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Abstract. In 1991 Llibre and MacKay proved that if f is a 2-torus homeomorphism
isotopic to identity and the rotation set of f has a non empty interior then f has positive
topological entropy. Here, we give a converselike theorem. We show that the interior
of the rotation set of a 2-torus C1+α diffeomorphism isotopic to identity of positive
topological entropy is not empty, under the additional hypotheses that f is topologically
transitive and irreducible.

1. Introduction

1.1. History. The theory of dynamical systems began with Henri Poincaré’s approach to
studying toral flows. It consists in passing to the first return map on a topological circle.
Hence, the initial requirement is replaced by a qualitative study of dynamical properties
of a circle map. Let f : R/Z → R/Z be a circle homeomorphism and f̃ : R → R be a lift
of f . The Poincaré’s rotation number of f is defined as

ρ(f) = lim
n→+∞

f̃n(x) − x

n
(mod 1).

It’s easy to see that this limit exists and depends neither on the point x in R nor on the
lift f̃ of f .

From the definition, the formulas ρ(fn) = n ρ(f) and ρ(h ◦ f ◦ h−1) = ρ(f) hold for
any orientation preserving circle homeomorphism h. If h is orientation reversing then
ρ(h ◦ f ◦ h−1) = −ρ(f).

The rotation number gives rise to a description of the dynamical behavior of circle
homeomorphisms. Poincaré proved that:

Poincaré’s Theorem. Let f be an orientation preserving circle homeomorphism with
rotation number ρ. Then

(1) the rotation number ρ is rational if and only if f has a periodic point;
(2) if the rotation number ρ is irrational, then f is semi-conjugate to Rρ the rotation

by ρ, that is there exists a continuous degree one monotone circle map h such that h◦f =
Rρ ◦ h.

The most natural generalization of circle homeomorphisms are 2-torus homeomorphisms
isotopic to identity.

Let T2 = R2/Z2 be the 2-torus and Π: R2 → T2 be the natural projection. Let

f : T2 → T2 be a continuous map and f̃ : R2 → R2 a lift of f , that is, f◦Π = Π◦f̃ . If f̃1 and

f̃2 are two lifts of f , it holds that there exists v ∈ Z2 such that f̃1(x̃) = f̃2(x̃)+v for every
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x̃ ∈ R2, and if f is isotopic to identity then for every v ∈ Z2 one has f̃(x̃ + v) = f̃(x̃) + v.

In order to generalize the rotation number, we can consider the sequences of 2-vectors

{ f̃n(ex)−ex
n

}n∈N. But these sequences may not converge and even in the case that the limit
exists, it may depend on the point x̃. To avoid that difficulty, Misiurevicz and Ziemian
([MZ89]) have proposed to define a rotation set as follows.

1.2. Definitions of the rotation set and the rotation vectors. Let f be a 2-torus
homeomorphism isotopic to identity and f̃ a lift of f , we call f̃-rotation set the subset
of R2 defined by

ρ(f̃) =

∞⋂

i=1

⋃

n≥i

{
f̃n(x̃) − x̃

n
, x̃ ∈ R2

}
.

Equivalently, (a, b) ∈ ρ(f̃) if and only if there exist sequences (x̃i) with x̃i ∈ R2 and
ni → ∞ such that

(a, b) = lim
i→∞

f̃ni(x̃i) − x̃i

ni
.

Let x̃ be in R2, the f̃-rotation vector of x̃ is the 2-vector defined by ρ(f̃ , x̃) =

lim
n→∞

f̃n(x̃) − x̃

n
∈ R

2 if this limit exists.

1.3. Some classical properties and results on the rotation set. Let f be a 2-torus

homeomorphism isotopic to the identity and f̃ be a lift of f to R2.

• Let x̃ ∈ R2 such that ρ(f̃ , x̃) exists, it holds that ρ(f̃ , x̃) ∈ ρ(f̃).

• If f̃ has a fixed point then (0, 0) ∈ ρ(f̃).
• Misiurewicz and Ziemian (see [MZ89] )have proved that:

(1) ρ(f̃n) = nρ(f̃)

(2) ρ(f̃ + (p, q)) = ρ(f̃) + (p, q),
(3) the rotation set is a compact convex subset of R

2.

