 0 from Lemma 3.1 applied to p and h : Bρ(0) ⊂

Rn → h(Bρ(0)) ⊂ Bε(p) the local conjugacy, h(0) = p, between f and
L : Rk × Rn−k → Rk × Rn−k given by L(x, y) = (x/2, 2y), considering in
Rn = Rk × Rn−k the metric d((x, y), (u, v)) = max{‖x − u‖, ‖y − v‖}. Fix
ρ1 ∈ (0, ρ) and let V2 = h(Bρ1(0)). For q ∈ Bρ1(0) we denote Sq = h−1(Sh(q))
and Uq = h−1(Uh(q)).

Let ρ2 and ρ3 given by Lemmas 3.2 and 3.3 such that if dist(q, 0) < ρ3

then Uq ∩ Bρ2(S0 ∩ ∂Bρ1(0)) = ∅ and Sq ⊂ Bρ2(S0). Let V1 = h(Bρ3(0)).
Observe that we can use Lemma 3.2 to Sp and Up because of the choice of
ρ1.

By applying Lemma 3.1 we know that if h(q) ∈ V1∩Perm
H then there exists

h ◦ γ ⊂ Sq a non trivial cycle of the m− 1 dimensional homology of V2 \ Uq.
Because of Lemma 3.1 as well, we can suppose that γ ⊂ Bρ2(S0 ∩ ∂Bρ1(0)).

Let πt : Rk×Rn−k → Rk×Rn−k given by πt(x, y) = (x, ty) for t ∈ [0, 1]. It
is easy to see that πt(Bρ2(S0∩∂Bρ1(0))) ⊂ Bρ2(S0∩∂Bρ1(0)) for all t ∈ [0, 1].
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Then, πt◦γ is a homotopy between γ and π0◦γ ⊂ S0 contained in Bρ1(0)\Uq,
so they are homologous in Bρ1(0) \ Uq. To conclude:

1. If Perk
H is not open in PerH we can suppose there exists h(q) ∈ V1 ∩

Perm
H with m < k. Then, γ has dimension m − 1 < k − 1 but m − 1

dimensional homology of S0\Uq is trivial (remember S0 is a disk) which
is absurd.

2. If m = k a cycle η ⊂ S0 such that ∂η = γ exists. Since h ◦ γ is non
trivial in V2 \ Uq we conclude that Sp ∩ Uq 6= ∅.

�

Proof of Theorem 1.1.
We are going to construct a local product structure in a neighborhood of

every p ∈ PerH . We consider the notation of the statement of Proposition
3.1.

Let πs : V1 → Sp defined in the points q ∈ PerH as πs(q) = Uq ∩ Sp. This
map is well defined in a dense subset of V1 because of Proposition 3.1. Let
x ∈ V1 and qn → x, qn ∈ PerH with π(qn) → y. Observe that y ∈ W u

ε (x)∩Sp

and expansivity imply that the intersection point is unique. This allows us
to extend πs to V1. The same reason ensures this extension is continuous.
Also we have πs(x) ∈ Ux ∩Sp and because of expansivity πs(x) = Ux ∩Sp for
all x ∈ V1. Expansivity also implies that πs|Sx is injective.

If q ∈ PerH then the Invariance of Domain Theorem (see [Sp]) implies
that πs|Sq is open and a homeomorphism over its image. Observe that
πs(r) ∈ πs(Sq) with r, q ∈ PerH implies Ur ∩ Sq 6= ∅. Let W ⊂ Sp, p ∈ W ,

W homeomorphic to the disk D
k

and W relative neighborhood of p in Sp.

We affirm there exists V3 neighborhood of p such that for all q ∈
V3∩PerH , W ⊂ πs(Sq). Otherwise, qn → p would exists, such that qn ∈ PerH

and W * πs(Sqn). Since W is connected and πs|Sqn open, yn ∈ ∂πs(Sqn)∩W
must exist (the frontier is relative to Sp). So there must exist xn ∈ ∂V1 ∩Sqn

such that πs(xn) = yn. We can suppose xn → x and yn → y points of
Sqn ∩ ∂V1 and W respectively, the first due to semicontinuity of local stable
sets (Lemma 3.2) and the second because W is compact. From the construc-
tion of π we deduce that x and y are over the same local stable and unstable
set contradicting expansivity (observe that dist(W ,Sp ∩ ∂V1) > 0 so x 6= y).

