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Abstract. Let M be a closed 3-manifold, and Xt be a transitive Anosov flow. We build
a diffeomorphism of the form f(p) = Yt(p)(p), where Y is an Anosov flow equivalent to
X. The diffeomorphism f is structurally stable (i.e. satisfies the Axiom A and the strong
transversality condition); the non-wandering set of f is the union of a transitive attractor
and a transitive repeller; finally f is also partially hyperbolic (the direction R.Y is the
central bundle).

1. Introduction

Let X be a transitive Anosov vector field on a 3-manifold M , and X(., t) : M ×R →M
its flow. In 1975, Palis and Pugh ([14])asked if the time one map p 7→ X(p, 1) of X may
be C1 approximated by Axiom A diffeomorphisms; as they noticed, the answer is positive
when X is the suspension of an Anosov diffeomorphism. It was only by the beginning of
this century that [11] and [2] give a partial negative answer to this question: a transitive
Anosov flow which is not topologically equivalent to a suspension cannot be approximated
by Axiom A diffeomorphisms having more than one attractor.

A flow is equivalent to a suspension if and only if it admits a closed embedded global
cross-section. Fried noticed that transitive Anosov flows on 3-manifolds ”almost admit
global cross-sections”. More precisely, a Birkhoff section is an embedded surface with
boundary B →֒M such that:

• the interior B \ ∂B of B is transverse to the vector field X;
• the boundary ∂B is the union of finitely many periodic orbits of X;
• there is T > 0 such that for every point x ∈M there is t ∈ (0, T ] with X(x, t) ∈ B.

In [7] Fried built (infinitely many) Birkhoff sections for any transitive Anosov flow on a
3-manifold M . He also proved that the first return map P defined on the interior of B
induces a pseudo-Anosov diffeomorphism P̃ on the closed surface B̃ obtained from B by
replacing each boundary component by a point. In that meaning, Fried noticed that X
looks like the suspension of a pseudo-Anosov homeomorphisms and he described a simple
surgery on the suspension of P̃ reconstructing the flow X.

Hence, it is tempting to try to build an Axiom A diffeomorphism close to the time one
map of the flow of X, in the same way that it has been done in the case of a suspension
flow. Indeed, it is what we propose in this paper. However, it cannot be done in a naive
way, because a Birkhoff section is not transverse to the flow on its boundary. For this
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reason, our main difficulty is the local situation on a neighborhood of the periodic orbits,
boundary components of a Birkhoff section. Let us now state precisely our result.

In this paper we consider (not necessarily C1-small) perturbations of the time one of
the flow of X, ”in the direction of the flow”: in other words we consider diffeomorphisms
of M which maps each point of M on a point of its X-orbit. Let us be more precise. We
denote by Ẽ(X) the set of diffeomorphisms f : M →M such that:

• there is a C1 map t : M → (0,+∞) such that

f(x) = X(x, t(x)),∀x ∈M.

In particular, f leaves invariant every leaf of the 1-foliation generated by X.
• f is partially hyperbolic and its central bundle is directed by X.

We define E(X) as the set of diffeomorphisms f such that there is an Anosov flow Y
topologically equivalent to X with f ∈ Ẽ(Y ). In [2], we proved that an Axiom A diffeo-
morphism in E(X) contains at most one transitive attractor (and at most one transitive
repeller). Our main result is :

Theorem 1. Let X be a transitive Anosov flow of a compact 3-manifold M .
Then there exists a diffeomorphism f ∈ E(X) such that:

• f satifies the Axiom A and the strong transversality condition (i.e. f is structurally
stable)

• Ω(f) is the union of just a transitive attractor and a transitive repeller.

We also describe the dynamics on the attractor and on the repeller, which are derived
from pseudo-Anosov diffeomorphisms (see Section 8).

This result may be seen as a partial answer to Palis Pugh question in [14]. Our con-
struction depends on the choice of a Birkhoff section of the vector field X; given a Birkhoff
section, our construction cannot lead to a C1-small perturbation of the time one map of
the flow (for this reason, at different steps of our construction, we did not care of choosing
large perturbations even if this step could be done by C1-small perturbations). However,
we don’t know if, given a size of perturbation, one can choose the Birkhoff section so that
our procedure would lead to a C1-small perturbation.

Our result is also interesting by itself as being a new class of examples of structurally
stable diffeomorphisms. Let us be a little bit more precise. One of the main success of the
hyperbolic theory is the characterization of the structural stability as being equivalent
to the Axiom A and the strong transversality condition (i.e. the transversality of all
the invariant manifolds associated to non-wandering points). The strong transversality is
a very restrictive condition, in particular when the diffeomorphism admits a non-trivial
hyperbolic attractor (i.e. not reduced to a sink) or a non-trivial repeller, because their
basins are open set foliated by invariant manifolds. For instance, if f is a structurally
stable diffeomorphisms of compact surface, [3, Théorème 2.3.4] states that the basin of
a non-trivial hyperbolic attractor cannot meet the unstable manifold of any non-trivial
hyperbolic set (see also [9]). In dimension ≥ 3, [10] gives a complete classification (up
to topological conjugacy) of structurally stable diffeomorphisms with a codimension 1
attractor (that is, the unstable manifold of every point of the attractor is of codimension
1).
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In dimension 3 there are very few examples of known structurally stable diffeomor-
phisms having non-trivial codimension 2 attractors:

• diffeomorphisms on a fiber bundle over the circle S1 whose fibers are tori T 2, having
the following dynamical behavior: the non-wandering set consists on topological
tori, isotopic to a fiber, and which are alternately attracting and repelling tori1;
moreover, the dynamics on each of these tori is conjugated to a linear Anosov
diffeomorphism of the torus T 2.

• more generally, diffeomorphisms obtained (up to topological conjugacy) by com-
pleting the dynamics of structurally stable diffeomorphisms of a normally hyper-
bolic surface2.

These comments show that our examples are really different from the known examples
and therefore important for the topological classification of structurally stable diffeomor-
phisms. Furthermore, they present two additional important properties: they are partially
hyperbolic and their non-wandering sets are the union of just one attractor and one re-
peller. These two properties define two classes of structurally stable diffeomorphisms for
which it seems reasonable to get a complete classification.

Problem 1. Give a classification (up to topological conjugacy) of structurally stable dif-
feomorphisms on closed 3-manifolds whose non-wandering set consists of one attracting
basic set and one repelling basic set.

(Our examples show that this problem is far to be trivial).

Problem 2. Let f : M →M be an ”Axiom A plus strong transversality” diffeomorphism
of a closed orientable 3-manifold M . Assume furthermore that f leaves invariant a par-
tially hyperbolic splitting TM = Es ⊕ Ec ⊕ Eu, where dimEs = dimEc = dimEu = 1

Is it true that f satisfies one of the following possibilities?:

• either M = T 3 (up to a finite covering) and Ec is tangent to an invariant circle
foliation; furthermore any attractor and any repeller is homeomorphic to a torus
T 2;

• or f is an Anosov diffeomorphism;
• or else Ec is tangent to an invariant foliation F c which is topologically equivalent

to the 1-foliation directed by an Anosov vector field X; furthermore there is n > 0
such that fn leaves invariant every leaf of F c.

(See [4] for results on the classification of partially hyperbolic diffeomorphisms on 3-
manifolds).

Let us formulate a more specific question. Consider an Anosov vector field X on a
closed 3-manifold and a structurally stable diffeomorphism f ∈ E(X) given by Theorem
1; we denote by A and R the attractor and the repeller of f . The open set M̃ = M\(A∪R)

1see Section 2.5 where we recall the construction of such examples by doing a small perturbation of
the suspension flow of an Anosov diffeomorphisms

2In fact, Grines asked to the first author if there are structurally stable diffeomorphisms on 3-manifolds
having a hyperbolic attractor which is not conjugated to a hyperbolic attractor on a compact surface.
Unluckily, the attractors in our examples are conjugated to surface attractors, hence these examples do
not answer to Grines’s question.



4 CHRISTIAN BONATTI AND NANCY GUELMAN

is invariant by f . The orbits space Vf = M̃/f of f in M̃ is a closed 3-manifold, and the

central foliation F c
f of f restricted to M̃ induces on Vf a 1-dimensional foliation directed

by some unit vector field Yf .

Problem 3. What is the dynamics of Yf? How is it related with X and f?

This paper is organized as follows:

• Section 2 recalls basic definitions and properties of hyperbolicity and partial hy-
perbolicity that we will use in the paper. We end this section by recalling the
construction of the suspension of an Anosov diffeomorphism, and by showing how
one can perturb the time one map of its flow for getting a structurally stable
diffeomorphism.

• Given a Birkhoff section B of an Anosov vectorfield X, Section 3 and 4 show how
one can change slightly the vectorfield and the Birkhoff section, in a neighborhood
of the boundary ∂B, in order to get an explicit local model for the Birkhoff section.

• Section 5 proves the main part of Theorem 1, building the announced structurally
stable diffeomorphism f assuming the existence of a local model fmod : R

2 ×S1 →
R

2×S1 corresponding to the local dynamics in the neighborhood of each boundary
component of the Birkhoff section.

• Sections 6 and 7 are devoted to the construction of the local model fmod. It is
the technical heart and certainly the most difficult part of the paper.

• Section 8 describes dynamical properties of the diffeomorphism f which use the
explicit construction of the local model: one shows that the non-wandering set
of f consists in the union of an attractor and a repeller, and that the dynamics
in restriction to the attractor or the repeller is ”derived from the pseudo Anosov
diffeomorphisms associated to the Birkhoff section”.

Thanks. We would like to thank V. Grines, S. Gan and L.Wen for their interest and
comments on this work.

2. Basic definitions and notations

The aim of this section is to recall briefly the basic definitions and properties of hyper-
bolicity and partial hyperbolicity. We also recall the construction of a structurally stable
diffeomorphism by perturbating the time 1 map of the suspension flow of an Anosov
diffeomorphism.

Let f : M → M be a diffeomorphism on a compact Riemannian manifold M and
K ⊂M an invariant compact set.

2.1. Hyperbolic dynamics. One says that K is hyperbolic if there is an integer n > 0
and a Df -invariant splitting TM |K = Es⊕Eu of the tangent bundle of M over K in direct
sum of subbundles Es and Eu such that, for any point x ∈ K, any vectors u ∈ Es(x),
and v ∈ Eu(x) one has:

‖Dfn(u)‖ ≤ 1

2
‖u‖ and ‖Dfn(v)‖ ≥ 2‖v‖.
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One says that Df contracts uniformly the vectors in Es and expands uniformly the vectors
in Eu. The bundle Es and Eu are called the stable and unstable bundles ofK, respectively.
We refer to [12] for a nice survey on the elementary properties of hyperbolic sets.

One of the main properties of a hyperbolic set K is the existence of stable and unstable
manifolds through each point of K. The stable manifold W s(x) of a point x ∈ K is the
set of points y for which the distance d(fn(y), fn(x)) tends to 0 for n → +∞; for ε > 0,
the local stable manifold W s

ε (x) is the set of points whose distance d(fn(y), fn(x)) remains
smaller than ε for n ≥ 0. For ε > 0 small enough, the local stable manifolds {W s

ε (x)}x∈K

form a continuous family of disjoint embedded C1-discs centered at x and tangent at x
to the stable space Es(x). Furthermore W s

ε (x) ⊂ W s(x); one deduces that W s(x) is a
C1 injective immersion of Es(x). One defines the unstable (and local unstable) manifold
of x as its stable (local stable) manifold for f−1. The stable (resp. unstable) manifold
W s(K) (resp. W u(K)) of the hyperbolic set K is the union of the stable (resp. unstable)
manifold of the points x ∈ K, and (according to the shadowing lemma) is the set of point
whose ω-limit set (resp.α-limit set) is contained in K.

A basic set is a transitive hyperbolic set K admiting an isolating neighborhood U ; this
means that K is the maximal invariant set in U (in formula K =

⋂
n∈Z

fn(U)). A basic
set K is a hyperbolic attractor if it admits an isolating neighborhood U which is strictly
positively invariant : the image of the closure of U is contained in the interior of U . In this
case, W u(K) = K. A hyperbolic repeller is a hyperbolic attractor for f−1 and it holds
that W s(K) = K.

A diffeomorphism f satisfies the Axiom A if the non-wandering set Ω(f) is the closure
of the periodic points of f and it is hyperbolic. One important property of an Axiom
A diffeomorphism f is that the non-wandering set is the disjoint union of finitely many
basic sets called the basic pieces of f .

A diffeomorphism f satisfies the strong transversality condition if the stable manifold
W s(x) and the unstable manifold W u(y) are transverse for any pair x, y ∈ Ω(f). One
of the main theorems on hyperbolic dynamics (proved by Robbin, Robinson and Mañé)
states that f satisfies the Axiom A and the strong transversality condition if and only if f
is structurally stable: every diffeomorphism in a small C1 neighborhood of f is conjugated
to f .

A cycle of an Axiom A diffeomorphisms f is a sequence K1, ..Kℓ of distinct basic
pieces such that W u(Ki) ∩ W s(Ki+1) 6= ∅ and W u(Kℓ) ∩ W s(K1) 6= ∅. An Axiom A
diffeomorphism satisfies the no cycle condition if it has no cycles. According to [13],
the hyperbolicity of the chain recurrent set is equivalent to Axiom A plus the no cycle
condition.

2.2. Partial hyperbolicity. One says that K is partially hyperbolic3, if there is a Df -
invariant splitting TM |K = Es ⊕ Ec ⊕ Eu of the tangent bundle of M over K in direct
sum of subbundles Es, Ec and Eu such that the vectors of Es are uniformly contracted,
the vectors in Eu are uniformly expanded, and the splitting Es ⊕Ec ⊕Eu is a dominated
splitting : there is n > 0 such that for any point x ∈ K and any unit vector u ∈ Es(x),

3According to the different authors, one requires that either both bundles or at least one of the bundles
Es and Eu are not trivial (i.e. of dimension > 0). Here we will always assume that both bundles Es and
Eu are not trivial.
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v ∈ Ec(x), and w ∈ Eu(x) one has 2‖Dfn(u)‖ ≤ ‖Dfn(v)‖ ≤ 1
2
‖Dfn(w)‖. The bundles

Es, Ec, and Eu are called the strong stable, the central and the unstable bundles of K,
respectively. (We refer to [1, Appendix B] for more precise definitions and basic properties
of partial hyperbolicity and dominated splitting).

One says that f is partially hyperbolic when the whole manifold M is a partially hy-
perbolic set . The partial hyperbolicity is an open property for the Cr-topology, r ≥ 1,
on the space of diffeomorphisms.

If f is a partially hyperbolic diffeomorphism then there are foliations F s and Fu, called
strong stable and strong unstable foliations, tangent to the bundles Es and Eu, respec-
tively. These foliations are unique, hence are f -invariant. The existence of a foliation
tangent to Ec remains an open question even when dimEc = 1.

2.3. Hyperbolic set of partially hyperbolic diffeomorphisms. Assume that f is a
partially hyperbolic diffeomorphism such that the dimension of the central bundle is 1:
TM = Es ⊕ Ec ⊕ Eu and dimEc = 1.

Consider now a hyperbolic set K of f . This means that the central bundle, Ec is either
expanding or it is contracting, hence the stable manifold (resp. unstable manifold) of the
points x ∈ K are everywhere tangent either to Es or to Es ⊕Ec (resp. either to Ec ⊕Eu

or to Eu).
As a consequence one gets that if f satisfies the Axiom A, then f satisfies the strong

transversality condition if and only if for every pair K1, K2 of basic sets one has

W s(K1) ∩W u(K2) 6= ∅ =⇒ dim(W s(K1)) + dim(W u(K2)) ≥ dim(M).

Let us state a direct consequence which will be usefull in our case:

Remark 1. Let f be a partially hyperbolic diffeomorphism which satisfies the Axiom A.
Assume that every basic piece of f is either an attractor or a repeller. Assume finally that
the central bundle is contracted on the attractors and expanded on the repellers.

Then f is structurally stable.

Lemma 2.1. Let X be a transitive Anosov flow of a compact 3-manifold. Let f ∈ E(X) be
an Axiom A diffeomorphism such that every basic piece of f is an attractor or a repeller.
Then f satisfies the strong transversality condition, and therefore is structurally stable.

Proof : Let F c and Ec = TF c denote the central foliation and bundle of f . Consider
a basic piece Λ of f which is an attractor, and a periodic point x ∈ Λ. Each leaf of F c is
f -invariant. As a consequence, the central leaf F c

f (x) of x is closed.
If Ec(x) is contained in the unstable space of x, then the local central leaf through x

is contained in W u(x), hence in Λ. The point x is a repeller for the restriction of f to
the closed central leaf F c

f (x). A point y in the local central leaf of x belongs to Λ and its
positive iterates converge to an attracting point x′ of f |

Fc
f
(x)

. By compactness of Λ one

has x′ ∈ Λ. However Ec(x′) is contained in the stable space of x′, contradicting the fact
that W s(x) and W s(x′) have the same dimension.

This argument shows that Ec is uniformly contracted on Λ. Analogously, Ec is uni-
formly expanded on any repelling basic piece. We conclude the proof by Remark 1 2
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2.4. Anosov vector fields. Two vector fields X and Y on a closed manifold M are
topologically equivalent if there is a homeomorphism h : M →M such that the image by
h of any dynamically oriented orbit of X is a dynamically oriented orbit of Y .

Consider now a C1-vector field X on M and let {Xt}t∈R denote its flow. The vector
field X is an Anosov vector field if there is a splitting TM = Es ⊕ Ec ⊕ Eu which is
invariant by the flow and such that Ec is the line bundle RX directed by X, and such
that vectors in Es and Eu are uniformly contracted and expanded, respectively, by the
flow of X. Anosov flows are structurally stable: there is a C1-neighborhood U of X such
that every vector field Y ∈ U is topologically equivalent to X (furthermore Y is Anosov
too). Notice that, for every t > 0 the diffeomorphism Xt is partially hyperbolic, with the
same bundles as X.

The vector field X is transitive if there is a point x whose orbit is dense in M . Recall
that [8] builds examples of non-transitive Anosov flow on closed 3-manifolds. Here we
will always consider transitive Anosov flows on 3-manifolds. Notice that, for a transitive
Anosov flow, the periodic orbits are dense in M .

2.5. Case of the suspension. We recall the construction of an Axiom A diffeomorphism
obtained as a perturbation of the time one map of an Anosov flow X, in the case where
X is a suspension.

2.5.1. Definition of the suspension flow. Consider A : T 2 → T 2 be an Anosov diffeomor-
phism. Consider now T 2×R endowed with the vector field ∂

∂t
and let FA : T 2×R → T 2×R

be the diffeomorphism defined by FA(p, t) = (A−1(p), t + 1). Notice that FA preserves
the vector field ∂

∂t
: (FA)∗(

∂
∂t

) = ∂
∂t

. One denotes by MA the orbit space of FA that is the
quotient of T 2 × R by the equivalent relation generated by (p, t) ∼ (A−1(p), t + 1). The
quotient space MA is a closed 3-manifold. The vector field ∂

∂t
induces on MA a vector

field X whose flow preserves the natural fibration π : MA → S1 = R/Z induced by the
projection Π: T 2 × R → R on the second factor.

As A is a transitive Anosov diffeomorphism, one deduces that X is a transitive Anosov
flow on MA.

2.5.2. Perturbation of the time one map of the suspension flow. Consider now a Morse-
Smale diffeomorphism h of the circle S1 = R/Z having exactly two fixed points, a sink
at 0 and a source at 1

2
. One may write h as t 7→ h(t) = t + ϕ(t) where ϕ : S1 → R is a

smooth map whose derivative is strictly larger than −1, such that ϕ(t) < 0 for t ∈ (0, 1
2
)

and ϕ(t) > 0 for t ∈ (1
2
, 1).

Consider now the diffeomorphism f : MA → MA defined as f(p) = X(p, 1 + ϕ(π(p)).
One has the following commutative diagramm

f
MA → MA

π ↓ ↓ π
S1 → S1

h

Notice that the fibers T 2 × {0} and T 2 × {1
2
} are invariant tori. Furthermore the

restriction of f to these fibers is smoothly conjugated to the Anosov diffeomorphism A.
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As 0 is a hyperbolic sink of h and 1
2

is a hyperbolic source, one deduces that T 2 ×{0} is a
hyperbolic attractor and T 2 × {1

2
} is a hyperbolic repeller. Furthermore, any point (x, t)

with t /∈ {0, 1
2
} has its α-limit set contained in T 2 × {1

2
} and its ω-limit set contained

in T 2 × {0}. One deduces that the non-wandering set of f is Ω(f) = T 2 × {0, 1
2
}. One

easily deduces that f is an Axiom A diffeomorphism satisfying the strong transversality
condition. Finally, f is C1-close to the time one map of the flow X whenever ϕ is C1-close
to the constant map 0.

3. Topological equivalence of Birkhoff sections

3.1. Birkhoff section of an Anosov flow. Let X be a transitive Anosov vector field on
a closed 3-manifold M . According to [7], a Birkhoff section B of X is a compact surface
with boundary, embedded in M , with the following properties:

• every connected component of the boundary ∂B is a periodic orbit of X,
• the interior of B is transverse to X
• there is T > 0 such that every segment of orbit of X of time length T meets B

In [7] Fried proves:

Theorem 2. Every transitive Anosov flow on a closed 3-manifold has a Birkhoff section.

By construction, the Birkhoff sections built by Fried satisfy an additional property
which we will use in our construction. Let γ denote a connected component of the
boundary ∂B where B is a Birkhoff section built by Fried. Then the bundles Es and Eu

are orientable along γ; in other words, the eigenvalues of the derivative of the Poincaré
return map associated to γ are positive. In what follows, when we speak on a Birkhoff
section B, we will always assume that the restriction to ∂B of the bundles Es and Eu are
orientable.

3.2. The tame property. The Birkhoff sections B built by Fried satisfy another prop-
erty that we will use in our construction and we will called tame property.

Let γ be a connected component of ∂B and W s
loc(γ) and W u

loc(γ) denote the local stable
and unstable manifolds of the periodic orbit γ.

Definition 3.1. We say that B verifies the tame property at γ if there is a neighborhood
Bγ of γ in B such that Bγ∩W s

loc(γ) and Bγ∩W u
loc(γ) consist in the union of γ with finitely

many compact segments each of them intersecting γ exactly at one of its extremities.
We say that B is a tame Birkhoff section if it is tame at each of its boundary compo-

nents.

3.3. Topological and local Birkhoff sections. In this work we will use generalizations
of the notion of Birkhoff sections:

A topogical Birkhoff section is a compact surface with boundary B topologically em-
bedded in M such that

• the embedding of B in M is regular, that is B is a submanifold of M : at each
point x ∈ B there are local coordinates ϕ : U → V ⊂ R

3 of M centered at x such
that ϕ(B ∩ U) = V ∩ [0,+∞[×R × {0}.

• every connected component of the boundary ∂B is a periodic orbit of X,
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• the interior of B is topologically transverse to X
• there is T > 0 such that every segment of orbit of X of time length T meets B.
• the restrictions to ∂B of the bundles Es and Eu are orientable.
• B verifies the tame property at each of its boundary components (the tame property

is defined exactly in the same way as for smooth Birkhoff sections). .

Let γ be a periodic orbit of X such that the restriction of Es and Eu along γ are
orientable. A local Birkhoff section at γ (resp. topological local Birkhoff section at γ) is
an embedding (resp. regular topological embedding) of the annulus [0, 1]× S1 in M such
that

(1) γ is the image of {0} × S1,
(2) the image of ]0, 1] × S1 is transverse (resp. topologically transverse) to X
(3) there is T > 0 and a neighborhood U of γ such that every segment of orbit of X

of time length T contained in U meets B.
(4) f verifies tame property at γ (where the tame property is defined exactly as in

Section 3.2).

3.4. Linking number of a Birkhoff section at a boundary component. LetB : [0, 1]×
S1 →M be a local Birkhoff section at a periodic orbit γ. As, by definition, the eigenvalues
associated to γ are positive, the normal bundle N |γ ⊂ TγM (consisting of all the vectors
in TM at a point of γ which are orthogonal to the vectorfield X) is orientable. We fix an
orientation of the normal bundle Nγ.

Consider the unit normal bundle N1,γ ⊂ N |γ of γ: at each point p of γ we consider the
circle of the unit vectors v ∈ Tp(M) which are orthogonal toX(p). The unit normal bundle
N1,γ is a torus T 2, endowed with a projection on the circle γ. The fibers of the projection
are circles called meridians. The chosen orientation on N |γ induces an orientation of the
meridians. We denote by a ∈ H1(N1,γ,Z) the homology class of the meridians.

As we assumed that the eigenvalues associated to γ are positive, the unit tangent
vectors at W s(γ) induce two disjoint circles on N1,γ , each of them cutting each meridian
in exactly one point. These curves are naturally oriented by γ, and are homotopic, hence
they define the same homology class b ∈ H1(N1,γ ,Z) called the longitude. Notice that we
get the same homology class b if we consider the unstable manifold of γ instead of the
stable one. We endow the homology space H1(N1,γ,Z) with the basis (a, b).

At each point p of γ there is exactly one unit normal vector v(p) tangent to B and
entering in B (because γ is a boundary component of B). We consider the induced curve
(oriented by γ) on N1,γ, and we denote by γB its homology class. There is n(γ,B) ∈ Z

such that γB = n(γ,B)a+ b.

Definition 3.2. The number n(γ,B) defined above is called the linking number of B at
γ.

Notice that the definition of the linking number n(γ,B) depends on the choice of the
orientation of the normal bundle along γ. Changing this orientation will change n(γ,B)
by −n(γ,B).

Remark 2. As any orbit cuts B in a bounded time, and as B \ ∂B is transverse to the
flow, one can verify:

n(γ,B) 6= 0.
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The definition 3.2 holds for smooth local Birkhoff section. As we will deal with topo-
logical Birkhoff section we give now a topological version of this definition.

Let Γ be a tubular neighborhood of γ. Then H1(Γ \ γ,Z) is canonically identified to
H1(N1,γ ,Z), hence is isomorphic to Z

2 and endowed with the basis (a, b) where a is the
meridian and b the longitude.