• Franks (see [Fra89]) proved that any rational point q in int ρ(f̃) is the rotation
vector of a lift of a f -periodic point. That is there exists a f -periodic point x ∈ T 2

and a lift x̃ of x, such that lim
n→∞

f̃n(x̃) − x̃

n
= q.

• The rotation set is not a conjugacy invariant. However, if the conjugating home-
omorphism h is isotopic to identity, then the homeomorphism f̃ and its conjugate
homeomorphism h̃ ◦ f̃ ◦ h̃−1 have the same rotation set. Anyway, the property
of having a lift with a rotation set of non empty interior does not depend on the
choice of the lift and it is a conjugacy invariant.



1.4. Relationship between the rotation set and the entropy. An important con-
jugacy invariant is the topological entropy, it can be defined for f : X → X as

htop(f) = lim
ǫ→0

htop(f, ǫ), where htop(f, ǫ) = lim sup
n→+∞

1

n
log S(f, ǫ, n) and S(f, ǫ, n) is the

cardinality of a minimal (n, ǫ) spanning set (i.e a set E such that X =
⋃

x∈E

Bf(x, ǫ, n),

where Bf(x, ǫ, n) are dynamical balls).

A result of Katok ([Kat80]) claims that for C1+α surface diffeomorphisms the topological
entropy is majorated by the growth rate of periodic points. Therefore, any C1+α surface
diffeomorphism without periodic points has null topological entropy.

In [Lli91], Llibre and MacKay proved that any toral homeomorphism, isotopic to the
identity and such that the interior of its rotation set is not empty, has positive topological
entropy.

1.5. Remarks, questions and statement. The converse of this result by Llibre and
MacKay does not hold. We will show examples where the rotation set has empty interior
but the topological entropy is positive (see Section 4 -examples 2, 3, 4). So, we are
interested in conditions implying that the interior of the rotation set is not empty. In his
thesis Kwapish ([Kwa95]) proved that any Pseudo-Anosov homeomorphism relative to a
finite set (in the sense of Handel) has rotation set with non empty interior. Our aim is to
give dynamical conditions (in addition to positive entropy) to obtain the same conclusion.
One of the conditions we will ask for, is that f be topologically transitive.

Definition. A homeomorphism f on M is topologically transitive if there exists a
point x0 of M such that the f -orbit of x0 is dense.

We will prove the following result:

Theorem 1. Let f : T2 → T2 be a diffeomorphism isotopic to identity satisfying the
following conditions:

(1) f is of class C1+α;
(2) the topological entropy of f is positive;
(3) f is topologically transitive;
(4) f is irreducible (see section 2 for the definition);

then int(ρ(f̃)) 6= ∅, where f̃ is a lift of f to R2.

Remark 1.1. The hypotheses 3 and 4 imply that any finite covering of f is topologically
transitive. A related fact will be proved in lemma 4.1. Moreover, we prove that the
conditions 1, 2 and the condition that any finite covering of f is topologically transitive

imply that int(ρ(f̃)) 6= ∅.

Remark 1.2. Any C1+α Pseudo-Anosov map (in the sense of Handel) f satisfies hypo-
theses 1, 2 and it is topologically transitive. Since any lift to a finite covering of a Pseudo-
Anosov map is also Pseudo-Anosov, f satisfies the hypotheses of the previous remark. As

a consequence we get, as it has been already proved by Kwapisz, that int(ρ(f̃)) 6= ∅.



In Section 2 we define the notion of irreducibility and explain how it arises in our
context. Roughly speaking, according to a result in [Lli91], the existence of non null

homotopic f -invariant circle implies that the rotation set of f̃ has empty interior. Hence,
we have to avoid this case, but not only, as other invariant sets can play a similar role (the
pseudo-circles that arise in Anosov-Katok construction (see [Her86]), for example). We
prove the main result in Section 3 and in Section 4 we exhibit different examples showing
that the hypotheses are necessary.
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2. Irreducibility and invariant circles

2.1. Irreducibility. Let M be a manifold and f a homeomorphism of M , it is denoted
by (f, M).

Definition 2.1. A subset K of M is essential if K is not contained in a disk and there
exists a finite covering MN of M such that MN\KN is not connected, where KN stands
for the lift of K to MN .
A homeomorphism (f, M) is irreducible if there is no compact, f -invariant, of empty
interior set which is essential.

Remark 2.1. If f admits a non null homotopic periodic circle C then f is not irreducible.
In fact, the orbit of C is a closed invariant subset OC and it has empty interior. In the
double covering of M associated to C, the lift of C and therefore the lift of OC is a
disconnecting set.

