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Abstract. The perturbations of complex polynomials of one variable are con-

sidered in a wider class than the holomorphic one. It is proved that under
certain conditions on a polynomial p of the plane, the Cr conjugacy class of

a map f in a C1 neighborhood of p depends only on the geometric structure
of the critical set of f . This provides the first class of examples of structurally
stable maps with critical points in dimension greater than one.

RÉSUMÉ. Nous considérons les perturbations des polynômes complexes en une

variable dans une classe plus vaste que la classe holomorphe. Si f est une
application appartenant à un voisinage C1 d’un polynôme p du plan, nous
prouvons, sous certaines conditions sur p, que la classe de conjugaison Cr de f

ne dépend que de la structure géométrique de l’ensemble des points critiques
de f . Ceci fournit la première classe d’exemples, en dimension supérieure à
un, d’applications structurellement stables ayant des points critiques.

1. Introduction

Given a manifold without boundary M , denote by Cr
W (M) the set of Cr endo-

morphisms of M , considered with the strong (or Whitney) topology. Two maps
f and g are topologically equivalent if there exists a homeomorphism h such that
hf = gh. The problem of determining the classes of topological equivalence is
central in the theory of dynamical systems. In particular, a great effort has been
made to classify those maps that are topologically equivalent to its neighbors. If
C is a topological space of self mappings, then f is C structurally stable if there
exists a neighborhood of f such that every g in that neighborhood is topologically
equivalent to f . Obviously, the concept depends on the space and topology under
consideration.
The examples of structurally stable maps on manifolds without boundary that are
already known are the following:

(1) A C1 diffeomorphism of a compact manifold is C1 structurally stable if
and only if it satisfies Axiom A and the strong transversality condition.
This theorem is the result of the work of many authors, from the sixties
to the nineties. The “only if” part is due to C.Robinson [R] and the other
direction was obtained by R.Mañé [Ma], fifteen years later.
It is still not known if there exist Cr structurally stable diffeomorphisms
that are not C1 structurally stable.

(2) Any Cr expanding map of a compact manifold is Cr structurally stable.
This was proved by M.Shub [S] in the sixties.

Date: March 28, 2007.

1



2 J. IGLESIAS, A. PORTELA, AND A. ROVELLA

(3) In the case of one dimensional maps of the circle there are some possible
combinations giving conditions for structural stability.
The same occurs for rational maps of the Riemann sphere. This case will
be specially considered in the sequel. For example a polynomial map of
degree d is stable in the d dimensional space of parameters corresponding
to its coefficients, if p is hyperbolic and satisfies the no critical relations
property: pn(S′

p) ∩ p
m(S′

p) = ∅ for every 0 ≤ n < m, where S′
p is the set of

finite critical points of p. It is not known, however, if the converse of this
assertion is true.

Therefore there are no examples of noninvertible nonexpanding structurally sta-
ble maps with or without critical points, in dimensions greater than one. In the
attempt to construct the simplest possible examples, we consider C1

W (C) neighbor-
hoods of polynomials and look for Cr

W (C) stable maps there. The theorem of Mañé,
Sad and Sullivan of stability of rational mappings [MSS], implies the statement(3)
above and also that within the family of degree d polynomials, the stable ones are
dense.
It will be clear later that no polynomial can be Cr

W (C) structurally stable, because
the critical points of holomorphic maps are nongeneric in those spaces of smooth
maps. Indeed. let f and g be topologically equivalent (also called conjugate) and
h the conjugacy between them, i.e. the homeomorphism such that h ◦ f = g ◦ h;
then h carries generic critical points of f to critical point of g and critical values
of f to critical values of g. Therefore, some geometric conditions must be imposed
on the critical sets of maps f and g in order to obtain the existence of a conjugacy
between them. The concept that will be used is the following:

Definition 1. Two maps f and g are geometrically equivalent if there exist C1

diffeomorphisms of M , ϕ and ψ, such that ϕ ◦ f = g ◦ ψ.

This concept, introduced by R.Thom, is now a central concept in global analysis.
It is a concept of geometric nature: it implies, for example, that the set of (generic)
critical points and critical values of f and g are diffeomorphic and that the degree
of the maps are the same. However, it has no dynamical meaning: for example,
two quadratic polynomials of the sphere are always geometrically equivalent. The
concept of geometric equivalence has no significance relative to future iterates of the
map: the fact that two maps f and g are equivalent in this sense does not imply that
its iterates f2 and g2 are also equivalent. It is clear, on the other hand, that if two
maps are topologically equivalent, then the homeomorphism realizing the conjugacy
carries information about the local behavior of the maps; therefore, under generic
conditions, topological equivalence implies geometric equivalence. The aim now is
to establish conditions implying the converse statement.
Note that if a polynomial p satisfies the no critical relations property (item (3)
above) then no critical point of p is periodic or preperiodic.
The main result in this work is the following:

Theorem 1. Let p be a polynomial that satisfies the no critical relations property.
The following conditions are equivalent:

(1) The Julia set of p is connected and hyperbolic.
(2) There exists a neighborhood U of p in C1

W (C), such that, if two maps belong-
ing to U are geometrically equivalent, then they are topologically equivalent.
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The implication (1) ⇒ (2) is the most interesting part of the statement. It con-
tains the proof that, under certain conditions on the polynomial p, it suffices to
prove that the sets of critical points and values of two maps C1 close to p have the
same geometry, to obtain that the maps are equivalent from the dynamical point
of view.
The dynamical structure of a polynomial p satisfying the hypothesis (1) of the theo-
rem is well known. Recall that the Julia set is connected if and only if every critical
point (other than ∞) has bounded orbit. The hyperbolicity of p is equivalent to the
fact that every critical point is attracted to a periodic attractor or superattractor,
and the hypothesis of no critical relations implies that there are no finite superat-
tractors. Within this context the polynomial is stable under small perturbations of
its coefficients. The proof of this fact is based on the construction of conjugacies
in the Fatou components of p, that come from the holomorphic local conjugacies
at the periodic points (see the theorems of Schröder and Böttcher in the references
[St], [Mi]). Then these conjugacies are glue together via the application of the λ
lemma [MSS]. When the perturbation is taken in the C1 Whitney topology, a great
number of non holomorphic maps arise, including some with wild critical sets. All
the above techniques rely on the conformal structure of the maps in question and
therefore cannot be applied in this wider context. To deal with the structure of
the nonwandering set one has a basic result, a theorem by F.Przytycki ([P]), that
implies that under the hypothesis (1), the polynomial p is C1 Ω-stable. This means
that for a small C1 perturbation f of p the restrictions of f and p to its nonwan-
dering sets are topologically equivalent. This theorem is used in section 2 to prove
that the complement of the nonwandering set of f is the union of the basins of the
periodic attractors of f . This is a fundamental step in the proof. In particular,
every component of the complement of the nonwandering set of f is periodic or
preperiodic. This extends Sullivan’s theorem of nonexistence of wandering Fatou
components, to Whitney C1 perturbations of hyperbolic polynomials. It justifies,
moreover, the denomination of Fatou component of f for a component of the com-
plement of the nonwandering set of f , and also the concept of analytic continuation
for Fatou components.
A lot of work is then needed to prove that geometrically equivalent maps f and
g are conjugate when restricted to corresponding Fatou components. This is the
more technical part of the proof and deserves sections 3 (proof in the unbounded
component) and 4 (proof in the bounded components). Then the conjugacies in
these components and the conjugacy of the nonwandering sets given by the theorem
of Przytycki are glued together using Carathéodory theory in sections 5 and 6.

As a consequence of this part of the theorem the first known examples of C3-
structurally stable maps having critical points are shown:

Corollary 1. Let p be a polynomial map satisfying the properties of part (1) or (2)
of the theorem 1. In each neighborhood U of p in C∞

W (C) there exists some f that
is C3 structurally stable.

