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Abstract. A new concept of stability, closely related to that of structural
stability, is introduced and applied to the study of Cr endomorphisms with
singularities. A map that is stable in this sense will be conjugated to each
perturbation that is equivalent to it in a geometric sense. It will be shown
that this kind of stability implies Axiom A, Omega-stability and that every
critical point is wandering. A partial converse will be shown, providing new
examples of C3 structurally stable maps.

§1. Introduction.

Denote by Cr(M) the space of class Cr self mappings of a manifold M , 1 ≤ r ≤
∞. If M is compact the topology is the usual Cr topology, while for noncompact
M the space Cr(M) is endowed with the Whitney (or strong) topology.
Given f ∈ Cr(M) the set of critical (or singular) points of f (denoted Sf ) is the
set of points where the differential of f is singular.
Two maps f and g of class C1 are said geometrically equivalent if there exist C1

diffeomorphisms ϕ and ψ of M such that ϕf = gψ. In this case, the image of a
critical point of f under ψ is a critical point of g, and the image of a critical value of
f under ϕ is a critical value of g. Moreover, for each neighborhood Z of the identity
of M in C0 topology, the maps f and g are said Z-geometrically equivalent if the
diffeomorphisms ϕ and ψ are contained in Z. Any pair of C1 diffeomorphisms
are geometrically equivalent, and two endomorphisms without critical points are
geometrically equivalent if and only if the absolute values of the degrees are equal.
But the concept is purely geometric, it has no dynamical meaning: for example,
two quadratic polynomials of one variable are always geometrically equivalent.
In this article, the concept of stability of maps is considered. Two maps f and g
are topologically equivalent if there exists a homeomorphism h such that fh = hg.
A Cr map f is Cr structurally stable if there exists a Cr neighborhood U of f such
that f is topologically equivalent to each g ∈ U .
In [IPR], a concept of stability of maps was introduced, that generalizes the usual
concept and is more adequate to study maps having critical points.

Definition 1. A map f ∈ Cr(M) is said Cr structurally stable modulus singular
sets, denoted f ∈ Ir(M), if there exist a neighborhood Z of the identity in C0(M)
and a Cr neighborhood U of f , such that two Z-geometrically equivalent maps g1
and g2 in U are topologically equivalent.

The need of Z-geometric equivalence (instead of geometric equivalence) will be-
come apparent in theorem C. If f is Cr structurally stable then it belongs to Ir(M).
Under generic assumptions on maps g1 and g2, topological equivalence implies geo-
metric equivalence.
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A map having critical points cannot be C1 structurally stable, but a map f ∈ I1(M)
has the following property: given a C0 neighborhood Z of the identity, there exists
a C1 neighborhood U of f such that Z-geometric equivalence is an equivalence
relation in U and coincides with topological equivalence in U . Lemma 3 at the
end of section 2 implies that if a map f belongs to I1(M), then f is topologically
equivalent to any C1 perturbation g that coincides with f in a neighborhood of Sf .
Necessary and sufficient conditions for a diffeomorphism f to be C1 structurally
stable are known some time ago (Robinson,[R], 1976 and Mañé [Ma], 1987). Since
then, no new examples of Cr (r ≥ 2) structurally stable diffeomorphisms were dis-
covered: it remains open the question if there exist any. Other Cr stable maps are
known: expanding maps in compact manifolds were considered by Shub [S] and its
stability proved. The case of one dimensional maps, where the situation is easier,
will not be specially discussed here.
There exist no examples of noninvertible nonexpanding structurally stable maps
without critical points. Allowing critical points, the Ir(M) maps known (in dimen-
sion at least two) are those presented in [IPR]. In that article, the concept was
introduced and some tools provided the first known examples of C3 structurally
stable maps with critical points, in dimension greater than one, and with nontrivial
nonwandering set. It was proved there that a complex polynomial p in the Riemann
sphere satisfying the no critical relations property (i.e., no critical point belongs to
the future orbit of other critical point and no critical point is periodic) and whose
Julia set is hyperbolic and connected, belongs to I1(R2).
Theorems A and B describe some properties of a I1(M) map.

Theorem A. Let M be a compact manifold. If f ∈ I1(M), then every critical
point of f is wandering, and f is Axiom A and C1 Ω-stable.