Let B be a topological local Birkhoff section at γ. Consider a close curve σ ⊂ B∩(Γ\γ)
which is isotopic to γ in B ∩ Γ. The homology class of σ in H1(Γ \ γ,Z) does not depend
on the choice of σ and it is of the form n(γ,B)a + b; the integer n(γ,B) is called the
linking number of B at γ. This definition coincides with the above definition if B is a
smooth local Birkhoff section.

We will see in the next sections that the linking number is the unique invariant of a
local Birkhoff section, up to isotopies obtained by pushing the Birkhoff section along the
orbits of the flow.

3.5. Homological intersection in a neighborhood of γ. Let γ be a normally oriented
periodic orbit with positive eigenvalues, and Γ be a tubular neighborhood of γ. As in the
previous section we endow H1(Γ \ γ,Z) with a basis {a, b} where a is a meridian and b is
a longitude. The choice of the basis {a, b} induces an isomorphism of H1(Γ \ γ,Z) onto
Z

2. We can also identify H1(Γ \ γ,Z) with the homology group of a torus (boundary of a
tubular neighborhood of γ). This identification allows us to endow H1(Γ \ γ,Z) with the
intersection quadratic form. Evaluated on the basis {a, b}, this intersection form is given
by a · a = b · b = 0, a · b = 1, and b · a = −1. In other word, the intersection form is the
bilinear antisymetric form on Z

2 associated to the matrix
(

0 1
−1 0

)
.

Let B : [0, 1] × S1 → M be a local topological Birkhoff section at γ = B({0} × S1)
such that the boundary component B({1} × S1) is disjoint from Γ. We endow B of
an orientation in such a way that the vectorfield followed by this orientation endow the
orientation of the manifold (or the local orientation we have chosen in a neighborhood of
γ). Hence, the orbits intersect B with positive intersection number.

Let σ ⊂ Γ \ γ be a simple closed curve and [σ] = ia+ jb be its homology class; in other
words [σ] = (i, j) ∈ Z

2 ≃ H1(Γ \ γ,Z).

Lemma 3.1. If σ is a longitude, that is [σ] = (0, 1) then the algebraic intersection number
σ ·B is |n(γ,B)|.

Proof : Consider an essential curve in B on the boundary of a tubular neighborhood
of γ. By definition of the linking number, this curve is in the homology class (n(γ,B), 1).
Hence the intersection number with a curve in the homology class (0, 1) is n(γ,B). Fur-
thermore the curve in this class cuts B always with the same orientation. For this reason
we get the announced equality, up to the signal: |σ ·B| = |n(γ,B)|. It remains to see that
σ ·B > 0. For that we realize the class (0, 1) by the concatenation of an orbit segment in
W s

loc(γ) and a segment in B ∩W s
loc(γ) ( that is possible by the tame hypothesis), proving

that the intersection is positive because the chosen orientation of B implies that the orbits
intersect B with positive intersection number. 2
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Notice that the intersection number of the homology class (n(γ,B), 1) with B is zero
(because it can be realized by a curve on B and B is normally oriented, so that one can
push this curve as a curve disjoint from B). So, we have that

{
(0, 1) ·B = |n(γ,B)|

(n(γ,B), 1) ·B = 0

One deduces

Corollary 3.1. Let [σ] = (i, j) ∈ H1(Γ \ γ,Z). Then

• if n(γ,B) > 0 then

[σ] ·B = −(i, j) · (n(γ,B), 1) = −i+ n(γ,B)j;

• if n(γ,B) < 0 then

[σ] ·B = (i, j) · (n(γ,B), 1) = i− n(γ,B)j.

3.6. Quadrants of a local Birkhoff section. Consider a periodic orbit γ with positive
eigenvalues. Let Γ, W s

loc(γ), and W u
loc(γ) be a small tubular neighborhood, the stable

and the unstable manifolds of γ such that Γ \W s
loc(γ) ∪W s

loc(γ) has exactly 4 connected
components. The choice of a transverse orientation of γ induces a cyclic order on these
components. We call quadrants of Γ and we denote by Γi, i ∈ Z/4Z the closure of these
connected components.

Let D ⊂ Γ be a small disk transverse to X and cutting γ in a point xD. One chooses
D in such a way that D \W s

loc(γ) ∪W s
loc(γ) has exactly 4 connected components, each of

them contained in one of the quadrants Γi. We call quadrant of D the closure of these
components and we denote Di = D ∩ Γi.

We denote by PD the first return map on D defined in a neighborhood of xD. Notice
that PD respects the quadrants: it induces a homeomorphism from a neighborhood of xD

in Di on another neighborhood of xD in Di.
Let B ⊂ Γ be a small local topological Birkhoff section at γ (satisfying the tame

property at γ). Consider the connected components of B \ (W s
loc(γ)∪W u

loc(γ)) containing
a point of γ in their closure. The closure of these connected components are called
quadrants of B. Any quadrant of B is bounded by a segment of γ and by two segments in
B ∩ (W s

loc(γ)∪W u
loc(γ)); (by the tame property, this intersection consists in finitely many

segments having one extremity in γ).

Lemma 3.2. Let σ ⊂ B ∩W s
loc(γ) be a connected component of B ∩W s

loc(γ) \ γ which
is a segment having an extremity in γ. Let Bσ denote the square obtained by cutting the
annulus B along σ. There is a neighborhood V of γ in Bσ and a continuous and bounded
function tσ : V → R such that the map Πσ defined by x 7→ X(tσ(x), x) is a continuous
map from V to D.

Proof : Cutting the annulus B ≃ [0, 1] × R/Z by σ , one gets an immersion of the
square Bσ ≃ [0, 1] × [0, 1] in B ⊂ M such that the image of {0} × [0, 1] is precisely
γ. Consider a tubular neighborhood Γ ≃ D2 × S1 of γ such that D = D2 × {0} and
γ = {0} × S1. Let Γ̃ ≃ D2 × R be the universal cover of Γ. Then Bσ admits a lift B̃σ

on Γ̃, which is an embedded compact square. In particular, it is contained in a compact
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cylinder of the form D× [−T, T ]. Let Dr ⊂ D2 denote the disc of radius r centered at 0.
There is r such that the orbit of every point in Dr × [−T, T ] cuts D in exactly one point.
This induces a continuous projection of B̃σ ∩Dr × [−T, T ] to D. 2

Corollary 3.2. Given i ∈ {1, . . . , , 4} and a quadrant Q ⊂ B ∩ Γi. Then, there are a
neighborhood UQ of x in Di, a neighborhood VQ of γ in Q and a continuous and bounded
map tQ : UQ \{xD} → R such that X(z, tQ(z)) ∈ Q for all z ∈ UQ \{x}) and such that the
map PQ(z) defined as z 7→ X(z, tQ(z)) is a homeomorphism from UQ \ {xD} onto VQ \ γ.

Proof : Consider the map Πσ defined in Lemma 3.2. As B \ γ is transverse to the
orbits, one gets that this projection is a local homeomorphism out of γ and of σ. The
projection along the flow preserves each stable and unstable separatrix of γ. Hence Πσ

sends quadrants of B on quadrants of D.
Keeping the notation of the proof of Lemma 3.2, we fix r′ > 0 such that the disc

Dr′ ⊂ D is disjoint from B̃σ∩((∂Dr) × [−T, T ]). Then for every i ∈ {1, . . . , , 4} and every
quadrant Q ⊂ B ∩ Γi, there is a neighborhood VQ of γ in Q such that Πσ induces an
homeomorphism from VQ \ γ onto Dr′ ∩Γi \ {xD}. The announced map PQ is the inverse
of the restriction of Πσ to Dr′ ∩ Γi \ {xD}. 2

3.7. The quadrants and the first return map. The items 2) and 3) of the definition
of a local Birkhoff section implies that the first return map PB of the orbits of X on
B \ γ is well defined and continuous. More precisely there are neighborhood UB and VB

of γ in B and a continuous and bounded function tB : UB \ γ → R such that the map
PB : x 7→ X(tB(x), x) induces a homeomorphisms from UB \γ → VB \γ. Furthermore the
orbit segment joining x to PB(x) meets B exactly at its extremities x and PB(x).

The first return map PB preserves the stable and the unstable manifolds of γ, hence
permutes the quadrants of B: for every quadrant Q of B there is a quadrant Q′ of B
such that PB induces a homeomorphism from a neighborhood of γ in Q, minus γ, to a
neighborhood of γ in Q′, minus γ. This induces a permutation on the set of quadrants.

Lemma 3.3. • Each quadrant Γi of Γ contains exactly |n(γ,B)| quadrants of B

• P |n(γ,B)|
B preserves each quadrant of B;

• if z ∈ Q \ γ is a point in a quadrant Q of B close enough to γ, then there is a

path σ ⊂ Q \ γ joining P
|n(γ,B)|
B (z) to z. Furthermore, the closed curve obtained by

adding to σ the orbit segment joining z to P
|n(γ,B)|
B (z) is homotopic to γ in Γi

Proof : Let Q ⊂ Γi be a quadrant of B and PQ : Di \ {xD} → Q \ γ be the homeo-
morphism (defined in a neighborhood of xD) built in Corollary 3.2. Consider z ∈ Q close
enough to γ. So z belongs to the image of PQ, that is z = PQ(x) for x ∈ Di \ {xD}.
Now we consider a small arc σ0 ⊂ Di \ {xD} joining PD(x) to x. If z is very close to γ
then x and PD(x) are very close to xD and one can choose σ0 contained in the domain
of definition of PQ. Furthermore, the closed curve γ1 obtained by adding to σ0 the orbit
segment joining x to PD(x) is homotopic to γ in Γi \ γ.

Let denote σ = PQ(σ0). It is a segment in Q joining z to PQ(PD(P−1
Q (z))). Notice that

there are segments of orbits joining z to x , x to PD(x) and finally PD(x) to PQ(PD(x)).
So there is a segment of orbit joining z to PQ(PD(P−1

Q (z))). We consider the closed curve
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γ2 obtained by adding σ to this segment. The curve γ2 is by construction homotopic to
γ1 hence to γ in Γi \ γ. Lemma 3.1 implies that its algebraic intersection number with
B is |n(γ,B)|. Furthermore it consists in a segment of orbit and σ which is contained in
Q ⊂ B. The segment of orbit cuts B always with the same orientation. One deduces that
the segment of orbit joining z to PQ(PD(x)) meets B in exactly |n(γ,B)|− 1 points. As a

consequence, PQ(PD(x)) = P
|n(γ,B)|
B (z), this implies that P

|n(γ,B)|
B preserves the quadrant

Q.
We proved the second and third items of the lemma; notice that the other quadrants in

Γi coincide with PB(Q), . . . , P
|n(γ,B)|−1
B (Q) in a small neighborhood of γ, ending the proof.

2

We denote by Bj, j ∈ Z/4|n(γ,B)|Z the quadrants of B in such a way that:

• Bj ⊂ Γi if j ≡ i modulo 4
• write j = i+ 4k; then Bj+1 is the quadrant of B in Γi+1 which is adjacent to Bj,

that is Bj ∩Bj+1 \ γ 6= ∅
As the first return map PB is a local homeomorphism of B\γ preserving the orientation

and inducing a permutation of the quadrants Bj, one gets that there is k such that, for
every j ∈ Z/4|n(γ,B)|Z, PB maps the quadrants Bj on the quadrants Bj+4k.

As any simple essential curve in B, disjoint from γ, induces in homology the class
n(γ,B)a+ b in H1(Γ \ γ,Z) = H1(N1,γ,Z) one deduces:

Lemma 3.4. PB maps Bj onto Bj+4 if n(γ,B) > 0 and onto Bj−4 if n(γ,B) < 0, for
every j ∈ Z/4|n(γ,B)|Z.

Proof : Let denote n = |n(γ,B)|. First notice that the statement of the lemma is
trivial if n = 1; so we assume n ≥ 2. Consider a point x ∈ B1 and P n

B(x) ∈ B1, and let
σ be the orbit segment joining x to P n

B(x). One has seen that σ cuts every quadrant, in
particular the quadrant B5 at a point P ℓ

B(x), ℓ ∈ {1, . . . , n − 1}. We want to prove that
ℓ = 1 if n(γ,B) > 0 and ℓ = n− 1 otherwise.

Let α be a simple path on B joining the point x to P ℓ
B(x) and contained in (B1 ∪ · · · ∪

B5) \ γ. Let β be a simple path contained in B1 \ γ joining x to P n
B(x).

We denote by σ0 the closed path obtained by concatenation of α with the orbits segment
of X joining P ℓ

B(x) to x. We denote by σ1 the closed path obtained by concatenation of
α with the orbit segment joining P ℓ

B(x) to P n
B(x) and with β.

By construction, the intersection number of σ0 with B is −ℓ (because the orbit segment
joining P ℓ

B(x) to x is negatively oriented and its interior cuts B in ℓ− 1 points) and the
intersection number of σ1 with B is n− ℓ.

Let [σ0] and [σ1] denote the class of σ0 and σ1 in H1(Γ \ γ,Z). Using the notation in
Section 3.5, we identify H1(Γ \ γ,Z) with Z

2 where (1, 0) is the meridian and (0, 1) is the
homology class of an essential curve contained in one of the quadrants Γi.

By construction there is s such that [σ0] = (1, s); notice that the homology class
[σ1]− [σ0] is the homology class of the closed path obtained by concatenation of the orbit
segment joining x to P n

B(x) and β; this closed path is homotopic to a longitude i.e. (0, 1).
Hence [σ1] = (1, s+ 1). Now, according to Corollary 3.1 one gets:
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• If n(γ,B) > 0 then

[σ0] ·B = −(1, s) · (n(γ,B), 1) = s · n(γ,B) − 1 = −ℓ.
As ℓ ∈ {1, . . . , , n− 1}, and n(γ,B) > 0, the unique possibility is ℓ = 1 and s = 0.

• If n(γ,B) < 0, then

[σ1] ·B = (1, s+ 1) · (n(γ,B), 1) = 1 − (s+ 1) · n(γ,B) = |n(γ,B)| − ℓ = −n(γ,B) − ℓ.

That is ℓ + 1 = sn(γ,B). Since ℓ ∈ {1, . . . , , n − 1}, and n(γ,B) < 0, the unique
possibility is s = −1 and ℓ = n− 1.

This ends the proof of the lemma.
2

3.8. Projection of a local Birkhoff section along the flow. As in the previous section
we consider a local topological Birkhoff section B at a (normally oriented) periodic orbit
γ and a disk D transverse to X and cutting γ at a point xD. Using the notation of the
previous section, we divide B in 4n = 4|n(γ,B)| quadrants and D in 4 quadrants.

As B is not homotopic to a transverse disk, we cannot project it continuously on D
along the orbits of X: if one chooses a projection at a point and one tries to extend it by
continuity, one gets another value of the projection when one follows an essential curve.
More precisely, consider the segment σ ⊂ B ∩ W s

loc(γ) which is the intersection of the
quadrants B1 with B4|n(γ,B)|. Let Bσ be the square obtained by cutting the annulus B
along σ. We have seen at Lemma 3.2 that there is a continuous projection Πσ of Bσ to
D, defined in the neighborhood of γ, of the form Πσ(x) = X(tσ(x), x) where the time
projection tσ is continuous and bounded.

The aim of this section is to estimate the continuity defect of Πσ at σ. More precisely,
Bσ contains two copies of σ so that Πσ is bivaluate on σ. We will calculate here the
difference of this two functions.

Let denote n = |n(γ,B)|. For every k ∈ {1, . . . , 4n}, k = 4j + i with i ∈ {1, . . . , 4}
and j ∈ {0, . . . , n − 1}, there is a neighborhood Uk of γ in Bk such that the restrictions
Πk : Uk → Di of Πσ induces an homeomorphism from Uk \ γ onto its image which is a
punctured neighborhood of xD in Di (in the previous notations this homeomorphism is
the inverse of PBk

); By construction, one has Πk(x) = Πk+1(x) for x ∈ Uk ∩ Uk+1 and for
every k ∈ {1, . . . , 4n− 1}.
Lemma 3.5. (1) for x ∈ U4n ∩ U1 one has

Π4n(x) = PD(Π1(x)) if n(γ,B) < 0 and Π4n(x) = P−1
D (Π1(x)) if n(γ,B) > 0;

(2) Πk induces a conjugacy between P n
B and PD: if x ∈ Uk and P n

B(x) is defined and
belongs to Uk then Πk(P

n
B(x)) = PD(Πk(x)).

Proof :

Let us prove now item (1). Let x be a point of B4n ∩ B1 \ γ. Let α : [0, 4n] → B
be an essential closed curve obtained by concatenation of curves αk : [k − 1, k] → Bk,
k ∈ {1, . . . , 4n} with α1(0) = x = α4n(1) and αk(1) = αk+1(0) ∈ Bk ∩Bk+1.

Now the projection Πk ◦ αk induces a continuous projection of α on D \ {xD} along
the orbits of X, whose image is a continuous path Πα : [0, 4n] → D \ {xD} joining Π1(x)
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to Π4n(x). The closed path obtained by concatenation of the orbit segment joining x to
Π1(x) , the segment Πα, and the orbit segment joining Π4n(x) to x is homotopic to α in
Γ \ γ. In particular its homology class in H1(Γ \ γ) is (n, 1) if n(γ,B) > 0 and (n,−1) is
n(γ,B) < 0.

Let β ⊂ D1 ∩D4 be a segment joining Πα(4n) = Π4n(x) to Πα(0) = Π1(x). The closed
path obtained by concatenation of Πα and β is homologous to (n, 0) in H1(Γ \ γ,Z).

As a consequence the closed path obtained by concatenation of β and the X-orbit
segment joining Π1(x) to Π4n(x) is homologous to (0,−1) if n(γ,B) > 0 and (0, 1) is
n(γ,B) < 0. This proves the item (1).

For proving item (2), one considers a segment δ joining P n
B(x) to x in Ux. Then the

closed path obtained by concatenation of the orbit segment joining x to P n
B(x) with δ

is isotopic to γ in the tubular neighborhood of γ. Now this segment is isotopic (along
the orbits of the flow) to the closed path obtained by concatenation of the orbit segment
joining Πk(x) to Πk(P

n
B(x)) and the segment Πk(δ) (which is joining Πk(P

n
B(x)) to Πk(x)

in D). This closed path is therefore homotopic to γ in the tubular neighborhood of γ:
this implies that Πk(P

n
B(x)) is the first return on D of the orbit starting at Πk(x), proving

item (2).
2

3.9. Equivalent Birkhoff sections. We say that two Birkhoff sections S0 and S1 are
X-isotopic if there is a continuous and bounded function t : S0 \ ∂S0 → R such that
p 7→ X(p, t(p)) induces a homeomorphism τ from S0 \ ∂S0 to S1 \ ∂S1.

Remark 3. If S0 and S1 are X-isotopic, then ∂S0 = ∂S1; furthermore, for every con-
nected component γ of the boundary, the linking numbers n(γ, S0) and n(γ, S1) are equal.

Let γ be a periodic orbit. We say that two local Birkhoff sections B0 and B1 at γ are
X-isotopic if there are neighborhoods U0 and U1 of γ in B0 and B1, respectively, and
a continuous and bounded function t : U0 \ γ → R, such that p 7→ X(p, t(p)) induces a
homeomorphism τ from U0 \ γ to U1 \ γ.
Lemma 3.6. Two topological local Birkhoff sections B0 and B1 at γ (satisfying the tame
hypothesis) are X-isotopic if and only if the linking numbers at γ are equal:

n(γ,B0) = n(γ,B1).

Furthermore if τ : B0 \ γ → B1 \ γ is a homeomorphism realizing the X-isotopy, then
it induces a conjugacy between the first return maps on B0 and B1 (on a neighborhood of
γ).

Proof : Let Π0
σ : B0 \ γ → D and Π1

σ : B1 \ γ → D be the projections defined at
Lemma 3.2. We define τ = (Π1

σ)−1 ◦ Π0
σ : B0 \ γ → B1 \ γ. Then τ is a homeomorphism

from B0\(γ∪σ) and item (1) of Lemma 3.5 ensures that it is a homeomorphism τ : B0\γ →
B1 \ γ. By construction τ is obtained by isotopy along the orbits; in other words there is
a continuous function t : B0 \ γ → R such τ(x) = X(t(x), x) for x ∈ B0 \ γ. Furthermore
t is bounded, because the orbits segments joining a point x ∈ U0 (reps. x ∈ U1) to Π0

σ(x)
(resp. Π1

σ(x)) are uniformly bounded. Hence we proved that B0 and B1 are X-isotopic.
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It remains to prove that τ induces a conjugacy of the return maps. We write the proof
assuming the n(γ,B0) > 0, the proof in the case n(γ,B0) < 0 is identical.

Let us denote P0 = PB0 and P1 = PB1 the first return maps on B0 and B1, and
t0 : B0 \ γ → R and t1 : B1 \ γ → R the corresponding return times. Consider now a point
x ∈ B0,k. Then we have seen that P0(x) belongs to B0,k+4. Let α be a segment joining
P0(x) to x and contained in B0,k ∪B0,k+1 ∪ · · · ∪B0,k+4 (in the case that n(B0, γ) = 1 this
is not enough to fix the homotopy class of α; in that case, we consider a lift of the B0,k on
the universal cover of a tubular neighborhood of γ). Consider the closed path β0 obtained
by concatenation of the orbit segment X([0, t0(x)], x) with α. Then the homology class
of β0 is (−1, 0).

Consider now the segment τ(α) joining τ(x) ∈ B1,k to τ(P0(x)) ∈ B1,k+4 and contained
in B1,k ∪B1,k+1 ∪ · · · ∪B1,k+4 (once more if n(B0, γ) = 1 we need to pass to the universal
cover of a neighborhood of γ). The orbit segment X([0,−t(x) + t(P0(x)) + t0(x)], τ(x)) is
joining τ(x) to τ(P0(x))

Consider the closed path β1 obtained by concatenation of the segment X([0,−t(x) +
t(P0(x))+ t0(x)], τ(x)) and τ(α). The segment β1 is isotopic to β0 along the orbits so that
its homology class is (−1, 0). This gives that the intersection number β1 ·B1 is 1 implying
that τ(PB0(x)) is the first return of τ(x) on B1. This ends the proof.

2

Lemma 3.6 allow us to prove:

Lemma 3.7. Let B be a topological Birkhoff section of X and B̃ be a local topological sec-

tion at a component γ of ∂B. Assume that n(γ,B) = n(γ, B̃). Then for any neighborhood
O of γ there is a topological Birkhoff section of X which is X-isotopic to B, coincides

with B out of O and coincides with B̃ in a small neighborhood of γ.

Sketch of proof: : According to lemma 3.6 we can push B on B̃ along the orbits of X
in a small neighborhood of γ; the time function of this projection is bounded in absolute
value by some constant K. Multiplying this time function by a bump function ϕ, we get
a surface Bϕ immersed in M , transverse to the orbits of the flow, which coincides with

B out of an arbitrary small neighborhood of γ (contained in O) and with B̃ in a smaller
neighborhood of γ.

However, the surface Bϕ may not be embedded in M : it may have self intersections.

The surface coincides with B out of an arbitrary small neighborhood of γ and with B̃ in
a smaller neighborhood of γ; moreover this surface is obtained by pushing B along the
flow with a time bounded by K. Hence we can assume that this surface is embedded out
of O and in a small neighborhood of γ.

Claim 1. One can choose ϕ such that Bϕ has no self intersection point in W s
loc(γ)∪W u

loc(γ)

Proof : Consider the intersection of B with W s
loc(γ). By the tame property, it consists

in 2|n(B, γ)| segments (|n(B, γ)| in each separatrix) having exactly one extremity on γ,
and their interiors are pairwise disjoint: hence the segments contained in one separatrix
have a natural cyclic order: the first return map on B sends a segment on the next segment
for this order. The same happens for the segments of B̃ ∩W s

loc(γ). Furthermore, as τ is

conjugating the first return maps on B and B̃ one gets that τ preserves the cyclic order
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on the set of segments. We need something more precise. Consider the universal cover
of a tubular neighborhood of γ. As τ is isotopic to the identity along the orbits, this
isotopy defines a lift of τ sending a lift of B over a lift on B̃. The fact that τ conjugates
the first return maps on B and B̃ implies that the lift of τ preserves the natural order on
the components of intersection of the lifts of B and B̃ with the lifts of the separatrices of
W s

loc(γ) and W u
loc(γ).

This allows us to choose the bump function in such a way thatBϕ has no self-intersection
on W s

loc(γ) ∪W u
loc(γ). 2

A small perturbation of ϕ (obtained by pushing Bϕ along the orbits) in the neighbor-
hood of the intersection points allows us to assume that the self intersection of Bϕ are
all transversal, hence are finitely many compact curves. As these curves are disjoint from
W s

loc(γ) ∪W u
loc(γ) each of them is contained in a quadrant.

Consider the lift of Bϕ on the universal cover Γ̃ of the tubular neighborhood Γ ≃ D2×S1

of γ. A quadrant of Bϕ is obtained by pushing a quadrant of B along the orbits by a
bounded time, on an arbitrarily small neighborhood of γ; furthermore, on the lift, the
orbits of the flow intersect a quadrant of B in at most one point. As a consequence, one
gets that each lift of each quadrant of Bϕ is embedded in the universal cover.

In each quadrant Γ̃j, j ∈ {1, 2, 3, 4} of Γ̃, the quadrants of the lift of Bϕ are naturally

ordered. Let us index them by Bn
ϕ,j, n ∈ Z; with this notation Bn

ϕ,j and B
n+kn(γ,B)
ϕ,j , k ∈ Z,

are lifts of the same quadrant of Bϕ.
Let kϕ be the largest integer such that there are m,n = m + k such that Bn

ϕ,j ∩
Bm

ϕ,j 6= ∅. Let ℓϕ be the sum of number of connected component of B
m+kϕ

ϕ,j ∩ Bm
ϕ,j for

m = 1, . . . n(γ,B). Let us assume that ϕ has been chosen in such a way that kϕ is the
minimum possible on all the ϕ; let k0 denote this minimum. We assume also that ℓϕ is
the minimum possible for all ϕ with kϕ = k0.