Let V4 = π−1
s (W )∩ V3, we have that for every q, r ∈ PerH ∩ V4, it is true

that Sq ∩ Ur 6= ∅ and Sr ∩ Uq 6= ∅ from its construction.
Let As ⊂ Sp ∩ V4 and Bu ⊂ Up ∩ V4 be relative neighborhoods of p,

both homeomorphic to disks. Now, let x ∈ As and y ∈ Bu, then, by taking
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limit points of the intersection of local stable and unstable sets of periodic
points converging to x and y respectively, semicontinuity of local stable and
unstable sets (Lemma 3.2) and expansivity easily imply that Ux ∩ Sy is a
unique point. Let h : As × Bu → V1 given by h(x, y) = Ux ∩ Sy. It is
continuous and injective. Using the Invariance of Domain Theorem again we
conclude that it is open. This concludes the proof of the existence of a local
product structure in an open and dense set.

�

Remark 3.1. Although this does not ensure the dimension of the decomposi-
tion in the local product structure to be constant, it is an inmediate conse-
quence of the obtained results if the hypothesis of f being transitive is added.
We prove in section 4.2 that the splitting is constant when Pern−1

H 6= ∅ or
Per1

H 6= ∅.

4 Codimension one case

4.1 Periodic point ordering and its properties

We shall study the structure of Pern−1
H in a neighborhood of a singularity x ∈

M defining a partial order in Pern−1
H . We consider Bν(x) so that Proposition

1.1 holds. Let

Sp = ccp(W
s(p) ∩Bν(x)),

Up = ccp(W
u(p) ∩Bν(x)).

Also, we shall suppose that, because of remark 1.1, Sp ⊂ W s
ε (p) and

Up ⊂ W u
ε (p) for some ε > 0. For every p ∈ Pern−1

H ∩ Bν(x) we define
p̂ = Bν \ ccx(Bν(x) \ Sp).

Given δ > 0 we define the following order relation in Xδ = Pern−1
H ∩Bδ(x).

If p, q ∈ Xδ we say that p ≤ q if p̂ ⊂ q̂. Clearly this is a partial order which
depends on the singularity x ∈ M , ν > 0 from Proposition 1.1 and δ ∈ (0, ν).
We call chain to every totally ordered subset of the relation.

This order can be seen in the case of surfaces where, for the pseudo Anosov
maps, singularities have more than 2 maximal chains.

Lemma 4.1. Given a singularity x ∈ M and ν > 0 exists δ > 0 such that
there are finite maximal chains in Xδ. These are pairwise disjoint and every
one of them accumulates in x.

Proof. Let us suppose there were infinite maximal chains different from
each other. We shall prove this implies the existence of arbitrarily large sets

12



of points not pairwise related by the order relation. We prove this using
induction.

First, we observe that if p ≤ q and p ≤ r then p̂ ⊂ q̂ ∩ r̂ so q and r
must be related. Let p1, ..., pl ∈ Xδ be pairwise not related. It is easy to
see that either two not related elements smaller than some pi exist (and in
consequence not related to the rest of the pj) or a new point pl+1 not related
to the rest exist.

This leads us to a contradiction since Lemma 3.3 implies the existence of
δ > 0 and ν ′ ∈ (0, ν) such that if p, q ∈ Xδ then

dist(Sp ∩ ∂Bν′(x), Uq ∩ ∂Bν′(x)) > ρ

Given pi ∈ Xδ, Lemma 3.1 ensures the existence of qi ∈ p̂∩ ∂Bν′(x)∩Upi

so that dist(qi, qj) > ρ if i 6= j. So, there exists a bound on the number of
pairwise not related points since ∂Bν′(x) is compact.

Once we know there are finite maximal chains, we know that the ones
that do not accumulate in x are at a positive distance of x, so if we choose δ
to be smaller, we obtain that every maximal chain in Bδ(x) accumulates in
x.

Let C and C ′ be two maximal chains and q ∈ C ∩ C ′. If we choose δ
smaller in such a way that q̂ be disjoint with Bδ(x), we reduce the number
of maximal chains in Bδ(x). So, we can suppose that the maximal chains are
pairwise disjoint.

�
We call [p] to the maximal chain of p in Xδ given by the previous Lemma.