It will become clear in subsequent sections that no polynomial can be C1 ap-
proximated by a C2 structurally stable map. See remark 2 in section 7.
On the other hand, the converse ((2) ⇒ (1)) is easier to prove: it will be shown
that if a critical point of p belongs to the Julia set of p, then there exists a C1

perturbation of p having the same geometrical structure of p, but not topologically
equivalent to it. Less evident is the fact that the Julia set of p must be connected
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in order to obtain the properties stated in part (2). See section 7. See the remarks
at the end of the article concerning some questions about the problem of stability.

2. Whitney perturbations of p

In this section a polynomial p satisfying the hypothesis (1) of theorem 1 is fixed
and f is a small C1 Whitney perturbation of p. The objective is to show that the
picture of the dynamics of f is the same as that of p. The following properties are
satisfied by a polynomial p verifying the hypothesis (1) of theorem 1:

(1) The point ∞ is an attractor. The basin of ∞, B∞(p), is connected and
simply connected.

(2) Its boundary, ∂B∞(p), is a curve (not necessarily a Jordan curve), and is
equal to Ω′(p), the set of nonwandering points of p that are not periodic
attractors. (Clearly Ω′(p) is the Julia set of p, also denoted Jp).

(3) Every component of the complement of the closure of B∞(p) is simply
connected and its boundary is a Jordan curve.

(4) The components of the Fatou set of p, are the periodic components and its
preimages.

For a proof of this results there are many good references. See for example [St] or
[Mi].

Theorem 2. There exists a neighborhood U of p in C1
W (C), such that each f ∈ U

satisfies conditions 1 to 4 above.

The remaining of this section is devoted to the proof of this theorem. The first
result is trivial and one of the reasons why Whitney topology is considered. See
for example reference [H], where the properties of Whitney topology are clearly
exposed. If f were a Cr perturbation of p in the topology Cr(S2), then the in-
tersection of the critical set of f with a neighborhood of ∞ may possibly become
a nonconnected set with d − 1 components, where d is the degree of p, and the
analytic continuation of the fixed point at ∞ may not be critical anymore.

Lemma 1. For every f in a neighborhood of p in C0
W (C), the point at ∞ is an

attractor.

This means that under these hypothesis, f is a proper map of C and there exists
a disc D with the property that f(D) contains the closure of D and such that the
future orbit of any point outside D diverges.
Now consider a C1

W perturbation f of p. The hypothesis on p imply that the Julia
set of p is hyperbolic and hence expanding, in the sense that |p′(z)| > 1 for every
z ∈ Jp where the norm is considered with respect to a hyperbolic metric in an
open set containing Jp. This implies that p is C1-Ω stable and then the theorem
of Przytycki implies that the restrictions of f and p to its nonwandering set are
conjugate. For f close to p define Ω′(f) = Ω(f) \ {periodic attractors}. Obviously
periodic attractors of p are carried by the conjugacy h to isolated periodic points
of f , so that h must carry Jp onto Ω′(f).

Lemma 2. If f is C1
W close to p, then Ω′(f) = ∂B∞(f).

Proof : To prove that ∂B∞(f) ⊂ Ω′(f), observe first that there exists a neighbor-
hood V of ∂B∞(f) where Df expands every vector (every point outside a neighbor-
hood of the boundary of B∞(p) is contained in the basin of a periodic attractor).
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It is claimed now that f−1(Ω′(f)) = Ω′(f). Let U be a neighborhood of the critical
set of p not intersecting Jp and U a C1

W neighborhood of p such that Sf ∩ U is
empty for every f ∈ U . Then the restriction of f to the set A, complement of
f−1(f(U)), is a covering map of degree d onto the complement of f(U). If U is
small, then f(U)∩Ω′(f) is empty and A contains Ω′(f). It follows that every point
in Ω′(f) has exactly d preimages, all contained in Ω′(f), because the same occurs
for p and by the theorem of Przytycki. It follows that f−1(Ω′(f)) ⊂ Ω′(f). This

implies the claim, because the other inclusion is trivial. It follows that if x /∈ Ω
′

(f)

then fn(x) /∈ Ω
′

(f), ∀n ≥ 0. Then the omega limit set of x, ω(x), cannot intersect

Ω
′

(f) because this is an expanding set. It follows that ω(x) is a periodic attractor,
and it follows that x /∈ ∂B∞(f).
To prove the other inclusion take a point z ∈ Ω′(f) and V a neighborhood of z.
It is known that the restriction of p to Jp is locally eventually onto; by conjuga-
tion, this also holds for the restriction of f to Ω′(f). Using this and the other
inclusion, already proved, there exist n > 0 and x ∈ V ∩ Ω′(f) such that fn(x)
belongs to the boundary of B∞(f). Let U ⊂ V be a neighborhood of z such that
U ∩ Ω′(f) = V ∩ Ω′(f) and U does not intersect the set of critical points of fn.
Then x ∈ U and fn is open in U , so fn(U)∩B∞(f) 6= ∅ and hence U , and also V ,
intersect B∞(f).

�

Proof of theorem 2 : The first assertion of (1) follows from lemma 1. The second
one is consequence of the fact that the boundary of B∞(f) is connected (by lemma
2 and the theorem of Pryztycki). Also (2) is an immediate consequence of the above
arguments.
Let V be a component of the complement of the closure of B∞(f). It is clear that
the boundary of V is contained in the boundary of B∞(f), from which it follows
that V is connected and simply connected. Moreover, the boundary of V is a Jor-
dan curve, because the contrary assumption implies that the interior of the closure
of V contains points of the boundary of V and this contradicts the fact that the
boundary of V is contained in the boundary of B∞(f). This proves (3). To prove
the remaining statement it is sufficient to show that every point in the complement
of the closure of B∞(f) is attracted to a periodic attractor. For this an argument
similar to that of the proof of lemma 2 works: indeed, if U is a small neighborhood
of B∞(p), then the complement of U is a compact set contained in the union of
the basins of the periodic attractors of p, and the conclusion follows because this
condition is open in the topology under consideration.

Now the plan for the proof of the theorem can be delineated: first local conjuga-
cies must be constructed in neighborhoods of ∞ and the other attracting periodic
points. Then the local conjugacies must be extended to the whole basins and then
it must be proved that these conjugacies can be extended to a global conjugacy
that coincides with the Przytycki map in the nonwandering set.

3. conjugacy in the unbounded domain

In this section, the C1 Whitney perturbations of a polynomial p with connected
Julia set will be considered. Any complex polynomial is holomorphically conjugate
to z → zd locally at ∞, where d is the degree of the polynomial; moreover, under
the hypothesis of part (1) of the theorem (as the Julia set is connected, ∞ is the
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unique critical point in B∞), the conjugacy extends to the whole basin of ∞, which
implies that this basin is simply connected. By this reason, it can be assumed
throughout this section that p(z) = zd. Note that the existence of the conjugacy is
not trivial for non holomorphic perturbations of p. It will be shown here that there
exist a local conjugacy at ∞ between f and p.

The fundamental step in the proof of the local conjugacy is the existence of an
f -invariant foliation each of whose leaves is a C1 curve homeomorphic to a circle
and not homotopically trivial in B∞(f) \ {∞}. This foliation corresponds to the
p-invariant circles of B∞(p): these are the unique non trivial simple closed curves
in B∞(p) whose images under p are also simple closed curves. Before proceeding
with this construction, it will be found another invariant curve, an immersion of R,
that joins the fixed point analytic continuation of 1 to ∞. Note that for any map
f there are infinitely many such curves. Indeed, take any x ∈ B∞(f) and choose
any curve joining x and f(x). Then the union of images of these curves gives a
curve γ such that f(γ) ⊃ γ. Taking preimages one can also complete the curve to a
curve landing at the fixed point of f , continuation of 1, in the boundary of B∞(f),
because ∂B∞(f) is expanding. For the initial map, the polynomial p, there exists
only two possibilities: either the curve γ is the real axis from 1 to ∞, or the curve
intersects each radius Rθ0

= {reiθ : θ = θ0 , r > 1} at infinitely many points.
The same is true for f .

