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Abstract

Let f : M → M be a Cr-diffeomorphism, r ≥ 1, defined on a compact boundary-less
manifold M . We prove that C1-generically if H(p), the f -homoclinic class of a hyper-
bolic periodic point p, has a dominated splitting then f/H(p) is entropy-expansive.
Conversely, if there exists a C1 neighborhood U of a diffeomorphism f defined on a
compact surface and a homoclinic class H(p) of an f - hyperbolic periodic point p, such
that for every g ∈ U the continuation H(pg) of H(p) is entropy-expansive then there is
a dominated splitting for H(p).

2000 Mathematics Subject Classification: 37D30, 37C29, 37E30

1 Introduction

Since the seminal work of Smale [Sm] establishing the main goals to describe the long
term evolution of a discrete or continuous time dynamical system, the strategy has been
to prescribe some property at the infinitesimal level of the system that implies a definite
behavior for the underlined dynamics. Examples include the concepts of hyperbolicity,
partial hyperbolicity and dominated splitting. On the other hand one may ask what are the
consequences at the infinitesimal level from a known behavior of the evolution system at the
ambient manifold. But rarely a property displayed by a system solely implies an interesting
behavior of the differential map acting at the tangent bundle. For instance, in [Ge, GK]
it is proved that a (generalized) pseudo-Anosov map f is ergodic and even Bernoulli. For
those maps there is at least one point p where the derivative Df(p) is the identity map and
so the dynamics at the tangent bundle cannot be characterized in terms of hyperbolicity or
even dominance Example 1 in this article is a generalized pseudo-Anosov map illustrating
such a behavior. So, it is natural to ask which robust properties satisfied by the underlined
systems has dynamical consequences at the tangent bundle level and vice versa. Several
authors have worked in this line of ideas (see for instance [Ma2, Ma3, DPU, PPV, SV]).
Here by a robust property we mean a property shared by all system in a neighborhood of the
original one. In this paper we study what are the consequences at the dynamical behavior
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of the tangent map Df of a diffeomorphism f : M → M , assuming that f is robustly
entropy expansive. In this direction we obtain that the tangent bundle has a Df -invariant
dominated splitting. Reciprocally, we show, in the case of surfaces, that the existence of
a dominated splitting for the tangent bundle implies robust entropy expansiveness for the
diffeomorphism f . Thus robust entropy expansiveness is equivalent to the existence of a
dominated spitting for surface diffeomorphisms.

We also give an example of a diffeomorphism that is not entropy expansive. This exam-
ple is of class C∞ and so it is asymptotically entropy expansive by a result of Buzzi [Bu].
The first example of a diffeomorphism that is not entropy expansive neither asymptotically
entropy expansive was given by Misiurewicz in [Mi] answering a question posed by Bowen
[Bo]. Nevertheless we add our example because of its nice properties: (1) it is defined on
the sphere S2, (2) it has no dominated splitting, (3) it is ergodic and even Bernoulli, (4)
it admits analytic models. Moreover, a straightforward modification of this example shows
that there are diffeomorphisms defined on manifolds of dimension greater than 2 that has
a dominated splitting defined on a homoclinic class but that are not entropy expansive.

Let us now give precise definitions. Let M be a compact connected boundary-less
Riemannian d-dimensional manifold and f : M → M a homeomorphism. Let K be a
compact invariant subset of M and dist : M ×M → IR+ a distance in M compatible with
its Riemannian structure. For E, F ⊂ K, n ∈ IN and δ > 0 we say that E (n, δ)-spans F
with respect to f if for each y ∈ F there is x ∈ E such that dist(f j(x), f j(y)) ≤ δ for all
j = 0, . . . , n− 1. Let rn(δ, F ) denote the minimum cardinality of a set that (n, δ)-spans F .
Since K is compact rn(δ, F ) < ∞. We define

h(f, F, δ) ≡ lim sup
n→∞

1
n

log(rn(δ, F ))

and the topological entropy of f restricted to F as

h(f, F ) ≡ lim
δ→0

h(f, F, δ) .

The last limit exists since h(f, F, δ) increases as δ decreases to zero.
For x ∈ K let us define

Γε(x, f) ≡ {y ∈ M / d(fn(x), fn(y)) ≤ ε, n ∈ ZZ} .

We will simply write Γε(x) instead of Γε(x, f) when it is understood which f we refer to.
Following Bowen (see [Bo]) we say that f/K is entropy-expansive or h-expansive

for short, if and only if there exists ε > 0 such that

h∗f (ε) ≡ sup
x∈K

h(f, Γε(x)) = 0 .
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The importance of f being h-expansive is that the topological entropy can be derived
from its ε-estimate h(f,K, ε), as showed by [Bo, Theorem 2.4].

A similar notion to h-expansiveness, albeit weaker, is the notion of asymptotically h-
expansiveness [Mi]: let K be a compact metric space and f : K → K an homeomorphism.
We say that f is asymptotically h-expansive if and only if

lim
ε→0

h∗f (ε) = 0 .

Thus we do not require that for a certain ε > 0 h∗f (ε) = 0 but that h∗f (ε) → 0 when ε → 0.
It has been proved by Buzzi that any C∞ diffeomorphism defined on a compact manifold
is asymptotically h-expansive.

Next we recall the notion of dominated splitting.

Definition 1.1. We say that a compact f -invariant set Λ ⊂ M admits a dominated splitting
if the tangent bundle TΛM has a continuous Df -invariant splitting E ⊕ F and there exist
C > 0, 0 < λ < 1, such that

‖Dfn|E(x)‖ · ‖Df−n|F (fn(x))‖ ≤ Cλn ∀x ∈ Λ, n ≥ 0. (1)

Our main results are the following:

Theorem A. Let M be a compact boundaryless C∞ surface and f : M → M be a Cr

diffeomorphism such that K ⊂ M is a compact f-invariant subset with a dominated splitting
E ⊕ F . Then f/K is h-expansive.

Since the property of having a dominated splitting is open we may conclude that any g
C1 close to f is such that g/Kg is h-expansive where Kg is a continuation of K = Kf .