One concludes the proof of Lemma 3.7 by proving:

Claim 2. Assume that kϕ > 0 and ℓϕ > 0. Then there is ϕ̃ with kϕ̃ < kϕ or kϕ̃ = kϕ and
ℓϕ̃ < ℓϕ.

Proof : By definition of kϕ there ism and n = m+kϕ such that there is a point x ∈ Bm
ϕ,j

and t > 0 such that X(−t, x) ∈ Bn
ϕ,j. On considers the set ∆ = {x ∈ Bm

ϕ,j|∃t(x) ≥
0, X(−t(x), x) ∈ Bn

ϕ,j}. Its is a compact set in Bm
ϕ,j bounded by Bm

ϕ,j ∩Bn
ϕ,j, which consist

in finitely many circles. Notice that t(x) is unique (because the orbits intersects the
quadrants in at most one point. Let Dm be a connected component of this set, and
Dn = {X(−t(x), x), x ∈ Dm}. Notice that the segments of orbits joining X(−t(x), x)
to x, for x ∈ Dm form a continuous family of segment. This allows to make an isotopy
of Bm

ϕ,j by pushing the points in a small neighborhood of Dm in Bm
ϕ,j, along the negative

orbits; by this isotopy a point in Dm is transformed in a point y = X(−t, x) with t > t(x).
Hence the negative orbit of the new point (in the new Bm

ϕ,j), is now disjoint from Bn
ϕ,j:

we removed the component Dm of ∆. There are two difficulties to be solved: first, one
needs to show that this isotopy can be obtained by a choice of ϕ; second, one needs to
show that this isotopy either decreases kϕ or keep kϕ identical but decreases ℓϕ.

For solving the first difficulty, one needs to show that one can change ϕ on Dm without
changing ϕ on Dn. If kϕ = n − m is not a multiple of n(γ,B), Bn

ϕ,j B
m
ϕ,j are obtained
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by pushing (along the orbits) different quadrants of B. Hence one can change the value
of ϕ independently on these two quadrants. If kϕ is a multiple of n(γ,B) we have to
show that Dn and Dm are coming from disjoint regions of the same quadrant. Arguing
by contradiction, we assume that there is a point y in Dn which is the image by the cover
automorphism hkϕ

: D2 × R → D2 × R, (p, t) 7→ (p, t + kϕ) of a point x ∈ Dm. In that
case there is z ∈ Dm such that X(−t(z), z) = y. But X(−t(x), y) is the image by hkϕ

of

X(−t(x), x) ∈ Bn
ϕ,j, hence X(−t(x), y) ∈ B

n+kϕ

ϕ,j . As a consequence X(−t(x) − t(z), z) ∈
B

n+kϕ

ϕ,j = B
m+2kϕ

ϕ,j . Therefore B
m+2kϕ

ϕ,j ∩Bm
ϕ,j 6= ∅ leading to a contradiction.

For solving the second difficulty, it is enough to see that if x ∈ Dm and the orbit
interval X((−t(x), 0], x) cuts Bi

ϕ,j then |i −m| < kϕ: these indices are the possible new
intersection of Bm

ϕ,j with the other quadrants after modification. First notice that one
has i ≤ m + kϕ = n: in fact, if i > n and there is x ∈ Bm

ϕ,j and t > 0 such that

X(−t, x) ∈ Bi
ϕ,j then Bm

ϕ,j ∩ Bi
ϕ,j 6= ∅; the conclusion follows now from the definition of

kϕ. On the other hand i 6= n because the orbit segment X([−t(x), 0], x) would cut Bn
ϕ,j

twice, which is impossible. So i − m < kϕ. Analogously, notice that a negative orbit
starting at y = X(−t, x) ∈ Bi

ϕ,j cut Bn
ϕ,j. As i < n, this implies that Bi

ϕ,j ∩ Bn
ϕ,j 6= ∅.

Hence i ≥ m, which concludes.
2

2

As a consequence of Lemma 3.7 we get:

Lemma 3.8. Let X be a transitive Anosov flow with oriented center stable and center
unstable foliations on a closed 3-manifold M . Every topological Birkhoff section B̃ is
X-isotopic to a (smooth) Birkhoff section B.

Proof :

Just notice that by lemma 3.7 the topological Birkhoff section B̃ is X-isotopic to a
(smooth) Birkhoff section B in a neighborhood of γ. Out of the neighborhood of the
boundary we have that B̃ is topologically transversal to X then locally we can perturb B̃
to have a smooth Birkhoff section. 2

The following straightforward corollary is the main goal of this section:

Corollary 3.3. Let X and Y be two transitive Anosov flows with oriented foliations de-
fined on closed 3 manifolds M and N respectively. Assume that X and Y are topologically
equivalent by a homeomorphism h : M → N . Let B be a Birkhoff section of X. Then
there is a Birkhoff section B′ of Y which is Y -equivalent to h(B). In particular:

• ∂B′ = h(∂B)
• for every component γ of ∂B one has n(γ,B) = n(h(γ), B′).

3.10. Foliations induced on a Birkhoff section. Let X be an Anosov vector field on
a closed 3-manifold and γ be a periodic orbit of X such that the stable and unstable
bundles are oriented along γ. Let B be a tame local topological Birkhoff section at γ.
Let B0 denote B \ γ. Then B0 is homeomorphic to a punctured disc; furthermore it is
transverse to X so that the weak stable and unstable foliations of X induce on B0 a pair
of transverse foliations F s and F u. Let ∆ be the disk obtained by compactifying B0 by
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adding a point 0 (in other words ∆ is the quotient of the annulus B by the boundary
component γ). We endow ∆ with the foliations F s and F u, 0 being the unique singular
point.

Exactly as Fried noticed in the case of a global Birkhoff section, there is a neighbor-
hood of 0 in ∆ such that, on this neighborhood, the pair of foliations F s and F u are
conjugated to a pseudo-Anosov type of singular foliation: each foliation has a saddle type
singularity with 2|n(γ,B)| separatrices (also called prongs in the usual terminology for
Pseudo-Anosov maps). The stable prongs (or separatrices) of the singularity corresponds
to the connected component of the intersection of B0 with W s(γ).

More precisely, in the neighborhood of 0; the pair (F s, F u) is conjugated to the pair of
foliation obtained by endowing the unit disc of R

2 with the trivial horizontal and vertical
foliation and by considering a ramified cover of this disc, with |n(γ,B)| folds, having a
unique ramification at 0.

4. Normal position of a Birkhoff section

4.1. Model of local Birkhoff sections: regular helicoid transverse to a hyper-

bolic periodic orbit . In this section we choose a simple linear model for a vector field
in a neighborhood a periodic orbit. Then we show that regular helicoids are local Birkhoff
sections for this model vector field. This will provide us model Birkhoff sections of any
linking number for the model vector field.

4.1.1. The model vector field at a periodic orbit. We denote by S1 the circle R/Z.
We consider the vector field on R

2 × S1 whose expression in the canonical coordinates
is

Xmod(x, y, z) = (log 2)x
∂

∂x
− (log 2)y

∂

∂y
+

∂

∂z
.

We denote by X̃mod the lift ofXmod to R
3. Notice that the time one mapXmod1 : R

2×S1 →
R

2 × S1 is Xmod1(x, y, z) = (2x, 1
2
y, z). We fix a Riemaniann metric on R

2 × S1 such that
||Xmod|| = 1.

4.1.2. The half helicoid. We consider two surfaces with boundary S̃0 and S̃1, diffeomorphic
to the half plane R × [0,+∞) and properly embedded in R

3 and defined as follows:

S̃0 = {(x, y, z) ∈ R
3|∃r ≥ 0, (x, y) = (r cos 2πz, r sin 2πz)}

S̃1 = {(x, y, z) ∈ R
3|∃r ≥ 0(x, y) = −(r cos 2πz, r sin 2πz}

= {(x, y, z) ∈ R
3|∃r ≥ 0(x, y) = (r cos 2π(z − 1

2
), r sin 2π(z − 1

2
))}

The surfaces S̃0 and S̃1 are two half helicoid. The union S̃0 ∪ S̃1 is a whole helicoid.
The intersection S̃0 ∩ S̃1 is the z axis which is the boundary ∂S̃0 = ∂S̃1. We denote
Int(S̃i) = S̃i \ ∂S̃i.

Notice that S̃0 and S̃1 are invariant by the transformation (x, y, z) 7→ (x, y, z + 1).
Hence they induce two surfaces S0 and S1 properly embedded in R

2 × S1.
Finally notice that the transformation (x, y, z) 7→ (x, y, z+ 1

2
) induces a diffeomorphism

from S̃0 to S̃1 and from S̃1 to S̃0
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4.1.3. The half helicoids are local Birkhoff sections of the model vector field. Notice that
the surfaces S0, S1 and the vector field Xmod are invariant for the natural action of the
maps hα : R

2 × S1 → R
2 × S1 defined as (x, y, z) 7→ (αx, αy, z), for every α > 0.

Lemma 4.1. For i ∈ {0, 1}, the surface Int(Si) is transverse to the vector field Xmod.
Furthermore, let γ be any orbit segment with length ℓ(γ) ≥ 5

4
then γ meets Si, that is

γ ∩ Si 6= ∅.
Finally any orbit segment σ of Xmod with length ℓ(σ) ≤ 3

4
meets Si in at most 1 point.

Proof : As the surfaces S0, S1 and the vector field Xmod are invariant for the natural
action of the maps hα : R

2 × S1 → R
2 × S1 defined as (x, y, z) 7→ (αx, αy, z), for every

α > 0, it is enough to show the transversality at any point (x, y, z) with x2 + y2 = 1.
At this point the horizontal component of Xmod(x, y, z) is log2 and it is strictly less than
the vertical component of Xmod(x, y, z) that is 1. The tangent space at such a point
is generated by the radial vector field ∂/∂r and ∂/∂z + ∂/∂θ. As a consequence, the
horizontal component of any vector tangent to Si at such a point is larger than the
vertical component: this proves the transversality.

Consider now the intersection S̃0∩{y ≤ 0}. Notice that the half space y ≤ 0 is invariant
by the flow of X̃mod. The connected components of S̃0 ∩ {y ≤ 0} are half planes which
disconnect this half space. Each of these components is included in {(x, y, z) ∈ R

3| y ≤
0, z ∈ [i − 1

2
, i]} for i ∈ Z. Hence every segment in the half space y ≤ 0 whose starting

point has its z-coordinates less that i − 1
2

and its end point has its z-coordinates larger

than i cuts S̃0. Since any orbit segments of length larger than 5
4

verifies that the difference

between the z coordinates of its end points are greater than 5
4

it follows that any X̃mod

orbit segment contained in the half space y ≤ 0 verifying that its length is larger than 5
4

cuts S̃0.
As each connected component of S̃0 ∩{y ≤ 0} disconnects the half space, the transver-

sality implies that every orbit of X̃mod in y ≤ 0 (and different from x = y = 0) cuts every
of this connected component in exactly one point. As each component of S̃0 ∩ {y ≤ 0} is
included in a region z ∈ [i − 1

2
, i] for i ∈ Z, a segment σ of orbit of length ℓ(σ) ≤ 3

4
can

intersect at most one of these components. As a consequence, σ ∩ S̃0 contains at most
one point.

Analogous arguments hold for S̃0 in the half space y ≥ 0, and for S̃1 in these two half
spaces.

2

4.1.4. Lower bound for the orbit time from S0 to S1.

Lemma 4.2. There is δ0 > 0 such that every segment σ of orbit of Xmod, disjoint from
the z axis x = y = 0, and such that

σ ∩ S0 6= ∅ and σ ∩ S1 6= ∅ ⇒ ℓ(σ) > δ0

Proof : Using the invariance of S0, S1 and Xmod under the action of the maps hα,
α > 0, one can see that it is enough to prove the lemma assuming that σ starts at a point
(x, y, z) of S0 (or S1) with x2 + y2 = 1.
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Now the lemma follows from the fact that S0 ∩ {x2 + y2 = 1} is a closed curve disjoint
from the closed subset S1 ⊂ R

2 × S1
2

4.1.5. Model for local Birkhoff section with an arbitrary linking number. By construction,
the linking number of the local Birkhoff sections S0 and S1 at the periodic orbit of Xmod

is equal to 1. One gets models for Birkhoff section with arbitrary linking numbers by
considering a finite covering of our model.

For every n > 0, we consider the n-folds covering R
2 ×R/nZ → R

2 ×R/Z. We denote
by Xmod,n the vector field on R

2 × R/nZ define by

Xmod,n(x, y, z) = (log 2)x
∂

∂x
− (log 2)y

∂

∂y
+

∂

∂z

In other words, Xmod,n is the lift of Xmod to R/nZ.
We denote by γmod,n the periodic orbit of Xmod,n.
We denote by S0,n and S1,n the lifts to R

2 × R/nZ of S0 and S1 (or equivalently Si,n

are the quotient of S̃i on R
3 by the map (x, y, z) 7→ (x, y, z + n)). One easily verifies

Lemma 4.3. The surfaces S0,n and S1,n are Birkoff sections of Xmod,n at γmod,n whose
linking number is

n(γmod,n, S0,n) = n(γmod,n, S1,n) = n.

We have now a model vector field and a model Birkhoff section corresponding to any
positive linking number n. For getting Birkhoff section with linking number equal to −n
it is enough to consider the vector field Xmod,n and the image of S0,n by the symmetry
(x, y, z) 7→ (x,−y, z).
4.2. Normal forms of local Birkhoff section. In this section, D

2 denotes the unit
disk of R

2. The solid torus D
2 × R/nZ is endowed with the coordinates (x, y, z).

Definition 4.1. We say that an Anosov flow X on a 3 manifold and a Birkhoff section
B of X are in normal form if , for every boundary component γ of ∂B there is an integer
n > 0, a neighborhood Oγ of γ, and a diffeomorphism Γγ : Oγ → D

2 × R/nZ such that :

• the vector field Γγ
∗(X) is the restriction of Xmod,n to D

2 × R/nZ.
• the image by the map Γγ of the intersection B ∩Oγ is the half helicoid S0,n ∩D

2 ×
R/nZ.

Notice that in the definition above, the image Γγ(γ) is the circle γmod,n = {x = y = 0}.
Proposition 4.1 asserts that that every pair (X,B) where X is an Anosov vector field

and B is a Birkhoff section of X, can be put in a normal form.

Proposition 4.1. Given any pair (X,B), where X is a transitive Anosov flow on a closed
3-manifold with oriented foliations and B is a Birkhoff section of X, there is an Anosov

vector field Y endowed with a Birkhoff section B̃ such that:

• Y is topologically equivalent to X by a homeomorphism h : M →M (which maps
the oriented orbits of X to the oriented orbits of Y ),

• the Birkhoff section B̃ is Y -equivalent to the topological Birkhoff section h(B). In

particular ∂B̃ = h(∂B).
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• (Y, B̃) are in normal form.

Proof : For any component γi of ∂B we consider the strictly positive integer ni =
|n(γi, B)|, modulus of the linking number of B at γi. Then by an isotopy of X preserving
the hyperbolicity, we can get an Anosov vector field Y topologically equivalent to X and
such that, for any component γi of ∂B the vector field Y coincides with Xmod,ni

in a
tubular neighborhood Oγi

of h(γi) where h is a homeomorphism realizing the equivalence

between X and Y . Then by Lemma 3.8 and Corollary 3.3, there is a Birkhoff section B̃0

of Y which is Y -equivalent to h(B).

If n(γi, B) > 0 using Lemma 3.7 applied to B̃0 and the local section S0,ni
with ni =

n(γi, B) we conclude that there is a Birkhoff section B̃i Y equivalent to B̃0 and coinciding

with B̃0 out of a small neighborhood of γi and coinciding with S0,ni
in a small neighborhood

Vi of γi. Up to shrinking Vi we may assume that Vi is of the form {(x, y, z) ∈ D
2 ×

S1
ni
,
√
x2 + y2 ≤ ri} for some ri > 0. The change of coordinates (x, y, z) 7→ ( x

ri
, y

ri
, z)

preserves the expression of the vector field Xmod,ni
and the equation of the local Birkhoff

section S0,ni
: hence the new Birkhoff section is in normal form at γi. We may apply

inductively this argument to all the boundary components with positive linking number.
Let now explain how to deal with components with negative linking number:

The change of coordinates (x, y, z) 7→ (−x, y, z) preserves the vector field Xmod,n but
change the section ( the new section is symmetric with respect to x = 0 ) so it changes
the signal of the linking number of a local Birkhoff section at the circle S1

ni
. Hence, up

to considering this (orientation reversing) change of coordinates, we may also put the
Birkhoff section in normal form at the component with negative linking numbers. 2

Remark 4. We have seen in Section 4.1 that if p /∈ γ then every segment of orbit
Xmod(p, [0, t]) contained in D

2 × S1 cuts the local Birkhoff section in at most 1 point if
t ≤ 3

4
and in at least 1 point if t ≥ 5

4
. Therefore, if p /∈ γ then every segment of orbit

Xmod,n(p, [0, t]) contained in D
2 × R/nZ cuts the local Birkhoff section in at most 1 point

if t ≤ 3
4

and in at least 1 point if t ≥ 5
4
.

As a consequence of the remark 4 and Proposition 4.1 one proves:

Corollary 4.1. Given any pair (X,B), where X is a transitive Anosov flow on a closed
3-manifold, with oriented foliations and B is a Birkhoff section of X, there is an Anosov

vector field Y endowed with a Birkhoff section B̃ such that:

• Y is topologically equivalent to X by a homeomorphism h : M →M (which maps
the oriented orbits of X on the oriented orbits of Y ),

• the Birkhoff section B̃ is Y -equivalent to the topological Birkhoff section h(B). In

particular ∂B̃ = h(∂B).

• (Y, B̃) are in normal form.

• the return times r(p) of a point p ∈ B̃ \ γ to B̃ belongs to (3
4
, 5

4
)

Proof : The proof just consists in a time reparametrization of the orbit of the vector
field Y given by Proposition 4.1, by multiplying Y by a smooth function which is equal

to 1 in a small neighborhood of the boundary components γi of ∂B̃.
2
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4.3. Pair of parallel Birkhoff sections in normal position. We say that two Birkhoff
sections B0 and B1 of the same Anosov flow X are parallel if B0∩B1 = ∂B0 = ∂B1. Notice
that parallel Birkhoff sections are X-isotopic. Furthermore, for every p ∈ B0 \ ∂B0, the
X-orbit segment joining p to the first return of the orbit of p on B0 meets B1 in exactly
one point.

Definition 4.2. Let us denote by X an Anosov flow and by (B0, B1) a pair of parallel
Birhoff sections. We say that the triple (X,B0, B1) is in normal form if for every boundary
component γ of ∂B0 = ∂B1 there is an integer n > 0, a neighborhood Oγ of γ, and a
diffeomorphism Γγ : Oγ → D

2 × R/nZ such that :

• the vector field Γγ
∗(X) is the vector field Xmod,n

• the image Γγ(B0 ∩Oγ) is the helicoid S0,n ∩ D
2 × R/nZ.

• the image Γγ(B1 ∩Oγ) is the helicoid S1,n ∩ D
2 × R/nZ.

• the return times ri(p) of a point p ∈ (Bi \ ∂Bi) to Bi \ ∂Bi belongs to (3
4
, 5

4
), for

i ∈ {0, 1};
• the return time r(p) of a point p ∈ (B0 ∪ B1) \ ∂B0 to B0 ∪ B1 \ ∂B0 belongs to

(1
4
, 3

4
).

This definition means that both sections B0 and B1 are in normal form, and furthermore
the local normalizing coordinates at γ ∈ ∂B0 = ∂B1 for B0 and for B1 differ by the
translation map (x, y, z) 7→ (x, y, z + 1

2
).

The aim of Section 4 is to show

Corollary 4.2. Given any pair (X,B), where X is a transitive Anosov flow on a closed
3-manifold and with oriented foliations and B is a Birkhoff section of X, there is an

Anosov vector field Y endowed with two parallel Birkhoff sections B̃0 and B̃1 such that:

• Y is topologically equivalent to X by a homeomorphism h : M →M (which maps
the oriented orbits of X on the oriented orbits of Y ),

• the Birkhoff sections B̃i are Y -equivalent to the topological Birkhoff section h(B).

In particular ∂B̃0 = ∂B̃1 = h(∂B).

• (Y, B̃0, B̃1) is in normal form.

Sketch the proof : we consider Y, B̃0 in normal form, given by Corollary 4.1 such

that the return time belongs to (3
4
, 5

4
). We denote Σ1 = Y (B̃0,

1
2
). Then Σ1 is a Birkhoff

section parallel to B̃0. The Birkhoff section B̃1 is obtained from Σ1 by pushing Σ1 on
S1,n along the orbits of Y , in the neighborhood of any boundary component γ. For every

p far from ∂(B̃0) = ∂(B̃1) we have that t(p) = 1/2. A smooth time rescalling out of a

small neighborhood of the boundary and not so far of ∂(B̃0) = ∂(B̃1) allows us to get the
return time conditions. 2

5. Reduction of the proof to a construction of a local model

The aim of Section 5 is to give a proof of Theorem 1, assuming the existence of a local
model of diffeomorphism associated to local Birkhoff sections and a local model of vector
field (Xmod, S0, S1) built in Section 4.
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Corollary 4.2 allows us to start with an Anosov vector field X and two Birkhoff sections
B0 and B1 such that the triple (X,B0, B1) is in normal form. We will associate to
(X,B0, B1) an Axiom A diffeomorphism f ∈ Ẽ(X) whose non-wandering set consists in
only one hyperbolic attractor and one hyperbolic repeller. The construction of f will
be done in different regions of the manifold. In each of these regions we will consider
transverse sections to the vector field, cutting the orbits in compact segments. We consider
the orbits segments with their natural parametrization by the flow, so that we get a
continuous family of segments of R. The diffeomorphism f will be defined segment by
segment, using a smooth family of diffeomorphisms from a segment [0, r] to a segment
[0, s], depending on r, s.

5.1. Building the diffeomorphism, far from the boundary of the Birkhoff sec-

tion. In this section we will build f out of a small neighborhood of the periodic orbits
in ∂B0. In this region, Bi \ ∂Bi are complete sections cutting the orbits in segments, and
we will define f on these segments.

5.1.1. Cutting the orbits in segments. We fix λ > 1 C > 0, such that for any p ∈ M any
unit vectors u ∈ Ess(p), v ∈ Euu(p) and any t > 0 one has:

‖DXt(u)‖ ≤ 1

C
λ−t and ‖DXt(v)‖ ≥ Cλt.

We denote by PB0 : B0 \ ∂B0 → B0 \ ∂B0, PB1 : B1 \ ∂B1 → B1 \ ∂B1 and PB0∪B1 : B0 ∪
B1\∂B0 → B0∪B1\∂B0 the first return maps of X to the interior of the Birkhoff sections
B0, B1 and on the union of these interior, respectively.

Every point p ∈M \ (B0 ∪B1) belongs to exactly one orbit segment of X with extreme
points q and P

B0∪B1
(q); we denote this orbit segment by [q, P

B0∪B1
(q)]c.

Since (X,B0, B1) is in normal form, the return time ri(p) of a point p ∈ Bi \ ∂Bi

to Bi \ ∂Bi belongs to (3
4
, 5

4
), for i ∈ {0, 1}, and the return time r(p) of a point p ∈

(B0 ∪B1) \ ∂B0 to B0 ∪B1 \ ∂B0 belongs to (1
4
, 3

4
).

Let α ∈ (1, λ
1

100 ]. All our construction will depend on a number δ > 0 whose value
will be fixed at the end. During the construction, our notations will often omit this
dependence on α and δ .

5.1.2. A smooth family of diffeomorphisms Θr,s : [0, r] → [0, s]. The proof of the following
lemma is left to the reader.

Lemma 5.1. For any δ > 0, there exists a smooth family of diffeomorphism Θr,s : [0, r] →
[0, s], where the parameters r, s belong to [3δ,+∞) with the following properties:

(1) Θr,s(t) = α−1t for t ∈ [0, δ]
(2) Θr,s(t) = s− α(r − t) for t ∈ [r − α−1δ, r]
(3) Θr,s(t) ∈ [α−1δ, δ] for every t ∈ [δ, r − δ]

(See Figure 1)
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0 rr − α−1δr − δ

s

s− δ

α−1δ

δ

δ

α

α−1

Figure 1. The map Θr,s.

5.1.3. A diffeomorphism fext defined on M \ ∂B0. We denote by Uext and Vext the union
of the orbit segments of X with length 2δ centered at the points of B0 \∂B0 and B1 \∂B1,
respectively:

Uext = {p ∈M \ ∂B0|∃t ∈ [−δ, δ], X(p, t) ∈ B0} and
Vext = {p ∈M \ ∂B1|∃t ∈ [−δ, δ], X(p, t) ∈ B1}.

The sets Uext and Vext are disjoint for 0 < δ < 1
8
.

Definition 5.1. We denote by fext : M \ ∂B0 →M \ ∂B0 defined as follows:

• If p ∈ Bi \ ∂Bi then fext(p) = PBi
(p).

• Assume now that p belongs to an orbit segment [q, P
B0∪B1

(q)]c with q ∈ B0. Hence
p = X(q, s) with s ∈ [0, r(q)]. Then

fext(p) = X(PB0(q),Θr(q),r(PB0
(q))(s))
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• Finally, assume that p belongs to an orbit segment [q, P
B0∪B1

(q)]c with q ∈ B1. We
denote q̃ = P

B0∪B1
(q) ∈ B0. Hence p = X(q̃,−s) with s ∈ [0, r(q)]. Then

fext(p) = X(PB0(q̃),−Θr(q),r(PB1
(q))(s))

Lemma 5.2. The map fext defined above is a diffeomorphism of M \ ∂B0. Further-
more, Uext and Vext are attracting and repelling regions of fext, respectively: fext(Uext)
and f−1

ext(Vext) are contained in the interior of Uext and Vext respectively. Furthermore, for
any p ∈M \ (Uext ∪ Vext) one has: fext(p) ∈ Uext and f−1

ext(p) ∈ Vext.