Lemma 3. For every ǫ > 0 there exists a C1
W (C) neighborhood U of p such that, for

every f ∈ U , there exists a unique invariant foliation Γ such that each curve γ ∈ Γ
is ǫ almost radial, that is, there exists a C1 function θ such that γ(r) = re2πiθ(r)

and |θ′(r)| < ǫ.

Proof : It will be convenient to use the coordinate z → 1/z to treat with
0 instead of ∞. With this new coordinate, f is a small Whitney perturbation of
p(z) = zd in some punctured disc at the origin, so that 0 is an attractor for f . Let
ρ > 0 be such that the punctured disc D∗ = {z : 0 < |z| < ρ} is forward invariant
under f . Note that ρ can be made arbitrarily small. Let

Ω = {(r, θ) ∈ R
2 : 0 < r < ρ},

and π : Ω → D∗, π(r, θ) = reiθ, the usual polar coordinates covering map. It

is clear that if p is lifted to p̃(r, θ) = (rd, dθ) then f has a lift f̃ : Ω → Ω close

to p̃ in C1
W (Ω). Note that f̃ is a diffeomorphism onto f̃(Ω). Let ǫ(r) > 0 be a

continuous function such that f̃ is in the ǫ-C1 Whitney neighborhood of p̃. Assume
that ǫ(r) → 0 as r → 0 with the order of rd. Summing up, this means that the

map f̃ has a differential of the form
(
A B
C D

)
,

where A, B, C, D are functions that evaluated at r and θ satisfy that |A− drd−1|,
|B|, |C| and |D−d| are all smaller than ǫ(r). As r < ρ and ρ can be made very small,
it follows by simple calculation that there exist invariant unstable cones containing
the vertical directions, at any point of a neighborhood of {r = 0} in Ω. Indeed, let
δ > 0 be a small positive number and let V = (u, v) be a vector tangent to Ω at
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(r, θ), such that |u/v| < δ. If (u1, v1) = (Df̃)(V ), then
∣∣∣∣
u1

v1

∣∣∣∣ =

∣∣∣∣
Au+Bv

Cu+Dv

∣∣∣∣ ≤
Aδ + |B|

D − |C|δ
≤

(drd−1 + ǫ)δ + ǫ

(d− ǫ) − ǫδ

and this is less than δ if ρ and ǫ are small enough.
This implies by standard arguments the existence of an f̃ -invariant normally ex-
panding foliation of Ω formed by C1 almost horizontal curves. Indeed, if Γ0 is a
foliation by almost horizontal curves of inclination at most δ, then the preimage of
this foliation is a foliation of the same type. Then there exists a unique invariant fo-
liation Γ̃ = limn(f̃)−n(Γ0). Finally, as π(x) = π(y) implies that π(f̃(x)) = π(f̃(y)),

it follows that Γ̃ induces an invariant foliation Γ = Γf for f in D∗ which is obviously
equivalent to have a foliation in a neighborhood of ∞.

�

In particular, there exists a unique curve γf ∈ Γ which is invariant and almost
horizontal. There exist infinitely many f -invariant curves, but all the other are
spirals around ∞.

Corollary 2. If γ = γf is the invariant curve found above, then
⋃

n≥0

f−n(γ)

is dense in a neighborhood of ∞.

Let s be a segment transverse to the foliation Γ̃ in Ω. As this foliation was
normally expanding it follows that f̃n(s) intersects γ̃ (the lift of γ) for every n
sufficiently large. Therefore, each open set U in D∗ contains points of f−n(γ) for
every n sufficiently large.

�

The fundamental structure of p in B∞ is the invariant foliation by circles. The
next step is to prove that also f has such a foliation.
For the proof of the next lemma it is convenient to return to the map p(z) = zd

defined in a neighborhood Uρ = {|z| > ρ} of ∞, forward invariant under f . Note
that ρ can be taken arbitrarily large. Again a covering space (Λ, π), with

Λ = Λρ = {(r, θ) ∈ R
2 : r > ρ},

and the same π will be considered. As above, f has a lift f̃ acting in Λ that is
Whitney-C1 close to the lift of p, p̃(r, θ) = (rd, dθ).

Lemma 4. There exists a foliation F of some Uρ such that:

(1) Each leave is a C1 curve homeomorphic to a circle and not homotopically
trivial in B∞ \ {∞}

(2) F is f-invariant; the map f carries a leaf of F , d to 1 to another leaf.

Proof : It is sufficient to find an f̃ -invariant foliation by curves in Λρ that are
periodic, or π-invariant. The curve γ of the preceding lemma can be parametrized
as the graph of a C1 function defined in the r-axis.
Given any δ > 0 there exists a neighborhood of p such that the preimage under f̃
of any vertical strip of length δ is contained in a vertical strip of length 2δ/3. Let

(r0, γ(r0)) be any point in the invariant curve and define rn so that f̃n(r0, γ(r0)) =
(rn, γ(rn)). Let Vn = Vn(r0) = {(r, θ) : |r − rn| < δ/2}.
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Given some positive number µ define Γr0
(µ) as the set of sequences {αn}n≥0 of

curves satisfying the following:

(1) Each αn is a C1 curve, αn(θ) = (an(θ), θ) and |a′n(θ)| < µ.
(2) The curve αn is contained in Vn.
(3) Each αn is periodic in the sense that αn(θ + 1) = αn(θ).
(4) For each n, the curve αn intersects the invariant curve γ at the point

(rn, γ(rn)).

Note that if µ is sufficiently small then αn is contained in Vn. A distance is defined
in Γr0

(µ) by the formula

d({αn}, {βn}) = supn||αn − βn||1,

where ||.||1 stands for the usual C1 norm. It is claimed now that the operator Φr0

that assigns to the sequence {αn}n≥0 the sequence of preimages {f̃−1(αn)}n≥1 is
an operator in Γr0

(µ).

Assume that f̃ = (h, g); to find f̃−1 one has to solve f̃(x, y) = (a(θ), θ). It comes
that

x′

y′
=

−∂yga
′ + ∂yh

∂xga′ − ∂xh

From this it follows that an almost vertical curve |a′| < µ has preimage also
vertical, with the inclination:

∣∣∣∣
x′

y′

∣∣∣∣ ≤
(d+ ǫ)µ+ ǫ

dxd−1 − ǫ− µǫ

which is less than µ if r0 (and hence x) is large enough. It is clear that the preimage

of each αn is periodic because f̃ is a lift of a map f . The remaining conditions are
obviously satisfied by preimages, so the claim is proved. The same estimatives
prove that Φr0

is, in fact, a contraction of Γr0
(µ), the fact that r0 is large is used

again to prove this (and this is the reason why, instead of using the unit circle as in
the previous lemma, it was convenient to use a neighborhood of ∞; otherwise one
would have to change the metric).
The fixed point {αr0

n } of Φr0
is defined for every r0. Let F0 be the set of curves

{αr
0 : r ≥ r0}. That this is a foliation of a neighborhood of ∞ is consequence of

the following observations:

(1) The curves αr1

0 and αr2

0 do not intersect if r1 6= r2. The contrary assumption
implies that for every n the intersection of αr1

n and αr2

n is not empty. But
this is not possible: indeed, given any r1 6= r2 there exists a positive n such
that the sets Vn(r1) and Vn(r2) do not intersect.