Now, we define

S[p] =
⋃

q∈[p]

q̂ ⊂ Bν(x)

where p ∈ Xδ.

Lemma 4.2. There exists ε > 0 such that for every maximal chain [p],

∂
(⋃

q∈[p] q̂
)
∩Bν(x) ⊂ W s

ε (x) verifies.

Proof. Because of Lemma 4.1 we know that [p] accumulates in x. Let
qn ∈ [p] such that qn → x. Take a point y ∈ ∂S[p]. Then, a sequence zn ∈ q̂n

exists such that zn → y. Without loss of generality we can suppose zn ∈ Sqn .
Remark 1.1 ensures that ε > 0 exists such that Sqn ⊂ W s

ε (z′n). So we
have that for all m ≥ 0

dist(fm(y), fm(x)) = lim
n

dist(fm(z′n), fm(pn)) ≤ ε

13



so y ∈ W s
ε (x). Then, ∂S[p] ⊂ W s

ε (x).
�

Lemma 4.3. Suppose PerH = M and let x ∈ M be a singularity. For all p ∈
Bδ(x)∩Pern−1

H a neighborhood V of Sp exists such that PerH∩V ∩Bδ(x) ⊂ [p].

Proof. By contradiction, let us suppose that y ∈ Sp exists satisfying that
qn → y with qn ∈ [q] 6= [p] (remember that near Sp we have local product
structure so every periodic point near y must have the same index as p).
Then, y ∈ ∂S[q] so, by Lemma 4.2, y ∈ W s(x) so x ∈ W s(p) because y ∈
Sp ⊂ W s(p). But, since q ∈ PerH we contradict the fact that x is singular,
since Theorem 1.1 gives us local product structure in a neighborhood of x
by iteration of the local product structure in p.

�

Lemma 4.4. If PerH = M then int(S[p]) ∩Bδ(x) =
⋃

q∈[p] q̂ ∩Bδ(x).

Proof. The points in the interior of each q̂ are interior to S[p]. Also, if q ≤ r,
q, r ∈ [p], then q̂ is contained in the interior of r̂. Since [p] accumulates in
x, we have that for every q ∈ [p] there exists r ∈ [p] such that r ≥ q, then,⋃

q∈[p] q̂ is contained in the interior of S[p].
To obtain the other inclusion we proceed by contradiction supposing there

exists a point y ∈ Bδ(x) in the interior of S[p] but such that y /∈ q̂ for all
q ∈ [p].

Then, there exists yn ∈ Sqn such that yn → y where qn ∈ [p] satisfies
qn → x. Let γ > 0 arbitrary. Using Lemma 4.3 we know that points rn ∈ [p]
exist arbitrarily close to yn. We can suppose rn → y. On the other hand,
we consider Urn = ccrn(Bν(x) ∩ W u(rn) which is separated by Srn in two
different connected components (see corollary 3.1). Let zn ∈ ∂Bγ(y) ∩ Urn

such that zn /∈ r̂n.
We can suppose that zn → l ∈ ∂Bγ(y) and using the semicontinuous

variation of local stable and unstable sets (Lemma 3.2) we obtain that l ∈
W u(y). We know that l /∈ S[p] since l /∈ q̂ for all q ∈ [p], so, if l ∈ S[p]

it should be accumulated by points in Sqn and therefore verify l ∈ W s(x).
Then, l 6= y, l ∈ W u(y) and y, l ∈ W s(x) which contradicts expansivity.

So, we obtained y ∈ ∂S[p] since γ was arbitrary. This constitutes a con-
tradiction and so the Lemma is proved.

�

Remark 4.1. Clearly x ∈ S[p] and x /∈ q̂ for all q ∈ [p]. So, x ∈ ∂S[p] and this
implies that S[p] is a closed set with non empty interior and its complement
in Bν(x) is also non empty. This implies that ∂S[p] separates Bν(x).
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Lemma 4.5. Suppose PerH = M and let z ∈ ∂S[p]∩Bδ(x) and ρ > 0. Then,

there exists V a neighborhood of z such that if q ∈ [p]∩V then S[p]∩Bδ(x) ⊂
q̂ ∪Bρ(∂S[p]).