Proof : One first verifies that fext is well defined. The unique difficulty is at the points
in B1. For that we use that for q ∈ B0 one has:

X(PB0(q),Θr(q),r(PB0
(q))(r(q))) = X(PB0(q), r(PB0(q)))

= PB0∪B1(PB0(q))
= PB1(PB0∪B1(q)).

That shows that the expression of fext given by the second item sends p = PB0∪B1(q)
on PB1(p) and hence coincides on B1 with the expression given by the first item. An
analogous argument shows that the expression given by the third item also coincides with
this expression.

Now one verifies that for p ∈ B0 the map fext sends the orbit segment of length 2δ
centered at p to the orbit segment of length 2α−1δ centered at PB0(p), and the expression
of fext in the time parametrization is the homothety of ration α−1. This show that fext

induces a diffeomorphism from Uext to its image, which is contained in the interior of Uext.
In the same way for p ∈ B1 the map f sends the orbit segment of length 2α−1δ centered

at p on the orbit segment of length 2δ centered at PB1(p), and the expression of fext in
the time parametrization is the homothety of ration α. This show that f−1 induces a
diffeomorphism from Vext to its image, which is contained in the interior of Vext.

So, we have proven the differentiability of fext in a neighborhood of B0 and B1. In the
complement this property is a consequence of differentiability of PB0 , PB1 ,Θ and the flow
X. Finally, if p ∈M \ (Uext ∪ Vext) belongs to a segment [q, PB0∪B1(q)]

c with q ∈ B0 then
p = X(q, s) with s ∈ [δ, r(q) − δ]. Then item 3 of the definition of the map Θ implies
that Θr(q),r(PB0

(q))(s) ∈ [0, δ] implying that fext(p) ∈ Uext. An analogous argument holds
if p ∈ M \ (Uext ∪ Vext) belongs to a segment [q, PB0∪B1(q)]

c with q ∈ B1, proving that
fext(p) ∈ Uext also in this case.

2

For every p ∈M there is q ∈ B0∪B1 such that p belongs to the segment [q, PB0∪B1(q)]
c.

Then fext(p) belongs to either the orbit segment joining PB0(q) to PB1(PB0∪B1(q)) (if
q ∈ B0) or the orbit segment joining PB1(q) to PB0(PB0∪B1(q)) if q ∈ B1. As the triple
(X,B0, B1) is in normal form, the length of [q, PB0∪B1(q)]

c belongs to [1
4
, 3

4
] and the length

of [PB0∪B1(q), PBi
(PB0∪B1(q))]

c belongs to [3
4
, 5

4
]. One deduces that:

Remark 5. For every p ∈M there is t ∈ [1
4
, 2] such that fext(p) = X(p, t).

Finally notice that the definitions of Θr,s, Uext, Vext and fext depend on the choice of α
and δ. For simplifying notation we omitted the dependence on α and δ.
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5.2. The model diffeomorphism. Our main technical lemma is the construction of a
diffeomorphism fmod defined in the neighborhood of the periodic orbit of the vector field X
on R

2×S1. This diffeomorphism will be used as a model for the announced diffeomorphism
f in the neighborhood of the boundary components of the Birkhoff section.

We will use the following definition.

Definition 5.2. Let f be a diffeomorphism leaving invariant each orbit of a vector field
X. The central derivative of f at the point (x, y, z) is Dcf = ‖Df(x,y,z)(X(x, y, z))‖.
Lemma 5.3. There is δ0 such that for every δ ∈ (0, δ0] there is a diffeomorphism fmod of
R

2 × S1, and two closed subset Umod Vmod ⊂ R
2 × S1 with the following properties

(1) for every point (x, y, z) there is t ∈ [1
5
, 3] such that fmod((x, y, z)) = Xt(x, y, z);

(2) Umod is strictly invariant by fmod : fmod(Umod) ⊂ Int(Umod); Vmod is strictly in-
variant by f−1

mod : f−1
mod(Vmod) ⊂ Int(Vmod);

(3) Umod ∩ {(x, y, z),
√
x2 + y2 ≥ 2} and Vmod ∩ {(x, y, z),

√
x2 + y2 ≥ 2} coincide

with the orbit segment of X of length 2δ centered at the half helicoid S0 and S1,
respectively;

(4) the restriction of fmod to the periodic orbit (0, 0)×S1 is a Morse-Smale diffeomor-
phism of the circle having exactly four fixed points, two of them are in Umod and
two in Vmod;

(5) Let p = (x, y, z) ∈ S0 be a point such that
√
x2 + y2 ≥ 100. Let Ip be the orbit

segment of X joining (x, y, z) to its first return PS0(x, y, z) on S0. Then fmodIp =
IPS0

(p). Furthermore the expression of fmod in restriction to the segment Ip is
the same as the expression of fext. More precisely the segment contains a unique
point q ∈ S1. Let r, s, r′, s′ > 0 such that q = Xr(p), PS0(p) = Xs(q) PS1(q) =
Xr′(PS0(p)) and P 2

S0
(p) = Xs′(PS1(q)). Then

• for t ∈ [0, r] fmod(Xt(p) = Xt′(PS0(p)) with t′ = Θr,r′(t)
• for t ∈ [0, s] fmod(X−t(PS0(p)) = X−t′(P

2
S0

(p)) with t′ = Θs,s′(t)

(6) the central derivatives Dcfmod and Dcf−1
mod are less than or equal to α−1 in Umod

and Vmod respectively;
(7) the central derivatives Dcfmod and Dcf−1

mod are precisely α−1 in

Umod ∩ {(x, y, z),
√
x2 + y2 ≥ 3} and in Vmod ∩ {(x, y, z),

√
x2 + y2 ≥ 3} re-

spectively. More precisely, every orbit segment I of length 2δ, centered at a point
(x, y, z) ∈ S0 (resp. (x, y, z) ∈ S1) such that

√
x2 + y2 ≥ 3, is mapped by fmod

(resp. by f−1
mod) in an affine way on the orbit segment of length α−1δ centered at

PS0(x, y, z) (resp. P−1
S1

(x, y, z)).
(8) For all α′ > α, there is N > 0 such that for any n ≥ N , for any point (x, y, z) ∈

Umod and (x′, y′, z′) ∈ Vmod and one has

Dcfn
mod(x, y, z) ∈ (α′−n, α−n]

Dcf−n
mod(x

′, y′, z′) ∈ (α′−n, α−n].

Definition 5.3. For every n ∈ N\0 we denote by fmod,n the diffeomorphism of R
2×R/nZ

obtained as follows:
Let R

2 × R/nZ → R
2 × S1 be the canonical covering. Then fmod,n is the unique lift of

fmod which preserve each orbit of the vector field X.



28 CHRISTIAN BONATTI AND NANCY GUELMAN

5.3. gluing the local models with fext. Let (X,B0, B1) be a transitive Anosov vector
field endowed with a pair of parallel Birkhoff sections in normal form (and verifying the
condition on the time return given by Corollary 4.2).

For every periodic orbit in ∂B0 we fix normalizing coordinates Γ: O0,γ → D
2 × R/nZ

(where n is the absolute value of the linking number of γ). We denote Oγ = Γ−1(D 1
8
×

R/nZ), where D 1
8
⊂ D

2 is the disk of radius 1
8

centered at 0.

For every periodic orbit γ ⊂ ∂B0 and every r > 1 we denote by fr,γ : Oγ → O0,γ the
diffeomorphism Γ−1 ◦ h−1

r ◦ fmod,n ◦ hr ◦ Γ where hr : (x, y, z) 7→ (rx, ry, z).

Remark 6. The map fr,γ is well defined because, if (x, y, z) ∈ R
2 × R/nZ satisfies√

x2 + y2 ≤ 1
8

then h−1
r ◦ fmod,n ◦ hr(x, y, z) belongs to D

2 × R/nZ.

Proof : Just notice that the expansion of the flow Xmod on the x, y-coordinates at
time t is bounded by 2t. 2

For every point p ∈ B0 we denote by Ip the orbit segment of X joining p to its first
return PB0(p) on B0. By construction, fext(Ip) = IPB0

(p), for every p.

Remark 7. Consider p ∈ B0 ∩O0,γ and (x, y, z) = Γ(p). Since every point in Ip is of the
form Xt(p) with 0 ≤ t ≤ 5

4
< 2, then :

(1) if
√
x2 + y2 ≤ 1

8
(that is p ∈ Oγ) then Ip ⊂ O0,γ;

(2) if
√
x2 + y2 ≤ 1

32
then Ip ⊂ Oγ :

(3) as a consequence , if
√
x2 + y2 ≤ 1

32
then Ip ⊂ Oγ and IPB0

(p) ⊂ O0,γ

Lemma 5.4. There is r0 > 1 such that for every r ≥ r0, for every p ∈ B0 ∩ O0,γ and

(x, y, z) = Γ(p) such that
√
x2 + y2 ∈ [ 1

1000
1
32

] one has: fr,γ(Ip) = fext(Ip) = IPB0
(p) and

the restriction of fr,γ and fext to this segment are equal.

Proof : Just take r0 such that r0
1

1000
≫ 100 and see definitions of fr,γ and fext. 2

Let O2(γ) be the union of the orbit segments Ip for p ∈ B0 such that
√
x2 + y2 ≤ 1

16
,

where (x, y, z) = Γγ(p).

Corollary 5.1. For r > r0 there is a diffeomorphism fr : M → M which coincides with
fext out of the union of the O2(γ) for all connected component γ of ∂B0 and it coincides
with fr,γ for x ∈ O2(γ).

Theorem 1 is a direct consequence of next proposition

Proposition 5.1. There is r1 ≥ r0 such that for every r ≥ r1 the diffeomorphism fr

satisfies the following properties:

(1) fr is of the form p 7→ Xt(p)(p) where t(p) is a smooth function with values in
[1/5, 3].

(2) fr satisfies the Axiom A and the strong transversality condition
(3) fr is partially hyperbolic (its central bundle is directed by X)
(4) fr has exactly two basic pieces: one of them is a (connected) attractor and the

other is a repeller.

Proof :



AXIOM A DIFFEOMORPHISMS WHICH ARE DERIVED FROM ANOSOV FLOWS. 29

(1) For every r ≥ r0, the diffeomorphism fr is of the form p 7→ Xt(p) with t ∈ [1
5
, 3]: if

p /∈ ⋃γ O2(γ) then fr(p) = fext which is in that form by construction; if p ∈ O2(γ)

then fr(p) = fr,γ(p). Notice that fr,γ is conjugated to fmod,n by hr ◦ Γγ, which
maps the Anosov vector field X in M to the linear vector field Xmod in R

2×R/nZ.
Now the claim comes from the fact that fmod,n(hr(Γγ(p)) = Xmodt(hr(Γγ(p)) for
some t ∈ [1

5
, 3]. This concludes the proof of item 1).

(2) Let denote by Ur and Vr the subsets of M define as

Ur =
⋃

γ

(
(hrΓγ)

−1(Umod ∩ {(x, y, z),
√
x2 + y2 ≤ r

8
})
)
∪
(
Uext \

⋃

γ

Int(Oγ)

)

Vr =
⋃

γ

(
(hrΓγ)

−1(Vmod ∩ {(x, y, z),
√
x2 + y2 ≤ r

8
})
)
∪
(
Vext \

⋃

γ

Int(Oγ)

)

Then Ur and Vr are disjoint compact sets. Moreover, fr(Ur) ⊂ Int(Ur) (we
see that independently in the parts where fr coincide with fext or with fr,γ using

the fact that Uext and (hrΓγ)
−1
(
Umod ∩ {(x, y, z),

√
x2 + y2 ≤ r

8
}
)

coincides on

O0,γ \ Γ−1
γ ({

√
x2 + y2 ≤ 2

r
}).

In the same way f−1
r (Vr) ⊂ Int(Vr).

We denote by Ar =
⋂

n∈Z
fn

r (Ur) and Rr =
⋂

n∈Z
fn

r (Vr) the maximal invariant
sets in Ur and Vr, respectively.

Claim 3. The chain recurrent set R(fr) is contained in Ar ∪Rr.

Proof : As fr(Ur) ⊂ Int(Ur), we get that there is η > 0 such that every
η-pseudo orbit (pi)i∈Z verifies that

pi ∈ Ur ⇒ pj ∈ Ur,∀j ≥ i.

In the same way,

pi ∈ Vr ⇒ pk ∈ Vr,∀k ≤ i.

One deduces that R(fr) ∩ (Ur ∪ Vr) ⊂ Ar ∪Rr (see [5]).
Recall that, by construction, every point p /∈ Uext ∪ Vext verifies fext(p) ∈ Uext.

One deduces that, for η > 0 small enough, every η-pseudo orbit meeting M \⋃γ Oγ

meet either Ur or Vr. One deduces that every point p ∈ R(fr) is either contained
in Ar ∪ Rr or there is a boundary component γ of ∂S0 such that the orbit of
p is contained in Oγ. However, the maximal invariant set of Oγ is γ. So, if
p ∈ R(f) \ (Ar ∪ Rr) then p belongs to some component γ. However, for every
point p ∈ γ the ω-limit set of p is a periodic point of the restriction of fr to γ,
and this periodic point belongs, by construction, to Ur ∩Vr, contradicting the fact
that p /∈ Ar ∪Rr. 2

Claim 4. The invariant compact sets Ar and Rr are hyperbolic. Furthermore, the
stable spaces of the points of Ar (resp Rr) have dimension 2 (resp. dimension 1).
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Proof : This is a simple consequence of the fact that fr is of the form p 7→ Xt(p)
with t ≥ 1

5
, and of the fact that the central derivative Df c

r is less or equal to α−1

on Ur. Hence every vector in the center-stable direction of the vector field X at
a point p ∈ Ur is (uniformly) contracted by Dfn

r for large n > 0. Analogously,
every vector in the center-unstable direction of X at a point q ∈ V r is uniformly
contracted by Df−n

r for large n > 0. 2

So we proved that the chain recurrent set R(fr) is hyperbolic: according to [13]
this implies that fr satisfies the Axiom A and has no cycles. Furthermore, if K
and L are two hyperbolic sets of fr such that W u(K) ∩W s(L) 6= ∅ then either
K and L are both contained in Ur or both in Vr or K ⊂ Vr and L ⊂ Ur. As a
consequence one gets that dimW u(K) + dimW s(L) ≥ 3 = dimM . As we noticed
in section 2.3 this implies that fr satisfies the strong transversality condition. This
ends the proof of item 2

(3) For all x ∈ M , there exist n0, n1 positive numbers such that fn0
r (x) ∈ Ur and

f−n1
r (x) ∈ Vr. Let us fix α < α′ < λ

1
50 . According to item (8) of Lemma 5.3, there

is N > 0 such that, in Ur and f−1
r (Vr), the central derivative of fn, for n ≥ N and

its inverse are bounded by α′n < λ
n
50 .

On the other hand, fr is on the form p 7→ Xt(p) with t ≥ 1
5

so that ‖Dfn
r ‖

contract the vectors on Es by a factor smaller that C−1λ−
n
5 and expands the

vectors in Eu by a factor larger that Cλ
n
5 . This proves that the contraction of

‖Dfn
r ‖ (resp. ‖Df−n

r ‖) restricted to Ess (resp. to Euu) is uniformly stronger than
the contraction in the direction of the flow, that is, fr is partially hyperbolic and
RX is the central bundle.

(4) The fact that fr has exactly two basic pieces is a direct consequence of Lemma 5.5
below with Ω(fr) ⊂ Ur ∪ Vr ending the proof.

2

Lemma 5.5. For r large enough, the maximal invariant sets in Ur and Vr are transitive.

A precise analysis of the dynamics of fr is the aim of Section 8, and this analysis will
provide a detailed proof of Lemma 5.5. However we can give a direct proof now.

Proof : All the diffeomorphisms fr are Axiom A diffeomorphisms and satisfy the strong
transversality condition. Hence they are all structurally stable. As fr is a continuous
family of structurally stable diffeomorphisms, there are all conjugated. Furthermore, the
conjugacy homeomorphisms preserves the central foliation (directed by X). Finally, every
periodic orbit in Ur, not contained in a boundary component of B0, meets Uext\

⋃
γ⊂∂B0

Oγ.

Fix some s, and let xs ∈ Uext\
⋃

γ Oγ be a periodic point. So xs belongs to an orbit segment

of length 2δ centered at a point x ∈ B0 (let us call x the projection of xs on B0). Let
xr be the continuation of xs for fr. A continuity argument proves that xr belongs to the
same orbit segment of length 2δ centered at a point x ∈ B0.

For proving the transitivity of the maximal invariant set in Ur we will show

Claim 5. Any two periodic points xs, ys ∈ Uext \
⋃

γ Oγ are homoclinically related.

Proof : It is enough to prove that xr and yr are homoclinically related for r large
enough.
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Recall that the first return map PB0 is a pseudo-Anosov diffeomorphisms. In particular
there is an hyperbolic basic set K of PB0 contained in B0 \ ∂B0 which contains the
projection x, y of xs, ys on B0.

For r large enough, fr coincides with fext hence with PB0 in the complement of an
arbitrarily small neighborhood of ∂B0 in B0, in particular on K. One deduces that, for
r large enough, K is a basic set of fr. As xr is a periodic point in the segment of size
2δ centered at x and using that fr is uniformly contracting in the orbits segment of size
2δ at the points of K, one deduces xr = x and yr = y. So xr and yr are homoclinically
related.

2

2

6. In the neighborhood of the boundary of a Birkhoff section

6.1. General presentation of our construction. In this section we start the construc-
tion of the model diffeomorphism fmod of R

2 ×S1 announced in Lemma 5.3. For that, we
consider R

2 × S1 endowed with the model vector field X = Xmod and the model Birkhoff
section S0 and S1.

We will divide R
2×S1 in regions having global sections which cut the orbits in compact

segments, in order to define the diffeomorphism segment by segment. The first regions
we consider are the quadrant associated to the periodic orbit. As the vector field is the
model vector field, the quadrants can be expressed in formula by:

C++ = {(x, y, z), x ≥ 0 and y ≥ 0}, C+− = {(x, y, z), x ≥ 0 and y ≤ 0},
C−+ = {(x, y, z), x ≤ 0 and y ≥ 0}, and C−− = {(x, y, z), x ≤ 0 and y ≤ 0}.
In order to glue the diffeomorphisms in a quadrant with fext, we will consider transverse

sections in each quadrant which coincide with S0 and S1 out of a neighborhood of the
periodic orbit (0, 0) × S1. We cannot use S0 and S1 because these two Birkhoff sections
are not disjoint. Section 6.2 will provide us these sections, called Σ0 and Σ1, obtained by
pushing S0 and S1 along the orbits, in different way depending on the quadrants. In each
quadrant C±±, the section Σ0 and Σ1 induce disjoint smooth surfaces whose boundaries
are contained in the boundary of the quadrants. Exactly as we have build fext, we will
build diffeomorphisms f±± of the quadrants, admitting a tubular neighborhood of Σ0 as
an attracting region, and a tubular neighborhood of Σ1 as a repelling region.

Far from the periodic orbit (0, 0) × S1 of X, all the f±± have the same expression
(analogous to those announced in Lemma 5.3). But this diffeomorphisms f±± do not
coincide neither on (0, 0)×S1 nor on their invariant manifolds, which are the intersections
of the quadrants.

For solving this difficulty, Section 6.7 defines a diffeomorphism f0 in the neighborhood
of the periodic orbit (once more, f0 is defined on orbit segments obtained by cutting the
orbits along local sections through the periodic orbit). A bump function will allow us to
glue f0 to the f±± obtaining new diffeomorphisms f±±

0 equal to f±± far from the periodic
orbit and equal to f0 in the neighborhood of the periodic orbit.

The most difficult part will consist in gluing the diffeomorphisms f±±
0 in the intersec-

tions of the quadrants. It will be done in Section 7.
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Let us start by introducing a bump function that we will use many times during this
construction.

We denote by ψ : [0,+∞) → [0, 1] a smooth map such that

• the derivative ψ′(x) is strictly negative for x ∈ (1
3
, 2

3
)

• ψ(t) = 1 for t ∈ [0, 1
3
]

• ψ(t) = 0 for t ≥ 2
3
.

6.2. Surgery on the helicoids S0 and S1 for getting disjoint sections of X.

The intersection S−
0 = S0 ∩ {y ≤ 0} is not only homeomorphic to a half plane but

diffeomorphic to [0, 1]× [0,+∞) as well: the intersection with the plane y = 0 is composed
of the half line x ≤ 0, y = 0, z = −1

2
the segment x = y = 0, z ∈ [−1

2
, 0] and the half line

x ≥ 0, y = z = 0.
Consider (x, y, z) ∈ S−

0 . The coordinates z belongs to R/Z; however, for a point in
S−

0 one has y = r sin 2πz < 0, with r > 0. Hence, one may choose a representative
z ∈ [−1

2
, 0]. Now, the map π−

0 defined by (x, y, z) 7→ π−
0 (x, y, z) = X−z− 1

4
(x, y, z) is

a projection of S−
0 on the half plane {y ≤ 0, z = −1

4
}, which is a diffeomorphism in

restriction to S−
0 \ {x = y = 0}.

We will push S−
0 along the orbit of X in the direction of the projection π−

0 , in order

to get a smooth surface which coincides with S−
0 for large radius, i.e. r =

√
x2 + y2, and

which coincides with the half plane y ≤ 0, z = −1
4

for small radius (see Figure 2).
For that we consider a barycenter between (x, y, z) ∈ S−

0 and π−
0 (x, y, z) in the segment

of orbit of X joining this two points, and whose coefficient is given by the function ψ
defined in Section 6.1.

We denote

Σ−
0 =

{
Xt(x, y, z), where (x, y, z) ∈ S0, y ≤ 0, z ∈ [−1

2
, 0], t = ψ(

√
x2 + y2) · (−z − 1

4
)

}

Notice that Σ−
0 is a smooth surface with boundary which coincides with S−

0 for
√
x2 + y2 ≥

2
3

and which coincides with the half plane {y ≤ 0, z = −1
4
} for

√
x2 + y2 ≤ 1

3
; more

precisely, the half disk {y ≤ 0, z = −1
4
,
√
x2 + y2 ≤ 1

3
} is contained in Σ−

0 .
In the same way we push S+

0 = S0 ∩ {y ≥ 0} along the orbit of X in the direction of
the half plane y ≥ 0, z = 1

4
. One defines:

Σ+
0 =

{
Xt(x, y, z), where (x, y, z) ∈ S0, y ≥ 0, z ∈ [0,

1

2
], t = ψ(

√
x2 + y2) · (−z +

1

4
)

}

One denote Σ0 = Σ−
0 ∪ Σ+

0 (see Figure 3). Notice that Σ−
0 ∩ Σ+

0 = {y = 0, z = −1
2

=
1
2
∈ S1, x ≤ −2

3
} ∪ {y = 0 = z, x ≥ 2

3
}. Hence Σ0 is a surface with boundary and corners,

whose boundary is contained in {y = 0, x ∈ [−2
3
, 2

3
]} and it is composed of the segment

in ∂Σ−
0 ⊂ {y = 0} joining the points (2/3, 0, 0) and (−2/3, 0,−1/2) and the segment in

∂Σ+
0 joining the points (2/3, 0, 0) and (−2/3, 0, 1/2) = (−2/3, 0,−1/2).



AXIOM A DIFFEOMORPHISMS WHICH ARE DERIVED FROM ANOSOV FLOWS. 33

-2/3 -1/3 1/3 2/3

2/31/3

1/3-1/3

-1/3

1/4

-2/3

S−
0

S−
0

Σ−
0

S−
0 ∩ {y ≥ 0}

S−
0 ∩ {y ≥ 0}

(x, 0,−1
2
)

(x, 0, 0)

Π−
0 (x, 0,−1

2
)

Π−
0 (x, 0, 0)

the disk z = 1
4

Figure 2. Pushing S−
0 in direction of the plane z = −1

4
.

In the same way, we define a surface Σ1 by pushing S−
1 = S1 ∩ {x ≤ 0} and S+

1 =
S1 ∩ {x ≥ 0} along the orbits of X in the direction of the planes {z = 0} and {z = 1/2}
respectively. More precisely:
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S0

Σ0

Figure 3. The section S0 and Σ0.

For (x, y, z) ∈ S−
1 we can choose z ∈ [−1

4
, 1

4
]. We define:

Σ−
1 =

{
Xt(x, y, z), where (x, y, z) ∈ S1, x ≤ 0, z ∈ [−1

4
,
1

4
], t = ψ(

√
x2 + y2) · (−z)

}

For (x, y, z) ∈ S+
1 we can choose z ∈ [1

4
, 3

4
]. We define:

Σ+
1 =

{
Xt(x, y, z), where (x, y, z) ∈ S1, x ≥ 0, z ∈ [

1

4
,
3

4
], t = ψ(

√
x2 + y2) · (−z +

1

2
)

}

One denote Σ1 = Σ−
1 ∪ Σ+

1 . Notice that Σ−
1 ∩ Σ+

1 = {x = 0, z = 1
4
∈ S1, y ≤ −2

3
} ∪ {x =

0, z = 3
4

= −1
4
, y ≥ 2

3
}. Hence Σ1 is a surface with boundary and corners, whose boundary

is contained in {x = 0, y ∈ [−2
3
, 2

3
]}. Furthermore ∂Σ1 is composed of the segment in

∂Σ+
1 ⊂ {x = 0} joining the points (0,−2/3, 1/4) and (0, 2/3, 3/4) and the segment in

∂Σ−
1 joining the points (0, 2/3,−1/4 = 3/4) and (0,−2/3, 1/4).

Lemma 6.1. The surfaces Σ0 and Σ1 are disjoint.

Figure 4 shows how the surfaces Σ0 and Σ1 fit together, and this may help the reader
to follow the proof below.