In case M is a d-dimensional manifold with d ≥ 3 the existence of a dominated splitting
is not enough to guarantee h-expansiveness as it is shown in Example 2 presented below.
Nevertheless a weaker result can be achieved:

Theorem B. Let M be a compact boundaryless C∞ d-dimensional manifold and f : M →
M be a Cr diffeomorphism. Let H(p) be an isolated f -homoclinic class associated to the
f-hyperbolic periodic point p. Assume that H(p) admits a dominated splitting. Then there
is a C1 neighborhood U of f such that for a residual subset R ⊂ U any g ∈ R is h-expansive.

Observe that if the topological entropy of a map f : M → M vanishes, h(f) = 0, then
f is h-expansive. For instance the identity map id : M → M is h-expansive. Nevertheless,
robustness of h-expansiveness has a dynamical meaning as shows the following theorem.

Theorem C. Let M be a compact boundaryless C∞ surface and f : M → M be a Cr

diffeomorphism. Let H(p) be an f -homoclinic class associated to the f-hyperbolic periodic
point p. Assume that there is a C1 neighborhood U of f such that for any g ∈ U it holds
that the continuation H(pg) of H(p) is h-expansive. Then H(p) has a dominated splitting.
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A natural question that arises is if Theorem C holds not only for surfaces but also for
compact manifolds of any finite dimension. We believe that this is the case and it will be
the subject of a forthcoming paper. This would imply that C1 generically h-expansiveness
of an isolated H(p, f) is equivalent to the existence of a dominated splitting for H(p, f).

1.1 Idea of the proofs

To prove Theorem A we proceed as follows. First observe that there is a compact neighbor-
hood U(K) of K such that we may extend the cones defining the dominated splitting E⊕F
to U(K) in a continuous way. If a point y ∈ M is such that its f -orbit orb(y) ⊂ U(K)
then they are defined local center stable manifolds and local center unstable manifolds
W cs

loc(f
n(y)), W cu

loc(f
n(y)) for any n ∈ ZZ. We choose ε > 0 such that if x ∈ K and

dist(x, y) ≤ ε then y ∈ U(K). Assuming y ∈ Γε(x) and that y ∈ W cu
loc(x) give us that the

center-unstable arc [x, y]cu ⊂ W cu
loc(x) is a (ε, E)-interval, [PS1], and therefore by domina-

tion W cs
loc(z) is a true stable manifold for all z ∈ [x, y]cu, that is, W cs

loc([x, y]cu) contains a
neighborhood in M . Either `(fn([x, y]cu)) → 0 when n → +∞ or the ω-limit of [x, y]cu is
contained in a periodic arc or circle. Hence either fn(W cs

loc([x, y]cu)) shrinks to a point when
n → +∞ or the ω-limit of W cs

loc([x, y]cu) is contained in a periodic arc or circle. In any case
we derive that h(W cs

loc([x, y]cu), f) = 0. The same holds in case y ∈ W cs
loc(x) taking limits

for n → −∞ and arguing with the α-limit set. In the case when y /∈ W cu
loc(x) ∪ W cs

loc(x)
we project along W cs

loc(y) into W cu(x) obtaining a point yF such that, due to the fact that
the angle between E(z) and F (z) is bounded away from zero for any point z ∈ U(K), is
contained in ΓL·ε(x) for some constant L > 0. If ε > 0 is sufficiently small we may repeat
with yF the arguments used when supposed that y ∈ W cu

loc(x). So in any case we conclude
that Γε(x) is contained in the local stable manifold of some (L · ε, E)-interval or in the local
unstable manifold of some (L · ε, F )-interval and therefore h(Γε(x), f) = 0. Since this last
equality holds for all x ∈ K Theorem A follows.

To prove Theorem B we use that the finest dominated splitting (see Definition 4.1) of
a homoclinic class H(p, f) of a generic diffeomorphisms has the form

TH(p,f)M = E ⊕ F1 ⊕ · · · ⊕ Fj−i ⊕G

with dim(E) = i and dim(Fh) = 1 for all h and dim(G) = dim(M)− j and the sub-bundles
Fh are not hyperbolic, [ABCDW, Go]. Moreover, E is contracting and G is expanding when
H(p, f) is an isolated homoclinic class [BDPR].
Again we choose ε > 0 such that the dominated splitting extends to any point whose orbit
is at a distance less than ε from the orbit of a point in H(p, f). So if for some x ∈ H(p, f) a
point y ∈ Γε(x), that point cannot be in the unstable manifold of x (tangent to G) neither
in the stable manifold (tangent to E). Moreover, such a point cannot have a projection
yG 6= x along its center-stable manifold into the unstable manifold of x because in that case,
taking into account that the angles between the different sub-bundles is bounded away from
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zero, ∀n ∈ ZZ : fn(yG) ∈ ΓL·ε(fn(x)) where L > 0 is some constant. Reducing ε if it were
necessary we would have that if dist(fn(yG), fn(x)) ≤ L · ε then fn(yG) ∈ W u

loc(f
n(x)). But

by forward iteration by f the distance between fn(x) and fn(yG) growths exponentially
till fn(yG) leaves W u

loc(f
n(x)) hence yG 6= x leads to a contradiction.

Thus y lies in a center manifold. But the tangent bundle to this center manifold splits
into one-dimensional ones and taking into account this fact we may repeat the arguments
employed for surfaces in Theorem A.

The proof of Theorem C introduces new concepts such as those of symbolic extension
and principal symbolic extension (see Definition 5.1). It is proved in [BFF] that for a
homeomorphism defined on a compact metric space it is equivalent to have a principal
symbolic extension to be asymptotically entropy expansive. We profit from a result of
Downarowicz and Newhouse, [DN], that shows that if we have a Hènon like tangency
between the stable manifold and the unstable manifold of a periodic point then f cannot
have a principal symbolic extension.
Thus, under the assumption that we do not have a dominated splitting, we can perturb f to
create a tangency between the stable manifold and the unstable manifold of the continuation
pg of the f -periodic point p. Then we may assume that the perturbed diffeomorphism is
C2 and apply the results of [DN] obtaining that H(pg, g) cannot have a principal symbolic
extension and therefore that it cannot be entropy expansive.