Proof. Given ρ > 0, the set K =
(
S[p] \Bρ(∂S[p])

)
∩ Bδ(x) is a compact

set contained in int(S[p]∩Bδ(x)) so, using Lemma 4.3, {int(q̂)}q∈[p] is an open
cover of K so r ∈ [p] exists such that K ⊂ r̂. Let V be a neighborhood of
z disjoint from r̂. Then, for every q ∈ [p] ∩ V we have that q ≥ r. Then,
K =

(
S[p] \Bρ(∂S[p])

)
∩Bδ(x) ⊂ q̂ and therefore S[p]∩Bδ(x) ⊂ q̂∪Bρ(∂S[p]).

�
The following Lemma represents the key step for proving the uniformity

of the local product structure because it allows us to ensure that the stable
and unstable sets intersect in a neighborhood of a singularity. This gives
uniformity and is also important to give structure to ∂S[p] and discard sin-
gularities.

Lemma 4.6. Suppose PerH = M . For all z ∈ ∂S[p]∩Bδ(x) and for all ε > 0
there exists V neighborhood of z such that if q, r ∈ V ∩ [p] then Uq intersects
Sr and ∂S[p] in Bε(z) ∩ S[p].

Proof. Let V be a neighborhood of z such that z ∈ V ⊂ Bδ(x). Corollary
3.1 allows us to associate to each q ∈ [p]∩ V two points yq

1, y
q
2 ∈ Uq ∩ ∂Bδ(x)

such that yq
1 ∈ q̂ and yq

2 /∈ q̂. Lemma 3.3 gives us ρ > 0 such that (maybe
taking V smaller) for i = 1, 2 and q ∈ [p] ∩ V

dist(yq
i , ∂S[p]) > ρ (1)

At the same time, by Lemma 4.5 we can suppose that for every q ∈ [p]∩V ,

S[p] ∩Bδ(x) ⊂ q̂ ∪Bρ/2(∂S[p]) (2)

Then, since yq
2 /∈ q̂ and yq

2 /∈ Bρ(∂S[p]), we have that yq
2 /∈ S[p]. Remark

4.1 together with the fact that Uq is connected implies Uq intersects ∂S[p].
Let us take r ∈ V ∩ [p] such that q ≤ r, that is to say q̂ ⊂ r̂. Consider yr

1

and yr
2 associated to r in the same way we did with q. Then yq

1 ∈ q̂ ⊂ r̂. On
the other hand, yr

1 ∈ S[p] ∩ ∂Bδ(x) and by (2) yr
1 ∈ q̂ ∪ Bρ/2(∂S[p]). Because

of (1) we have yr
1 /∈ Bρ/2(∂S[p]) and so yr

1 ∈ q̂. Then yr
1, y

q
1 ∈ q̂ ⊂ r̂.

Now, since yr
2 /∈ r̂ and q̂ ⊂ r̂ we have that yr

2 /∈ q̂. Previously we said
that yq

2 /∈ S[p], so, applying (2) (to r instead of q) we have that yq
2 /∈ r̂. This

implies yq
2, y

r
2 /∈ r̂ ⊃ q̂.

Finally, since Uq ⊃ {yq
1, y

q
2} and Ur ⊃ {yr

1, y
r
2} are connected, and Sq and

Sr separate the ball Bν(x) we deduce that Sq ∩Ur and Uq ∩Sr are not empty
as wanted.
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Given ε > 0, expansivity and semicontinuous variation of local stable and
unstable sets allow us to prove that by means of considering V small enough
we can ensure that the intersections lie in Bε(z).

�
To prove Theorem 1.2 we shall also make use of some properties of the

frontier of the sets S[p].

Proposition 4.1. If PerH = M , ∂S[p] ∩ Bδ(x) is a topological manifold of
dimension n− 1.

Proof. Let z ∈ ∂S[p] ∩ Bδ(x). We choose ε > 0 such that Bε(z) ⊂
Bδ(x) and let V a neighborhood of z satisfying that if q, r ∈ V ∩ [p] then
Uq∩Sr∩Bε(z) 6= ∅ as given in the previous Lemma. Also, for every q ∈ V ∩[p]
we can have Uq ∩ ∂S[p] ∩Bε(z) 6= ∅ again by Lemma 4.6.

Now, let V ′ and ε′ > 0 be so that Bε′(z) ⊂ V and such that for q, r ∈
[p] ∩ V ′, Uq ∩ Sr ∩ Bε′(z) 6= ∅ hold. Analogously, we have that for every

q ∈ V ′ ∩ [p], Uq ∩ ∂S[p] ∩Bε′(z) 6= ∅ verifies.