Proof : The proof consists in looking at the z-coordinates of the points in Σ0 and Σ1

according to the signs of the two other coordinates.
The Figures 5 and 6 may help the reader to follow the proof below.
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1/3

1/3

Σ1

Σ0

Σ0

Figure 4. Σ0 and Σ1 are disjoint.

(1) Notice that in the quadrant C++ = {x ≥ 0, y ≥ 0} it holds that
(a) (x, y, z) ∈ Σ+

0 implies that z ∈ [0, 1
4
]. Furthermore z = 0 ⇒ y = 0 and

x ≥ 2/3.
(b) (x, y, z) ∈ Σ−

0 implies that y = 0 and z ∈ [−1
4
, 0]. Furthermore z = 0 ⇒ x ≥

2/3.
(c) (x, y, z) ∈ Σ+

1 implies that z ∈ [1
2
, 3

4
]. Furthermore z = 3/4 = −1/4 ⇒ x = 0

and y ≥ 2/3.
(d) (x, y, z) ∈ Σ−

1 implies that x = 0 and z ∈ [−1
4
, 0]. Furthermore z = −1

4
⇒

y ≥ 2/3.
One gets directly that, in this quadrant, Σ+

0 ∩ Σ+
1 = ∅. Notice that Σ+

1 ∩ {x ≥
0, y = 0} ∩ {z ∈ [−1/4, 0]} = ∅ hence C++ ∩ Σ+

1 ∩ Σ−
0 = ∅.

Analogously, C++∩Σ+
0 ∩{x = 0}∩{z ∈ [−1

4
, 0]} = ∅ so that C++∩Σ+

0 ∩Σ−
1 = ∅.

In the case that x = 0 and y = 0 the point (0, 0, z) ∈ Σ−
0 if and only if z = −1/4

and (0, 0, z) ∈ Σ−
1 if and only if z = 0, then C++ ∩ Σ−

1 ∩Σ−
0 = ∅. We have proved

that C++ ∩ Σ1 ∩ Σ0 = ∅.
(2) Notice that in the quadrant C−+ = {x ≤ 0, y ≥ 0} it holds that
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0

-1/4

1/4

1/2 1/2

-1/2

-5/4

-1/2

-3/4

Quadrant C+−

Quadrant C++

x xy y

Σ−
0

Σ−
0

Σ+
0

Σ+
0

Σ+
1

Σ+
1

Σ+
1

Σ+
1

Figure 5. The surfaces Σ0 and Σ1 in the quadrants C++ and C+−.

(a) (x, y, z) ∈ Σ+
0 implies that z ∈ [1

4
, 1

2
]. Furthermore z = 1

2
⇒ y = 0 and

x ≤ −2/3.
(b) (x, y, z) ∈ Σ−

0 implies that y = 0 and z ∈ [−1
2
,−1

4
] = [1

2
, 3

4
]. Furthermore

z = 1
2
⇒ x ≤ −2/3.

(c) (x, y, z) ∈ Σ+
1 implies that x = 0 and z ∈ [1

2
, 3

4
]. Furthermore z = 3

4
= −1

4
⇒

y ≥ 2/3.
(d) (x, y, z) ∈ Σ−

1 implies that z ∈ [−1
4
, 0] = [3

4
, 1]. Furthermore z = 3/4 =

−1/4 ⇒ x = 0 and y ≥ 2/3.
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One gets directly that, in this quadrant, Σ+
0 ∩ Σ−

1 = ∅. Notice that Σ−
1 ∩ {x =

0, y = 0} ∩ {z ∈ [1/2, 3/4]} = ∅ hence C−+ ∩ Σ−
1 ∩ Σ−

0 = ∅.
Analogously, C−+∩Σ+

0 ∩{x = 0}∩{z ∈ [1
2
, 3

4
]} = ∅ so that C−+∩Σ+

0 ∩Σ+
1 = ∅.

In the case that x = 0 and y = 0 the point (0, 0, z) ∈ Σ−
0 if and only if z = −1/4

and (0, 0, z) ∈ Σ+
1 if and only if z = 1/2, then C−+ ∩ Σ+

1 ∩ Σ−
0 = ∅. We have

proved that C−+ ∩ Σ1 ∩ Σ0 = ∅.

-1/4

3/4

1

0

0

3/4

1/4

Quadrant C−−

Quadrant C−+

Σ−
0

Σ−
0

Σ+
0

Σ+
0

Σ−
1

Σ−
1

Σ−
1

Σ−
1

x

x

y

y

Figure 6. The surfaces Σ0 and Σ1 in the quadrants C−+ and C−−.
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(3) Notice that in the quadrant C−− = {x ≤ 0, y ≤ 0} it holds that
(a) (x, y, z) ∈ Σ−

0 implies that z ∈ [−1
2
,−1

4
] = [1

2
, 3

4
]. Furthermore z = 1

2
⇒ y = 0

and x ≤ −2/3.
(b) (x, y, z) ∈ Σ+

0 implies that y = 0 and z ∈ [1
4
, 1

2
]. Furthermore z = 1

2
⇒ x ≤

−2/3.
(c) (x, y, z) ∈ Σ+

1 implies that x = 0 and z ∈ [1
4
, 1

2
]. Furthermore z = 1

4
⇒ y ≤

−2/3.
(d) (x, y, z) ∈ Σ−

1 implies that z ∈ [0, 1
4
]. Furthermore z = 1/4 ⇒ x = 0 and

y ≤ −2/3.
One gets directly that, in this quadrant, Σ−

0 ∩ Σ−
1 = ∅. Notice that Σ−

1 ∩ {x ≤
0, y = 0} ∩ {z ∈ [1/4, 1/2]} = ∅ hence C−− ∩ Σ−

1 ∩ Σ+
0 = ∅.

Analogously, C−−∩Σ−
0 ∩{x = 0}∩{z ∈ [1

4
, 1

2
]} = ∅ so that C−−∩Σ−

0 ∩Σ+
1 = ∅.

In the case that x = 0 and y = 0 the point (0, 0, z) ∈ Σ+
0 if and only if z = 1/4 and

(0, 0, z) ∈ Σ+
1 if and only if z = 1/2, then C−− ∩ Σ+

1 ∩ Σ+
0 = ∅. We have proved

that C−− ∩ Σ1 ∩ Σ0 = ∅.
(4) This case is analogous to the previous cases.

2

6.3. First return maps.

Notice that Σ−
0 is a global section of the vector field X on the (X-invariant) half space

{y ≤ 0}. Hence the first return map P−
0 : Σ−

0 → Σ−
0 of the orbits of X on the section Σ−

0

is well defined and it is a diffeomorphism of Σ−
0 .

Lemma 6.2. For every p ∈ Σ−
0 the orbit segment joining p to P−

0 (p) have its length larger
than 1/2.

Proof : That is just because Σ−
0 is contained in z ∈ [−1/2, 0]. 2

In the same way the first return maps P+
0 : Σ+

0 → Σ+
0 , P−

1 : Σ−
1 → Σ−

1 , and P+
1 : Σ+

1 →
Σ+

1 are well defined diffeomorphism.
We now consider how the first return maps P+

0 and P−
0 fit together.

Lemma 6.3. If p ∈ Σ+
0 ∩ Σ−

0 then P+
0 (p) = P−

0 (p). If q ∈ Σ+
1 ∩ Σ−

1 then (P+
1 )−1(q) =

(P−
1 )−1(q).

Proof : A point p = (x, y, z) belongs to Σ+
0 ∩ Σ−

0 if and only if:

• either y = 0, z = 0 and x ≥ 2/3; in this case P+
0 (p) = P−

0 (p) = (2x, 0, 0)
• or y = 0 z = 1/2 and x ≤ −2/3; in this case P+

0 (p) = P−
0 (p) = (2x, 0, 1/2).

2

The lemma allows us to define P0 : Σ0 → Σ0 as P0 = P+
0 on Σ+

0 and P0 = P−
0 on Σ−

0 ,
and (P1)

−1 : Σ1 → Σ1 as (P1)
−1 = (P+

1 )−1 on Σ+
1 and (P1)

−1 = (P−
1 )−1 on Σ−

1 .

6.4. In the quadrants.

Recall that we denote by C++, C+−,C−+ and C−− the quadrants {x ≥ 0 and y ≥
0},{x ≥ 0 and y ≤ 0}, {x ≤ 0 and y ≥ 0}, and {x ≤ 0 and y ≤ 0}. Each of the
quadrants are X-invariant. As a direct consequence, the return maps defined above
preserve the quadrants.
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Notice that Σ+
0 and Σ+

1 are disjoint global sections of the vector field X restricted to
C++. Hence for any point p ∈ Σ+

0 ∩ C++ the orbit segment joining p to P+
0 (p) cuts Σ+

1

in a unique point P++
0,1 (p). The map P++

0,1 : Σ+
0 ∩ C++ → Σ+

1 ∩ C++ is a diffeomorphism.

One defines analogously the diffeomorphism P++
1,0 : Σ+

1 ∩C++ → Σ+
0 ∩C++. Furthermore

one has

P++
1,0 ◦ P++

0,1 = P+
0 and P++

0,1 ◦ P++
1,0 = P+

1

In the same way Σ+
0 and Σ−

1 are disjoint global sections of the vector field X restricted
to C−+. This allows us to define the diffeomorphisms P−+

0,1 : Σ+
0 ∩ C−+ → Σ−

1 ∩ C−+ and

P−+
1,0 : Σ−

1 ∩ C−+ → Σ+
0 ∩ C−+, and we have

P−+
1,0 ◦ P−+

0,1 = P+
0 and P−+

0,1 ◦ P−+
1,0 = P−

1

One defines in the same way the diffeomorphisms P+−
0,1 : Σ−

0 ∩ C+− → Σ+
1 ∩ C−+ and

P+−
1,0 : Σ+

1 ∩ C+− → Σ−
0 ∩ C+−, P−−

0,1 : Σ−
0 ∩ C−− → Σ−

1 ∩ C−− and P−−
1,0 : Σ−

1 ∩ C−− →
Σ−

0 ∩ C−−,
and we have

P+−
1,0 ◦ P+−

0,1 = P−
0 and P+−

0,1 ◦ P+−
1,0 = P+

1 on the quadrant C+−

P−−
1,0 ◦ P−−

0,1 = P−
0 and P−−

0,1 ◦ P−−
1,0 = P−

1 on the quadrant C−−

Let δ > 0 such that any segment of orbit of length 4δ meeting Σ0 is disjoint from Σ1.
For all δ > 0 small enough

• In the quadrant C++, we define U++ (resp. V ++ ) as being the set of points
p ∈ C++ such that there is t ∈ [−δ, δ] with Xt(p) ∈ Σ+

0 (resp. Xt(p) ∈ Σ+
1 ).

• In the quadrant C−+, we define U−+ (resp. V −+ ) as being the set of points
p ∈ C−+ such that there is t ∈ [−δ, δ] with Xt(p) ∈ Σ+

0 (resp. Xt(p) ∈ Σ−
1 ).

• In the quadrant C−−, we define U−− (resp. V −− ) as being the set of points
p ∈ C−− such that there is t ∈ [−δ, δ] with Xt(p) ∈ Σ−

0 (resp. Xt(p) ∈ Σ−
1 ).

• In the quadrant C+−, we define U+− (resp. V +− ) as being the set of points
p ∈ C+− such that there is t ∈ [−δ, δ] with Xt(p) ∈ Σ−

0 (resp. Xt(p) ∈ Σ+
1 ).

For simplifying notation, we omit the dependence on δ of the sets U++, V ++, U−+, etc.

6.5. A family of segment diffeomorphisms.

Lemma 6.4. There is a smooth function θ : [0, 1] × (0,+∞)2 → [0, 1] such that, for
any a, b > 0 the map θa,b : [0, 1] → [0, 1], defined as θa,b(x) = θ(x, a, b), is an increasing
diffeomorphism satisfying the following properties:

• θa,b(x) = ax for small x
• θa,b(x) = 1 − b(1 − x) for x close to 1
• θ1,1 is the identity map.

Given any oriented segments I, J and a, b > 0 we denote by θa,b,I,J : I → J the diffeo-
morphism obtained by the composition of Φ−1

J ◦ θ
a

ℓ(I)
ℓ(J)

,b
ℓ(I)
ℓ(J)

◦ΦI , where ΦI : I → [0, 1] and

ΦJ : J → [0, 1] are the unique affine increasing diffeomorphisms. Notice that θa,b,I,J : I →
J is a smooth orientation preserving diffeomorphism such that the derivative at the origin
of I is a and the derivative at the end point of I is b.
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6.6. diffeomorphisms in the quadrants. We fix α > 1 such that logα < 1
10

log 2.

Definition 6.1. Let I = [a, b], J = [c, d] be two segments of R of size strictly larger than
2δ. We denote by Ψ+

I,J : I → J the diffeomorphism defined as follows:

• for t ∈ [a, a+ δ
α
] one defines Ψ+

I,J(t) = c+ α(t− a).

• for t ∈ [b− δ, b] one defines Ψ+
I,J(t) = d− (α−1(b− t)).

• Let denote I ′ = [a+ δ
α
, b− δ], J ′ = [c+ δ, d− δ

α
]. For t ∈ I ′ one defines Ψ+

I,J(t) =
θα, 1

α
,I′,J ′(t).

We denote by Ψ−
I,J : I → J the diffeomorphism defined as follows:

• for t ∈ [a, a+ δ] one defines Ψ−
I,J(t) = c+ α−1(t− a).

• for t ∈ [b− δ
α
, b] one defines Ψ−

I,J(t) = d− (α(b− t)).

• Let denote I” = [a + δ, b − δ
α
], J” = [c + δ

α
, d − δ]. For t ∈ I” one defines

Ψ−
I,J(t) = θ 1

α
,α,I”,J”(t).

See Figure 7.

aa a+ α−1δ a+ δb+ δ b− α−1δ bb

Ψ+
I,J Ψ−

I,J

cc

d− α−1δ

d− δ

dd

c+ α−1δ

c+ δ

α

α α−1

α−1

Figure 7. The maps Ψ+
I,J and Ψ−

I,J , where I = [a, b] and J = [c, d].

Definition 6.2. We define a diffeomorphism f++ : C++ → C++ as follows:

• for p ∈ Σ+
0 ∩ C++ we state f++(p) = P+

0 (p)
• for q ∈ Σ+

1 ∩ C++ we state f++(p) = P+
1 (p)
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• consider p ∈ Σ+
0 ∩ C++ and let q = P++

0,1 (p). Let t0 > 0 such that q = Xt0(p),

and t1 > 0 such that Xt1(P
+
0 (p)) = P+

1 (q). One denote I = [0, t0] and J = [0, t1].
One defines f++ on the orbit segment [p, q]c by f++(Xt(p)) = Xs(P

+
0 (p)) with

s = Ψ−
I,J(t).

• consider p ∈ Σ+
1 ∩ C++ and let q = P++

1,0 (p). Let t0 > 0 such that q = Xt0(p),

and t1 > 0 such that Xt1(P
+
1 (p)) = P+

0 (q). One denote I = [0, t0] and J = [0, t1].
One defines f++ on the orbit segment [p, q]c by f++(Xt(p)) = Xs(P

+
1 (p)) with

s = Ψ+
I,J(t).

Lemma 6.5. The map f++ is well defined on C++ and it is a diffeomorphism of C++.
Furthermore f++(U++) is a subset of the interior of U++ ( U++ is seen as a subset of
C++) and (f++)−1(V ++) is a subset of the interior of V ++.

Proof : The unique difficulty is on Σ+
0 ∩C++ and Σ+

1 ∩C++. However, by construction
f++ sent the orbit segment of length 2δ centered at a point p ∈ Σ+

0 ∩ C++ on the orbit
segment for length 2α−1δ centered at P++

0 (p) as an homothety of ratio α−1. As P++
0

is a diffeomorphism we get that f++ is a diffeomorphism in a neighborhood in C++ of
Σ+

0 ∩ C++. An analogous arguments holds in a neighborhood of Σ+
1 ∩ C++. 2

One defines analogously diffeomorphisms f+−,f−+,and f−− on C+−, C−+ and C−−,
respectively, such that the subset (of the quadrants) U+−, U−+ and U−− are attracting
regions and V +−, V −+ and V −− are repelling regions.

Once again, we omit the dependence on δ of the definition of f++, f+−, f−+, and f−−.
Notice that the diffeomorphisms f++, f+−,f−+, and f−− do not coincide on the inter-

section of the quadrants. All our construction consists in gluing this diffeomorphisms.

6.7. In a neighborhood of the periodic orbit . The aim of this section is to define
a diffeomorphism of a neighborhood of the periodic orbit of X, and to glue it with the
diffeomorphisms we have defined in the quadrants.

Notice that Σ0 ∩ {x = y = 0} = {(0, 0, 1/4), (0, 0, 3/4 = −1/4)} and Σ1 ∩ {x = y =
0} = {(0, 0, 1/2), (0, 0, 0)}.

¿From now on, we asume that δ verifies that δ < 1
16

.
One defines a Morse-Smale diffeomorphism Ψ0 : S1 → S1 in the following way:

• the restriction of Ψ0 to the segment I0 = [0, 1
4
] is Ψ+

[I0,I0]. By definition it is a linear

expansion in [0, δ
α
] and it is a linear contraction in [1

4
− δ, 1

4
]. Furthermore, there

are no fixed points in (0, 1
4
).

• the restriction of Ψ0 to the segment I1 = [1
4
, 1

2
] is Ψ−

[I1,I1]. It is a linear contraction

in [1
4
, 1

4
+ δ] and it is a linear expansion in [1

2
− δ

α
, 1

2
]. Furthermore, there are no

fixed points in (1
4
, 1

2
).

• the restriction of Ψ0 to the segment I2 = [1
2
, 3

4
] is Ψ+

[I2,I2]. It is a linear expansion

in [1
2
, 1

2
+ δ

α
] and it is a linear contraction in [3

4
− δ, 3

4
]. Furthermore, there are no

fixed points in (1
2
, 3

4
).

• the restriction of Ψ0 to the segment I3 = [3
4
, 1 = 0] is Ψ−

[I3,I3]. It is a linear

contraction in [3
4
, 3

4
+ δ] and a linear expansion in [1 − δ

α
, 1]. Furthermore, there

are no fixed points in (3
4
, 1).
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The diffeomorphism Ψ0 has precisely 4 fixed points: two sinks (1
4

and 3
4
) and two sources

(0 and 1
2
). One denotes by f0 the diffeomorphism of R

2 × S1 defined as follows: for any
p = (x, y, z),

f0(p) = X1+Ψ0(z)−z(p) = (21+Ψ0(z)−zx, 2−(1+Ψ0(z)−z)y,Ψ0(z)).

The diffeomorphism f0 has precisely 4 fixed points: (0, 0, 0), (0, 0, 1
4
)(0, 0, 1

2
) and (0, 0, 3

4
)

which are saddle points. Notice that the closed {x = y = 0} is a normally hyperbolic
invariant curve for f0.

6.8. Gluing f0 with f++,f+−, f−+ and f−−. On the quadrant C++ the surface Σ+
0

contains the intersection of the horizontal disk {(x, y, z)|z = 1
4
,
√
x2 + y2 < 1

4
} with C++,

and Σ+
1 contains the intersection of the horizontal disk {(x, y, z)|z = 1

2
,
√
x2 + y2 < 1

4
}

with C++( See Figure 5). As a consequence one gets that f++ coincides with f0 in a
neighborhood, in C++, of the segment {(0, 0)} × [1

4
− δ, 1

2
+ δ

α
].

Definition 6.3. We define f++
0 : C++ → C++ as follows:

• if p ∈ Σ+
0 ∪ Σ+

1 , then f++
0 (p) = f++(p)

• if q belongs to a X-orbit segment [p, P++
0,1 (p)]c, where p ∈ Σ+

0 , then f++
0 (q) =

f++(q)
• if q belongs to a X-orbit segment [p, P++

1,0 (p)]c, where p = (x, y, z) ∈ Σ+
1 with√

x2 + y2 ≥ 1
100

then f++
0 (q) = f++(q).

• if q belongs to a X-orbit segment [p, P++
1,0 (p)]c, where p = (x, y, z) ∈ Σ+

1 with√
x2 + y2 ≤ 1

100
. Notice that p = (x, y, 1

2
) ∈ Σ+

1 and P+
1 (p) = (2x, 1

2
y, 1

2
). Let

p′ = P++
1,0 (p) ∈ Σ+

0 , it holds that p′ = (x′, y′, 1
4
) and P+

0 (p′) = (2x′, 1
2
y′, 1

4
).

One deduces that the image of the segment [p, p′]c by f0 and by f++ is the seg-
ment [P+

1 (p), P+
0 (p′)]c. This allows us to consider the barycentral diffeomorphism,

between f0 and f++:
– consider t0 > 0 such that f0(q) = Xt0(P

+
1 (p))

– consider t++ > 0 such that f++(q) = Xt++(P+
1 (p))

– let r denote
√
x2 + y2 (notice that r does not depend on q ∈ [p, p′]c)

– let t = ψ(100r)t0 + (1 − ψ(100r))t++

Then we define f++
0 (q) = Xt(P

+
1 (p)).

Lemma 6.6. The map f++
0 is well defined and it is a diffeomorphism of the quadrant C++

which coincides with f0 in the neighborhood of the circle {x = y = 0} and coincides with

f++ in
√
x2 + y2 ≥ 2

100
. Furthermore, f++

0 coincides with f++ on U++ (in particular,
U++ is an attracting region for f++

0 i.e. f++
0 (U++) is included in the interior of U++).

Finally f++
0 coincides with f++ on (f++)−1(V ++) so that V ++ is a repelling region.

Proof : As we know that each point x in C++ belongs to a unique segment of the
form [p, p′]c (in the case x ∈ Σ+

0 ∪ Σ+
1 then x = p) where p, p′ are in Σ+

0 ∪ Σ+
1 and

(p, p′)c ∩ (Σ+
0 ∪ Σ+

1 ) = ∅, so the map f++
0 is well defined. Let

M++ =
⋃

{p=(x,y,z)|z= 1
2
,
√

x2+y2< 1
100

}

[p, p′]c
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where p′ = P++
1,0 (p) ∈ Σ+

0 . Since f++
0 = f++ in C++\M++ it follows that the restric-

tion of f++
0 to C++\M++ is a diffeomorphism. Note that if q = (x′, y′, z′) verifies that√

x′2 + y′2 ≥ 2
100

then q ∈ C++\M++, therefore f++
0 (q) = f++(q).

The projection of M++ onto {(x, y, z)|z = 1
2
,
√
x2 + y2 < 1

100
} along the orbits of the

flow, the map (x, y, z) →
√
x2 + y2, the maps ψ f0, f

++ and P+
1 and the flow X are

differentiable, therefore the map f++
0 is a diffeomorphism restricted to M++. Besides, in

the case that r < 1
100

but close enough to 1
100

it holds that

t = ψ(100r)t0 + (1 − ψ(100r))t++ = t++,

hence f++
0 = f++.

We have seen that f++ coincides with f0 in a neighborhood of the segment {(0, 0)}×[1
4
−

δ, 1
2
+ δ

α
] in C++. Then in a neighborhood of {(0, 0)}×[1

4
−δ, 1

4
+δ] in C++ f++

0 = f++ = f0

is a contraction of factor α−1. It follows that in U++, f++
0 = f++ is a contraction of factor

α−1 and U++ is an attracting region of f++
0 .

Analogously, in a neighborhood of the segment {(0, 0)}× [1
2
− δ

α
, 1

2
+ δ

α
] in C++, f++

0 =
f++ = f0 is an expansion of factor α. Then V ++ is a repelling region for f++

0 .
2

One defines in an analogous way the diffeomorphisms f+−
0 , f−+

0 , and f−−
0 verifying that

they coincide with f0 in a neighborhood of the circle {x = y = 0}, they induce linear
contraction of ration 1

α
in the orbit segment crossing U+−,U−+ and U−−, respectively,

and they induce linear dilations of ration α in the orbit segment crossing (f+−
0 )−1(V +−),

(f−+
0 )−1(V −+), and (f−−

0 )−1(V −−) respectively.

7. On the sides of the quadrants

The diffeomorphisms f++
0 and f+−

0 are defined on C++ and C+− whose intersection is
the half plane {y = 0, x ≥ 0}. Notice that, in C++ ∩ C+−, these diffeomorphisms satisfy
the following properties:

• f++
0 (x, y, z) = f+−

0 (x, y, z) = f0(x, y, z) in the neighborhood of the circle {x = y =
0}. We fix a constant δ2 such that all the diffeomorphisms f±±

0 coincide with f0

on {
√
x2 + y2 ≤ δ2}.

• f++
0 (x, y, z) = f+−

0 (x, y, z) for every point (x, y, z) with
√
x2 + y2 = x ≥ 2. Fur-

thermore f++
0 and f+−

0 define a diffeomorphism in the neighborhood of the half
affine plane {y = 0, x ≥ 2}

• f++
0 = f+−

0 on the union of the orbits segments of lengths 2 δ
α

centered at the
points of Σ+

1 ∩ {y = 0, x ≥ 0}; there, they map in a affine way the orbit segment
of length 2 δ

α
centered at p ∈ Σ+

1 onto the orbit segment of length 2δ centered at
P+

1 (p).
Notice that Σ+

1 ∩ {y = 0, x ≥ 0} is the half horizontal straight line {y = 0, x ≥
0, z = 1

2
}.

In other words, f++
0 and f+−

0 coincide in the points of C++ ∩C+− which are out of the
rectangle {x ∈ [δ2, 2], y = 0, z ∈ [−1

2
+ δ

α
, 1

2
− δ

α
]}.
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Figure 8. The surfaces Σ−
0 , Σ+

0 and Σ1 in C++ ∩ C+−.

The aim of the section is to define a diffeomorphism f+± in a neighborhood of this
rectangle, and to glue it with f++

0 and f+−
0 , preserving the attracting regions U++ and

U+−.
The diffeomorphism f+,± needs to have some compatibility with f++ in C++ and with

f+− in C+−. For that, we will build it by using sections of X which extend the cross sec-
tions Σ+

0 and Σ−
0 . Analogously we will extend Σ+

1 and Σ−
1 for building the diffeomorphisms

in the other quadrants.
This extension of the sections will also be used for building the attracting and repelling

regions Uε and Vε which are small extensions of the union of the attracting and repelling
regions U±,± and V ±,± in the quadrants.