Property 2.1. If f is an irreducible homeomorphism then any finite covering of f is
irreducible.

Proof. Suppose that there exist (M0, f) irreducible and (M1, f1) a finite lift of (M0, f)
that is not irreducible. So there exists a compact set K1 that is f1-invariant, of empty
interior and essential. Let π0 : M1 → M0 be the natural projection. We claim that the
set K0 : = π0(K1) is compact, f -invariant, of empty interior and essential, proving that
(M0, f) is not irreducible.
We first prove that the set K0 is f -invariant.
Since π0 ◦ f1 = f ◦ π0, we have π0 ◦ f1(K1) = f ◦ π0(K1). Thus π0(K1) ⊇ f(π0(K1) that
is K0 ⊇ f(K0).
The set K0 is clearly compact and of empty interior because π0 is a local homeomorphism.
It remains to prove that it is essential.
Denote by M the finite covering of (M1, f1) such that M\π−1

1 (K1) is not connected, where
π1 : M → M1 is the natural projection. So M\π−1

1 (K1) can be written as the union of
two disjoint open sets A and B. Denote by π : M → M0 the natural projection and

D = π−1(K0). We have that D =
n⋃

i=1

π−1
1 (γi(K1)) where {γi} stands for the finite group

consisting in the automorphisms of the covering π0. It holds that D is closed and has
empty interior.



So M\D = (A∪B)\D since π−1
1 (K1) ⊂ D. Consequently, M\D = (A\D)∪ (B\D) where

A\D and B\D are non empty open sets. Thus M\D is not connected, it remains to prove
that K0 is not contained in a disk. If K0 is included in a disk D0 then K1 is contained in
a finite union of disjoint disks, then we can construct a disk D1 that contains this union
and therefore K1 ⊂ D1, this contradicts the irreducibility of f .

�

2.2. Invariant circles. Given a homeomorphism f isotopic to the identity on T2, we are
interested in relationships between the existence periodic circles and the interior of the
rotation set.

In the case where f admits a homotopically non-trivial invariant single curve, Llibre-
Mac Kay (see [Lli91]) proved that the all the rotation vectors of f -periodic points are
collinear, therefore the rotation set has empty interior. In the case where f admits a
homotopically non-trivial periodic single curve, the rotation set has empty interior since
ρ(f̃n) = nρ(f̃).

On the other hand, is there a relationship between the existence of homotopically trivial
f -invariant single curve and the interior of the rotation set of f̃?

Let us show two examples:

• The identity map on T 2 fixes every circle and its rotation set is {(0, 0)}.
• In [Lli91], the authors give examples of T 2-homeomorphisms having rotation set

of non empty interior. Let us consider the particular example f given by one of

its lifts f̃ to R2. Let frac(x) = x − ⌊x⌋ be the fractional part of x (where ⌊x⌋ is
the floor function of x). We define h, g : R2 → R2 as h(x, y) = (x, y + frac(2x)) if
frac(x) ∈ [0, 1

2
] and h(x, y) = (x, y + 2 − frac(2x)) if frac(x) ∈ [1

2
, 1]. Analogously

g(x, y) = (x + frac(2y), y) if frac(y) ∈ [0, 1
2
] and g(x, y) = (x + 2 − frac(2y), y)

if frac(y) ∈ [1
2
, 1]. Let us define f̃ = g ◦ h. It holds that its rotation set is

[0, 1]2. Actually, the point (0, 0) is fixed by f̃ , its rotation vector is (0, 0), also

f̃(1
2
, 0) = (1

2
, 0)+ (0, 1), f̃(0, 1

2
) = (0, 1

2
)+ (1, 0) and f̃(1

2
, 1

2
) = (1

2
, 1

2
)+ (1, 1). Then

ρ(f̃ , (1
2
, 0)) = (0, 1), ρ(f̃ , (0, 1

2
)) = (1, 0), and ρ(f̃ , (1

2
, 1

2
)) = (1, 1)).

We are going to modify this example in order that f have an invariant homo-

topically trivial circle and that f̃ have still the same rotation set. Let us explain
it. The point (0, 0) is fixed by f , we replace it by a small disk D by blowing up.
This construction does not change the rotation set because of the following facts:

– the points in D have the same rotation vector than (0, 0) (D is f̃ -invariant)
– the three other vertices of the rotation set are unchanged since they are real-

ized by points for which the blow up did not change the orbits.
On the other hand, it holds that ∂D is a homotopically trivial single curve which
is invariant by this perturbation of f .