We fix q ∈ V ′ ∩ [p] and define h : Sq ∩ V → ∂S[p] ∩Bε(z) given by

h(y) = lim
qn→y

Uqn ∩ ∂S[p]

which is well defined thanks to expansivity and semicontinuous variation
of local stable and unstable sets (Lemma 3.2) together with the fact that
∂S[p] ⊂ W s

γ (z) because of Lemma 4.5. The fact that there is a sequence
qn → y of codimension one periodic points is a direct consequence of the
local product structure in a neighborhood of Sq.

The same argument implies that h is continuous and injective. Moreover,
since the domain is compact, h is a homeomorphism over its image.

We shall prove that for all x ∈ ∂S[p] ∩ V ′ exists y ∈ Sq ∩ V such that
h(y) = x. This holds since for every x ∈ ∂S[p]∩V ′ we can find {qn} ⊂ [p]∩V ′

such that qn → x and so that ∅ 6= Uqn ∩ Sq ∩Bε′(z) ⊂ V ∩ Sq. In particular,

every point in ∂S[p]∩V ′ has a preimage of the map h in Sq∩Bε′(z) ⊂ Sq∩V .
Since h is a homeomorphism over its image and since ∂S[p]∩V ′ = Im(h)∩

V ′ is an open set relative to the topology of Im(h) we deduce that h−1(∂S[p]∩
V ′) is an open set of Sq ∩ V . From h−1(∂S[p] ∩ V ′) ⊂ Sq ∩ V we obtain what
we were looking (remember Sq ∩V is homeomorphic to an open set of Rn−1).

�

4.2 Constant splitting

Proof of Theorem 1.2.
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By contradiction, we suppose that ∅ 6= Pern−1
H 6= M and consider a

singularity x ∈ ∂Pern−1
H . We consider ν and δ as in Lemma 4.1, for which

we know there is a finite set of maximal chains of the partial order in Xδ.
Let [p] be a maximal chain accumulating in x.

Lemma 4.7. There exists δ > 0 such that PerH ∩ S[p] ∩Bδ(x) ⊂ Pern−1
H .

Proof. Suppose, by contradiction, that there exist pn, qn → x where pn ∈
S[p] ∩ PerH \ Pern−1

H and qn ∈ [p]. By iterating a neighborhood of p with
local product structure (Theorem 1.1) we can obtain local product structure
over compact subsets of the stable set of p. Then we can suppose that
pn, qn /∈ ∂S[p]. Then Upn is a connected topological manifold (and therefore
arcconnected) of dimension at least two. Consequently, if we take out a point
from Uq it would remain arcconnected. Clearly, for every qn exists pm /∈ q̂n.
Remember that ∂S[p] and Sqn separate the ball Bν(x).

We shall prove that Upm ⊂ S[p] \ q̂n. Otherwise, y ∈ Upm \ S[p] would
exist. Since ∂S[p] separates the ball Bν(x) we know that every curve con-
tained in Upm joining pm to y must intersect ∂S[p]. Expansivity implies that
Upm intersects ∂S[p] in at most one point. Then, since two curves in Upm

connecting pm to y and coinciding only in the extremes exist (because of the
dimension of Upm) they should intersect ∂S[p] in two different points reaching
a contradiction. We proceed analogously if we consider y ∈ q̂n.

Finally, the fact that for every n0 exist m, n ≥ n0 such that Upm ⊂ S[p]\ q̂n

contradicts expansivity.
�

Let C be the finite set of maximal chains in Bδ(x) and let

S =
⋃

[p]∈C

S[p]

Since every S[p] is closed in Bν(x) and C is finite, we have that S is closed.
Lemma 4.7 implies

Bδ(x) ∩ S = Bδ(x) ∩ Pern−1
H (3)

Since x ∈ ∂Pern−1
H we know that S can not be a neighborhood of x. We

shall see how this fact represents a contradiction.
In order to do that, we shall make use of Proposition 4.1 and the following

Lemma. We remark that ∂S ⊂
⋃

∂S[p].