7.1. Extending the cross section Σ±
0 and Σ±

1 . On the cylinder {x ≥ 0, y = 0} of
R

2 ×S1 (corresponding to an unstable separatrix of the periodic orbit of X), the surfaces
Σ+

0 and Σ−
0 induce each one a proper embedding of [0,+∞) and these two curves coincide

for x ≥ 2
3
. When x ≥ 2

3
, they are the half straight line [2

3
,+∞)×{0}×{0} . These curves

are contained in the respective boundaries of Σ+
0 and Σ−

0 , which are contained the half
spaces y ≥ 0 and y ≤ 0, respectively. On the other hand Σ+

1 induces the half straight line
{x ≥ 0, y = 0, z = 1

2
)} (See Figure 8).

On this plane, the curves induced by Σ+
0 and Σ+

1 have been used for defining f++
0 and

the curves induced by Σ−
0 and Σ+

1 have been used for defining f−+
0 . We want now to

define a map on a neighborhood of this separatrix that we can glue with f++
0 and f−+

0 in
the corresponding quadrants. For that, we need to extend a little bit Σ+

0 in the quadrant
C−+ and Σ−

0 in the quadrant C++.
The aim of this section is to build these extensions. In order to simplify the construction

of the diffeomorphisms, we would like a good relative position of the extensions of Σ+
0 and

Σ−
0 with respect to Σ−

0 and Σ+
0 respectively. Recall that Σ+

0 and Σ−
0 are obtained from S+

0

and S−
0 by pushing the points along the orbits of X in the direction of the planes z = 1

4

and z = −1
4
, respectively. For this reason, we will first extend the surface S+

0 and S−
0 ,

and then we will push this surfaces along the orbit of X following the same rules as we
have already done for S+

0 and S−
0 .
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7.1.1. An extension of Σ−
0 . A natural extension of S−

0 is the half helicoid S0. However
one cannot project S0 continuously along the orbit of X on the plane z = −1

4
. For this

reason, we remove from S0 its intersection with the cylinder {x = 0, y ≥ 0, z ∈ R/Z}
(which is a stable separatrix of the periodic orbit).

We consider the surface S̃−
0 = S0 \ {x = 0, y ≥ 0}, obtained by removing from the half

helicoid S0 the union of the half straight line {x = 0, y ≥ 0, z = 1
4

= −3
4
} with the circle

{(0, 0)} × R/Z. In other words,

S̃−
0 = {(x, y, z) ∈ S0, (x, y) 6= (0, 0), z 6= 1/4}

.
It is a global cross section of X on the invariant open set R

2 × S1 \ {x = 0, y ≥ 0}.
Notice that, for (x, y, z) ∈ S̃−

0 ⊂ R
2 × R/Z one can consider that z ∈ (−3

4
, 1

4
) and this

choice of the representant of z is continuous on S̃−
0 . Furthermore X−z− 1

4
(x, y, z) belongs

to the plane z = −1
4

and the map (x, y, z) 7→ π−
0 (x, y, z) = X−z− 1

4
(x, y, z) is a smooth

projection of S̃−
0 on the plane {z = −1

4
}, which is a diffeomorphism on {z = −1

4
}\{x =

0, y ≥ 0}.
We will now push every point (x, y, z) ∈ S̃−

0 along the orbit of X in direction of

π−
0 (x, y, z), replacing (x, y, z) by Xt(x, y, z) where t = ψ(

√
x2 + y2) (ψ is the map built in

section 6.5 ). The surface we get contains the complement, in the disk {z = −1
4
,
√
x2 + y2 ≤

1
10
} of the stable separatrix {x = 0, y ≥ 0}. For this reason we add the whole disk to the

projection.
We define

Σ̃−
0 =

{
Xt(x, y, z), where (x, y, z) ∈ S̃−

0 , and t = ψ(
√
x2 + y2) · (−z − 1

4
)
}

∪
{
z = −1

4
and

√
x2 + y2 < 1

10

}

We denote A = {Xt(x, y, z), where (x, y, z) ∈ S̃−
0 , and t = ψ(

√
x2 + y2) · (−z − 1

4
)} and

B = {z = −1
4

and
√
x2 + y2 < 1

10
}.

Lemma 7.1. The set Σ̃−
0 is a smooth surface.

Proof : Since S0 with (x, y) 6= (0, 0) and z 6= 1
4

is smooth, ψ,
√
x2 + y2 and X are

differentiable, it follows that A is a smooth surface. Moreover, it is diffeomorphic to
{z = −1

4
}\{x = 0, y ≥ 0}.

Notice that {z = −1
4

and
√
x2 + y2 < 1

10
} \ {x = 0, y ≥ 0, z = −1

4
} is contained in A .

Then A ∪B = A ∪ {x = 0, 0 ≤ y < 1
10
, z = −1

4
}

Let r ∈ {x = 0, 0 ≤ y < 1
10
, z = −1

4
}. Any neighborhood of r in A∪B is a neighborhood

of r in B, therefore one deduces that Σ̃−
0 is an open surface. 2

For every ε ∈ (0, 1
10

) one defines Σ−
0,ε as being the intersection of Σ̃−

0 with the affine half
space y ≤ ε.

Lemma 7.2. For ε small enough, Σ−
0,ε is a smooth surface with boundary, diffeomorphic

to a half plane. Moreover, Σ−
0,ε = Σ−

0 ∪ C where C is a strip.



46 CHRISTIAN BONATTI AND NANCY GUELMAN

Proof : We have to show that Σ−
0,ε is transversal to the plane y = ε. Notice that for

a big radius, for example
√
x2 + y2 > 2 Σ−

0,ε = S0 in {
√
x2 + y2 > 2}\{x = 0, y ≥ 0},

and since y = ε is transversal to the helicoid S0 then Σ−
0,ε is transversal to y = ε in

{
√
x2 + y2 > 2}.

Notice that when ε = 0 it holds that Σ−
0,ε = Σ−

0 , and it is transversal to y = 0. Then

in {
√
x2 + y2 ≤ 2}, Σ−

0,ε is transversal to y = ε if ε is small enough. So, we have proven

that for ε small enough, Σ−
0,ε is a smooth surface with boundary.

We have that Σ−
0,ε = Σ−

0 ∪ C where C = {(x′, y′, z′) ∈ Σ̃−
0,ε, 0 ≤ y′ ≤ ǫ}. Recall that

Σ−
0,ε = S0 in {

√
x2 + y2 ≥ 2}\{x = 0, y ≥ 0}, so in the case that

√
x2 + y2 ≥ 2, the

intersection between the helicoid surface S0 and {(x, y, z) such that 0 ≤ y ≤ ε} is the
union of two disjoint strips, C1, C2. Besides, we have proved that Σ−

0,ε is transversal to

y = ε if ε is small enough. Let Cu be the curve defined as Cu = Σ−
0,ε ∩ {

√
x2 + y2 ≤

2} ∩ {y = u}. Then ∪u∈[0,ε]C
u is a strip that intersects C1 and C2. It follows that

C = ∪u∈[0,ε]C
u ∪ C1 ∪ C2 is a strip.

Since Σ−
0 is a half plane, it follows that Σ−

0,ε is diffeomorphic to a half plane. 2

7.1.2. Extension of Σ+
0 . One defines in a analogous way :

S̃+
0 = {(x, y, z) ∈ S0, (x, y) 6= (0, 0), z ∈ (−1/4, 3/4)}

Then we define Σ̃+
0 by pushing S+

0 along the flow in the direction of the plane z = 1
4
,

and by completing the resulting surface by adding the disc {z = 1
4

and
√
x2 + y2 < 1

10
}.

That is:

Σ̃+
0 = {Xt(x, y, z), where (x, y, z) ∈ S̃+

0 , t = ψ(
√
x2 + y2) · (−z + 1

4
)}

∪{z = 1
4

and
√
x2 + y2 < 1

10
}

Notice that {z = 1
4

and
√
x2 + y2 < 1

10
} \ {x = 0, y ≤ 0, z = 1

4
} is contained in{

Xt(x, y, z), where (x, y, z) ∈ S̃+
0 , t = ψ(

√
x2 + y2) · (−z + 1

4
)
}

. As for Σ̃−
0 , one de-

duces that Σ̃+
0 is an open surface.

For every ε ∈ (0, 1
10

), one defines Σ+
0,ε as the intersection of Σ̃+

0 with the affine half space

y ≥ −ε. As for Σ−
0,ε , Σ+

0,ε is a surface with boundary diffeomorphic to the half plane, for
small ε > 0.

7.1.3. Relative positions of Σ+
0,ε and Σ+

0,ε.

Lemma 7.3. There is ε0 such that for every ε ∈ (0, ε0) the intersection Σ+
0,ε ∩ Σ−

0,ε is

equal to {(x, y, z) ∈ S0,
√
x2 + y2 ≥ 2

3
, |y| ≤ ε}

Proof :

Let (x, y, z) be a point in Σ+
0,ε ∩ Σ−

0,ε, then |y| ≤ ε.

Claim 1. Any point (x, y, z) ∈ Σ+
0,ε ∩ Σ−

0,ε verifies that z 6= 1
4

and z 6= −1
4
.
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Proof : It is a consequence of the the fact that if z = −1
4

then (x, y, z) /∈ Σ+
0,ε and if

z = 1
4

then (x, y, z) /∈ Σ−
0,ε. 2

Hence any (x, y, z) ∈ Σ+
0,ε ∩ Σ−

0,ε is in the set A defined before lemma 7.1, that is,

there exists (x1, y1, z1) ∈ S̃−
0 ⊂ S0 in the X orbit of (x, y, z). Analogously, there exists

(x2, y2, z2) ∈ S̃+
0 ⊂ S0 in the X orbit of (x, y, z).

We know that (x, y, z) = Xt1(x1, y1, z1) where (x1, y1, z1) ∈ S̃−
0 , and t1 = ψ(

√
x2

1 + y2
1) ·

(−z1 − 1
4
), and (x, y, z) = Xt2(x2, y2, z2) where (x2, y2, z2) ∈ S̃+

0 , and t2 = ψ(
√
x2

2 + y2
2) ·

(−z2 + 1
4
).

Claim 2. (x, y, z) ∈ Σ+
0,ε ∩ Σ−

0,ε verifies that
√
x2

1 + y2
1 >

1
10

and
√
x2

2 + y2
2 >

1
10

.

Proof : Let (x1, y1, z1) ∈ S̃−
0 such that

√
x2

1 + y2
1 ≤ 1

10
then the point of its orbit

(x, y, z) ∈ Σ−
0,ε verifies that z = −1

4
, hence (x, y, z) /∈ Σ+

0,ε. Analogously, the point

(x2, y2, z2) ∈ S̃+
0 verifies that

√
x2

2 + y2
2 >

1
10

. 2

Claim 3. (x, y, z) ∈ Σ+
0,ε ∩ Σ−

0,ε verifies that
√
x2

1 + y2
1 ≥ 2

3
or
√
x2

2 + y2
2 ≥ 2

3
.

Proof : By lemma 4.1 we know that any segment of orbit with both extreme points
in S0 has length greater than 1

2
. Then by compactness there exists a small l > 0 such

that if (x1, y1, z1) ∈ S0 and 1
10

≤
√
x2

1 + y2
1 ≤ 2

3
any segment of orbit by (x1, y1, z1) that

intersects S0 in another point has length greater than 1
2

+ l.

Let us assume that (x1, y1, z1) ∈ S̃−
0 verifies that 1

10
≤
√
x2

1 + y2
1 <

2
3

and (x2, y2, z2) ∈
S̃+

0 verifies that 1
10

≤
√
x2

2 + y2
2 <

2
3
. It holds that (x1, y1, z1) 6= (x2, y2, z2): suppose that

(x1, y1, z1) = (x2, y2, z2), then it can be proven that t1 = ψ(
√
x2

1 + y2
1) · (−z1 − 1

4
), and

t2 = ψ(
√
x2

1 + y2
1) · (−z2 + 1

4
) have different sign then Xt1(x1, y1, z1) 6= Xt2(x2, y2, z2).

Recall that (x, y, z) ∈ Σ+
0,ε ∩ Σ−

0,ε.

• In the case x ≥ 0 then x1 ≥ 0 and since (x1, y1, z1) ∈ S̃−
0 then z1 ∈ [−1

4
, 1

4
). Since

we push S̃−
0 along the orbit of X in the direction of the plane z = −1

4
, it follows

that (x, y, z) ∈ Σ−
0,ε verifies that z ∈ [−1

4
, 1

4
). In the same way, x2 ≥ 0 and since

(x2, y2, z2) ∈ S̃+
0 then z2 ∈ (−1

4
, 1

4
]. Since we push S̃+

0 along the orbit of X in the

direction of the plane z = 1
4
, it follows that (x, y, z) ∈ Σ+

0,ε verifies that z ∈ (−1
4
, 1

4
].

Since in Σ−
0 we have that z ∈ [−1

2
, 0] and in Σ+

0 we have that z ∈ [0, 1
2
] we

can choose ε0 such that for ε < ε0 in Σ−
0,ε we have that z ∈ [−1

2
− l

2
, 0 + l

2
] and

in Σ+
0,ε we have that z ∈ [0 − l

2
, 1

2
+ l

2
] , hence the point (x, y, z) verifies that

z ∈ [−1
2
− l

2
, 0 + l

2
] ∩ [0 − l

2
, 1

2
+ l

2
].

It follows that (x, y, z) ∈ Σ+
0,ε ∩Σ−

0,ε with x ≥ 0 verifies that z ∈ (−1
4
, 1

4
)∩ [−1

2
−

l
2
, 0 + l

2
]∩ [0− l

2
, 1

2
+ l

2
] = [− l

2
, l

2
] if l is small enough. It follows that the segment

of the orbit between (x, y, z) and (x1, y1, z1) has length less or equal than 1
4

+ l
2

and segment of the orbit between (x, y, z) and (x2, y2, z2) has length less or equal
than 1

4
+ l

2
. Then the segment of X orbit between (x1, y1, z1) and (x2, y2, z2) has

length less or equal than 1
2

+ l. This is a contradiction.
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• In the case x ≤ 0 then x1 ≤ 0 and since (x1, y1, z1) ∈ S̃−
0 then z1 ∈ (−3

4
,−1

4
], since

we push S̃−
0 along the orbit of X in the direction of the plane z = −1

4
, it follows

that (x, y, z) ∈ Σ−
0,ε verifies that z ∈ (−3

4
,−1

4
]. Since x2 ≤ 0, (x2, y2, z2) ∈ S̃+

0 then

z2 ∈ [−3
4
,−1

4
) = [1

4
, 3

4
) and it follows that (x, y, z) ∈ Σ+

0,ε verifies that z ∈ [−3
4
,−1

4
).

As before (x, y, z) ∈ Σ+
0,ε∩Σ−

0,ε with x ≤ 0 verifies that z ∈ (−3
4
,−1

4
)∩ [−1

2
− l

2
, 0+

l
2
] ∩ [0 − l

2
, 1

2
+ l

2
] = [−1

2
− l

2
,−1

2
+ l

2
] if l is small enough.

It follows that the segment of orbit between (x1, y1, z1) and (x2, y2, z2) has length
less or equal than 1

2
+ l, which is a contradiction.

So, we have proved that either the point (x1, y1, z1) verifies that
√
x2

1 + y2
1 ≥ 2

3
or the

point (x2, y2, z2) verifies that
√
x2

2 + y2
2 ≥ 2

3
. 2

In the set of points {(x, y, z)|
√
x2 + y2 ≥ 2

3
} we have that ψ ≡ 0 so either t1 = 0 or

t2 = 0.
It follows that Σ−

0,ε ∩ Σ+
0,ε = {S0,

√
x2 + y2 ≥ 2

3
, |y| < ǫ} and the lemma is proved.

2

We denote Σ0,ε = Σ+
0,ε ∪ Σ−

0,ε. As a consequence of lemma 7.3 one gets

Corollary 7.1. For ε > 0-small enough it holds that Σ0,ε is a branched surface with bound-
ary diffeomorphic to the quotient of two half planes {(x, y,−1), y ≤ 1} and {(x, y, 1), y ≥
−1} by the equivalence relation identifying the points (x, y,−1) and (x, y, 1) when |x| ≥ 1.

7.1.4. Extension of Σ+
1 and Σ−

1 . We define analogously Σ̃−
1 and Σ̃+

1 by pushing the surfaces

S̃−
1 = {(x, y, z) ∈ S1, (x, y) 6= (0, 0), z ∈ (−1

2
,
1

2
)}

and
S̃−

1 = {(x, y, z) ∈ S1, (x, y) 6= (0, 0), z ∈ (0, 1)}
along the flow. Let us just give the formula for Σ̃−

1 and Σ̃+
1 :

Σ̃−
1 = {Xt(x, y, z), where (x, y, z) ∈ S̃−

1 , t = ψ(
√
x2 + y2) · (−z)}

∪{z = 0 and
√
x2 + y2 < 1

10
}

Σ̃+
1 = {Xt(x, y, z), where (x, y, z) ∈ S̃+

1 , t = ψ(
√
x2 + y2) · (−z + 1

2
)}

∪{z = 1
2

and
√
x2 + y2 < 1

10
}

Analogously we define

Σ+
1,ε = Σ̃+

1 ∩ {x ≥ −ε}, Σ−
1,ε = Σ̃−

1 ∩ {x ≤ ε}, and Σ1,ε = Σ+
1,ε ∪ Σ−

1,ε.

7.1.5. Return maps on Σ+
0,ε and Σ−

0,ε.

Lemma 7.4. For every ε > 0 small enough, the first return map P+
0,ε of X is well defined

on Σ+
0,ε and it is a diffeomorphism on its image. Moreover, there is ε′ ∈ (0, ε) such that

P+
0,ε(Σ

+
0,ε) ⊂ Σ+

0,ε′.

Furthermore, the return times on Σ+
0,ε are strictly larger than 4

10
.
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Proof : Look at the universal cover. The half space y ≥ −ε is positively invariant byX,
and the connected components of the lifts of Σ+

0,ε disconnect that half space. Furthermore,

the coordinate z is bounded on each of the connected component of the lift of Σ+
0,ε but

this coordinate tends to infinity on the positive orbit of X. One deduces that the positive
orbit of every point (x, y, z) ∈ R

2 × S1 with y ≥ −ε cuts infinitely many times Σ+
0,ε and

the first return of the flow of X on Σ+
0,ε is well defined. Furthermore, the coordinates y

is uniformly contracted by the (positive) flow of X. It follows that the image of the first
return map is disjoint from the boundary of Σ+

0,ε. As a consequence the return time is

everywhere continuous (hence differentiable) and P+
0,ε is a diffeomorphism on its image.

Furthermore, its image is contained is some Σ+
0,ε′ for some ε′ ∈ (0, ε).

Since in Σ+
0 we have that z ∈ [0, 1

2
] we can choose ε0 small enough in such a way that

if ε < ε0 we have that z ∈ [0 − 1
20
, 1

2
+ 1

20
] in Σ+

0,ε, therefore the return times on Σ+
0,ε is

strictly larger than 4
10

.
2

In the same way, one defines the first return map P−
0,ε : (Σ−

0,ε) → Σ−
0,ε′ . The return times

on Σ−
0,ε are strictly larger than 4

10
and one verifies:

Lemma 7.5. For ε > 0 small enough, if (x, y, z) ∈ Σ+
0,ε ∩ Σ−

0,ε then P+
0,ε(x, y, z) =

P−
0,ε(x, y, z)

Proof : Just notice that, for small ε if x ∈ Σ+
0,ε ∩ Σ−

0,ε then the absolute value of x

is either strictly larger than 2
3

or it is very close to 2
3
. As X expands uniformly the x

coordinates and since the time returns on Σ+
0,ε and on Σ−

0,ε are lower bounded by 4
10

, one

deduces that P+
0,ε(x, y, z) and P−

0,ε(x, y, z) have their x coordinates larger than 2
3
, hence

these two points belong to the intersections Σ+
0,ε ∩Σ−

0,ε. As they are first return maps one
deduces that these two points coincide. 2

Previous lemma allows us to extend P0 : Σ0 → Σ0 to a smooth map P0,ε : Σ0,ε → Σ0,ε′ ,
which coincides with P±

0,ε on Σ±
0,ε.

Remark 8. Be careful that P0,ε is not the first return map on Σ0,ε: the orbit of a point
x in Σ−

0,ε can intersect Σ+
0,ε before its first return on Σ−

0,ε. For such a point P0,ε(x) is the
second return on Σ0,ε.

Remark 9. Notice that for every ε small, if x in Σ0,ε, P0,ε(x) = Xt(x) with t ≥ 4
10

.

7.1.6. Inverse return maps on Σ+
1,ε and Σ−

1,ε.

One would like to extend in the same way the first return maps defined on Σ+
1 and Σ−

1

to Σ+
1,ε and Σ−

1,ε, respectively. However, the half space x ≥ −ε and x ≤ ε are not positively
invariant by the flow of X. These two half space are invariant by the negative times of the
flow of X. For this reason, one cannot extend the first return maps P+

1 and P−
1 on Σ+

1,ε

and Σ−
1,ε, respectively, but one can extend their inverses (P+

1 )−1 and (P−
1 )−1. Exactly as

above, the extensions (P+
1,ε)

−1 and (P−
1,ε)

−1 coincide on the intersection Σ+
1,ε∩Σ−

1,ε allowing

to define a smooth map P−1
1,ε : Σ1,ε → Σ1,ε′ , for some ε′ ∈ (0, ε). As in the map P0,ε we

have that if x in Σ1,ε, P
−1
1,ε (x) = Xt(x) with t ≤ − 4

10
.
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7.1.7. Extension of the attracting and repelling regions U±± and V ±±. Finally, for every
small ε > 0 we define the compact sets Uε and Vε as being the union of the orbit segments
of X of length 2δ through the points of Σ0,ε and Σ1,ε, respectively.

In formula:
Uε = {p ∈ R

2 × S1|∃t ∈ [−δ, δ], Xt(p) ∈ Σ0,ε}, and

Vε = {p ∈ R
2 × S1|∃t ∈ [−δ, δ], Xt(p) ∈ Σ1,ε}

Notice that Uε contains the union U++ ∪U+− ∪U−+ ∪U−− and Vε contains the union
V ++ ∪ V +− ∪ V −+ ∪ V −−

We fix now some ε0 such that all the lemmas above apply.

  1/2

  1/3   2/3   -1/2

0

1/4

-1/4

Vε

Vε

Uε

δ

δ
δ

δ

δ
δ

δ
δ

δ

δ

δ
δ

δ
δ

δ

C++ ∩ C+−

Σ+
1

Σ+
1

Figure 9. Neighborhood Uε and Vε C
++ ∩ C+−.

7.2. Diffeomorphism in the neighborhood of the side C++ ∩ C+−. As we have
done several times before, the strategy for building the diffeomorphism in a neighborhood
of the unstable separatrix C++ ∩ C+− (i.e. the half plane x ≥ 0, y = 0) consists in
cover this neighborhood by a 2-parameter family of orbit segments Iu(x, y). For each of
this segment, we will explain which segment will be its image. Finally we will explicit
the diffeomorphism in restriction to each segment. However, the situation here is more
complicate than in the previous cases because each segment Iu will contain a sub-segment
[A(x, y), B(x, y)] ⊂ Iu which need to be preserved. A difficulty is that the segment
[A(x, y), B(x, y)] would be degenerate (that is A(x, y) = B(x, y)) or not, depending on
the value of (x, y).

Let us first build the family Iu(x, y) of orbit segments.
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7.2.1. Cutting the orbits in compact segments.

Remark 10. For ε > 0 small enough, the intersections of Σ1,ε with {(x, y, z)|x ≥
0 and y ∈ [−ε, ε]} is

Σ1,ε ∩ {(x, y, z)|x ≥ 0 and y ∈ [−ε, ε]} =

= Σ+
1 ∩ {(x, y, z)|x ≥ 0 and y ∈ [−ε, ε]} ∪ {(x, y, 0)|0 ≤ x ≤ ε and y ∈ [−ε, ε]}

Recall that Σ+
1 is contained in the half space {x ≥ 0} and is a global section of X on

{x ≥ 0}. The first return map P+
1 induces a diffeomorphisms of Σ+

1 ∩ {x ≥ 0} which
contracts uniformly the coordinates y (by a uniformly bounded factor). Hence

P+
1 (Σ+

1 ∩ {(x, y, z)|x ≥ 0 and y ∈ [−ε, ε]}) ⊂ Σ1,ε ∩ {(x, y, z)|x ≥ 0 and y ∈ [−ε, ε]},
and the restriction of P+

1 to Σ+
1 ∩ {(x, y, z)|x ≥ 0 and y ∈ [−ε, ε]} is a diffeomorphism

onto its image.

Remark 11. We have defined the inverse return map P−1
1,ε on Σ1,ε. Clearly we have that

the map P−1
1,ε ◦ P+

1 induce the identity map on Σ+
1 ∩ {(x, y, z)|x ≥ 0 and y ∈ [−ε, ε]}. For

this reason, it is coherent to denote P1,ε = P+
1 on this set.

The surface Σ+
1 is a smooth half plane which coincides with the plane z = 1

2
in a neigh-

borhood of (0, 0, 1
2
), which the helicoid S+

1 for large radius, and which cuts transversally

{y = 0} exactly along the half straight line {x ≥ 0, y = 0, z = 1
2
}.

One deduces that for small ε > 0, the intersection Σ+
1 ∩{(x, y, z)|x ≥ 0 and y ∈ [−ε, ε]}

is a graph over {(x, y)|x ≥ 0 and y ∈ [−ε, ε]}. In other words we proved:

Lemma 7.6. For every ε > 0 small enough, for every (x, y) with x ≥ 0 and y ∈ [−ε, ε],
there is a unique z = z(x, y) ∈ S1 such that (x, y, z) ∈ Σ+

1 .
Furthermore, z(x, y) is a smooth function which converges uniformly to 1

2
when |y| tends

to 0.