2 Examples

In [Bo] Bowen asked for examples of diffeomorphisms which are not h-expansive. The first
giving such an example was Misiuriewicz, [Mi]. Nevertheless we give here a C∞ example
in S2 which illustrates the fact that we should have ” arbitrarily small ” horseshoes to
brake h-expansiveness. By ”arbitrarilly small horseshoe” we mean a horseshoe contained
in the intersection of the ε-stable and unstable manifolds for any positive ε. A modification
of such example gives a 3-dimensional one which does have a dominated splitting but is
not h-expansive illustrating that in the general case dominance is not enough to guarantee
h-expansiveness. As Theorem C shows dominance implies h-expansiveness generically.
Example 1: There is a C∞ diffeomorphism of S2 that is not h-expansive.

We consider in IR2 the action given by the matrix A =
(

2 1
1 1

)
. Since the entries of A are

integers and det(A) = 1, the lattice ZZ2 is preserved by this action and therefore it passes to
the quotient T2 = IR2/ZZ2. This gives us a very well known linear Anosov diffeomorphism
a : T2 → T2.
Let [x, y] represent the equivalence class of (x, y) ∈ IR2 in T2. We define in T2 the relation
[x, y] ∼ [−x,−y] = −[x, y]. The quotient T2/ ∼ gives the sphere S2.
In order to see this let us take the square in IR2 limited by the straight lines x = −1

2 , x = 1
2 ,
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y = −1
2 , y = 1

2 . We obtain a fundamental domain for the torus and we identify it with T2.

B

C D

O
x

y

A(1/2,1/2)

EF

G

H

q

-q

Figure 1: Fundamental domain for T2

In the quotient T2 the vertices A (1/2, 1/2),B (−1/2, 1/2),C (−1/2,−1/2), D(1/2,−1/2),
of the square are all identified. Let us call E to the point (1/2, 0), F to the point (−1/2, 0),
G to the point (0, 1/2) and H to the point (0,−1/2). Observe that E is identified with F
and G is identified with H in T2. Now observe that the boundary of the square OEAG is
identified with the boundary of the square OEDH (by the relations (x, y) ∼ −(x, y) and
(x, y) ∼ (x′, y′) if (x−x′, y−y′) ∈ ZZ2). Hence both squares are two different disks glued in
their boundaries by this identification. It is not difficult to see that the quotient topology
coincides in the interior of the squares OEAG and OEDH with the topology of IR2 and
that the common boundary of both disks is a circle separating T2/ ∼ Moreover, the rest of
the square ABCD doesn’t add more points to the quotient because the squares OEAG and
OFCH, and OEDH and OFBG, are identified by the relation (x, y) ∼ −(x, y). Hence we
obtain that T2/∼ ∼= S2. See Figure 1 where we have marked two points, q and −q which
are identified by the relation ∼.

On the other hand a([x, y]) ∼ −a([x, y]) = a(−[x, y]) by linearity, and therefore projects
to S2 as a map g : S2 → S2, known as a generalized pseudo-Anosov map which is shown to
be Bernoulli with respect to Lebesgue [Ge]. If Π : T2 → S2 is the projection defined by the
relation ∼, we may write g(x) = Π(a(Π−1(x))). Observe that the projection Π : T2 → S2

is a branched covering and that the definition of g doesn’t depend on the pre-image of x by
Π−1. Therefore periodic points of a projects into periodic points of g and dense orbits of a
projects into dense orbits of g. For g there are singular points P where the local ε-stable
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and ε-unstable sets are arcs with the point P as an end-point. This local stable (unstable)
sets are called 1-prongs (see figures 1 and 2 where O is a point with 1-prongs).

Let O ∈ S2 be the image by Π of [0, 0]. Then O is a fixed point of g. The point O
is singular because the local stable and unstable manifolds of [0, 0] in T2 project into S2

as arcs ending at O (because [x, y] ∼ −[x, y]). The local stable and unstable manifolds
of the points in T2 near [0, 0] project onto arcs contained in the stable and unstable sets
respectively of points in S2 near O like in Figure 2. Note that we do not speak of stable
(unstable) manifolds but of stable (unstable ) sets because neither W s

loc(x) nor W u
loc(x) are

locally connected (see [PPV]).
The intersection of the stable and unstable manifolds of the points [0, x] and [0,−x] of

T2 consists of four points identified by pairs by the relation [x, y] ∼ −[x, y]. If [x, y] ∈ T2

projects to X ∈ S2, let us call sX and uX to the projections of the ε-local stable and ε-local
unstable manifolds respectively of the point [x, y]. Hence if a point X is very near to a
singular point like O, sX and ux will intersect twice. Points in sX are in the ε-local stable
set of X and points in uX are in the ε-local unstable set of X. Moreover, if Y ∈ sX then
dist(gn(Y ), gn(X)) → 0 when n → +∞. Similarly for points in uX replacing n → +∞ by
n → −∞.

Given ε′ > 0 choose p ∈ T2 periodic so close to [0, 0] that Π(p) = P is a periodic point
satisfying dist(P, 0) < ε′. Such a point exists since periodic points are dense for the Anosov
diffeomorphism a defined on T2 and projects on S2 as periodic points for g by Π that is a
continuous surjection with respect to the quotient topology.

Let {P, P ′} = sP ∩uP . Then it is not difficult to see that given ε > 0 there is ε′ > 0 small
enough such that P ′ ∈ W u

ε (P ) ∩W s
ε (P ). Thus we have a homoclinic intersection between

ε-local stable and ε-local unstable arcs of the periodic point P , P ′ being a homoclinic point
such that its orbit is always at a distance less than ε from the orbit of P . It follows that for
all ε > 0 there are points P such that Γε(P ) contains a small horseshoe. Thus g : S2 → S2

is not h-expansive since the topological entropy of those horseshoes is positive. Moreover,
this example is transitive and they are not only C∞ but real analytic (see [Ge], and [LL]).

Clearly the example is a homoclinic class which has no dominated splitting.
Example 2 Let us show that property (1) sole does not imply h-expansiveness in di-

mension 3 or more.
Consider the 3-manifold S2 × S1 with g : S2 → S2 as in the example above, and put in S1

a diffeomorphism h : S1 → S1 with a North-South dynamics, say, N ∈ S1 is a source and
S ∈ S1 is a sink and the ω-limit of any point in S1 is S and the α-limit of every point in
S1 is N . We may assume that |DhN | > 2k where k = sup{‖Dg(x)‖, x ∈ S2}. Let us define
f : S2 × S1 → S2 × S1 by f(x, y) = (g(x), h(y)). Then if K = S2 × {N}, K is compact
invariant and there is a dominated splitting for K, E ⊕ F , where E = TxS2, F = TNS1.
By the previous example f is not h-expansive.