Lemma 4.8. For all p ∈ Pern−1
H ∩Bδ(x) exists A[p] ⊂ ∂S[p] such that A[p] is

an open and dense subset relative to ∂S[p] ∩Bδ(x) and A[p] is in the interior
of S.
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Proposition 4.1 ensures that ∂S[p] ∩ Bδ(x) is a topological manifold of
dimension n − 1. Then, for every [p] we know, because of lema 4.8 and a
result in [HuWa] stating that a closed set with empty interior in a topological
manifold has dimension smaller than the manifold (chapter IV, section 4),
that dimtop(∂S[p] \ A[p]) ≤ n− 2. Moreover

∂S ⊂
⋃

[p]∈C

∂S[p] \ A[p]

And, since the union of a finite set of closed spaces has the dimen-
sion of the largest one (see [HuWa] chapter III, section 3) we know that
dimtop(∂S) ≤ n− 2. So, ∂S can not separate Bδ(x) because it should have
dimension at least n − 1 (see [HuWa] chapter IV, section 5). This leads us
to a contradiction.

Proof of Lemma 4.8.
Let ε > 0 and z ∈ ∂S[p]. By Lemma 4.6, there exist q ∈ [p] such that

{a} = Uq ∩ ∂S[p] is in Bε(z). Theorem 1.1 implies that q has a neighborhood
with local product structure, by iterating this neighborhood to the past, we
obtain local product structure over a neighborhood of a.

�

4.3 Uniform local product structure

We shall prove Theorem 1.3 in this section. By Theorem 1.1 we know that
there is an open and dense set whose points admit a local product structure.
And by Theorem 1.2 we conclude, since Pern−1

H 6= ∅, that PerH = Pern−1
H .

Let S be the set of singularities of f , that is to say, the points which do
not admit any local product structure. To prove Theorem 1.3 we must prove
that S is an empty set.

From Lemma 4.6 we obtain the following consequence which allows us to
study the set of singularities in codimension one case, since it gives a sort of
local product structure in the sets S[p] which will be defined properly in the
statement of the next Proposition.

Proposition 4.2. Let x ∈ S. Then, for every z ∈ ∂S[p] ∩ Bδ(x) exists h :
I×In−1 → S[p] (I = [0, 1]) homeomorphism over its image, where h({a}×In)
is contained in a local stable set, h(I × {b}) is contained in a local unstable
set and the image of h is a neighborhood of z relative to S[p].

Proof. By Lemma 4.6 there exists V ⊂ Bδ(x) neighborhood of z in M
such that if q, r ∈ [p] ∩ V then Sq ∩ Ur 6= ∅. Also, there exists V ′ ⊂ V
neighborhood of z such that if q, r ∈ [p] ∩ V ′ then Sq ∩ Ur ∩ V 6= ∅.
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Let Dz ⊂ ∂S[p] ∩ V ′ homeomorphic to In−1 (see Proposition 4.1) such
that z belong to the interior of Dz relative to ∂S[p].

Let V ′′ ⊂ V ′ neighborhood of z such that if q ∈ [p]∩V ′′ then Uq∩Dz 6= ∅.
Let q ∈ V ′′ ∩ [p]. We define h : Uq ∩ V ∩ S[p] × Dz → S[p] in such a way
that h(x, y) = W s

ε (x)∩W u
ε (y) is verified. By the choice of V , approximating

with topologically hyperbolic periodic points and making use of expansivity
and semicontinuous variation of local stable and unstable sets (Lemma 3.2)
we can ensure that the map h is well defined, continuous and injective and,
since the domain is compact, a homeomorphism over its image.

We are now interested in proving that the image contains V ′′ ∩ S[p] and
it is enough to show that it contains [p] ∩ V ′′, since Pern−1

H is dense in V ′′.
This holds because for every r ∈ [p] ∩ V ′′ its local unstable set intersects Dz

by the choice of V ′′ and its local stable set intersects Uq ∩ V ∩ S[p] by the
choice of V ′.

Let U = h−1(V ′′∩S[p]) which is open because h is a homeomorphism over
its image. Since z ∈ V ′′ ∩ S[p] a relative open set of the image of h and S[p],
h−1(z) is in the interior of U . Since Uq ∩ V ∩ S[p] ×Dz is locally connected
in h−1(z) we can find in U a set homeomorphic to I × In−1 neighborhood of
h−1(z) whose image will be a relative neighborhood of z in S[p].

�

Lemma 4.9. If Pern−1
H = M then S is a finite set.