Remark 2.2. Since, there is no relationship between the existence of homotopically trivial

f -invariant single curves and the interior of the rotation set of f̃ , we ask for K not to be
contained in a disk, in the definition of an essential set.

Remark 2.3. There exist compact sets that are f -invariant, with empty interior and
essential but that are not circles (they are not even locally connected [Her86] and they are



called pseudo-circles). It is possible to change an invariant non null-homotopic circle by a
connected invariant set that disconnects the torus and that is not locally connected. That
is the reason why –in the definition of irreducibility– we ask for the non existence of a
compact, f -invariant, of empty interior set (instead of a circle) which is essential.

3. Proof of Theorem 1

In this section we prove Theorem 1.

Proof. Denote by T 2
4 := R2/(2Z)2 the 4-1 covering of T2 = R2/Z2, and let the natural

projections be Π: R
2 → T

2, Π4 : R
2 → T 2

4 and P : T 2
4 → T

2. Note that Π = P ◦ Π4. Let

f̃4 : T 2
4 → T 2

4 be a lift of f to T 2
4 . Let us endow T 2 and T 2

4 with their usual flat Riemanian
metrics (inherited of the standard euclididian metric on R2) and the associated distances.

By hypothesis, f is a C1+α diffeomorphism and htop(f) > 0 therefore f̃4 is also a C1+α

diffeomorphism and htop(f̃4) > 0.

By Katok (see [Kat80]), there exist n ∈ N and a hyperbolic periodic point y0 of f̃4

with period n such that the intersection of the stable and unstable manifolds of y0 is
transversal. Thus, there exists k ∈ N the minimal positive number such that f̃nk

4 (y0) = y0

and both eigenvalues of the differential Df̃nk
4 (y0) are positive. In what follows, we denoted

f̃nk
4 by f4. As pointed in Remark 1.1 we will assume that f4 is topologically transitive.
Let us denote x0 = P (y0). Since P is a local diffeomorphism, x0 is a hyperbolic fixed

point of fnk and it has the local type of y0. Let x̃0 ∈ [0, 1]× [0, 1] be a lift of x0 and F be
a lift of fnk to R2 such that F (x̃0) = x̃0. Note that F is a lift of both fnk and f4.

We define x̃1 = x̃0, x̃2 = x̃0 + (1, 0), x̃3 = x̃0 + (0, 1) and x̃4 = x̃0 + (1, 1). Since F is
isotopic to identity, then F (x̃0 + (a, b)) = F (x̃0) + (a, b) = x̃0 + (a, b), for any (a, b) ∈ Z

2.
Then every x̃i is a fixed point F and therefore its projection on T 2

4 denoted by xi is fixed
by f4. Note that ∃i ∈ {1, 2, 3, 4} such that y0 = xi.

Proposition 1. There exists 0 < ǫ < 1
2

such that for i ∈ {2, 3, 4} there exist ni ∈ IN
and non empty compact sets Li ⊂ Bǫ(xi) ⊂ T 2

4 and Li
1 ⊂ Bǫ(x1) such that Li = fni

4 (Li
1)

and P (Li
1) = P (Li).

Proof of Proposition 1. By the classical Hartman-Grobman’s theorem, there is an
open subset U of T2 containing x0 such that the restriction of fnk to U is topologically
conjugated to its differential Dfnk(x0). By conjugating fnk by a suitable homeomorphism
with support in a small compact K ⊃ U , we may suppose that fnk is a linear diagonal
map in U with eigenvalues 0 < λ1 < 1 < λ2.

Fix ǫ > 0 sufficiently small so that the ball Bǫ(x0) ⊂ U and the lifts by P of it are
disjoints ǫ-balls Bǫ(xi) ⊂ T 2

4 , i = 1, ..., 4 (this fact is realized by taking ǫ < 1
2
). Restricted

to these balls, f4 is a linear map.

Let x be in T 2
4 , we denote by W s(x) [resp. W u(x)] the stable [resp. unstable] manifold

of x for f4. For any 0 < δ ≤ ǫ and x ∈ T 2
4 , let’s denote by W s

δ (x) [resp. W u
δ (x)] the

connected component of W s(x) ∩ Bδ(x) [resp. W u(x) ∩ Bδ(x)] containing x.