(2) The union of the curves αr0

0 covers a neighborhood of ∞. These curves
certainly cover the curve γ by construction. Suppose that there exists an
open set U that does not intersect any of curves αr

0; this implies that the
union of its images does not intersect any αr

0. From the corollary it follows

that the set f̃−n(π−1(π(γ))) is dense in Λ, so the periodicity of the curves
α implies a contradiction.

This concludes the proof of the lemma, once the foliation F is defined as the
projection of F0 under π.

�
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Observe that this foliation can be extended throughout the whole basin B∞(f) if
it does not contain critical points of f . This section finishes with the proof of the
following:

Theorem 3. Let p be a complex polynomial of degree d > 1 and U0 a neighborhood
of p in C1

W (C). Suppose that for every f ∈ U0 it is known that Sf ∩ B∞(f) = ∅.
Then there exists a neighborhood U ⊂ U0 of p such that for every f ∈ U there exists
a homeomorphism h : B∞(p) → B∞(f) such that hp = fh.

Proof : Let U be as in the previous lemma, so that the invariant foliations

exist. Let C be an element of the foliation F . In C define the map f̂ as follows: for

z ∈ C, let γ ∈ Γ such that f(z) ∈ γ and define f̂(z) as the point of intersection of

γ and C. It is claimed that f̂ is topologically equivalent to the map z → zd acting
in the unit circle S1. The following lemma implies the claim:

Lemma 5. Let g : S1 → S1 a degree d covering of S1. Assume that g has a fixed
point x whose preimages are dense in S1. Then g is conjugated to z → zd.

To prove the lemma define h0(x) = 1 and extend it to the preimages of x in such
a way that it is a conjugacy in the set of preimages of x and such that it preserves
orientation. The hypothesis imply immediately that h0 has a unique extension that
is a conjugacy.

Following with the proof of the theorem, note that by corollary 2, it follows that

the map f̂ satisfies the hypothesis of the lemma; the claim is consequence of this.
This proceeding gives an application that to each γ ∈ Γ associates a ray Rθ(γ). Next
take a fundamental domain A for B∞(f) whose boundary is equal to the union of
C and f(C), choose any r > 1, and define h from A to the annulus {r ≤ |z| < rd}
(any r > 1), in such a way that it is equal to the h0 of the previous lemma in C,
and carries a leaf of Γ to a ray Rθ(γ). To extend h to f(A) proceed as follows: let
z ∈ f(A), and z1, . . . , zd the preimages of z. All of them belong to the same circle
C ′ ∈ F . By the construction of h in A it follows that all the points h(z1), . . . , h(zd)
have the same image under p. Then define h(z) = p(h(z1)). Now, to define h in
f−1(A), let z ∈ f−1(A) and let γ′ ∈ Γ such that z ∈ γ′. Note that h(f(z)) has d
preimages under p but only one of them belongs to γ′: this preimage will be h(z).
Proceeding by induction one can define h all over B∞(f).

�

4. Conjugacy in bounded domains

The hypothesis of theorem 1 imply that the critical points of p are contained in
basins of attraction of finite periodic attractors. If V is a small neighborhood of
the set Sp, then there exists a C1

W neighborhood U of p, such that for every f ∈ U ,
the critical set Sf is contained in V , and so every critical point belongs to the basin
of a periodic attractor of f . Assume that f and g are maps C1 close to p and that
they are geometrically equivalent. This means that there exist diffeomorphisms of
the plane ϕ and ψ such that ϕf = gψ. Begin with a fixed attracting point of p
and consider its analytic continuation xf for f ∈ U . The immediate basin of xf

is denoted by Uf . Note that theorem 2 implies that Uf is simply connected. The
objective throughout this section is to prove that there exists a homeomorphism
h realizing the equivalence of f |Uf

and g|Ug
. This map will be produced as an
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extension of the restrictions of ϕ to a neighborhood of the set of critical values and
of ψ to a neighborhood of the set of critical points of f in Uf .

Lemma 6. If f and g are geometrically equivalent maps C1 close to p, then its
restrictions to Uf and Ug are topologically equivalent.

Proof. It will be assumed first that p has only one critical point in the immediate
basin of attraction of xp.

Let Vf be a neighborhood of xf , such that f |Vf
is a diffeomorphism and the

annulus Af = Vf \ f(Vf ) is a fundamental domain. It is also possible to choose Vf

and a topological disc Wf , containing Sf , such that f(Wf ) is also a topological disc
contained in the interior of Af (see figure 1). For the map g define corresponding
Vg, Ag and Wg. Moreover, Wg is chosen so that ϕ(f(Wf )) = g(ψ(Wf )) = g(Wg).
In addition a simple curve βf ⊂ Vf \

⋃
n>0 f

n(Wf ), joining xf with some point r
in the boundary of f(Wf ) and a corresponding curve βg joining xg with ϕ(r) will
be needed in the sequel.

Under these conditions there exists an orientation preserving homeomorphism
h,

(1) h : Vf \
⋃

n≥1

fn(Wf ) → Vg \
⋃

n≥1

gn(Wg),

realizing a conjugacy between the restrictions of f and g to the given domains,
such that the restriction of h to the boundary of f(Wf ) is equal to ϕ and such
that h(βf ) = βg. Moreover, one can extend h to the whole Vf if it is defined
as equal to ϕ in f(Wf ) and then dynamically extended to fn(Wf ), every n > 0.

It is claimed now that there exists (a unique) extension of h to Uf \W
′

f , where

W
′

f =
⋃

m,n∈Z f
−m(fn(Wf )) is the grand orbit of Wf . First extend h to the

preimage of Vf . Observe that f : f−1(Vf ) \Wf → Vf \ f(Wf ) is a covering map
of degree d, from which it follows that h ◦ f : f−1(Vf ) \ Wf → Vg \ Wg is a
degree d covering map. Also the restriction of g to g−1(Vg) \ Wg is a degree d
covering map onto Vg \Wg. Domains and codomains are topological annulus, and
the homomorphisms induced by h ◦ f and by g in fundamental groups are both
conjugated to multiplication by d on Z. Then there exists a unique lift h̃ of f ◦ h
such that g ◦ h̃ = h ◦ f and h̃(xf ) = xg. The uniquenes of h̃ implies that it extends
h.
The same argument shows how to extend h to the whole Uf \W

′
f . Finally one must

extend h to Uf .
To define h in Wf and its preimages, other details must be taken into account,
relative to the fact that the restrictions of h and ψ to the boundary of Wf may be
equal or not. In the first case, h can be extended to Wf as equal to ψ and then
to the remaining part of Uf dynamically. But in the other case h and ψ differ in
the boundary of Wf , so the definition of h started in formula (1) must be changed.
Note that the set of points of ∂Wf where h and ψ are equal is open and closed in
∂Wf , so it suffices to find a way of make them coincide at just one point. Recall
that the definition of h depends on the choice of a curve β; changing its homotopy
class in Vg \ g(Wg) that objective will be attained.
Given any element j in the fundamental group of Vg\g(Wg) (say j ∈ Z), let βj

g ⊂ Vg

be a simple curve joining xg with ϕ(r) such that the class of the curve βj
g(βg)

−1
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in the fundamental group of Vg \ g(Wg) is equal to that element j (see figure 1,
where j = 1). Then a homeomorphism hj can be defined as in (1), but changing
the curve βg by βj

g ; then the restrictions of hj and h to Wf are different. Indeed,

more than this can be said: there is a map R that assigns, to each βj
g , the value of

the corresponding hj at the point r−1, for some fixed r−1 ∈ f−1(r) ∩ ∂Wf . If ν is
the order of the critical point that the polynomial p had close to Sf , then the map
R is injective if restricted to the set of curves {β1

g , . . . , β
ν
g }. It is thus proved that

there exists a curve βg such that the homeomorphism h determined by this βg is
equal to ψ in the boundary of Wf .
The same reasoning can be applied if there are more critical points of p in Up.