Proof.
Since the set of points with local product structure is open and invari-

ant we know that S is compact and invariant. Therefore, f : S → S is an
expansive homeomorphism.

Let z ∈ S. We shall prove that there exist a neighborhood of z satisfying
that every singularity in that neighborhood belongs to the local stable set
of z. This is a consequence of the existence of δ > 0 small enough (given
by Lemma 4.1) such that (since Pern−1

H is dense) we have that Bδ(z) ⊂⋃k
i=1 S[pi]. Proposition 4.2 implies that in the interior of S[pi] there is a local

product structure (maybe by considering δ smaller) so singularities must lie
in

⋃k
i=1 ∂S[pi]. Lemma 4.2 now implies that singularities of Bδ(z) belong to

the local stable set of z.
Expansivity implies that Lyapunov stable points are asymptotically sta-

ble. Otherwise, points x, y such that dist(fn(x), fn(y)) ≤ ε ≤ α (α expansiv-
ity constant) and such that a subsequence nj → +∞ with dist(fnj(x), fnj(y)) ≥
δ exist. Taking limit points we contradict expansivity.

Since S is compact and every point is asymptotically stable for f , we
conclude that S must be finite.
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�

Lemma 4.10. If dim(M) ≥ 3 and Pern−1
H = M then, no isolated singulari-

ties exist.

Proof. By contradiction, suppose x ∈ M is an isolated singularity. Let
ν, δ > 0 as in Lemma 4.1 and such that Bν(x) ∩ S = {x}. Fix [p] a maximal
chain accumulating in x and let T = ∂S[p] ∩ Bδ(x). We have that T is
closed in Bδ(x) and Proposition 4.1 ensures that T is a n − 1 dimensional
topological manifold. Lemma 4.2 implies that T \ {x} can be written as a
union of leaves of the stable foliation of Bδ(x) \ {x}. By stable foliation we
mean the partition associated to the equivalence relation given by being in
the same connected component of a stable set. Since Bν(x) ∩ S = {x} we
have that the leaves are topological manifolds.

Since Pern−1
H is dense in S[p] we can apply Proposition 4.2 to x. Let

hp : [0, 1)× (−1, 1)n−1 → Rp ⊂ Bδ(x)

be a homeomorphism such that Rp is a neighborhood of x relative to S[p] and
hp(0) = x.

Let Fp = T ∩ Rp = h({0} × (−1, 1)n−1), since h is a homeomorphism we
have that Fp is a n− 1 dimensional manifold and since n = dim(M) ≥ 3 we
have that dim(Fp) ≥ 2.

Let z 6= x such that z ∈ Fp. Then, there exists a maximal chain [q] 6= [p]
such that z ∈ ∂S[q]. Analogously, we have that ∂S[q] ∩ Bδ(x) is a manifold
of dimension n − 1 ≥ 2. Let F = ccx(∂S[q] ∩ Bδ(x)). Then, F \ {x} is a
closed connected leaf from the stable foliation of Bδ(x) \ {x}. It is connected
because dim F ≥ 2. Moreover, we can suppose that z ∈ F , because, the
points in ∂S[q] can be chosen to be arbitrarily near x in Fp and, near x,
where Proposition 4.2 holds, other connected components of ∂S[q] can not
exist since they are part of the local stable set of x and would intersect the
local unstable set contradicting expansivity.

Since F \{x} is a closed connected leaf of the stable foliation of Bδ(x)\{x},
Fp \ {x} is contained in some leaf and z ∈ F ∩ Fp we have that Fp ⊂ F .

Now, from Proposition 4.2 we can consider hq : (−1, 0] × (−1, 1)n−1 →
Rq ⊂ Bδ(x) a homeomorphism satisfying that Rq is a neighborhood of z
relative to S[q] and hq(0) = x. Analogously we define Fq = ∂S[q] ∩ Rq =
hq({0} × (−1, 1)n−1) ⊂ F . From the previous, we can suppose Fq ⊂ Fp. Let
π2 : R × Rn−1 → Rn−1 the canonical projection over the second coordinate.
Furthermore, if we restrict hp to the set [0, 1)× π2(h

−1
q (Fq)) we can suppose

Fp = Fq.
Let h : (−1, 1)× Fp → Bδ(x) given by
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h(t, y) =

{
hp(t, π2(h

−1
p (y))) si t ≥ 0

hq(t, π2(h
−1
q (y))) si t ≤ 0

Clearly h(0, y) = y so h is continuous. Again, using the Invariance of Do-
main Theorem, this allows us to prove that h gives a local product structure
around x. This contradicts the fact that x is a singularity.