This example shows what is the problem: the strongly expanding direction F along S1
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Figure 2: Singularity of a generalized pseudo-Anosov

does not interferes on the dynamics of f/S2. Thus property (1) holds for f defined on
S2 × S1 albeit does not for the projection g = ΠS2f .

3 Dominated splittings versus h-expansiveness on surfaces

Here we shall prove Theorem A. Let us begin stating the following lemma.

Lemma 3.1 (Pliss). Let 0 < λ1 < λ2 < 1 and assume that there exists n > 0 arbitrarily
large such that

n∏

j=1

‖Df/E(f j(x))‖ ≤ λn
1 .

Then there exist a positive integer N = N(λ1, λ2, f), c = c(λ1, λ2, f) > 0 such that if n ≥ N
then there exist numbers

0 ≤ n1 ≤ n2 ≤ · · · ≤ nl ≤ n

such that
h∏

j=nr

‖Df/E(f j(x))‖ ≤ λh−nr
2 ,

for all r = 1, 2, . . . , l, with l ≥ cn, and for all h with nr ≤ h ≤ n.

Proof. The proof of this lemma can be found in [Pl1].
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Proof of Theorem A. Let M be a surface and K ⊂ M a compact and f -invariant subset
such that TK(M) can be written as a dominated splitting E ⊕ F . By continuity of f and
Df there is δ0 > 0 such that we may extend the cones defining equation (1) to the closed
δ0-neighborhood of K, U(K) = {y ∈ M /dist(y, K) ≤ δ0}. In this neighborhood there
exists a continuous splitting TU(K)(M) = Ê ⊕ F̂ extending the splitting TK(M) = E ⊕ F
([Ma1]). If the orbit of a point y, orb(y), is contained in U(K) then for that point there
are defined local center-stable and center-unstable manifolds W cs

loc(y) and W cu
loc(y) where

loc > 0 stands for a small real number. By Peano Theorem on the existence of solutions of
an ordinary differential equation given by a continuous field, W cs

loc(y) can be obtained as a
solution to the ODE {

Y (0) = y

Y ′(u) = Ê(u), u ∈ IR2

where we have identified B(y, δ0) with IR2. Such a solution is tangent to Ê and therefore,
by domination, it is a local center-stable manifold for y. Similarly for F̂ we obtain W cu

loc(y)
as a solution of the ODE obtained replacing Ê by F̂ . We may also assume that for all
x ∈ M the δ0-neighborhood of x, B(x, δ0), is contained in a local chart that we can identify
with IR2. Moreover, there is δ1, 0 < δ1 ≤ δ0 such that if dist(f j(y), f j(z)) ≤ δ1 for all
j = 0, . . . , n and z ∈ W cs

loc(y) then f j(z) ∈ W cs
loc(f

j(y)) for all j = 0, . . . , n. Similarly for the
local center-unstable manifold (see [PS1, Lemma 3.0.4 and Corollary 3.2]).

Let us denote by K̂ the maximal f -invariant subset of U(K):

K̂ =
⋂

j∈ZZ
f j(U(K)) ,

and by

K̂+ =
∞⋂

j=0

f−j(U(K)) , K̂− =
∞⋂

j=0

f j(U(K)) ,

the forward and backward maximal invariant subsets.
The following lemma relates the length of a stable (unstable) arc joining two points with
the distance between those points.

Lemma 3.2. Given y ∈ K̂+ there is δ2, 0 < δ2 ≤ δ1 such that if the length of the arc
[y, z]cs ⊂ W cs

loc(y) is greater than δ > 0 for 0 < δ ≤ δ2, `([y, z]cs) > δ, then dist(y, z) > δ/2.
Moreover, we may choose δ2 such that if dist(y, z) ≤ δ ≤ δ2 then `([y, z]cs) ≤ 2 ·δ. Similarly
for an arc [y, z]cu ⊂ W cu

loc(y), y ∈ K̂−.

Proof. Since Ê is a continuous sub-bundle of TU(K)M we may find δ2, 0 < δ2 ≤ δ1 such
that given π/8 ≥ η > 0 then the angle 6 (E(y), E(w)) < η for all w ∈ B(y, δ2) ∩ U(K).
Thus if we parameterize [y, z]cs by arc-length β : [0, l] → M , β(s) = (β1(s), β2(s)), with
β(0) = y, β(l) = z, then β′(s) = (β′1(s), β

′
2(s)) is parallel to E(β(s)), here we have put
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l = length([y, z]cs). Therefore, since (β′1(s))
2 + (β′2(s))

2 = 1, we have by the Mean Value
Theorem

dist(y, z) = ‖β(l)− β(0)‖ =

=
√

(β1(l)− β1(0))2 + (β2(l)− β2(0))2 =
√

((β′1(s1))2 + (β′2(s2))2 · l =

= l

(
1− (

√
((β′1(0))2 + (β′2(0))2 −

√
((β′1(s1))2 + (β′2(s2))2)

)
=

= l

(
1− (β′1(0))2 − (β′1(s1))2 + (β′2(0))2 − (β′2(s2))2

1 +
√

((β′1(s1))2 + (β′2(s2))2)

)
≥

≥ l
(
1− |β′1(0)− β′1(s1)| |β′1(0) + β′1(s1)|+ |β′2(0)− β′2(s2)| |β′2(0) + β′2(s2)|

)
.

But, since 6 (Ê(β(s)), Ê(β(0))) < η,

‖(β′1(s)− β′1(0), β′2(s)− β′2(0))‖ ≤ 2 sin(η/2) < η ,

(see Figure 3). Therefore, taking into account that |β′1(0) + β′1(s1)| ≤ |β′1(0)|+ |β′1(s1)| ≤ 2
and that the same is true with respect to β′2 we have

dist(y, z) ≥ l(1− 4η) > l/2 > δ/2

if η > 0 is sufficiently small.