Since W s(x1) and W u(x1) have a transverse intersection in some point p, there is:



-N ∈ N such that for n ≥ N , fn(p) ∈ W s
ǫ (x1) (these points converge monotonically to

x1 when n goes to +∞) and
-M ∈ N such that for n ≥ M , f−n(p) ∈ W u

ǫ (x1) (these points converge monotonically
to x1 when n goes to +∞).

Consider a small arc Σu of W u(x1) containing fN(p), the segments fn(Σu) for n ≥ N be-
come larger and more vertical with n, so there is n ≥ N minimal such that d(x1, f

n(p)) ≤ ǫ
2

and the arc fn(Σu) intersects transversally the boundary of Bǫ(x1) in two points.
Analogously, consider an arc Σs of W s(x1) containing f−M(p), there is n′ ≥ M min-

imal such that d(x1, f
−n′

(p)) ≤ ǫ
2

and the arc f−n′

(Σs) (almost horizontal) intersects
transversally the boundary of Bǫ(x1) in two points.

The arcs fn(Σu) ∩ Bǫ(x1) and f−n′

(Σs) ∩ Bǫ(x1) intersect transversally.

Finally, we define a rectangle R1 in T 2
4 whose boundary is the union of arcs Cj

1,s for

j = 1, 2 included in W s(x1) and arcs Cj
1,u for j = 1, 2 included in W u(x1). In fact x1

is a corner of R1 and it is the intersection of the sides C1
1,s and C1

1,u which are included

in W s
ǫ
2

(x1) and W u
ǫ
2

(x1) respectively, the two other sides are C2
1,s ⊂ fn(Σs) ∩ Bǫ(x1) and

C2
1,u ⊂ f−n′

(Σu) ∩ Bǫ(x1). By definition, the diameter of R1 is less than ǫ.

Let R0 = P (R1) be a rectangle in T2. For i = 1 . . . 4, denote by γi the automorphism
of the finite covering P such that γi(x1) = xi, and let Ri = γi(R1) be a rectangle in T 2

4

and for j = 1, 2 we set Cj
i,u = γi(C

j
1,u), Cj

i,s = γi(C
j
1,s) (see Figure 1).

From now on we assume that f4 is topologically transitive (see corollary of lemma 4.1
for the proof) and fix i ∈ {2, 3, 4}.

It follows that there exists mi ∈ IN such that fmi

4 (R1) ∩ int(Ri) 6= ∅.

It is not possible that fmi

4 (R1) ⊃ Ri. In fact, projecting via P on T2, we obtain
that fnkmi(R0) ⊃ R0 so there exists a repelling fixed point of fnk in P (R0) which is a
contradiction with the Hartman-Grobman Theorem. Furthermore, it is not possible that
xi belongs to fmi

4 (R1) since xi is a f4-fixed point and Ri and R1 are disjoint.

As W u(x1) ∩ W u(xi) = ∅ for i 6= 1 we have that there exists li ≥ mi such that
f li

4 (C1
1,u) ∩ (C1

i,s ∪ C2
i,s) 6= ∅ and this intersection is topologically transversal.

There is no loss of generality if we suppose that f li
4 (C1

1,u) ∩ C1
i,s 6= ∅, i.e W u(x1) ∩

W s
ǫ/2(xi) 6= ∅.

Since W u(x1) is topologically transversal to W s
ǫ/2(xi) we can assert that there exists Ni

such that at least one connected component of fm
4 (C1

1,u) ∩ Ri has one end point in C1
i,s

and another one in C2
i,s for all m ≥ Ni.

Let us define Bi as a small subrectangle in Ri whose boundary contains C1
i,u and stable

and unstable arcs. We take the stable sides of B1 contained in the stable arcs of the
boundary of R1. We choose the other unstable side of B1, Lu close enough to C1

1,u so
that a connected component of fm

4 (Lu)∩Ri has one end point in C1
i,s and another one in

C2
i,s for all m ≥ Ni. Hence, one connected component of fm

4 (B1) ∩ Ri is a compact set

with nonempty intersection with C1
i,s and with C2

i,s, for m ≥ Ni. Let Bi ⊂ Ri verifying
P (Bi) = P (B1).