�

Figure 1.

Sf

Wf

f(Vf )xf

Vf

f(Sf )

βf

f(Wf )

Af

Sg

Wg = ϕ(Wf )

g(Vg)
xg

Vg

g(Sg)

Ag

βg

g(Wg)

β
′

g

r

ϕ

ψ

This previous result treated with fixed domains. Suppose now that the poly-
nomial p has an attracting cycle αp = {x1

p, ..., x
n
p}. For every f close to p in C1

topology, denote by U1
f , ..., U

n
f the components of the immediate basin of the at-

tractor αf = {x1
f , ..., x

n
f } analytic continuation of αp. Define also Uf =

⋃
U j

f . The
following is an easy generalization of the previous lemma 6, and its proof is omitted.

Lemma 7. If f and g are geometrically equivalent maps C1 close to p, then they
are also topologically equivalent when restricted to the grand orbits of Uf and Ug.

Using that every component of the complement of the set Ω
′

(f) is preperiodic
and the previous results, it comes at once:
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Corollary 3. If f and g are geometrically equivalent and C1 close to p, then there
exists h : R

2 \ (Ω
′

(f) ∪ B∞(f)) → R
2 \ (Ω

′

(g) ∪ B∞(g)), homeomorphism close to
the identity that conjugates f and g.

5. Extension of the exterior conjugacy

By the results of section 3, it is known that there exists a conjugacy h between
the restriction of f to B∞(f) and z → zd in the complement of the unit disc. If f
and g are close to a polynomial p satisfying the hypothesis (1) of the theorem, then
there exists a conjugacy (also called h) between the restrictions of these maps to
the respective basins of ∞. On the other hand, the theorem of Przytycki provides
a conjugacy hp of these maps in the boundaries of the respective domains. This
section is devoted to prove that h can be continuously extended to the closure of
B∞(f), and that in the boundary is equal to the conjugacy of Przytycki.

Recall from theorem 3 of section 3 that the conjugacy h was constructed taking
account of the preimages of the curve γf whose endpoint is a fixed point (analytic
continuation of the fixed point that the polynomial p has in ∂B∞). The conjugacy
of Przytycki hp carries this fixed point of f to the corresponding fixed point of g.
It follows that the map H defined as h in B∞ and by hp in ∂B∞, is continuous if
restricted to the union of the preimages of the closures of γf . The difficulty now is
to prove the continuity at the other points , mainly because the boundary of the
basin of B∞(f) may not be a Jordan curve. We begin this exposition with a brief
discussion of the elementary definitions of Caratheodry’s theory of prime ends.

5.1. Prime ends. The works of J.Milnor [Mi] and J.Mather [Mat] are recom-
mended for the proofs of the results here stated.
Let U ⊂ S2 be a simply connected set such that U c, the complement of U , contains
at least three points. A simple curve Q is a crosscut if it is contained in U except
for its extreme points.
Each crosscut Q separates U into two connected components. One of these com-
ponents is denoted N(Q). A fundamental chain is a sequence of disjoint crosscuts
{Qn} such that N(Q1) ⊃ N(Q2) ⊃ N(Q3) · · · and diam(Qn) → 0. Two funda-

mental chains {Qn}, {Q
′

n} are equivalent if each N(Qi) contains some N(Q
′

j) and
reciprocally. Each equivalent class of fundamental chains is called a prime end of
U . For a fundamental chain {Qn} defining a prime end P, define the impression of

P as I(P) =
⋂

n∈N N(Qn).

Theorem 4. ∂U is locally connected if and only if the impression of each prime
end has only one point.

A natural topology was defined by Carathéodory in the union of U and the set

of prime ends, denoted from now on by Ũ .

Proposition 1. The Riemann map ϕ : D → U has a unique extension to a home-

omorphism ϕ̃ : D → Ũ , where D denotes the closed unit disc.

Consider a map f ∈ C1(S2), leaving invariant a simply connected set U . Assume
that the boundary of U is locally connected and does not intersect the set of critical
points of f .

Proposition 2. Under these conditions, there exists a continuous map f̃ : Ũ → Ũ

such that f̃ |U = f .
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Proof. Given a prime end P ∈ Ũ , consider a fundamental chain {Qn} associated
to it. As f is locally a homeomorphism and ∂U is locally connected, it follows
that {f(Qn)} is a fundamental chain that defines a prime end P

′

. Then define

f̃(P) = P
′

. This map is clearly continuous and locally injective at any P ∈ ∂Ũ . �

This procedure determines a continuous map (not necessarily a homeomorphism)

F : D → D such that ϕ̃ ◦ F = f̃ ◦ ϕ̃ and verifies the following properties:

• F |∂D is continuous and locally injective, because f |∂U is locally a homeo-
morphism.

• If p ∈ S1 is a fixed point of F , then I(ϕ̃(p)) is a fixed point of f (see theorem
4).

• If J is a connected subset of S1, then ∪y∈JI(ϕ̃(y)) is connected.
• If every periodic point of f is repelling, then every periodic point of F is

repelling.

Proposition 3. Carathéodory The Riemann map extends to a continuous and
surjective map from D to U iff ∂U is locally connected and iff S2\U is locally
connected.
If the boundary of U is a Jordan curve, then the inverse of the Riemann map
extends to a homeomorphism from U to the closed disc D.

5.2. Extension to the boundary of B∞.

Remark 1. If ∂U is expanding and C ⊂ ∂U is a nontrivial connected set, then
there exists δ > 0 such that diam(fn(C)) > δ, ∀n ≥ 0.

Lemma 8. If γ : [0, 1] → U is the invariant curve obtained in lemma 3, γ(1) =
x ∈ ∂U and limt→1 ϕ̃

−1(γ(t)) = x0 ∈ S1, then
⋃

n≥0

F−n(x0) = S1

Proof. Suposse by contradiction that
⋃

n≥0 F
−n(x0) 6= S1. Note that as F (x0) =

x0 then
⋃

n≥0 F
−n(x0) is invariant under F . If I is a connected component of

S1 \
⋃

n≥0 F
−n(x0) then either I is wandering or there exists n0 ∈ N such that

Fn0(I) = I. In the first case, diam(Fn(I)) → 0 as n → +∞. Let z0 ∈ S1 and
{nk} be such that Fnk(I) → z0; as ∂U is locally connected, the impression of the
prime end ϕ̃(z0) consists of a single point. Let {Qi} be a fundamental chain that
defines the prime end ϕ̃(z0). For every crosscut Qi there exists nki

such that the

impression of the prime end ϕ̃ ◦Fnki (I) is included in N(Qi), and this implies that
diam(fnki (C)) → 0, where C is the connected set determined by the impression
of the prime end ϕ̃(I). This is a contradiction because ∂U is an expanding set
(remark 1).
In the remaining case, there is an n0 ∈ N such that Fn0(I) = I. Hence there exists
a periodic point attracting by at least one side. This is a contradiction because
every periodic point of F is repelling. �

Let f and g be C1-close to p. By the theorem of Przytycki, there exists a
homeomorphism hp : ∂B∞(f) → ∂B∞(g) close to the identity and such that hpf =
ghp. On the other hand, theorem 3 implies that there exists a homeomorphism
h : B∞(f) → B∞(p) such that hf = gh and is C0 closed to the identity.



14 J. IGLESIAS, A. PORTELA, AND A. ROVELLA

Lemma 9. Let f and g be C1-close to p. Then the function

H(x) =





hp(x) si x ∈ ∂B∞(f)

h(x) si x ∈ B∞(f)

is continuous.