β'(0)

y=β(0)

β

β

(s)

'(s)
z= β(1)

β'(0)

β'(s)

ϕ

h=2.sin(    )ϕ/2 <2.sin(     )η/2 <η

Figure 3: Bounds for small angles
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To prove that if dist(y, z) ≤ δ then `([y, z]cs) ≤ 2δ let us assume that y is the origin O of
coordinates in IR2 and that the Ox1 axis is in the direction of Ê(y). Since 6 (Ê(y), Ê(w)) <
η ≤ π/8 for all w ∈ B(y, δ2), all the solutions starting at y are contained in the cone of
center y = O, axis Ox1 and angle with Ox1 equal to η. It follows that the arc [y, z]cs of
the local center stable manifold of y is contained in that cone and that the local center
stable manifold of y can be written as the graph of a C1 function x2 = h(x1). Moreover
|h′(x1)| ≤ tan(2η) ≤ 4η, whenever 0 ≤ η ≤ π/8 ≈ 0.3927. By our choice of η we have√

1 + 16η2 <
√

1 + 16× (0.4)2 < 2. Thus, if x1(z) denotes the abscissa of z, since |x1(z)| ≤
dist(y, z) ≤ δ, then

`([y, z]cs) =
∫ x1(z)

0

√
1 + h′2(x1) dx1 ≤

∫ δ

0

√
1 + 16η2 dx1 = δ

√
1 + 16η2 ≤ 2 · δ .

Continuing with the proof of Theorem A we first observe that taking an iterate fm of f
we may assume C = 1 at equation (1) defining domination in order to simplify calculations.
For, we have for all n ≥ 1

‖‖D(fm)n|E(x)‖ · ‖D(fm)−n|F (fmn(x))‖ =

= ‖Dfmn|E(x)‖ · ‖Df−mn|F (fmn(x))‖ ≤
≤ Cλmn = C(λm)n ≤ λ′n ,

if we choose 1 > λ′ > λ and m > 0 such that C ≤ λ′/λm. Since for a compact invariant
set X we have that the topological entropy h(fm/X) = m · h(f/X), if we prove that for
some ε > 0, h(fm/Γε(x, f)) = 0 then the same is true for f . Thus we assume that for f
itself C = 1 and λ = λ′. Let

√
λ < λ1 < λ2 < λ3 < 1. We find δ3, 0 < δ3 ≤ δ2, such that if

dist(z, w) ≤ δ3, z, w ∈ U(K), then

1− c <
‖Df/Ê(z)‖
‖Df/Ê(w)‖ < 1 + c and 1− c <

‖Df−1/F̂ (z)‖
‖Df−1/F̂ (w)‖ < 1 + c ,

where c > 0 is such that (1 + c)λ2 ≤ λ3.
Since U(K) is a compact neighborhood of K and TU(K)M = Ê ⊕ F̂ is a dominated

splitting we may find γ > 0 such that for all y ∈ U(K) it holds 6 (Ê(y), F̂ (y)) ≥ γ. Let
us pick a point x ∈ K and, identifying IR2 with a coordinate neighborhood around x, let
lE(x) be the straight line at x tangent to E(x) and lF (x) the straight line tangent to F (x).
From a point yF ∈ lF (x), yF 6= x, we consider the straight line yF + lE(x) parallel to E(x).
Then for any point y in yF + lE(x) we have that the distance between y and x is greater
than the distance between yF and x multiplied by sin γ, that is

dist(y, x) ≥ dist(yF , x) sin γ =⇒ dist(yF , x) ≤ dist(y, x)
sin γ

, (see Figure 4).
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Figure 4: Bounds for the distance between x and y ∈ y0 + lE(x)

When we substitute the linear model by that given by the local center-stable and center-
unstable manifolds, since the local center-unstable manifold is tangent to F̂ and the local
center-stable manifold is tangent to Ê we may assume that δ3 is so small that

dist(y, x) ≥ dist(yF , x)(
sin γ

3
) =⇒ dist(yF , x) ≤ 3 dist(y, x)

sin γ
(2)

for yF ∈ W cu
loc(x) ∩B(x, δ3), y ∈ W cs

loc(yF ) ∩B(x, δ3).
Now let ε > 0 be such that

ε <
δ3 sin γ

6
. (3)

We will prove that for all x ∈ K, h(f/Γε(x)) = 0. This will prove that f/K is entropy-
expansive.

Let us first assume that y ∈ W cu
loc(x) ∩ Γε(x) and that y 6= x. Since y ∈ Γε(x) we have

that orb(y) ⊂ U(K) and so y ∈ K̂. Therefore for all j ∈ ZZ it holds that

‖Df/E(f j−1(y))‖ · ‖Df−1/F (f j(y))‖ < λ

12



and so1
n∏

j=1

‖Df/E(f j−1(y))‖ · ‖Df−1/F (f j(y))‖ < λn, ∀n ≥ 1 .

If it were the case that
n∏

j=1

‖Df−1/F (f j(y))‖ ≤ λn
1

for arbitrarily large n > 0 then by Lemma 3.1 there are N = N(λ1, λ2) ∈ IN and c =
c(λ1, λ2) > 0 such that if n ≥ N there exists 1 ≤ n1 < n2 < . . . < nk ≤ n with k > c ·n and

ni∏

j=h

‖Df−1/F (f j(y))‖ ≤ λni−h
2 ,

for ni ≥ h ≥ 1; i = 1, . . . , k. Observe in particular that nk > c ·n otherwise we cannot have
k > c · n. By our choice of δ3 we then have that

nk∏

j=h

‖Df−1/F (f j(z))‖ ≤ λn1−h
3 ,

for all h : nk ≥ h ≥ 1 if dist(f j(z), f j(y)) ≤ δ3 for all j : h ≤ j ≤ nk.
By the choice of ε we have that f j(y) ∈ W cu

loc(f
j(x)) for all j ≥ 0 and moreover

f j([x, y]cu) ⊂ W cu
loc(f

j(x)).
If ρ = dist(x, y) > 0, we have, taking h = 1, that

ρ ≤ `([x, y]cu) ≤ `([fnk(x), fnk(y)]cu)λnk−1
3 .