We denote by c(x, y) the time return of the point (x, y, z(x, y)) on Σ+
1 . In other words:

Xc(x,y)(x, y, z(x, y)) = P+
1 (x, y, z(x, y)).

Recall that the return time on Σ+
1 belongs to [3

4
, 5

4
] so that c(x, y) ∈ [3

4
, 5

4
].

Remark 12. The map c(x, y) is a smooth function which tends uniformly to 1 when |y|
tends to 0

We denote by Iu(x, y) the orbit segment joining (x, y, z(x, y)) to P+
1 (x, y, z(x, y)).

We define

Wu+ =
⋃

x≥0,y∈[−ε,ε]

Iu(x, y).

Remark 13. Wu+ is a closed set containing {(x, y, z), x ≥ 0, y ∈ [− ε
4
, ε

4
]}. In particular

Wu+ is a closed neighborhood of the unstable separatrix C++ ∩ C+− = {x ≥ 0, y = 0, z ∈
S1}.
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7.2.2. The intersection points of the segments Iu(x, y) with Σ0,ε.
Each surface Σ+

0,ε and Σ−
0,ε cuts each segment Iu(x, y) in exactly one point. We denote

A(x, y) = Iu(x, y) ∩ Σ−
0,ε and B(x, y) = Iu(x, y) ∩ Σ+

0,ε.

Considering the time parametrization of the segments Iu(x, y) the points A(x, y) and
B(x, y) define two function a(x, y) and b(x, y) by

A(x, y) = Xa(x,y)(x, y, z(x, y)) and B(x, y) = Xb(x,y)(x, y, z(x, y))

Lemma 7.7. For small ε > 0, for all x ≥ 0 and y ∈ [−ε, ε] The maps a(x, y) and b(x, y)
are differentiable. Furthermore

• a(x, y) ∈ (0, 1) and
• b(x, y) ∈ (0, 1)
• b− a ∈ [0, 1

2
]

• inf(x,y) a(x, y) > 0
• inf(x,y) c(x, y) − b(x, y) > 0.

(See figure 10)

0

1/4

-1/4

1/2

-1/2

a′ a1

a1 = b1

a

b b′
b1

Σ−
0,ε

Σ+
0,ε

Σ+
1

Σ+
1

(x, y, z) P+
1 (x, y, z)

Xc(x, y, z)Xc′(P
+
1 (x, y, z))

Figure 10. Maps a, b and c in C++ ∩ C+−

Proof : This is a consequence of the differentiability of the surfaces Σ−
0,ε,Σ

+
0,ε, and

Σ+
1 when x ≥ 0 and y ∈ [−ε, ε] and the transversality of the flow to these surfaces. By
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construction the distance between Σ−
0,ε and Σ+

0,ε is less or equal than 1
2

then b − a ∈
[0, 1

2
], and the distances between Σ+

1 and Σ−
0,ε and between Σ+

0,ε and Σ+
1 are positive then

inf(x,y) a(x, y) > 0 and inf(x,y) c(x, y)− b(x, y) > 0. Finally, Remark 12 implies a(x, y) < 1
and b(x, y) < 1. 2

Remark 14. Notice that our construction of the surfaces Σ0,ε and Σ1,ε are independent
of the number δ > 0. Hence one may shrink δ > 0 so that a ≥ 3δ and c− b > 3δ.

7.2.3. The return maps and the function a, b.
We denote p1(x, y) the two first coordinates of P+

1 (x, y, z(x, y)), that is

P+
1 (x, y, z(x, y)) = (p1(x, y), z(p1(x, y)).

Lemma 7.8. A(p1(x, y)) = P0,ε(A(x, y)) and B(p1(x, y)) = P0,ε(B(x, y))

Proof : Recall that A(p1(x, y)) is the unique point in Iu(p1(x, y)) in Σ−
0,ε. The point

A(x, y) ∈ Σ−
0,ε and P0,ε : Σ−

0,ε → Σ−
0,ε then P0,ε(A(x, y)) ∈ Σ−

0,ε. Since (p1(x, y), z(p1(x, y)))

is the unique point in Σ+
1 in the segment of orbit between A(x, y) and P0,ε(A(x, y)) then

P0,ε(A(x, y)) ∈ Iu(p1(x, y)), and the first claim follows. The second claim of the lemma is
analogous, using P0,ε : Σ+

0,ε → Σ+
0,ε 2

Next lemma is just a consequence of the fact that Σ+
0,ε ∩ Σ−

0,ε is equal to {(x, y, z) ∈
S0,
√
x2 + y2 ≥ 2

3
, |y| ≤ ε}.

Lemma 7.9. There is ε0 > 0 such that every 0 < ε < ε0 one has:

(1) For every x ≥ 2
3
, y ∈ [−ε, ε] one has a(x, y) = b(x, y), that is A(x, y) = B(x, y);

(2) for every x ≥ 0, y ∈ [−ε, ε] one has

a(x, y) = b(x, y) =⇒ a(p1(x, y)) = b(p1(x, y))

(3) there is δ > 0 such that, for every x ≥ 0, y ∈ [−ε, ε] one has

b(x, y) − a(x, y) ≤ 5δ =⇒ a(p1(x, y)) = b(p1(x, y))

As we have noted, the construction of the Σ0,ε and Σ1ε is independent on the choice of
the number δ used in the construction of the diffeomorphisms. We fix from now on the
number δ > 0 small enough for verifying the Lemma 7.9.

7.2.4. Families of diffeomorphisms of the segments. We will build a diffeomorphism such
that it will map the orbit segments Iu(x, y) on the segment Iu(p1(x, y)); furthermore,
it will have a special form in the neighborhood of the orbit segment joining A(x, y) to
B(x, y). We will now explain the rule for building the diffeomorphism in the neighborhood
of the orbit segment [A(x, y), B(x, y)]c.

For that we will consider the time interval [a(x, y) − δ, b(x, y) + δ] whose length is
r(x, y) = 2δ + b(x, y)− a(x, y) ∈ [2δ, 1

2
+ 2δ]. The image will be contained in the time in-

terval [a(p1(x, y))−δ, b(p1(x, y))+δ] whose length is s(x, y) = 2δ+b(p1(x, y))−a(p1(x, y)).
Furthermore, Lemma 7.9 implies that r(x, y) ≤ 7δ =⇒ s(x, y) = 2δ.

This explains that we consider the region

R = {(r, s) ∈ [2δ,
1

2
+ 2δ]2 such that r ≤ 7δ =⇒ s = 2δ}

Recall that α > 1 is a number close to 1 already used for the definitions of fext, f
++.
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Lemma 7.10. There is a smooth family of smooth maps, ξr,s : [0, r] → [0, s], (r, s) ∈ R,
verifying the following properties:

(1) ξr,s induces an increasing diffeomorphism from ([0, r]) to [(1−α−1)δ, s−(1−α−1)δ];
(2) the derivatives of ξr,s at 0 and r are equal to α−1

ξ′r,s(0) = ξ′r,s(r) = α−1

(3) the derivative of ξr,s is less than α−1 on the segment [0, 2δ] and [r − 2δ, r]:

0 ≤ ξ′r,s(t) ≤ α−1 for all t ∈ [0, 2δ] ∪ [r − 2δ, r]

(4) if s is larger than 4δ, then the derivative of ξr,s is equal to α−1 on the segment
[0, 2δ] and [r − 2δ, r] :

s ≥ 4δ =⇒ ξ′r,s(t) = α−1 for all t ∈ [0, 2δ] ∪ [r − 2δ, r]

(5) the diffeomorphism ξr,s is an affine map if r = 2δ:

ξ′2δ,2δ(t) = α−1

(6) if r = s = 1
2

+ 2δ then ξrs is the map t 7→ Ψ0(t− 1
4
− δ) + 1

4
+ δ, where Ψ0 is the

Morse-Smale diffeomorphism we defined on the periodic orbit (see section 6.7).

Proof : Just notice that in the case that r = s = 1
2

+ 2δ (where s ≥ 4δ) it holds that
the restrictions of ξr,s to [0, 2δ] and [r− 2δ, r] coincide with a traslation of the restrictions
of Ψ0 to [−1

4
− δ,−1

4
+ δ] and [1

4
− δ, 1

4
+ δ], respectively; and we have that Ψ0 is a

linear contraction of factor α−1 in these intervals. So, there is no incompatibilities in the
properties we ask for ξr,s. 2

Remark 15. By definition of the functions ξr,s, for every (r, s) ∈ R one has:

ξr,s([0, 2δ] ⊂ [(1 − α−1)δ, (1 + α−1)δ], and

ξr,s([r − 2δ, r] ⊂ [s− (1 + α−1)δ, s− (1 − α−1)δ].

We are going to define a family of maps which help us to decide how we will map
Iu(x, y) on the segment Iu(p1(x, y)). Recall that the times length of Iu(x, y) is c(x, y).

For (a, b, c), (a′, b′, c′) satisfying:

• a, b, a′, b′ ∈ [0, 1] and c, c′ ∈ [3
4
, 5

4
],

• a ≥ 3δ, a′ ≥ 3δ, c− b ≥ 3δ, c′ − b′ ≥ 3δ, a ≤ b, a′ ≤ b′

• and b− a ≤ 5δ =⇒ a′ = b′,

we define a diffeomorphism χ(a,b,c)(a′,b′,c′) : [0, c] → [0, c′] by its restrictions to the segments
[0, α−1δ], [α−1δ, a− δ], [a− δ, b+ δ], [b+ δ, c− α−1δ], and [c− α−1δ, c] as follows:

• the restriction χ(a,b,c)(a′,b′,c′) : [0, α−1δ] → [0, δ], is the homothety of ratio α;
• the restriction χ(a,b,c)(a′,b′,c′) : [α−1δ, a − δ] → [δ, a′ − α−1δ] is the diffeomorphism
θα,α−1,[α−1δ,a−δ],[δ,a′−α−1δ] defined in section 6.5 (it is a diffeomorphism whose deriv-
ative at the extremities are α and α−1 respectively);
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• the restriction χ(a,b,c)(a′,b′,c′) : [a − δ, b + δ] → [a′ − α−1δ, b′ + α−1δ] is obtained as
follows:

χ(a,b,c)(a′,b′,c′)(a− δ + t) = a′ − δ + ξrs(t)

with r = 2δ − a+ b and s = 2δ − a′ + b′.

This is possible because our hypotheses on (a, b) and (a′, b′) imply that (r, s) ∈ R.
• the restriction χ(a,b,c)(a′,b′,c′) : [b+ δ, c− α−1δ] → [b′ + α−1δ, c′ − δ] is the diffeomor-

phism θα−1,α,[b+δ,c−α−1δ],[b′−α−1δ,c′−δ]; it is a diffeomorphism whose derivative at the
extremities are α−1 and α respectively;

• the restriction χ(a,b,c)(a′,b′,c′) : [c − α−1δ, c] → [c′ − δ, c′], is the affine homothety of
ratio α;

See figures 11 and 12.
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cc− α−1δ
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δ

α

α

α−1

α−1

< α−1

< α−1

Figure 11. The map χ(a,b,c)(a′,b′,c′) in the case s < 4δ.

Lemma 7.11. The family χ(a,b,c)(a′,b′,c′) is a smooth family of diffeomorphisms. Further-
more:
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a− δ b+ δb− δ b
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δ
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α
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Figure 12. The map χ(a,b,c)(a′,b′,c′) in the case s > 4δ.

(1) If a = a′ = 1
4
, b = b′ = 3

4
and c = c′ = 1 then χ(a,b,c)(a′,b′,c′) coincides with the

diffeomorphism Ψ0;
(2) If a = b and then a′ = b′ then χ(a,b,c)(a′,b′,c′)(a) = a′; furthermore, χ(a,b,c)(a′,b′,c′)

coincides with Ψ+
[0,a],[0,a′] on [0, a] and with Ψ−

[a,c],[a′,c′] on [a, c].

Proof : In the case that a = a′ = 1
4
, b = b′ = 3

4
and c = c′ = 1, for verifying that

χ(a,b,c)(a′,b′,c′) coincides with the diffeomorphism Ψ0, recall that by last item of lemma 7.10
the restriction of χ( 1

4
, 3
4
,1)( 1

4
, 3
4
,1) to [1

4
− δ, 3

4
+ δ] coincides with Ψ0.

By item 5 of lemma 7.10 the restriction of χ(a,b,c)(a′,b′,c′) to [a− δ, a+ δ] is a contraction
of factor α−1 and the second claim follows. 2
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7.2.5. The diffeomorphism f+±.
We are now ready to build the announced diffeomorphism f+± on a neighborhood of

C++ ∩ C+−.
Recall that Wu+ denotes the union of all the segment Iu(x, y) and it is a neighborhood

of C++ ∩ C+−.

Definition 7.1. We denote by f+± : Wu+ → Wu+ the map defined as follows. For every
(x, y, z) ∈ Σ+

1 ∩ {|y| ≤ ε} one has:

• f+±(Iu(x, y)) = Iu(p1(x, y)).
• Let us denote a = a(x, y), b = b(x, y), c = c(x, y), a′ = a(p1(x, y)), b

′ = b(p1(x, y)),
and c′ = c(p1(x, y)).

For every t ∈ [0, c(x, y)] we define

f+±(Xt(x, y, z)) = Xt′(P
+
1 (x, y, z)) where t′ = χ(a,b,c)(a′,b′,c′)(t).

Lemma 7.12. The map f+± is well defined on Wu+ and it is a diffeomorphism on its
image.

Proof : Two distinct segments Iu(x, y) and Iu(x′, y′) are either disjoint or the intersec-
tion is reduced to one extremity. This means that (x′, y′) = p1(x, y) or (x, y) = p1(x

′, y′).
In this case one verifies that the both values of f+± at the intersecting point are equal.
So the map is well defined. The family of maps χ(a,b,c)(a′,b′,c′) is a smooth family of dif-
feomorphisms. Furthermore, the derivative at the extremities of each segment Iu(x, y)
is α. Hence, at the point P+

1 (x, y, z(x, y)) = Iu(x, y) ∩ I(p1(x, y)), the derivative of f+±

restricted to Iu(x, y) and to Iu(p1(x, y)) are equal: the derivative of f+± at this point is
well defined and equal to α. 2

Notice that this new construction coincides with the previous maps f++
0 f+−

0 in a
neighborhood of the periodic orbit and for large radius:

Lemma 7.13. For every (x, y, z) ∈ Σ+
1 ∩ {|y| ≤ ε}, one has:

• if x ≤ 1
100

, then the restriction of f+± to Iu(x, y) coincides with f0 hence with f++
0

on C++ and with f+−
0 on C+−;

• if x ≥ 2
3
, then the restriction of f+± to Iu(x, y) coincides with f++

0 on C++ and
with f+−

0 on C+−.

Proof : By the first item of lemma 7.11 we have that if x ≤ 1
100

then χ(a,b,c)(a′,b′,c′)

coincides with the diffeomorphism Ψ0 and f0 coincide with f+±. The last claim is a
consequence of item 1 of lemma 7.9 and item 2 of lemma 7.11. 2

7.2.6. Attracting and repelling regions.
Next lemma asserts that the sets Uε and Vε are invariant by positive and negative

iterates of f+±, respectively:

Lemma 7.14. For every small ε′ < ε one has

• for every (x, y, z) ∈ Wu+ ∩ Uε′, the image f+±(x, y, z) belongs to the interior of
Uε′; moreover, Df+±(x, y, z) contracts the vector field X by a factor less or equal
than α−1, and this factor is equal to α−1 if x /∈ [1

6
, 2].
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• for every (x, y, z) ∈ Wu+ such that f+±(x, y, z) belongs to Vε′, the point (x, y, z)
belongs to the interior of Vε′; moreover, (Df+±)−1(x, y, z) contracts the vector field
X by a factor α−1.

Proof : Recall that there is ε′′ ∈ (0, ε′) such that P0,ε′(Σ0,ε′) ⊂ Σ0,ε′′ and P−1
1,ε′(Σ1ε′) ⊂

Σ1,ε′′ .
Let (x′, y′, z′) ∈ Uε′ , then there exists (x, y, z) ∈ Σ1 such that Xt(x, y, z) = (x′, y′, z′)

with t ∈ [0, c(x, y)]. In fact, (x′, y′, z′) ∈ Uε′ if and only if |t− a| < δ or |t− b| < δ . Since

f+±(Xt(x, y, z)) = Xt′(P
+
1 (x, y, z)) where t′ = χ(a,b,c)(a′,b′,c′)(t),

the restriction χ(a,b,c)(a′,b′,c′) : [a−δ, b+δ] → [a′−α−1δ, b′+α−1δ] is obtained by χ(a,b,c)(a′,b′,c′)(a−
δ + t) = a′ − δ + ξrs(t) with r = 2δ − a + b and s = 2δ − a′ + b′. Since 0 ≤ ξ′r,s(t) ≤
α−1 for all t ∈ [0, 2δ] ∪ [r − 2δ, r] it follows that the image f+±(x′, y′, z′) belongs to the
interior of Uε′ ; moreover, Df+±(x′, y′, z′) contracts the vector field X by a factor less or
equal than α−1.

Besides, the derivative of ξr,s is equal to α−1 on the segment [0, 2δ] and [r− 2δ, r] if s is
larger than 4δ (this is the case when x is smaller than 1

6
) and it is equal to α−1 if r = 2δ

(this is the case when |x| > 2).
Analogously assume that (x′, y′, z′) ∈ Wu+ satisfies that f+±(x′, y′, z′) ∈ Vε′ . Consider

(x, y, z) ∈ Σ+
1 , with z = z(x, y) such that (x′, y′, z′) ∈ Iu(x, y), that is, there is t ∈

[0, c(x, y)] with Xt(x, y, z) = (x′, y′, z′). Now f+±(x′, y′, z′) belongs to Iu(p1(x, y)) and let
t1 ∈ [0, c(p1(x, y))] such that Xt1(P

+
1 (x, y, z)) = f+±(x′, y′, z′)

The fact that f+±(x′, y′, z′) ∈ Vε′ implies that one of the two following possibility is
verified

• either f+±(x′, y′, z′) belongs to a segment of orbit of size 2δ centered at a point
of Σ+

1 . In that case either t1 ∈ [0, δ] or c(p1(x, y)) − t1 ∈ [0, δ]). Then either
t ∈ [0, α−1δ] or c(x, y) − t ∈ [0, α−1δ], implying that (x′, y′, z′) belongs to the
interior of Vε′

• or f+±(x′, y′, z′) belongs to a segment of orbit of size 2δ centered at a point q of
Σ−

1,ε′ ∩ {(x, y, z), x ≥ 0 and y ∈ [−ε, ε]} = {(x, y, 0), x ∈ [0, ε] and y ∈ [−ε, ε]}.
Hence Iu(x, y) and Iu(p1(x, y)) are in a very small neighborhood of the periodic
orbit where f+± coincides with f0 and whereΣ+

1 coincides with the disc z = −1
2
.

Furthermore, |1
2
− t1| < δ. One deduces that |1

2
− t| < α−1δ proving that (x′, y′, z′)

belongs to the orbit segment of size 2α−1δ centered at the point P−1
1,ε′(q) ∈ Σ−

1,ε”

for some ε” < ε′. In particular (x′, y′, z′) belongs to the interior of V ′
ε .

Finally, in both cases, (Df+±)−1 contracts the vector field X by a factor α−1. 2

Recall that the central derivative of f at a point (x, y, z) is Dcf = ‖Df(x,y,z)(X(x, y, z)‖.
Note that in lemma 7.14 we have proved that for every small ε′ < ε one has

• for every (x, y, z) ∈ Wu+ ∩ Uε′ the central derivative Dcf+±(x, y, z) is less than
α−1, and it is equal to α−1 if x /∈ [1

6
, 2].

• for every (x, y, z) ∈ Wu+ such that f+±(x, y, z) belongs to Vε′ the central derivative
(Dcf+±)−1(x, y, z) is equal to α−1.

7.3. The diffeomorphisms in a neighborhood of the other sides.
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Figure 13. The map f+±(x, y, z) on Uε ∩ {y = 0, x ≥ 0}

7.3.1. The diffeomorphism f−± in the neighborhood of C−− ∩ C−+. Consider the union
of orbit segments

Wu− =
⋃

(x,y,z)∈Σ−

1 ∩{|y|≤ε}

Iu(x, y)

where Iu(x, y) is the segment of orbit joining a point (x, y, z) ∈ Σ−
1 to its first return

P−
1 (x, y, z) on Σ−

1 . Then Wu− is a neighborhood of the unstable separatrix C−+ ∩C−− =
{x ≤ 0, y = 0, z ∈ S1}. We define f−± : Wu− → Wu− exactly in the same way as f+±.

We get

Lemma 7.15. For every (x, y, z) ∈ Σ−
1 ∩ {|y| ≤ ε}, one has:

• if x ≥ − 1
100

, then the restriction of f−± to Iu(x, y) coincides with f0 hence with
f−+

0 on C−+ and with f−−
0 on C−−;

• if x ≤ −2
3
, then the restriction of f−± to Iu(x, y) coincides with f−+

0 on C−+ and
with f−−

0 on C−−.

Moreover for every small ε′ < ε one has

• for every (x, y, z) ∈ Wu− ∩ Uε′, the image f−±(x, y, z) belongs to the interior of
Uε′; moreover, the central derivative Dcf−±(x, y, z) is less or equal than α−1, and
it is equal to α−1 if x /∈ [−2,−1

6
].
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• for every (x, y, z) ∈ Wu− such that f−±(x, y, z) belongs to Vε′, the point (x, y, z)
belongs to the interior of Vε′; moreover, the central derivative (Dcf−±)−1(x, y, z)
is equal to α−1.

7.3.2. The diffeomorphisms f±+ and f±− in the neighborhood of C++ ∩ C−+ and C+− ∩
C−−. .

As we already noticed, it is more convenient to consider the inverse of the return maps
in the neighborhood of the stable manifold {x = 0}, because the flow expands the x
coordinates: as a consequence the sets {|x| ≤ ε} is not invariant for the positive times of
the flow but is invariant for negative times. For this reason we define:

Ws− =
⋃

(x,y,z)∈Σ−

0 ∩{|x|≤ε}

Is(x, y)

where Is(x, y) is the segment of orbit joining a point (x, y, z) ∈ Σ−
0 to its first negative

return (P−
0 )−1(x, y, z) on Σ−

0 .
Analogously we define

Ws+ =
⋃

(x,y,z)∈Σ+
0 ∩{|x|≤ε}

Is(x, y)

where Is(x, y) is the segment of orbit joining a point (x, y, z) ∈ Σ+
0 to its first negative

return (P+
0 )−1(x, y, z) on Σ+

0 .
Analogously to the construction of f+± and f−±, we build diffeomorphisms
(f±+)−1 : Ws+ → Ws+ and (f±−)−1 : Ws− → Ws− which coincide with (f0)

−1 for
|y| ≤ 1

100
, and with the inverse of f++

0 , f+−
0 , or f−+

0 , f−−
0 (according to the corresponding

quadrant), for |y| ≥ 2
3
. The set Uε′ is invariant by f±+ and f±−, for every ε′ < ε; moreover

f±+(Uε′) ⊂ Int(Uε′), f
±−(Uε′) ⊂ Int(Uε′), and their central derivative is equal to α−1.

Finally Vε′ is an attracting region for (f±+)−1 and (f±−)−1, for every ε′ ≤ ε; moreover
the central derivative of (f±+)−1 and of (f±−)−1 are less or equal than α−1 and it is equal
to α−1 if |y| /∈ [1

6
, 2].

7.4. Gluing all the pieces of the puzzle. We will now glue the diffeomorphisms
f++

0 ,f+−
0 ,f−+

0 , and f−−
0 we have defined in the respective quadrants with the diffeomor-

phisms f+±,f−±,f±+, and f±−, in order to get a diffeomorphism of R
2 × S1 which will

be our local model of Axiom A diffeomorphism in a neighborhood of the boundary com-
ponent of a Birkhoff section. Let us make now some easy observations which will help us
in this construction.

(1) All these diffeomorphisms preserve every leaf of the 1-dimensional foliation gener-
ated by the vector field X. More precisely, each of them is of the form (x, y, z) 7→
Xt(x, y, z) where t is a strictly positive number depending smoothly on (x, y, z).

(2) Furthermore, for f++, . . . , f−−, f0, f
+±, . . . , f±−, the orbit segment joining a

point to its image is larger than the smallest orbit segment joining Σi,ε to Σj,ε,
i 6= j ∈ {0, 1}, and smaller than two times the largest time return on Σ+

i,ε and

on Σ−
i,ε. For ε = 0 these time distances are 1

4
and 25

4
respectively. For small ε,

these time distances are larger than 1
5

and smaller that 3, respectively. Hence
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all these diffeomorphisms are on the form p 7→ Xt(p) with t ∈ [1
5
, 3]. The dif-

feomorphisms f++
0 , . . . , f−−

0 are obtained as barycenters along the orbits of the
diffeomorphism f0 with f++, . . . , f−−. One deduces that the same estimates hold
for these diffeomorphisms.

(3) The neighborhood Wu+ and Wu− of the unstable separatrices are invariant by
these diffeomorphisms. More precisely Wu+ ∩ C++ is invariant by f++

0 and by
f+±. Analogously, the intersection of each of these neighborhood Wu+ and Wu−

with each quadrant are invariant by the corresponding diffeomorphisms.
(4) Recall that Wu+ is union of orbits segment Iu(x, y) with extremal points in Σ+

1 .
The images f++

0 (Iu(x, y)) and f+±(Iu(x, y)) are both the same orbit segment
Iu(p1(x, y)). Moreover, f++

0 and f+± coincide on the two extremal subsegments
of Iu(x, y) of length α−1δ with the affine dilation of ratio α. The same happens in
the intersection of each of Wu+ and Wu− with each quadrant.

(5) The neighborhood Ws+ and Ws− of the stable separatrices are invariant by the in-
verse of these diffeomorphisms. More precisely Ws+∩C++ is invariant by (f++

0 )−1

and by (f+±)−1. Analogously, the intersection of each of these neighborhood Ws+

and Ws− with each quadrant are invariant by the inverse of the corresponding
diffeomorphisms.