�

Proof of Theorem 1.3.

Once we have discarded singularities it is very simple to prove there is a
uniform local product structure. Otherwise, there would exist points xn not
admitting local product structure in balls of radius greater than 1/n. Taking
a limit point we could find a singularity, a contradiction.

Uniform local product structure implies the pseudo orbit tracing property
from the results of [Red] which ensure the existence of a hyperbolic metric
in the coordinates given by the local product structure (see [Vie2]).

�

5 Appendix

To conclude, we prove the following Proposition and then sketch the proof
of M being Tn.

Proposition 5.1. Let M be a n−dimensional manifold (n ≥ 3) and f :
M → M an expansive homeomorphism such that PerH is dense in M and
Per1

H 6= ∅ or Pern−1
H 6= ∅. Then, M admits a codimension one foliation with

leaves homeomorphic to Rn−1.

Proof. The uniform local product structure obtained in 1.3 shows the
existence of the foliation.

Let us suppose that Pern−1
H 6= ∅, then, the leaves of the foliation are

the stable sets of the points. Let x ∈ M , we shall prove that W s(x) is
homeomorphic to Rn. To see this, is enough to see that

W s(x) =
⋃
n≥0

f−n(Sε(f
n(x))

Where Sε(z) is a disc of uniform size in W s
ε (z) (which exist because of the

uniform local product structure). So, W s(x) may be written (maybe by tak-
ing some subsequence nj →∞ so that f−nj(Sε(f

nj(x))) ⊂ f−nj+1(Sε(f
−nj+1(x))))

as an increasing union of n− 1 dimensional discs, which implies the thesis.
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�
Once we know the leaves are homeomorphic to Rn−1 classical arguments

allow us to prove that M is Tn. As we said, we shall sketch some steps of the
proof for the sake of completeness. All the ideas are entirely based on [Vie3]
and [Fr] section 5.

The first thing it should be proved is that the universal covering space of
M (M) equals Rn.

To prove that M = Rn it suffices to prove that given two points x, y ∈ M
then, the lifts of their stable and unstable manifolds (which are respectively
proper copies of Rn−1 and R) intersect at a single point.

To see that the intersection consist of at most one point, we can see
that if the manifolds intersect at more than one point then we can obtain
a closed loop transversal to the codimension one foliation, thus, bounding a
disc (since we are in the universal covering, the loop is nullhomotopic). By
using Solodov’s methods (see [So] Lemma 5) we see that the disc may be
chosen to be in general position so that we obtain a foliation of the disc D2,
transversal to the frontier and such that its singularities are nondegenerate
and have no saddle connections (this is the only step where differentiability is
used in [Fr]). Now, using Haefliger arguments (see [Vie3] Lemma 2.11 or [Fr]
Lemma 5.1) we conclude there is a leaf of the codimension one foliation with
non trivial holonomy, hence, the leaf is not simply connected, a contradiction.

Finally, proving that the foliation intersect is a straightforward adaptation
of the arguments of [Fr] Lemma 5.2 after it is known that the the leaves of
the codimension one foliation are dense (which follows from the fact that
periodic points are dense and the uniform local product structure).

Once this is obtained, it is not difficult to prove that π1(M) is free abelian
by studding the action of π1(M) over R as it permutes without fixed points
the leaves of the foliation (see [HeHi] Chapter VIII, section 3, remember that
the leaves of the foliation are dense). A space with free abelian fundamental
group and which is covered by Rn is an Elienberg-McLane space of the same
type of a torus, hence homotopically equivalent to one (see [Hat], Theorem
1.B.8.). From [HsWa] we deduce that if n, the dimension of M , satisfies
n ≥ 5 then M is homeomorphic to Tn.

In arbitrary dimension, one can follow the proof in [Fr], by reading the
proofs of Proposition (6.2), Theorem (4.2) and Theorem (3.6) in that or-
der (remember that expansive homeomorphisms with local product structure
have hyperbolic canonical coordinates, [Red]).

This proves that M = Tn.
�
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