Figure 1. Stable and unstable sides of Ri.
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There exists ni ≥ Ni such that for all m ≥ ni one connected component denoted by Di

of fm
4 (B1) ∩Bi is a compact set included in Bi with nonempty intersection with C1

i,s and

with C2
i,s; and with empty intersection with the unstable sides of Bi. One can show that

the set f−m
4 (Di) is connected, compact and contained in B1. It intersects the unstable

sides of B1 and it does not intersect the stable sides of B1 (see Fig 2).

It follows that
N⋂

j=−N

fnkmj(P (Di)) has the finite intersection property.

Consequently, the compact set (depending on i and m) in T2 defined by:

L =

∞⋂

j=−∞

fnkmj(P (Di))

is non empty, fmnk−invariant and it’s contained in R0 = P (Ri) ⊂ T2.



Figure 2. The sets Bi and Di.
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In what follows, we argue for m = ni. For j = 1, ..., 4, let Li
j = P−1(L) ∩ Rj . It holds

that

4⋃

j=1

Li
j is fni

4 -invariant. Moreover, since f4 is surjective and Li
1 ⊂ f−ni

4 (Di), we have

that fni

4 (Li
1) = Li

i. Therefore, we have proved that there exists an integer ni and compact
sets Li

1 and Li := Li
i such that P (Li) = P (Li

1) and fni

4 (Li
1) = Li. We get the proposition

1. ◭

Proof of the theorem. We prove that the proposition 1 implies the theorem.
Since x̃0 is a fixed point of F it follows that ρ(F, x̃0) = (0, 0).
By proposition 1 for i = 2, there exists n2 and non empty compact sets L2 ⊂ R2 and

L2
1 ⊂ R1 such that P (L2) = P (L2

1) and fn2

4 (L2
1) = L2.

Let us denote L2 [resp. L2
1] a lift of L2 [resp. L2

1] to R
2. Then there exist k2 ∈ (2Z)2

such that F n2(L2
1) = L2 + k2. Since P (L2) = P (L2

1) and L2 ⊂ Bx2
(ε), we have that

necessary L2 = L2
1 + (1, 0). Therefore

F n2(L2
1) = L2

1 + k2 + (1, 0).



It holds that F n2(L2
1 +k2 + (1, 0)) = F n2(L2

1) + (k2 + (1, 0)) = L2
1 + 2(k2 + (1, 0)) and for

every k ∈ N

F kn2(L2
1) = L2

1 + k(k2 + (1, 0)).

Let x̃ ∈ L2
1. For every k, there exists ỹk ∈ L2

1 such that F kn2(x̃) = ỹk + k(k2 + (1, 0)).
It follows that

F kn2(x̃) − x̃

kn2
=

ỹk − x̃

kn2
+

k(k2 + (1, 0))

kn2

Then

lim
k→∞

F kn2(x̃) − x̃

kn2

=
k2 + (1, 0)

n2

.

Hence,
k2 + (1, 0)

n2

∈ ρ(F ).

Analogously, for i = 3 there exist integers n3, k3 and a compact set L3
1 in R2 such that

F n3(L3
1) = L3

1 + k3 + (0, 1).

It comes that
k3 + (0, 1)

n3
∈ ρ(F ).

Finally, it holds that (0, 0) ∈ ρ(F ) and the vectors k2+(1,0)
n2

and k3+(0,1)
n3

are linearly
independent.

Actually, for i = 2, 3 let us write ki = (2pi, 2qi) and compute the determinant:

det

(
n2

k2 + (1, 0)

n2
, n3

k3 + (0, 1)

n3

)
=

∣∣∣∣
2p2 + 1 2p3

2q2 2q3 + 1

∣∣∣∣ 6= 0,

since it is the difference between an even number and an odd number.
Then, it follows that ρ(F ) has 3 non colinear points. By convexity (see [MZ91]) of

ρ(F ), we have that int(ρ(F )) 6= ∅, for a lift F of fnk to R
2. Thus, this property holds for

any lift of fnk and therefore for any lift of f to R2. �

4. Proof of the topological transitivity of f4.

Let T 2
h := R2/(2Z × Z) (resp. T 2

v := R2/(Z × 2Z)) be a 2-1 covering of T2 = R2/Z2,
and let the natural projection be Πh : T 2

h → T 2 (resp. Πv : T 2
v → T

2). Let fh : T 2
h → T 2

h

be the lifting of f to T 2
h (resp. fv : T 2

v → T 2
v be the lifting of f to T 2

v )

Lemma 4.1. Let f : T2 → T2 be a torus homeomorphism satisfying

(a) f is topologically transitive;
(b) f is irreducible;

then f and the 2-1 coverings fh and fv are topologically transitive.