(6) Ws+ is union of orbits segment Is(x, y) with extremal points in Σ+
0 . The im-

ages (f++
0 )−1(Is(x, y)) and (f+±)−1(Is(x, y)) are both the same orbit segment

Is(p−1
0 (x, y)). Moreover, (f++

0 )−1 and (f+±)−1 coincide on the two extremal sub-
segments of Is(x, y) of length α−1δ with the affine dilation of ratio α. The same
happens in the intersection of each of Ws+ and Ws− with each quadrant.

(7) there is a neighborhood of the periodic orbit such that all the diffeomorphisms
f++

0 ,f+−
0 ,f−+

0 ,f−−
0 f+±,f−±, f±+ and f±− coincide with f0 (and their inverses

coincide with f−1
0 .

Hence (by shrinking ε if necessary) we can assume that for every (x, y, z) ∈
Wu+ ∩Ws+ then all these diffeomorphisms and their inverse coincide with f0 and
f−1

0 , respectively, on Iu(x1, y1) and on Is(x2, y2) where Iu(x1, y1) and Is(x2, y2) are
the orbit segments containing (x, y, z). The same happens for the other intersec-
tions of Wu+ ∪Wu− with Ws+ ∪Ws− in the other quadrants.

We are now ready for gluing the pieces of the puzzle.

Definition 7.2. We call pre-model-diffeomorphism and we denote by fm the diffeomor-
phism defined as follows:

• if (x, y, z) belongs to the complement of Wu+∪Wu−∪(f±+)−1(Ws+)∪(f±−)−1(Ws−)
then fm(x, y, z) is f++

0 (x, y, z),f+−
0 (x, y, z),f−+

0 (x, y, z) or f−−
0 (x, y, z) according to

the quadrant containing (x, y, z).
• if (x, y, z) ∈ Wu+ ∩ C++; let (x1, y1, z1) ∈ Σ+

1 and t1, t2 such that:
– (x, y, z) ∈ Iu(x1, y1)
– f+±(x, y, z) = Xt1(P

+
1 (x1, y1, z1)).

– f++
0 (x, y, z) = Xt2(P

+
1 (x1, y1, z1)).

Then fm(x, y, z) = Xr(P
+
1 (x1, y1, z1) where r = ψ(y1

ε
)t1 + (1 − ψ(y1

ε
))t2.

We define fm exactly in the same way on the intersection of Wu+ ∪Wu− with
each of the quadrants;
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• so we have already defined fm in the complement of (f±+)−1(Ws+)∪(f±−)−1(Ws−);
we will now define f−1

m : Ws+ ∩ C++ → (f±+)−1(Ws+) ∩ C++.
if (x, y, z) ∈ Ws+ ∩ C++; let (x1, y1, z1) ∈ Σ+

0 and t1, t2 such that:
– (x, y, z) ∈ Is(x1, y1)
– (f±+)−1(x, y, z) = Xt1((P

+
0 )−1(x1, y1, z1)).

– (f++
0 )−1(x, y, z) = Xt2((P

+
0 )−1(x1, y1, z1)).

Then (fm)−1(x, y, z) = Xr((P
+
0 )−1(x1, y1, z1) where r = ψ(x1

ε
)t1 + (1 − ψ(x1

ε
))t2.

Considering the inverse map, this defines fm : (f±+)−1(Ws+)∩C++ → Ws+∩C++.
We define fm exactly in the same way on the intersection of (f±+)−1(Ws+) ∪

(f±−)−1(Ws−) with each of the quadrants.

Lemma 7.16. The map fm defined above is well defined on R
2 × S1 and it is a diffeo-

morphism of R
2 × S1.

Proof : We have that the maps f+±, f−±, f±+, f±−, f++
0 , f+−

0 , f−+
0 and f−−

0 are
diffeomorphisms that map central arcs of the form Iu(x1, y1, z1) with (x1, y1, z1) ∈ Σ1

to Iu(P1(x1, y1, z1)) and their inverses map central arcs of the form Is(x0, y0, z0) with
(x0, y0, z0) ∈ Σ0 to Is(P−1

0 (x0, y0, z0)). Notice that the coefficient of the barycenter is
constant on each segment Iu(x1, y1, z1) and Is(x1, y1, z1). 2

7.5. Properties of the pre-model-diffeomorphism.

Proposition 7.1. The pre-model-diffeomorphism fm verifies the following properties

(1) Every leaf of the 1-dimensional foliation defined by the flow of X is invariant by
fm. More precisely, for every (x, y, z) there is t ∈ [1

5
, 3], depending smoothly on

(x, y, z), such that fm(x, y, z) = Xt(x, y, z).
(2) for every ε′ > 0 small enough the set Uε′ is invariant by fm, and

the set Vε′ is invariant by f−1
m

(3) the central derivative Dcfm is less or equal to α−1 on Uε′ and
the central derivative Dc(fm)−1 is less or equal to α−1 on Vε′;

(4) there is a constant β > 0 which is a lower bound for the central derivatives Dc(fm)
on Uε′ and Dc(fm)−1 on Vε′;

(5) Dcfm(x, y, z) = α−1 on Uε′ ∩ {
√
x2 + y2 ∈ [0, 1

100
] ∪ [3,+∞)} and

Dcf−1
m (x, y, z) = α−1 on Vε′ ∩ {

√
x2 + y2 ∈ [0, 1

100
] ∪ [3,+∞)}.

(6) there is N ∈ N such that
• for any point (x, y, z) ∈ Uε′ there are at most N number i ∈ N such that
Dcfm(f i

m(x, y, z)) 6= α−1;
• for any point (x, y, z) ∈ Vε′ there are at most N number i ∈ N such that
Dcf−1

m (f−i
m (x, y, z)) 6= α−1;

(7) For all α′ > α, there is N > 0 such that for any n ≥ N
• for any point (x, y, z) ∈ Uε′, one has

Dcfn
m(x, y, z) ∈ (α′−n, α−n]

• for any point (x, y, z) ∈ Vε′, one has

Dcf−n
m (x, y, z) ∈ (α′−n, α−n]
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Proof : Most of these properties had been proven before. The times estimates t ∈ [1
5
, 3]

comes from the fact that fm is obtained as a barycenter along the orbits of diffeomorphisms
satisfying the same time estimates (see item 2 of the list of properties in Section 7.4).

Notice that the set of points of Uε′ where the central derivative Dcfm is different of α−1

is contained in Uε′ ∩ {|x| ∈ [1
6
, 2]} ∩ {|y| ≤ ε′}, so in this compact set there is a constant

β > 0 which is a lower bound for the central derivatives Dc(fm). It follows that there is
N ∈ N such that for any point (x, y, z) ∈ Uε′ there are at most N number i ∈ N such that
f i

m(x, y, z)) ∈ Uε′ ∩ {|x| ∈ [1
6
, 2]∩ {|y| ≤ ε′}, then there are at most N number i ∈ N such

that Dcfm(f i
m(x, y, z)) 6= α−1. It follows that for all α′ > α, there is N > 0 such that for

any n ≥ N for any point (x, y, z) ∈ Uε′ one has

Dcfn
m(x, y, z) ∈ (α′−n, α−n].

The proofs for Vε′ are analogous.
2

Corollary 7.2. Choosing δ small enough, we have that for any (x, y, z) ∈ Uε if fm(x, y, z) =
Xt(x, y, z) then t ≥ 3

10
and for any (x, y, z) ∈ Vε if f−1

m (x, y, z) = Xs(x, y, z) then s ≤ − 3
10

.

Proof : This is a consequence of item 2 of the previous proposition and the fact that
the return times of P0,ε on Σ+

0,ε and Σ−
0,ε, and those of P−1

1,ε on Σ+
1,ε and Σ−

1,ε, are strictly

larger than 4
10

. Then t ≥ 4
10

− 2δ. 2

7.6. The model- diffeomorphism. We are going to define our final local diffeomor-
phism fmod : R

2 × S1 which will be our model of Axiom A diffeomorphism in a neighbor-
hood of a connected component of the boundary of the Birkhoff section.

The aim is to glue the map fm that we have already defined with a new map g, which
will be the representant of fext in R

2 × S1, when
√
x2 + y2 > 20.

Recall that fm restricted to
√
x2 + y2 > 20 verifies that fm(x, y, z) is f++

0 (x, y, z),
f+−

0 (x, y, z), f−+
0 (x, y, z) or f−−

0 (x, y, z) according to the quadrant containing (x, y, z),
and in this region Σ0 = S0 and Σ1 = S1.

Let p = (x, y, z) ∈ Σ0 ∩ {
√
x2 + y2 > 20} and let Ip be the segment of orbit joining p

with P0(p) ∈ Σ0, then fm(Ip) = IP0(p). Moreover, fm restricted to Ip ∩ Uε′ is contraction
of factor α−1 and (fm)−1 restricted to Ip ∩ Vε′ is contraction of factor α−1.

Now we are going to define the map g :
⋃

{p∈Σ0∩{
√

x2+y2>20}}
Ip → R

2 × S1 by g(Ip) =

IP0(p). Furthermore, the expression of g in restriction to the segment Ip is the same as the
expression of fext: since Ip contains a unique point q ∈ S1. Let r, s, r′, s′ > 0 such that
q = Xr(p), P0(p) = Xs(q) P1(q) = Xr′(P0(p)) and P 2

0 (p) = Xs′(P1(q)). Then

• for t ∈ [0, r] g(Xt(p)) = Xt′(P0(p)) with t′ = Θr,r′(t)
• for t ∈ [0, s] g(X−t(P0(p)) = X−t′(P

2
0 (p)) with t′ = Θs,s′(t)

where Θr,r′ had been defined in section 5.1.

Definition 7.3. We call model diffeomorphism and we denote by fmod the diffeomorphism
defined as follows:

Let (x, y, z) ∈ Ip; where p = (x1, y1, z1) ∈ Σ0 and t1, t2 such that:

• fm(x, y, z) = Xt1(P0(x1, y1, z1)).
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• g(x, y, z) = Xt2(P0(x1, y1, z1)).

Then fmod(x, y, z) = Xr(P0(x1, y1, z1) where r = ψ(

√
x2
1+y2

1

100
)t1 + (1 − ψ(

√
x2
1+y2

1

100
))t2.

Lemma 7.17. The map fmod defined above is well defined on R
2 × S1 and it is a dif-

feomorphism of R
2 × S1. Furthermore Uε is an attracting region for fmod and Vε is an

attracting region for f−1
mod.

Proof : Just notice that fm and g are diffeomorphisms that send any central arc of
the form Ip, where p ∈ Σ0, to IP0(p) and the coefficient of the barycenter is constant on
each segment Ip. This property ensures the continuity and the differentiability out of the
sections Σ0. We get the differentiability on Σ0 by noticing that fm and g coincide on Uε.
This also implies that Uε is an attracting region for fmod.

The fact that fm and g coincide on fm(Vε) implies that Vε is an attracting region for
f−1

mod as it is for f−1
m .

2

Now we are in conditions to prove lemma 5.3
Proof of lemma 5.3 Let Umod = Uε and Vmod = Vε.
The items 1, 2, 6, 7 and 8 are verified by fm and by g so they are verified by fmod. Item

3 is just the definition of Uε = Umod and Vε = Vmod. Item 4 is because the restriction of
fmod to (0, 0) × S1 coincide the restriction of fm to (0, 0) × S1 which is f0. Item 5 is just
by definition of g.

8. Dynamical properties of the diffeomorphisms fr

8.1. The dynamics of fr and the pseudo-Anosov map on the Birkhoff section.

The aim of this section is to describe dynamical properties of fr (build in Section 5.3)
which are not direct consequences of Lemma 5.3: these properties are more related with
the precise construction of the model. More precisely:

Let N be the closed surface obtained from the Birkhoff section B0 by identifying each
boundary component with a point. We denote by Sing ⊂ N the finite set whose points
pγ correspond to the boundary components γ of B0 . Fried showed in [6] that the first
return map PB0 induces on N a pseudo-Anosov homeomorphisms PN : N → N , whose
singular points are contained in Sing. We will show:

Proposition 8.1. (1) For every large r, the Axiom A diffeomorphism fr has exactly
two basic pieces, one of them is an attractor and the other is a repeller; more
precisely, in the notation of Section 5.3, the maximal invariant sets Ar and Rr

of fr in Ur and Vr, respectively, are connected transitive (indeed mixing) attractor
and repeller, respectively;

(2) There is a continuous surjective projection πAr
: Ar → N which induces a semi-

conjugacy between fr|Ar
and PN . Furthermore

• the preimage π−1
Ar

(p) is a single point if p does not belong to the unstable
manifold of a point in Sing;

• the preimage π−1
Ar

(p) consists in exactly two points in the same central leaf if
p belongs to any unstable separatrix of a point in Sing;
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• and the preimage π−1
Ar

(p) consists in 2n periodic points if p = pγ ∈ Sing where
the linking number of γ is ±n; in this case, the preimage of each unstable sep-
aratrices of pγ consist of the union of two unstable separatrices corresponding
to two successive periodic points in π−1

Ar
(pγ).

Remark 16. Item 2 of Proposition 8.1 means that Ar is obtained from the pseudo Anosov
map PN by ”opening” the unstable separatrices of the periodic point in Sing. That is, the
attractor Ar is obtained as a ”derived from pseudo-Anosov map” which is the analogous
of the derived from Anosov construction in [13].

We start the proof by building a surface BΣ, with boundary and corners, obtained by
cutting the Birkhoff section B0 along the local unstable manifolds of the orbits γ in ∂B.

8.2. The surface BΣ.

Let us denote BΣ the surface with boundary and corners which coincides with B0 out
of
⋃

γ Oγ and with (hr ◦Γγ)
−1(Σ0,n) on Oγ, where n is the linking number of γ. We denote

by PΣ : BΣ → BΣ the map which coincide with PB0 outside Oγ and which is induced
(via conjugacy by hr ◦ Γγ) by the map P0 on each Oγ (recall that P0 is the map built in
Section 6.3, which coincides with P+

0 on Σ+
0 and with P−

0 on Σ−
0 ).

Let UΣ be the union of the orbit segments of length 2δ centered at the points of BΣ.

Lemma 8.1. Ar ⊂ UΣ.

Proof : Let denote BΣ,ε the branched surface with boundary and corners which co-
incides with B0 out of

⋃
γ Oγ and with (hr ◦ Γγ)

−1(Σ0,n,ε) on Oγ , where n is the linking

number of γ and Σ0,n,ε is a lift of Σ0,ε to R
2 × R/|n|Z. Let UΣ,ε be the union of the orbit

segments of length 2δ centered at the points of BΣ,ε. Then for all ε there is ε′ < ε such
that P0,ε : Σ0,n,ε → Σ0,n,ε′ and therefore one has that fr(UΣ,ε) ⊂ UΣ,ε′ . One deduces that
the maximal invariant set of fr in UΣ,ε is contained in UΣ,0 = UΣ. 2

Lemma 8.2. Let p, q ∈ BΣ. Assume that there is t ∈ [0, 2δ] such that Xt(p) = q. Then
either p = q or p and q belong to ∂BΣ.

Proof : The statement is true by construction if p or q are not in Oγ for some γ (δ
is much smaller than the times return on B0). Hence, it is enough to verify the same
statement for the lift Σ0,n of the model, then it is enough to prove it for the model Σ0 on
R

2×S1. The statement is true if both p and q belong to Σ+
0 or if both belong to Σ−

0 . So we
can assume p ∈ Σ+

0 and q ∈ Σ−
0 (the case p ∈ Σ−

0 and q ∈ Σ+
0 is analogous). The fact that

p and q are on the same orbit segment of Xmod implies that p and q belong to the plane
y = 0 which is the unstable manifold of the periodic orbit of Xmod. If p or q belong to the
intersection Σ+

0 ∩Σ−
0 , then p = q because, by construction , the first return time of Xmod

of such a point in Σ0 is much larger than 2δ. So p ∈ Σ+
0 ∩ {(x, y, z), y = 0, x ∈ [−2

3
, 2

3
]}

and q ∈ Σ−
0 ∩ {(x, y, z), y = 0, x ∈ [−2

3
, 2

3
]}, that is p and q belong to the boundary of Σ0.

2
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8.3. Projections of the surface BΣ on B0 and on N . Notice that the surfaces Σ+
0

and Σ−
0 have been obtained by pushing the points of S+

0 and S−
0 along the orbits of

Xmod. The inverse of this construction induces diffeomorphisms π+
0 : Σ+

0 \{(0, 0)}×S1 →
S+

0 \{(0, 0)}×S1 and π−
0 : Σ−

0 \{(0, 0)}×S1 → S−
0 \{(0, 0)}×S1. One easily verifies that

π+
0 = π−

0 on Σ+
0 ∩Σ−

0 , inducing a diffeomorphism π0 : Σ0\{(0, 0)}×S1 → S0\{(0, 0)}×S1.

Furthermore, π0 is the identity map on Σ0 ∩ S0 that is for
√
x2 + y2 ≥ 2

3
.

Let π̃Σ : BΣ \ ∂B0 → B0 \ ∂B0 be the map which is the identity map out of the Oγ,
and which is induced by the map π0 built above, in each of the Oγ. Let us state some
properties of π̃Σ:

• π̃Σ(p) = Xt(p) for some t ∈ [−1
4
, 1

4
], for every p ∈ BΣ \ ∂B0.

• if π̃Σ(p) = π̃Σ(q) for p 6= q then p and q belong to the boundary of BΣ.

Notice that π̃Σ may be seen as a continuous projection from BΣ \ ∂B0 on N \ Sing =
B0\∂S0. One easily verifies that π̃Σ extends in a unique way in a projection πΣ : BΣ → N .

Remark 17. • πΣ is injective on BΣ \ ∂BΣ.
• PN ◦ πΣ = πΣ ◦ PΣ, that is πΣ induces a semi conjugacy between PΣ and the

pseudo-Anosov map PN

Corollary 8.1. Consider a segment of X-orbit I included in UΣ. Then I ∩ BΣ consists
in at most 2 point p, q (p 6= q ⇒ p, q ∈ ∂BΣ) whose images by πΣ are equal πΣ(p) = πΣ(q)

Let π
UΣ

: UΣ → N be the map defined as follows: for every q ∈ UΣ there is a point
p ∈ BΣ such that q belongs to the orbit segment of length 2δ centered at p. One defines
π

UΣ
(q) = πΣ(p). The corollary above implies that this point is well defined. Furthermore

Corollary 8.2. The map π
UΣ

: UΣ → N is continuous and induces a semi conjugacy
between the restriction of fr to UΣ and the pseudo Anosov homeomorphisms PN

Proof : The semi conjugacy property is easily deduce from the semi conjugacy property
of πΣ and the fact that, if q belongs that the orbit segment of length 2δ centered at p ∈ BΣ

then fr(q) is contained in the orbit segment of length 2α−1δ centered at PΣ(p). 2

8.4. Proof of Proposition 8.1.

8.4.1. Transitivity and semi-conjugacy with the pseudo-Anosov map. The diffeomorphism
fr satisfies the Axiom A and strong transversality. Furthermore the compact set UΣ,ε is
an attracting region (its image is included in its interior). So it contains a basic piece of
fr which is a transitive attractor Λ; it is contained in the maximal invariant set Ar and
hence contained in UΣ.

The attractor Λ cannot be a periodic point because fr is partially hyperbolic and the
strong unstable bundle has dimension equal to 1. Recall that, by Claim 2 of the proof
of Proposition 5.1 the dimension of the stable direction of every point in Ar is 2. So the
unstable manifold of every point in Λ has dimension 1. Consider any point p ∈ Λ. As Λ
is an attractor, the unstable manifold W u(p) is contained in Λ hence in UΣ.

Consider a point p ∈ Λ which does not belong to the unstable manifold of a periodic
point q ∈ ∂BΣ, and let us denote by Λ0 ⊂ Λ the closure of W u(p). Recall that every basic
piece of an Axiom A diffeomorphism splits in a disjoint union of compact sets which are
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W u(γ) ∩BΣ

BΣ ∩ ∂B0
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Π−1
Σ (p)

S3
0

∂B0 ΠΣ

Π̃Σ

p

N

Figure 14. The surface N in a neighborhood of a 6-prongs singularity,
the surface S0,3(B0 in a neighborhood of γ with n(γ,B) = 3 ) and the
surface Σ0,3.

cyclically permuted by the diffeomorphism, and such that the return map is mixing (see
[15]); the compact sets of this decomposition will be called the mixing components of the
basic piece. Furthermore, these mixing components of a basic piece are built as follows:
consider a point in the basic piece, the corresponding mixing component is the closure of
the transverse intersection between its invariant (stable and unstable) manifolds. So Λ0

is the mixing component of Λ which contains p; let i denote the period of Λ0.
Using Corollary 8.2, one deduces that the projection π

UΣ
(W u(p)) is a (regular) leaf of

the unstable foliation of PN . As PN is a pseudo-Anosov map, every unstable leaf is dense
in N . As a consequence, one gets that π

UΣ
(Λ0) = N .

This implies that, for every p ∈ BΣ \ ∂BΣ, the orbit segment of length 2δ centered at
p contains at least a point in Λ0. By compactness of Λ0 it follows that for every p ∈ BΣ,
the orbit segment of length 2δ centered at p contains at least a point in Λ0.
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Assume now that K ⊂ Ar is a compact set which is invariant by f j
r for some j > 0 with

K 6= Λ0 and let q be a point of K. As K ⊂ Ar ⊂ UΣ there is q0 ∈ BΣ such that q belongs
to the orbit segment I of length 2δ centered at q0, and this segment contains a point
p ∈ Λ0. Now the iterates fnj

r (I), n ∈ N contain the points fnj
r (q) ∈ K and fnj

r (p) ∈ Λ0;
furthermore the length ℓ(fnj

r )(I) is bounded by 2δα−nj, hence tends to 0. This implies
that K ∩ Λ0 6= ∅. This implies that UΣ does not contain any other mixing component
of a basic piece than Λ0, furthermore implies that Λ = Λ0, that is a connected mixing
attractor.

This ends the proof of item 1) of Proposition 8.1: the compact set Ar is the unique
(connected and mixing) attractor of fr.

8.4.2. Injectivity defect of the semi-conjugacy. Let us now prove item 2). We have already
seen that the restriction of π

UΣ
to Ar is a continuous surjection on N inducing a semi

conjugacy between fr and PN . Let us prove that the restriction of π
UΣ

to Ar is injective
on the complement of the unstable manifolds of the periodic orbits in Ar ∩ ∂B0.

Claim 1. Let p, q ∈ BΣ be two different points, and let I ⊂ UΣ and J ⊂ UΣ be the
maximal orbit segment containing p and q respectively (recall that these segments have
length bounded by 4δ ) Assume that fr(I) and fr(J) are contained in a same orbit segment
L ⊂ UΣ. Then p ∈ ∂BΣ and q ∈ ∂BΣ.

Proof : By construction, fr(I) and fr(J) are contained in the orbit segment in UΣ

through the points PΣ(p) and PΣ(q), respectively. Now Lemma 8.2 implies that either
PΣ(p) = PΣ(q) or these points belong to the boundary of BΣ. In both cases, p and q
belong to ∂BΣ: the map PΣ is injective out of ∂BΣ and the pre-image of ∂BΣ is contained
in ∂BΣ. 2

Claim 2. For every connected component γ ⊂ ∂B0 the intersection W u(γ) ∩ Ar is the
union of the (1-dimensional) unstable manifolds W u(p) for p ∈ Per(f) ∩ Ar ∩ γ.

Proof : If q ∈ W u(γ) ∩ Ar then the α-limit of q is equal to one of the periodic orbit
contained in γ (because γ is a normally hyperbolic invariant circle and the restriction of
fr to γ is Morse-Smale). As the α-limit is contained in Ar we proved the claim. 2

Consider now a point p ∈ Ar which does not belong to the unstable manifold of a point
in Per(fr) ∩ ∂B0 ∩ Ar. Let q ∈ BΣ such that p belongs to the maximal orbit segment
I ⊂ UΣ containing q. We will show

Claim 3. I ∩ Ar = {p}.
Proof : For that we consider a point p1 ∈ Ar ∩ I
According to Claim 2, the segment I is disjoint from W u(γ) for all γ ⊂ ∂B0. So Claim 1

implies that f−1
r (I) contains a unique point q1 in BΣ. One deduces by Claim 1 that f−1

r (p)
and f−1

r (p1) belongs to the the maximal orbit segment in UΣ containing q1. Hence we can
iterate the process, building a sequence of points qn ∈ BΣ such that the maximal orbit
segment In in UΣ containing qn contains f−n

r (p) and f−n
r (p1). Let Jn ⊂ In be the orbit

segment joining f−n
r (p) to f−n

r (p1). As Jn is contained in UΣ we get that the length of
these segments satisfies: ℓ(Jn−1) ≤ α−1ℓ(Jn) ≤ α−14δ. So ℓ(J0) ≤ 4δα−n for every n, that
is p = p1. This ends the proof of the claim. 2
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This proves that the projection π
UΣ

is injective on the complement of the unstable
manifolds of the periodic orbits in Ar ∩ ∂B0. For ending the proof of the proposition
it remains to consider the restriction of π

UΣ
to the intersection of UΣ with the unstable

manifold W u(γ) where γ is a component of ∂B0.

8.4.3. Dynamics of the repeller. Note that in an analogous way it can be proved that
there is a continuous surjective projection πRr

: Rr → N which induces a semi-conjugacy
between fr|Rr

and PN . Furthermore

• the preimage π−1
Rr

(p) is a single point if p does not belong to the stable manifold
of a point in Sing;

• the preimage π−1
Rr

(p) consists in exactly two points in the same central leaf if p
belongs to one stable separatrix of a point in Sing;

• and the preimage π−1
Rr

(p) consists in 2n periodic points if p = pγ ∈ Sing where the
linking number of γ is ±n; in that case, the preimage of each stable separatrices of
pγ consist of the union of two stable separatrices corresponding to two successive
periodic points in π−1

Rr
(pγ).
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