Since [fnk(x), fnk(y)]cu is tangent to F and dist(fnk(x), fnk(y)) ≤ ε, by Lemma 3.2 we
have that `([fnk(x), fnk(y)]cu) ≤ 2ε. Thus

ρ ≤ `([x, y]cu) ≤ 2ε · λnk−1
3

and since 0 < λ3 < 1 and nk > c · n → ∞ when n → ∞ we conclude that ρ = 0 which
contradicts that x 6= y.

Hence we have that it is not true that for arbitrarily large n > 0

n∏

j=1

‖Df−1/F (f j(y))‖ ≤ λn
1 ,

1In order to simplify notation we will put Ê = E and F̂ = F in the sequel.
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and since
n∏

j=1

‖Df/E(f j−1(y))‖ ‖Df−1/F (f j(y))‖ < λn ,

we may conclude, taking into account that λ2
1 > λ, that there is n0 such that

n∏

j=1

‖Df/E(f j−1(y))‖ ≤ λn
1 ,

for all n ≥ n0. Thus, in the notation of [PS1], I = [fn0(x), fn0(y)]cu is an (ε, E, λ1)-interval.
Let us assume, without loss of generality, that n0 = 0 and so I = [x, y]cu.

There are two cases: either `(fn(I)) → 0 when n →∞ or `(fn(I)) 6→ 0. In any case we
may assume that for all point z ∈ I we have that W cs

loc(z) is a stable manifold (see [PS1,
Corollary 3.3]) and so W cs

loc(I) contains a neighborhood in M .
Let us assume first that `(fn(I)) → 0 when n →∞. Choose ζ > 0 and let us find bounds for
rn(ζ, W cs

loc(I)) where rn(ζ, W cs
loc(I))) is the minimum cardinality of a set that (n, ζ)-spans

W cs
loc(I)). Since `(fn(I)) → 0 there is n0 > 0 such that diam(fn(W cs

loc(I))) ≤ ζ for all
n ≥ n0. Then we may find a finite subset E such that (ζ, n0)-spans W cs

loc(I) and this set
also (ζ, n)-spans W cs

loc(I) for all n ≥ 0. It follows readily that

h(f, W cs
loc(I), ζ) = lim sup

n→∞
1
n

log(rn(ζ, W cs
loc(I)) = 0

and therefore h(f, W cs
loc(I)) = 0.

On the other hand, if `(fn(I)) 6→ 0 then by [PS1, Proposition 3.1] we have that for all
z ∈ I, the omega -limit set of z, ω(z), is a periodic orbit or lies in a periodic circle2.
In case of ω(x) being included in a periodic circle C this circle is normally hyperbolic
attracting a neighborhood V of C and points in V converge exponentially fast to C. If f
is C2 then as in [PS1] we conclude that the dynamics by f τ (τ being the period of C) in
C is conjugate to an irrational rotation while if f is just C1 we only have semi-conjugacy
(we may have a Cantor set in C and wandering intervals). In any case (conjugacy or semi-
conjugacy with an irrational rotation Rα) we profit from the fact that h(Rα) = 0. This
implies that if f τ/C is conjugate or semi-conjugate to Rα then h(f τ/C) = 0.
On the other hand if ω(x) is a periodic orbit, say of a point q, since `(fn(I)) < δ for all n ≥ 0
we have that there is a periodic point q′ in W cu

loc(q) such that attracts points in fn(I\{x})
(for instance the other end-point of fn(I) different from fn(x)), see [PS1, Lemma 3.3.1].
Note than since W cu

loc(q) is an arc, the period of q′ is the same of that of q, or the double of

2In the proof of that proposition Pujals and Sambarino use that f is of class C2. But this is used in the
case when `(fn(I)) → 0 when n →∞ in order to argue as in Schwartz’s proof of the Denjoy property ([Sc]).
If we already know that `(fn(I)) 6→ 0 then it is enough to assume f of class C1 to ensure that the ω-limit
of I is contained in a periodic arc or circle and this is implicit in the proof of [PS1, Proposition 3.1].
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it. Let P be the set of periodic points of f in W cu
loc(q)\{q}. Then all of them have the same

period, say τ . The set P divides W cu
loc(q) in arcs on which the dynamics by f τ is monotone.

It follows that the topological entropy of f τ/W cu
loc(q) is zero.

So in both cases, periodic orbit or periodic circle, f τn(W cs
loc(I)) approaches an f τ invariant

one-dimensional manifold L such that the topological entropy h(f τ ,L) = 0. Let ζ > 0
and m ∈ IN large be given an find S′ ⊂ L, (m, ζ) spanning L. We may find n0 and a
subset S of fn(I) for n ≥ n0, such that (m, ζ)-spans fn(I) with respect to f τ . Projecting
along the fibers of the local center-stable manifolds which, by equation (1), are dynamically
defined (W cs

loc(z) is strong stable for all z ∈ L) we know that there is n1 > 0 such that
for any point z ∈ I, `(fn(W cs

loc(z))) < ζ. We add points to S in order to ensure that we
do have a (m, ζ) spanning set for fm(W cs

loc(I)) for m = 0, 1, . . . , n1 − 1. We conclude that
h(f, W cs

loc(I), ζ) = 0 . Since ζ > 0 is arbitrary we obtain that h(f, W cs
loc(I)) = 0.

By [Bo, Corollary 2.3] we have that if there is an ε-E-interval I such that Γε(x) ⊂ W cs
loc(I)

then h(Γε(x), f) = 0.
Similarly if y ∈ W cs

loc(x) then J = [x, y]cs is an ε-F -interval and reasoning with the
α-limit of J we obtain that h(f,W cu

loc(J)) = 0 .

Assume now that y /∈ W cs
loc(x), y /∈ W cu

loc(x). Since y ∈ K̂ we have that W cs
loc(y) and

W cu
loc(y) are well defined and are embedded arcs. Since for all z ∈ U(K) the angle between

E(z) and F (z) is bounded from below by γ > 0, shrinking ε if necessary, from dist(z, w) ≤ ε,
z, w ∈ K̂, we may assume first that W cs

loc(w) ∩W cu
loc(z) = wF and W cs

loc(z) ∩W cu
loc(w) = wE ,

and secondly that

f(wF ) = W cs
loc(f(w)) ∩W cu

loc(f(z)), f(wE) = W cu
loc(f(w)) ∩W cs

loc(f(z)) ,

f−1(wF ) = W cs
loc(f

−1(w)) ∩W cu
loc(f

−1(z)), f−1(wE) = W cu
loc(f

−1(w)) ∩W cs
loc(f

−1(z)) .