The definitions involved are the following: a point is wandering if it has a neigh-
borhood U such that fn(U) ∩ U = ∅ for every n > 0. The set of nonwandering
points of f is denoted by Ω(f). Two maps f and g are Ω- equivalent if there exists
a homeomorphism h : Ω(f) → Ω(g) such that hf = gh in Ω(f). A map f is Cr

Ω-stable whenever all its Cr perturbations are Ω-equivalent to it.
A map f whose nonwandering set has a hyperbolic structure and whose set of pe-
riodic points is dense in Ω(f), has a spectral decomposition: the nonwandering set
of f is the union of a finite number of basic pieces; these are compact, invariant,
transitive sets. Then the map is called Axiom A if, in addition, the restriction of
f to a basic piece is either injective or expanding. (This is the definition given in
[MP], other authors called this concept strong Axiom A, and Przytycki [P] does not
require this last condition for a map to be Axiom A). A basic piece Λ is expanding
if the stable subspace at x, Es

x, is {0}, for x ∈ Λ. A basic piece Λ is called a repeller
if the stable manifold of each point in Λ is contained in Λ. In this case, the unstable
set of Λ, denoted Wu(Λ), and defined as the set of points x ∈M having a preorbit
whose limit set is contained in Λ, is a neighborhood of Λ. Not every repeller is
expanding, but if the map is Axiom A, then every repeller that is not expanding
must be injective.
Another necessary condition for a map f to belong to I1(M) is that the critical set
must be contained in a particular region of the wandering set:



STABILITY MODULUS SINGULAR SETS 3

Theorem B. If f ∈ I1(M) then:

• If C is a component of the critical set Sf of f , then there exists a periodic
attractor γ such that C is contained in its basin of attraction.

• If Sf intersects the unstable set of a basic piece Λ, then Λ is expanding and
C is contained in its unstable set.

It remains as an open problem to know if maps in Ir(M) for r > 1 must satisfy
any of the conclusions of theorems A and B. There exist no known examples of
maps in Ir(M) \ I1(M) if r > 1.
There is another necessary condition for a map to belong to I1(M). This condition
was found necessary for C1 structural stability by Przytycki (theorem C in [P]):
Let f ∈ I1(M) and denote by Wu(Λ) the unstable set of a basic piece Λ. If Λ1 and
Λ2 are basic pieces such that Wu(Λ1) ∩ Λ2 6= ∅, then Λ1 is expanding.
The proof of this result will be omitted because it is similar to that of the mentioned
article of Przytycki.

There exists also a partial converse to the previous theorems.

Theorem C. Let M be a compact manifold and assume that a map f ∈ C1(M)
satisfies the following conditions:

(1) f is Axiom A.
(2) Every critical point of f is wandering.
(3) Every basic piece is expanding or a periodic attractor.
(4) f−1(Ω(f)) = Ω(f).
(5) f satisfies the non critical relations property.

Then f belongs to I1(M).

This will be proved in the last section. The non critical relations property will be
defined later. This condition, and the first two conditions in the statement above,
are also necessary for a map to belong to I1(M). The assumption that constitutes
the great gap to obtain an equivalence to this type of stability is the third one.
It may happen that a I1(M) map has a saddle type basic piece whose stable and
unstable sets do not intersect the critical set. There are no examples known (apart
of diffeomorphisms) of I1(M) maps having saddle type basic pieces.

§2. Critical sets.

The objective of this section is to prove that if f ∈ I1(M), then every critical
point is wandering. The use of the C1 topology in the assumption f ∈ I1(M)
is essential in the proof. The question wether f ∈ Ir(M) for r > 1 implies the
same conclusion is still open. An affirmative answer would imply also a conjecture
stated in [MP]: If f is a Cr structurally stable map, then every critical point of f
is wandering.
The section begins with some definitions and known results.

Definition 2. Let f belong to Cr(M).

(1) Sk(f) is the set of points z ∈ Sf such that the dimension of the kernel of
Dfz is equal to k.
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(2) If r ≥ 2, called a point z ∈ Sk(f) generic for f , if there exist local charts
(U, τ1) at z and (V, τ2) at f(z) such that the map x ∈ R

m → D(τ−1
2 fτ1)x ∈

L(Rm) is transverse to Lk (where L(Rm) is the set of linear maps from
R

m to R
m, Lk denotes the possibly non closed submanifold of L(Rm) of

transformations having kernel of dimension k).
(3) If x ∈ Sk(f) is generic, then Sk is (locally at x) a codimension k2 subman-

ifold of M (see next theorem). A generic critical point x ∈ S1(f) is fold
type if the kernel of Dfx is transverse to S1(f) at x.