Proof. Note that ∂B∞(f) and ∂B∞(g) are connected and locally connected. Let
ϕ1 : D → B∞(f) and ϕ2 : D → B∞(g) be the Riemann maps. Denote by γF =
ϕ−1

1 (γf ) and αF = ϕ−1
1 (αf ) where γf and αf are the curves given in lemma 3

and 4 respectively. We use corresponding notation for g. Let ϕ̃1 : D → B̃∞(f),

ϕ̃2 : D → B̃∞(g) be the extensions of the Riemann maps. Note that if qf is the
final point of γf and qg is the final point of γg, then hp(qf ) = qg. The same occurs
with corresponding preimages.
Now we will divide the proof in two cases, the second one contains the first, but
this one will be used in other parts of the work.
Case (a). B∞(f) and B∞(g) are Jordan curves.
Let x ∈ ∂B∞(f) and ε > 0. Recall that the preimages under g of the curve γg

are dense in B∞(g); note also that g−n(αg) converges in the Hausdorff topology to
∂B∞(g). Let B be the disc of center H(x) and radius ǫ. By the arguments above,
one can find positive integers n, m and k, such that the set W whose boundary is
formed up by segments of the curves g−n(γg), g

−m(γg) and g−k(αg), for some n,
m and k, is contained in B as figure 2 shows. By the construction of h made in
theorem 3 of section 3, and as was explained at the beginning of this section, the
restriction of H to the set of the preimages of the closure of γf is continuous. This
implies that H−1(W ) must be a neighborhood of the point x. The continuity of H
follows.

Figure 2.

g−n(γg) g−m(γg)

g−k(αg)

W

H(x)

∂B∞(g)

Case (b). B∞(f) and B∞(g) are arbitrary closed curves.
The idea is to prove first that H induces a function H1 : D → D and then apply
case (a) for H1.
Define first h1 : D → D by h1 = ϕ−1

2 ◦h◦ϕ1. Then we will define h1
p : ∂D → ∂D. Let
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x ∈ ∂D; by lemma 8, and as F−k(αF ) converges to ∂D with the Hausdorff metric
of compact subsets, there exists a fundamental chain {Q1

n} that defines the prime
end x as in figure 3(a). Then h1({Q1

n}) is a fundamental chain {Qn}. Define h1
p(x)

as the prime end determined by this chain. Note that h1
p is well defined, continuous

and bijective.

F−n(γF ) F−m(γF )

F−k(αF )

Q1
n

x

(a)

f−k(αf )

f−n(γf )

f−m(γf )

Qn

∂B∞(f)

(b)

Figure 3.

Then the function

H1(x) =





h1
p(x) if x ∈ ∂D

h1(x) if x ∈ D

is a homeomorphism. This was the crucial step, it implies that for every prime end

in B̃∞(f) there exists a fundamental chain {Qn} whose boundaries are segments
of curves α and γ taken from the foliations F and Γ. It follows that if {Qn} is a
fundamental chain whose impression is a point x, then {h(Qn)} is a fundamental
chain whose impression is hp(x). This is almost the continuity of H, indeed it
implies the continuity at x ”coming from” a fundamental chain. But there can be
many of these sets approaching x, so we need to work a little bit more. It follows
from the above that if ρ : [0, 1] → B∞(f) is a curve, then H ◦ ρ is also continuous,



16 J. IGLESIAS, A. PORTELA, AND A. ROVELLA

because each curve landing at a point x in the boundary of B∞(f) determines a
prime end associated to x. The lemma will be immediately implied by the following
general result. �

Lemma 10. Let U1 and U2 be open simply connected subsets of the plane with
locally connected boundary. Let H : U1 → U2 be such that the restriction of H to
U1 is a homeomorphism onto U2. Then H is continuous if and only if H carries
curves into curves.

Proof. Suppose that H is not continuous at a point x ∈ ∂U1. Then there exists
ε > 0 and a sequence (yn), such that yn ∈ U1, yn → x and H(yn) /∈ B(H(x), ε).
Let ϕ be the Riemann map from D to U1. Let (znk

) be a subsequence of ϕ−1(yn)
such that znk

→ z ∈ ∂D and γ : [0, 1] → D is a curve such that γ(1) = z and
znk

∈ γ([0, 1]). As the boundary of U1 is locally connected, the limt→1 ϕ ◦ γ(t)
exists, and must be equal to x. Therefore ϕ ◦ γ is a curve, but H ◦ ϕ ◦ γ is not
continuous at the point 1. This proves one direction in the statement and the other
one is trivial. �

6. Extension of the interior conjugacy

In this section it is shown that the conjugacy constructed in the bounded com-
ponents can be extended continuously to the boundary of B∞. The first step is to
prove that the conjugacy extends to the boundary of each component. Then it will
be proved that the extension is continuous also at the points that are accumulated
by different components. Again,the extension is equal to the Przytycki map at the
boundary.
Beginning with the first step, we will need the following result.

Lemma 11. Let Up be the immediate basin of an attracting periodic orbit x1
p, ..., x

n
p

of p. For every f C1− close to p there exists a simple curve γf that joins x1
f with

a periodic point zf in the boundary of U1
f , and such that fn(γf ) = γf .

Proof. We can suppose that Up is fixed. Let Af be as in lemma 6. Let x be any
point in the exterior boundary of Af and define a simple curve γ0 ⊂ Af , joining x
with f(x) and disjoint from the grand orbit of Sf . For every i ∈ Z, define γi by
f(γi+1) = γi. Note that γi+1 and γi have only one common point. It follows that
γf = ∪γi is a simple curve one of whose extreme points is xf . It remains to prove
that the other extreme point is also a fixed point of f . Denote by zf this fixed
point. This follows from the fact that the boundary of Uf is expanding. Therefore
the length of γi converges exponentially to zero as i goes to ∞, hence γf converges
to a fixed point in the boundary. �

Let f and g be as in the final corollary of section 4, and let h be the conjugation
between Uf and Ug. Then:
1) γg = h(γf ) is invariant under g, has a periodic point zg in the boundary of U1

g

and gn(γg) = γg.
2) The curves γf and γg are close, because the conjugation h is close to the identity.
Recall that the conjugation in the boundaries hp is also close to the identity, so it
follows that the final point of γg is equal to the image under hp of the final point
of γf . This will be used in the sequel.
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Lemma 12. Given any ǫ > 0 there exist a finite number of connected components

of B∞(f)
c

having diameter greater than ǫ.

Proof. Suppose by contradiction that there exist infinitely many components of
diameter at least ǫ, and let x ∈ ∂B∞ be an accumulation point of different compo-
nents. Let V1 and V2 be the boundaries of the discs with center x and radius ǫ/4
and ǫ/8 respectively. From the definition of x, there exist infinitely many compo-
nents intersecting both V1 and V2. This contradicts the fact that ∂B∞ is locally
connected.

�

Using lemma 11 and reasoning as in case a) of lemma 9 it follows that the re-
striction of h to any connected component can be continuously extended to its
boundary, and there, it is equal to the Przytycki map. Also denote by h the ex-
tended map. To prove that h is continuous, it remains to prove the continuity at
the points that are accumulated by different components. To deal with this case
proceed as follows:
Let x ∈ ∂B∞(f) be accumulated by points of different components of the com-

plement of B∞(f). We prove now the continuity of h at x, so give ǫ > 0. The
Przytycki map hp, already known to be continuous, is defined in x, so there exists
a δ > 0 such that if y ∈ B(x; δ) ∩ ∂B∞(f) then hp(y) ∈ B(h(x); ǫ). Note also
that, by lemma 12, only finitely many components U1, . . . , UN having diameter
greater than δ/4 intersect B(x; δ/2). Moreover, it is clear that if a component U
having diameter less than δ/4 intersects B(x; δ/2), then it is contained in B(x; δ)
and then h(U) is contained in B(h(x); ǫ) because its boundary is contained there
by the above observation. If Ui is a component whose boundary does not contain x
then we can diminish δ to leave outside this neighborhood. For each i such that x
belongs to the boundary of Ui, the continuity of the restriction of h to the closure
of Ui implies that there exists δi > 0, such that if y belongs to B(x; δi) ∩ Ui then
h(y) ∈ B(h(x); ǫ). These considerations imply the continuity of h.