If z = x, w = y we obtain points yF = W cs
loc(y)) ∩W cu

loc(x) and yE = W cs
loc(x) ∩W cu

loc(y). By
our assumption yE 6= x and yF 6= x. See Figure 5.

Since dist(fn(x), fn(y)) ≤ ε for all n ∈ ZZ, by induction we have that

fn(yF ) = W cs
loc(f

n(y)) ∩W cu
loc(f

n(x)) for all n ∈ ZZ. (4)

Moreover, we have that

dist(fn(x), fn(yF )) <
3 dist(fn(x), fn(y))

sin γ
<

3ε

sin γ
<

δ3

2

which implies by Lemma 3.2 that `(fn([x, yF ]cu) = `([fn(x), fn(yF )]cu) < δ3 which in turn
implies that dist(fn(x), fn(z)) < δ3 for all z ∈ [x, yF ]cu and for all n ≥ 0.
Thus [x, yF ]cu = I is a (δ3, E)-interval ([PS1]) and therefore we have that W cs

loc(I) is a stable
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Figure 5: Case y /∈ W cs
loc(x), y /∈ W cu

loc(x).

manifold which implies that dist(fn(yF ), fn(y)) → 0 when n → ∞. Reasoning as in the
case in which y ∈ W cu

loc(x) we obtain

h(f,W cs
loc(I), ζ) = lim sup

n→∞
1
n

log(rn(ζ,W cs
loc(I)) = 0.

Hence h(f,W cs
loc(I)) = 0 and from Γε(x) ⊂ W cs

loc(I)) we conclude that h(f, Γε(x)) = 0. Since
this last inequality holds for all x ∈ K we have that f/K is h-expansive, finishing the proof
of Theorem A.

4 Generalization to higher dimensions.

Theorem B generalizes Theorem A and as Example 2 shows, to obtain its proof, we have
to impose certain restrictions on the nature of the splitting. In order to do so, we recall the
concept of finest dominated splitting introduced in [BDP].

Definition 4.1. Let Λ ⊂ M be a compact f-invariant subset such that TM/Λ = E1⊕E2⊕
· · · ⊕Ek with Ej Df invariant, j = 1, . . . , k. We say that E1 ⊕E2 ⊕ · · · ⊕Ek is dominated
if for all 1 ≤ j ≤ k − 1

(E1 ⊕ · · ·Ej) ⊕ (Ej+1 ⊕ · · · ⊕ Ek)

has a dominated splitting We say that E1⊕E2⊕· · ·⊕Ek is the finest dominated splitting when
for all j = 1, . . . , k there is no possible decomposition of Ej as two invariant sub-bundles
having domination.
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C1-generically the finest dominated splitting has a very special form. Let us first put
us in that generic situation which are proved elsewhere (see [ABCDW, §2.1]).

Generic assumptions. There exists a residual subset G of Diff1(M) such that if
f : M → M is a diffeomorphisms belonging to G then

1. f is Kupka-Smale, (i.e.: all periodic points are hyperbolic and their stable and unsta-
ble manifolds intersect transversally)

2. for any pair of saddles p, q, either H(p, f) = H(q, f) or H(p, f) ∩H(q, f) = ∅.
3. for any saddle p of f , H(p, f) depends continuously on g ∈ G.

4. The periodic points of f are dense in Ω(f).

5. The chain recurrent classes of f form a partition of the chain recurrent set of f .

6. every chain recurrent class containing a periodic point p is the homoclinic class asso-
ciated to that point.

Theorem 4.1. There is a residual subset I ⊂ G of Diff1(M) such that if f ∈ I has a
homoclinic class H(p, f) which contains hyperbolic saddles of indices i < j then either

1. For any neighborhood U of H(p, f) and any C1-neighborhood U of f there is a diffeo-
morphism g ∈ U with a homoclinic tangency associated to a saddle of the homoclinic
class H(pg, g), where pg is the continuation of p.

2. There is a dominated splitting

TH(p,f)M = E ⊕ F1 ⊕ · · · ⊕ Fj−i ⊕G

with dim(E) = i and dim(Fh) = 1 for all h and dim(G) = dim(M) − j. Moreover,
the sub-bundles Fh are not hyperbolic.

Proof. This is [ABCDW, Corollary 3] taking into account that a result by Gourmelon
guarantees that the homoclinic tangency can be associated to a saddle inside the homoclinic
class (see [Go, Corollary, 6.6.2, Theorem 6.6.8]).

Remark 4.2. In Theorem 4.1 we cannot assure that E is contracting and G is expanding
unless the homoclinic class is isolated (see [ABCDW, BDPR]).

Sketch of the proof of Theorem B. Observe first that by assumption we are C1-far
from homoclinic tangencies. Therefore taking into account Theorem 4.1 and assuming that
H(p, f) is isolated, we have that for all x ∈ H(p, f) it holds that

TxM = E0(x)⊕ E1(x)⊕ · · · ⊕ Ek(x)⊕Ek+1(x),
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with E0(x) contracting, Ek+1(x) expanding and all Ej(x), j = 1, . . . , k, one dimensional
and not hyperbolic. From this we have that the proof of Theorem B is similar to the
proof of Theorem A: as in that proof let y ∈ Γε(x) where x ∈ H(p, f). We cannot have
y ∈ W u

loc(x), where W u
loc(x) is the local unstable manifold tangent to Ek+1. Otherwise, since

on W u
loc(x) there is a hyperbolic Df -expansion at the tangent level, taking ε > 0 less than

the minimum of the diameters of the local unstable manifolds of points in H(p, f), we will
have that for some n0 > 0 it holds that dist(fn0(x), fn0(y)) > ε, a contradiction. Similarly
we cannot have that there is y ∈ Γε(x)∩W s

loc(x) where W s
loc(x) is the local stable manifold

tangent to E0. Suppose now that y /∈ W s
loc(x) ∪ W u

loc(x). If y ∈ Γε(x) we may project
fn(y) along a center stable manifold tangent to E0(fn(y)) ⊕ E1(fn(y)) ⊕ · · · ⊕ Ek(fn(y))
into the unstable manifold of fn(x) obtaining a point fn(y′) ∈ W u