Consider the simpler case of a one-dimensional map f : if x is a critical point,
then x is generic if and only if he second derivative of f does not vanish at x.
Going a little bit ahead, let f ∈ C2(M), M an m-dimensional manifold. Suppose
that x ∈ S1(f). Put coordinates in a neighborhood of x such that the first m − 1
rows of the differential Dfx form a linearly independent set and the last one is
equal to 0 ∈ R

m. If f = (f1, . . . , fm) and Hm is the Hessian matrix of fm (the
matrix of second derivatives), then x is a generic critical point of f if and only if
the (2m− 1) ×m matrix obtained adding to Hm the first m − 1 rows of Df0 has
rank m.
It was proved by Whitney that around a critical point of fold type a map f ∈
C∞(M) is locally geometrically equivalent to the map

q(x1, x2, . . . , xm) = (x2
1, x2, . . . , xm),

acting in R
m. We beg the next theorem from differential topology, its proof, as well

as the assertions above, can be found sparse through the text [GG].

Theorem 1. Given any manifold M , there exists an open and dense set R(M) ⊂
C∞(M) such that, for every f ∈ R(M) the following conditions hold:

(1) Each critical point of f is generic.
(2) S1(f) is a codimension one submanifold of M , and its closure equals Sf .
(3) The set of fold type points of f is open and dense in S1(f).

It is not true that the genericity of each critical point of a map f implies that
the map belongs to R. However, if x is a fold point of f ∈ C∞(M), then there
exists a neighborhood U of x such that f ∈ R(U) and every critical point of f in U
is fold type. The following semicontinuity holds in general: given a neighborhood
V of Sf ∩U , it holds that Sg ∩U ⊂ V for every map g in a C1 neighborhood of f .
The first idea for the proof of theorem A is quite obvious: the set of critical points
can be locally modified in an arbitrary way in C1 topology. If one wants to preserve
the C∞ genericity of the maps considered, the following can be said.

Lemma 1. Let x ∈ Sf be a critical point of a map f ∈ C1(M). Given a C1

neighborhood U of f and a codimension one submanifold N ⊂ M containing x,
there exists a map g ∈ U ∩ R(M) such that S1(g) contains a neighborhood of x in
N .
In addition, the map g can be C∞ approximated by a map h ∈ R(M) that is
geometrically equivalent to g and such that Sh∩N has empty interior in the relative
topology of N .

This statement contains the perturbation mechanism that will be needed to ob-
tain a contradiction from the assumption: f ∈ I1(M) and Sf ∩ fn(Sf ) 6= ∅. The
submanifold N will be fn(Sf ) (n > 1).
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Some definitions and remarks concerning the structure of critical sets of perturbed
maps are in order before proceeding with the proof of this lemma.
Remark 1 : If x is a critical point of fold type of a map f ∈ R, then the local
geometrical equivalence with q implies that there exist neighborhoods U of x and
V of f(x) such that f(Sf ) separates V in two components V − and V +; f is two
to one from U \ Sf onto V + and no point in V − has preimages in U . If two maps
f and g in R are topologically conjugated (hf = gh) then the homeomorphism h
must carry critical points of f to critical points of g, because the local forms imply
that this is true for fold type points, and the fact that fold type points are dense
in Sf implies the assertion for the other critical points. Analogously it comes that
critical values of g are carried by the conjugacy to critical values of f .
This proves an assertion of the introduction: if two topologically equivalent maps
f and g belong to R, then f and g are geometrically equivalent.

The basic idea to prove that no critical point is periodic is the following. It
is well known that maps without critical periodic points constitute a residual set.
However this is not enough for our purposes, we have to find two geometrically
equivalent maps close to f such that one of them still has a periodic critical point
and the other does not. This will give a contradiction.
It seems intuitive the fact that a nongeneric map f ∈ C1(M) having a nongeneric
critical point x can be C1 perturbed to a generic map g ∈ R for which the same
point is still critical. To prove this we make a sequence of perturbations within a
given C1 neighborhood U of f .

Proposition 1. Let f be a C1 map, U a C1 neighborhood of f , and x ∈ Sf . Then
there exists g ∈ R(M) ∩ U such that x is a fold type point of g.
Moreover, if f satisfies one of the following conditions:

(1) fn(x) ∈ Sf for some positive n.
(2) fk(x) is periodic for some k ≥ 0.
(3) x belongs to the stable manifold of a periodic point p of f ,

then the map g ∈ R(M) can be chosen satisfying the corresponding property.