Corollary 4.1. Let f : T2 → T2 be a torus homeomorphism topologically transitive and
irreducible. Let f4 be the lift of f defined in the proof of the theorem. Then f4 is topolog-
ically transitive



Proof of the Corollary. By definition, f4 = (fh)v = (fv)h. According to the previous
lemma fh is topologically transitive and by the property 2.1 it is irreducible, so we can
apply once again this lemma to fh and obtain that (fh)v is topologically transitive. �

Proof of lemma 4.1.

We will argue by absurd for fh. We suppose that f is transitive but not fh.
Since f is transitive, there exists x0 such that Of(x0) := {fn(x0) : n ∈ Z} is a dense set
in T2. Let {x1, x2} be the lifts of x0 by π−1

h . Let O(xi) be the fh-orbit of xi. We have
that O(x1)∪O(x2) = π−1

h (Of(x0)) is a dense set in T 2
h since πh is a local homeomorphism.

Since fh is not transitive, neither O(x1) nor O(x2) is dense. We claim that int(O(x2)) ∩

O(x1) = ∅. Actually if there was a point y in the intersection, there exists m ∈ Z such

that fm
h (x1) belongs to O(x2) then O(x1) ⊂ O(x2). Thus O(x1) ⊂ O(x2) so we have

T 2
h = O(x1) ∪ O(x2) = O(x2): a contradiction.

Analogously, the symetric holds and these two equalities imply that ∂O(x1) = ∂O(x2)

and T 2
h = int(O(x1)) ⊔ int(O(x2)) ⊔ ∂O(x1), where ⊔ denotes disjoint union. The set

∂O(x1) is a closed invariant of empty interior subset that disconnects T 2
h .

We are going to prove that it can not be contained in a disk D ⊂ Th.

Suppose, by absurd that ∂O(x1) ⊂ D. First, we prove that intO(x1) or intO(x2) is
included in D. In fact, if both of them intersect the complement Dc of D, we can take a
path in Dc joining a point of intO(x1) and a point of intO(x2). By connexity, this path

must contain a point of the boundary ∂O(x1), which contradicts the fact that ∂O(x1) ⊂ D.

Finally, suppose that intO(x1) ⊂ D then intO(x2) ⊃ Dc, but this is not possible since

intO(x1) and intO(x2) are homeomorphic.

We have proved that ∂O(x1) is a closed invariant of empty interior subset that discon-
nects T 2

h and that is not contained in a disk. But this is a contradiction with the fact
that f is irreducible. �

Remark 4.1. The topological transitivity of f is not enough to guarantee that fh (or fv)
is topological transitive. For example, consider a diffeomorphism f of A = [0, 1] × S1

obtained by the Katok-Anosov process (see [AK70]) in such a way that:

• f is topologically transitive in int(A) = (0, 1) × S1, and
• f(0, x) = f(1, x) for all x ∈ S1.

We collapse the circles {0}×S1 and {1}×S1 by identifying (0, x) with (1, x) for x ∈ S1.

Then, we have a diffeomorphism of the torus, f̂ , verifying that f̂ is topologically transitive

on T 2 and C = {0} × S1 is a circle invariant of f̂ . Let us consider the finite covering T 2
h

of the torus T 2 and let f̂h be the lifting of f̂ to T 2
h . The lifting of C is the union of two

circles C1 and C2 that disconnect T 2
h , and the T 2

h\(C1 ∪ C2) is the disjoint union of two

cylinders. The orbits of f̂h are dense in each cylinder but f̂h is not topologically transitive.

5. Examples

In this section, we give examples in order to show that each hypothesis of the theorem
is necessary.



1) Missing hypothesis 2.
Let Rα,β be the rotation of vector (α, β) with α and β irrational, that is, the projec-

tion to T 2 of the translation of vector (α, β) in R2. It is a well known fact that Rα,β

is topologically transitive, it is differentiable and it is irreducible, but its rotation set
is {(α, β)}. This example shows that conditions 1, 3, and 4 of the theorem 1 do not
ensure that the interior of the rotation set is not empty.