loc(f
n(x))3. Since the

angles given by the dominated splitting are bounded away from zero the diameter of this
projection goes to zero when ε goes to zero. So this projection fn(y′) belongs to ΓLε(fn(x))
for some constant L > 0 which depends on the lower bound for the angles between the
different sub-bundles of the splitting and therefore, as in the proof of Theorem A, taking
into account that along Ek+1 we have uniform expansion, we obtain that y′ = x. Similarly
the projection of y along a center unstable manifold tangent to E1(y)⊕ · · · ⊕Ek+1(y) into
the stable manifold of x (tangent to E0(x)) has to coincide with x for sufficiently small
ε > 0. Therefore Γε(x) is included in a center manifold of x, W c

loc(x). Either W c
loc(x) is

one-dimensional (k = 1) and then we may argue as in the first part of Theorem A, or there
is some surface S tangent to Ej(x), Ej+1(x) for some j ∈ {1, . . . , k − 1} in which there is a
projection y′ 6= x of y along a center unstable manifold tangent to Ej+2(y), . . . Ek+1(y) such
that y′ ∈ ΓKε(x). In the former case the existence of y′ implies readily that there is n0 ≥ 0
such that Ej+2(fn(y′))⊕ · · · ⊕Ek+1(fn(y′)) is uniformly expanding for all n ≥ n0 and that
E0(fn(y′))⊕ · · · ⊕ Ej−1(fn(y′)) is uniformly contracting for n ≤ −n0. Therefore points in
Γε(x) have to be in S. Hence we may repeat the second part of the proof of Theorem A
taking into account that Ei is one dimensional for all i = 1, . . . , k. In any case we obtain
that htop(Γε(x)) = 0. Therefore f/H(p, f) is entropy expansive. This finishes the sketch of
the proof.

5 Robust h-expansiveness implies domination on surfaces.

In this section we prove Theorem C. In order to do that we will argue by contradiction
assuming that we do not have a dominated splitting. This will allow us to create a tangency
between the stable and unstable manifolds of p. Using results of Downarowicz and New-
house (see [DN] and [Nh2]) we will see that this is not possible when f/H(p) is h-expansive
in a robust way.

3These center-stable manifolds are just locally defined but since dist(fn(x), fn(y)) ≤ ε ∀n ∈ ZZ, by [PS1,
Lemma 3.0.4, Corollary 3.2], as in equation (4) we have that ∀n ∈ ZZ : fn(y′) = W cs

loc(f
n(y))∩W u

loc(f
n(x)).
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Recall that a subshift (g, Y ) is the restriction of the full shift in a finite alphabet to a
closed invariant subsystem.

Definition 5.1. Let f : X → X be a homeomorphism of a compact metric space X. A
symbolic extension of the pair (f,X) is a pair (g, Y ), where (g, Y ) is a subshift with a
continuous surjection π : Y → X such that fπ = πg. A symbolic extension is principal if
the topological entropy of the extension coincides with that of the original system, that is,
h(g, Y ) = h(f, X).

Theorem 5.1 (Downarowicz, Newhouse). Fix 2 ≤ r < ∞. There is a residual subset R of
the space Diff r(M) of C r-diffeomorphisms of a closed surface M such that if f ∈ R and f
has a homoclinic tangency, then f has no principal symbolic extension.

Proof. See [DN, Theorem 1.4].

Moreover, if f has no principal symbolic extension then f cannot be asymptotically
h-expansive as has been proved by M. Boyle, D. Fiebig and U. Fiebig (see [BFF]).

Proof of Theorem C. Let H(p) be an f -homoclinic class associated to the hyperbolic
periodic point p. Assume that there is a C1 neighborhood U of f such that for any g ∈ U
it holds that there is a continuation H(pg) of H(p) such that H(pg) is h-expansive. Let
x ∈ W s(p) ∩ W u(p) be a transverse homoclinic point associated to the periodic point
p . We define E(x) ≡ TxW s(p) and F (x) ≡ TxW u(p). Since p is hyperbolic we have that
E(x)⊕F (x) = TxM . Moreover, E(x) and F (x) are Df -invariant, i.e.: Df(E(x)) = E(f(x))
and Df(F (x)) = F (f(x)).

By definition H(p) ≡ clos(hom(p)) where hom(p) is the set of transverse homoclinic
points associated to p so if we prove that there is a dominated splitting for hom(p) we are
done since then we can extend by continuity the splitting to the closure H(p). Moreover,
since C2-diffeomorphisms are dense in the C1-neighbourhood U we may assume that f is
of class C2.

So let us assume that f is of class C2 and prove that there is a dominated splitting
for hom(p) . To do so it is enough to prove that there exists m > 0 such that for some
k : 0 ≤ k ≤ m it holds for all x ∈ hom(p) that

‖Dfk/E(x)‖ ‖Df−k/F (fk(x))‖ ≤ 1
2

.

Hence arguing by contradiction let us assume that for all m > 0 there is xm ∈ hom(p) such
that for all k : 0 ≤ k ≤ m we have

‖Dfk/E(xm)‖ ‖Df−k/F (fk(xm))‖ >
1
2

.
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Hence as in [Ma1, SV] given any γ > 0 and ε > 0 we may find m > 0, depending on ε and γ,
such that with an ε-C1-perturbation we obtain a C2 diffeomorphism g′ with a homoclinic
point xg′ associated to pg′ such that the angle at xg′ between W s

loc(xg′ , g
′) and W u

loc(xg′ , g
′)

is less than γ. Since γ is arbitrarily small we may C1-perturb g′ obtaining g′′ of class C2

with a tangency at xg′′ between W s
loc(xg′′) and W u

loc(xg′′). As in [Nh1] we may C2-perturb
g′′ obtaining g in Diff2(M) with a C2 robust tangency of Hènon-like type. By the results
of [DN] and [Nh2] we conclude that there is no symbolic extension for g/H(pg). Therefore,
by [BFF], g/H(pg) is not asymptotically h-expansive and a fortiori it is not h-expansive
contradicting our hypotheses. This finishes the proof of Theorem C.
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