7. Proof of theorem 1

Proof of (1) ⇒ (2)
This has already done through the sections 3 to 6. In section 3 it was proved that
if f is a Whitney C1 perturbation of a polynomial p with connected Julia set, then
the dynamics of f and p are conjugated in the basins of ∞. To prove this, C1

perturbations were allowed, and only the connectedness of the Julia set of p was
used.
Then lemma 6 of section 4 proves that the restrictions of f and g to the bounded
domains of the complement of the nonwandering sets are conjugated whenever f
and g are geometrically equivalent. For this part the hyperbolicity of the map p
was used.
Afterwards, lemma 9 of section 5 provides the fact that the exterior and Przytycki
conjugacies fit together to give a whole conjugacy between the restrictions of f and
g to the closure of the basins of ∞.
Finally section 6 gives the proof that the conjugacy in the bounded components of
the complement of the closure of the basin of ∞ also extends continuously.
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Proof of (2) ⇒ (1)
The hypothesis gives a C1

W neighborhood U of p such that geometric and topological
equivalence are the same in U . Maps of class C3 are dense in U and its critical
points have a generic structure. The proof of the following lemma can be found in
[IP].

Lemma 13. Let c be a simple critical point of p, that is, p′(c) = 0 6= p′′(0). There
exist a neighborhood U of c, a C3 neighborhood U0 of p and an open and dense
subset G of U0 such that, for every f ∈ G, the intersection Sf ∩ U is diffeomorphic
to a circle.
Moreover, there exists f ∈ G such that the restriction of f to Sf ∩ U is injective
and Sf ∩ U contains exactly three cusp type points.

Remark 2. The study of critical points of differentiable mappings is an interesting
subject. Here we use some elementary facts in dimension two, a classical reference
is the book by Golubitsky and Guillemin [GG].
We do not know if a neighborhood U0 can be found such that the restriction of every
map f ∈ G to Sf ∩U is injective, but only the existence of such a map (as asserted
in lemma 13) is needed in forward arguments. It is known, however, that there
exists at least one cusp type point in the boundary of the unbounded component
of the complement of Sf ∩ U .
The clasification of critical points for generic maps is very easy in dimension two.
Indeed, if c is a critical point of a generic map f , then the kernel of Dfc has
dimension one. The critical point c is a fold if the kernel of Dfc is not equal to
the tangent space of Sf at c and is a cusp otherwise. Moreover, normal forms are
known for both kind of maps:
The normal form of a fold point is the origin for the map (x, y) → (x2, y).
The normal form of a cusp point is the origin for the map (x, y) → (x3 − xy, y).
A C3 condition can be imposed to make the cusp type point generic, but no C2

condition can assure the stability and persistence of such kind of critical point.
As well as maps having critical points cannot be C1 stucturally stable, it can be
concluded now that maps with cusp type points cannot be C2 structurally stable,
because a conjugacy between two maps must carry cusp critical points to critical
points of the same type.
As any generic perturbation of a polynomial has a cusp type point, it follows, as
asserted in the introduction, that in a small neighborhood of a polynomial no map
can be C2 structurally stable.

The next step is to prove that if f ∈ G satisfies that the restriction of f to Sf is
injective, then the same holds in a C3 neighborhood of f . Observe first that given
a compact set K contained in the complement of a neighborhood of the cusp type
points there exists a C2 neighborhood of f such that for every g there, the set of
cusp type points of g are not in K. As locally in a fold type point the restriction
of a map to its critical set is locally injective, it is sufficient to prove that for every
g that is C3 close to f , the restriction of g to its critical set is locally injective at a
cusp type point.

Lemma 14. Let c be a cusp type point of a generic map f ∈ G. Then there exist
neighborhoods U of c and U of f in C3 topology such that, for every g ∈ U , the
restriction of g to Sg ∩ U is injective.



STRUCTURALLY STABLE PERTURBATIONS OF POLYNOMIALS IN THE RIEMANN SPHERE19

Proof : By the aforementioned theorem of Whitney, there exists a neighbor-
hood U of c such that the restriction of f to U is geometrically conjugated to the
map (x, y) → (x3 − xy, y). Cusps are C3 stable: is in that sense that g has exactly
one cusp point near c. The lemma is first proved for a map g(x, y) = (h(x, y), y)
close to f . Then h is C3 close to x3 − xy, so the critical points of g satisfy the
equation ∂xh(x, y) = 0 which has, for x close enough to 0, a unique solution ỹ(x)
of class C2. An easy calculation shows that ỹ′′ is close to 6, and this implies that ỹ
has a unique minimum. To prove that the restriction of g to the intersection of Sg

and a neighborhood of c is injective, observe that g(x, y) = g(x1, y1) implies y = y1
and h(x, y) = h(x1, y); if both points are critical, then ỹ(x) = ỹ(x1) = y. But ỹ
has a unique minimum, so, for every t in the interval I whose extreme points are
x and x1 it holds that ∂xh(t, y) 6= 0: this implies that h(x, y) 6= h(x1, y) which is a
contradiction.
To prove the lemma for an arbitrary g, C3 close to f(x, y) = (x3 − xy, y), let
g(x, y) = (F (x, y), G(x, y)); as Gy ≈ 1, the equation G(x, y) = v defines a function
yv such that G(x, yv(x)) = v. Let ϕ(u, v) = (u, yv(u)); to prove that ϕ is locally a
diffeomorphism note that

Dϕ(u,v) =

(
1 0
∗ ∂

∂v
yv(u)

)
.

To obtain that ϕ is locally invertible it suffices to prove that ∂
∂v
yv(u) 6= 0. But

G(x, yv(x)) = v, hence derivating with respect to v it comes thatGy(x, yv(x)) ∂
∂v
yv(u) =

1, which implies that ∂
∂v
yv(u) 6= 0. It also follows that ϕ is close to the identity. It

comes that

g ◦ ϕ(u, v) = g(u, yv(u)) = (F̃ (u, v), G(u, yv(u))) = (F̃ (u, v), v),

which concludes the proof of the lemma, as F̃ is close to (x, y) → x3 − xy.

�

Remark and notation: Suppose that every critical point of p is simple, and let
Sp = {ci : 1 ≤ i ≤ d− 1}; for each i, let Ui be a small neighborhood of ci, and Gi

the generic set associated with ci as in lemma 13.
Recall that p satisfies the non critical relations property, so the degree of p is d and
the number of critical values of p is d− 1.
Define G′ ⊂ U as the set of maps f such that f |Sf

is injective and f belongs to
every Gi. It follows that Sf has d − 1 connected components, each one of them
homeomorphic to the circle and such that the restriction of f to Sf is injective. It
is left to the last corollary the proof that G′ is nonempty. This, together with the
following proposition, will provide the examples of structurally stable maps.

Proposition 4. If f ∈ G′, then f is geometrically stable.

Proof. Let g be a C3 perturbation of f , let {C1(g), . . . , Cd−1(g)} be the components
of the set of critical values of g.
Let ϕ a diffeomorphism of the plane close to the identity, carrying Ci(f) onto Ci(g)
for each i. For each i choose a curve αi joining the image of a cusp point zi ∈ Ci(f)
with infinity. This can be done without any intersection, that is, the curves αi

are simple, disjoint and the intersection of αi with ∪Ci(f) is the set {zi}. Let

βi = ϕ(αi) and define H(f) as the complement of the union of S̃f with ∪if
−1(αi)
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and H(g) as the union of the unbounded components of the complement of the

union of S̃g with ∪ig
−1(βi). See the figure 4 below with d = 2.