2) Missing hypothesis 3 and 4.
Let fD : D2 → D2 be a diffeomorphism such that there exists a horseshoe in the

interior of D
2 and such that fD is the identity on ∂D2. It follows that fD has positive

entropy. Let us embed D2 in T2 and then extend fD to f by the identity on T2\D2. It
holds that f has positive entropy and the rotation set has empty interior(because there
exist invariant circles homotopically non trivial). This example show that conditions
1 and 2 do not ensure that the conclusion of the theorem is verified.

3) Missing hypothesis 3.
We start with an irrational flow φt

0 on T 2. By making an appropriate smooth time
change vanishing at one point x0 (we replace the vector field X by g.X where g(x0) = 0
and Dg(x0) = 0), we get a new smooth topologically transitive flow φt

g with a fixed
point x0. Consider the time one map of this flow, f , and replace x0 by a small closed
disk D0 by blowing up. The dynamic of the blow up of f on ∂D0 is of the type
north-south. We have that D0\{N, S} is foliated by meridians {Mt}t∈[−1,1] and ∂D0 =
M−1 ∪M1 ∪ {N, S}. Let γ : D0 → D0 a differentiable map such that γ|Mi = f |Mi, for
i = −1, 1, γ(N) = N , γ(S) = S, for all t ∈ [−1, 1] Mt is γ-invariant and γ|Mt = Id
for t ∈ [−1

2
, 1

2
]. In the blow up manifold, T 2 we define the differentiable map Γ as

Γ(x) = f(x) if x ∈ T 2/D0 and Γ(x) = γ(x) if x ∈ D0. Let D1 = ∪t∈[− 1

2
, 1
2
]Mt ∪ {N, S},

it holds that Γ|D1 = Id.
As in the previous example, we can put a horseshoe in the interior of D1. The

resulting diffeomorphism satisfies trivially the conditions 1, 2.
It also verifies the condition 4. Moreover, an invariant compact set K of Γ is included

either:
• in D0, in this case K is not essential or
• in the complement Dc

0 of D0, in this case K coincides with Dc
0 (since each orbit

in Dc
0 is dense in it) hence its interior is not empty.

But it does not satisfy the condition 3, since it has an invariant disk.
Finally, its rotation set has empty interior. In fact, before the blowing up, the map

f is the time one map of a flow with a fixed point x0 so according to Franks and
Misiurewicz’s result (see [FM90]) its rotation set is a line segment containing (0, 0).
The blowing up does not change the rotation set because of the following facts:

• the points in D0 have the same rotation vector as x0 which is (0, 0) (D0 is Γ-
invariant),

• for the points out of D0, the blowing up does not change the orbits so it does not
change their rotation vectors.

4) Missing hypothesis 1.



According to [Ree81] there exists a torus homeomorphism f0 isotopic to the identity
such that it is minimal and it has positive entropy. Since f0 is minimal, all its orbits
are dense so it has no periodic points. By [Fra89] we know that if the interior of the
rotation set is not empty, then each vector with rational coordinates in the interior of
the rotation set is realized as the rotation vector of a periodic point. It follows that f0

verifies that int(R(f0)) = ∅. This example shows that conditions 2, 3 and 4 are not
enough to guarantee that the interior of the rotation set is not empty.

5) Missing hypothesis 4
According to [Kat79] there exists a topologically transitive C∞ Bernoulli diffeomor-

phism f0 : S2 → S2 which preserves a smooth positive measure on S2. Since f0 (or f 2
0 )

preserves orientation then it is isotopic to the identity.
As in the construction of [Kat79], there exist x1, x2, two fixed points of f0 ( or fk

0 )
such that Df0(xi) = Id, i = 1, 2. We can replace x1 and x2 by small closed disks
D1 and D2, respectively, by blowing up. The dynamic of the blow up of f0 on ∂D1

and ∂D2 is the identity. By gluing ∂D1 and ∂D2 we have a smooth map f : T 2 → T 2

which is topologically transitive and it has positive entropy but there exists a compact
f -invariant of empty interior set (∂D1) which is essential. This example fails to be
irreducible because of the existence of a non null homotopic invariant circle, then its
rotation set has empty interior because of Llibre and Mac Kay’s result ( see [Lli91]).
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República, C.C. 30, Montevideo, Uruguay. nguelman@fing.edu.uy, enrich@fing.edu.uy