Each component of H(f) corresponds to a unique component of H(g) by proxim-
ity. Moreover, these components of H(f) are simply connected, and the restriction
of f to each of them is a diffeomorphism onto its image. Therefore, for each compo-
nentHj(f) ofH(f) there exists a unique diffeomorphism ψj that satisfies ϕf = gψj ,
and whose image is the corresponding component of H(g). These diffeomorphisms
can be extended to a unique diffeomrphism ψ of the plane such that ϕf = gψ. �

Figure 4.
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Proof of the connectedness of the Julia set of p.
Assume that Jp is not connected. This implies that there exists a critical point
c = c1 of p contained in B∞(p) and that c is the critical point of p closest to ∞ (i.e.
the circle of the foliation that contains c is the boundary of an open neighborhood
of ∞ that does not contain any other finite critical point). Assume first that c
is a simple critical point of p. By the proof of proposition 4 two maps f and g
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in G1 that are equal outside the neighborhood U1 of c, are geometrically equiva-
lent. To arrive to a contradiction it suffices to find f and g as above that are not
topologically equivalent. To do this observe first that there exists a neighborhood
of ∞ foliated by curves homeomorphic to circles. This foliation is invariant and
must be preserved by conjugacies. To find a contradiction, the idea is to take first
a perturbation f of p such that the component of Sf in U has two cusps in the
preimage of a circle of the foliation. Then perturb f to a map g ∈ G1 that is equal
to f outside U1 and such that the previous condition is broken. Thus f and g are
geometrically but not topologically equivalent.
Let A be a p-invariant neighborhood of ∞ that contains p(c), does not intersect U1

and whose boundary is a circle of the foliation Fp. If f is a perturbation of p with
support U1 (f = p outside U1) then the foliation Ff = Fp in A. So perturb p in U1

such that the perturbation f belongs to G1 and two cusps in the component of Sf

contained in U1 have image in the same leave of the foliation Ff . This is possible
but is not generic; a new perturbation g supported in U1 and belonging to G1 can
be found such that the image of the three cusps belong to different leaves of the
foliation.
To treat the case of c not simple, assume that the order of c is k. Given a neigh-
borhood U0 of c there exists a C∞ perturbation q of p such that:

• q = p outside U0.
• There exists an arbitrary small neighborhood U ′

0 ⊂ U0 of c such that q is
holomorphic in U ′

0.
• q has k critical points in U0 and they are contained in U ′

0.

Once this q was obtained, one can proceed as above.

�

Proof of the hyperbolicity of p.
The first step is to prove that the Julia set cannot have critical points if some type
of C1 stability is required. The proof is very simple, which contrasts with the fact
that the problem is open when only holomorphic perturbations are allowed.

Proposition 5. If p has a critical point in its Julia set, then in every C1 neigh-
borhood of p there exists an f that is geometrically but not topologically equivalent
to p.

Proof : Let U be a C1 neighborhood of p and c be a critical point of p in
Jp. This implies that there exist expanding periodic points accumulating at c. An
argument based in J.Frank’s lemma [F] will imply the existence of a map f in a C1

neighborhood of p such that f and p have the same sets of critical points but f has
a new attracting periodic orbit. Indeed, if ε is such that f ∈ U if the C1 distance
between p an f is less than ε, then take a periodic orbit of p contained in Jp and
containing a point z close to c in such a way that |p′(z)| < ε. Let K = |(pn)′(z)|,
where n is the period of the orbit of z. Note that there exists a neighborhood of the
orbit of z such that the restriction of p to this neighborhood is a diffeomorphism
onto its image. Under these conditions, Franks’ lemma asserts that there exists a
map f ∈ U such that:

• The orbit of z under f is the same as that of p.
• For every 0 < j < n, the differential of f at f j(z) is equal to that of p at the

same point. Moreover, f is also conformal at z, and |f ′(z)| < |p
′

(z)|/K.
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• The support of the perturbation is an arbitrary small neighborhood of the
orbit of z not intersecting the critical set of p or the set of periodic attractors
of p.

• The perturbation f is a diffeomorphism onto its image when restricted to
the support of the perturbation.

The first three items imply that f has a new periodic attractor (the orbit of z) and
so it is not topologically equivalent to p. It is geometrically equivalent to p because
the support of the perturbation is disjoint with the set of critical points of p.

�

To conclude the proof of the hyperbolicity of p, one has to show that every crit-
ical point is attracted to a periodic attractor. First of all note that every periodic
point of p must be hyperbolic: under the contrary assumption one can perturb in
a neighborhood of the nonhyperbolic orbit to obtain a map that is geometrically
but not topologically equivalent to p. This implies that the Fatou set of p does not
contain Leau components neither Siegel discs. Hermann rings are forbidden since
the Julia set of p is connected. Finally, as the set of critical points do not intersect
the Julia set and there are no superattractors, the conclusion is immediate from
the classification theorem of Sullivan, see [Mi] or [St].

Proof of corollary 1
For every p in the hypothesis (1) or (2) of theorem 1, and in every C∞ neighbor-
hood of p there exists a map f that is C3 structurally stable:
It suffices to show that in every C∞ neighborhood of p there exists a map f ∈ G′,
because by proposition 4 this map will be geometrically equivalent to every map
g in a C3 neighborhood of it, and then the (1) ⇒ (2) ot theorem 1 implies the
topological equivalence between f and g. It is very easy to give an example that is
generic in the sense of lemma 13 and such that the restriction of f to Sf is injec-
tive. It suffices to do it locally, and as the critical points of p are nondegenerate, it
suffices to give just an example of a perturbation f of p(z) = z2 such that f ∈ G′.
Generic quadratic polynomials satisfy these conditions ([DRRV]); to give an ex-
plicit example: (x, y) → (x2−y2 +λy, 2xy), λ 6= 0. So to construct an example of a
C3 structurally stable map, just take p(z) = z2 + ǫ (ǫ small so that Jp is connected
and hyperbolic) and then perturb in a neighborhood of 0 so that the new map f
has the representation above in that neighborhood.

Further considerations.
Throughout this discussion, M is a manifold of dimension at least two, Er(M) ⊂
Cr

W (M) denotes the space of noninvertible nonexpanding endomorphisms, and
Str(M) the set of Cr structurally stable maps.
As far as we know, there exist no known examples in St1(M) ∩E1(M). Note that
Sf = ∅ is a necessary condition for a map f to be C1 stable. The theorem of N.Aoki,
K.Moriyasu and N.Sumi in [AMS] implies that a map in St1(M) must satisfy the
Axiom A and as is the case for diffeomorphisms, also the strong transversality con-
dition. However, these conditions are not sufficient for stability, as was shown by
an example of F.Przytycki in [P]. The problem is the possible existence of a basic
piece which is neither attracting nor expanding: indeed, unstable manifolds of a
basic piece may have self intersections and can also visit different basic pieces. Then
they are too wild to handle and this creates new mechanisms of instability. On the
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other hand, the arguments in this article seem to be extendable to prove stability
in other situations, where the maps have only expanding or attracting basic pieces.
The following question is pertinent: There exists an Axiom A map f ∈ E1(M)
and without critical points such that every basic piece is attracting or expanding?
Such an example should be C1 structurally stable and perhaps the techniques here
developed would be of utility to prove that. But if the answer were negative, a
possible conjecture would be that there are no new C1 structurally stable maps.

�
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[MSS] R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps. Annales Scientifiques
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