Proof. Take a one dimensional subspace V contained in the kernel of Dfx and let
H be a complementary hyperplane. Now let h be a map in U such that Dhx(V ) = 0
and Dhx is injective in H . This h ∈ U is arbitrarily C1 close to f and x ∈ S1(h).
Now it will be constructed a map ℓ in U such that x ∈ S1(ℓ) is a generic critical
point. Without loss of generality, one can assume that h acts on R

m and that the
subspace H is R

m−1 × {0} in the product R
m = R

m−1 × R; hence, if h = (h1, h2)
then the derivative of h1 with respect to x1 ∈ R

m−1 is injective for every (x1, x2)
in the ball centered at x and radius ρ in R

m. There exists a map r such that

h(y) = h(x) + A(y − x) + r(y) and ||r(y)||
||y−x|| → 0 when y → x, where A = Dhx.

Choose a symmetric linear map B such that the critical point 0 of the quadratic
map Q(X) = AX+ 〈BX,X〉 is generic (of course an open and dense set of possible
choices for that B exist). Finally define ℓ(y) = h(x) +Q(y − x). It is clear that ℓ
is C1 close to h in a neighborhood of x, so an adequate bump function should be
used to construct ℓ in the whole manifold M .
The final step consists in producing the map g. To do this, first perturb ℓ to a map
g0 in R that is C∞ close to ℓ in a neighborhood U of x. Because the critical point
x was generic for ℓ, there exists a generic critical point y ∈ S1(g0) ∩ U . Let τ be
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a C∞ map close to the identity, carrying y to x and define g = g0 ◦ τ . This map
satisfies the property required in the first statement. The proof that the others
properties are preserved by adequate small perturbations is quite similar and relies
on the fact that g(x) = f(x) holds by construction. �

The first application of this result is the following:

Proof of lemma 1: First perturb f to a map (still called f) in R(M) ⊂ C∞(M)
for which x is a critical point, as in the last proposition. As the assertion is local,
one can assume without loss of generality that M = R

m and that 0 is a critical
point of f . It can also be assumed that N = {x = (x1, · · · , xm) ∈ R

m xm = 0},
because there exists a diffeomorphism T carrying N to this set and the origin to
itself. In addition, if L is an adequate linear isomorphism, then L ◦Df0 ◦ T−1 is
a linear map whose associated matrix in canonical coordinates is upper triangular,
has the first m − 1 rows linearly independent and the last one null. Maintain the
notation f for the map in these coordinates, so that it satisfies all the conditions.
These assumptions imply that the last coordinate of f satisfies fm(x) = fm(0)+r(x)

for some C1 function r such that |r(x)|
||x|| → 0 when x → 0. Given any ǫ > 0 there

exist a number ρ ∈ (0, ǫ/2) and a function ϕ = ϕǫ : R → [0, 1], of class C∞, that is
equal to 0 in |x| ≤ ρ, equal to 1 outside |x| < ǫ, and such that |ϕ′(x)| < 2/ǫ. Let

gm(x1, · · · , xm) = fm(0) + ϕ(||x||)r(x) + (1 − ϕ(||x||))ǫx2
m

and define g = (f1, · · · , fm−1, gm). Note that

∇gm(x) = ϕ′(||x||)
r(x) − ǫx2

m

||x||
x+ ϕ(||x||)∇r(x) + 2(1 − ϕ(||x||))ǫ(0, . . . , 0, xm).

Note that for ||x|| ≤ ρ, the determinant of Dgx is equal to 0 if and only if xm = 0,
(because the assumptions on f imply that the (m− 1) × (m− 1) block above and
at the left in the matrix of Dfx is nonsingular). Hence Sg ∩ B(0; ρ) ⊂ N , where
B(0; ρ) is the ball centered at the origin and with radius ρ. It remains to prove
that ǫ can be chosen so that g ∈ U . Note that f(x) = g(x) for x /∈ B(0; ǫ) and that
within this ball it holds that:

|gm(x) − fm(x)| ≤ |ϕ(||x||) − 1|
(

||r(x)|| + ǫ||x||2
)

Hence g is C0 close to f if ǫ is small. Finally note that

||∇gm(x) −∇fm(x)|| ≤ (2/ǫ).|r(x) − ǫx2
m| + |ϕ(||x||) − 1| (||∇r(x)|| + 2ǫ||x||)

Observe that given any δ > 0, one can choose ǫ such that |r(x)| ≤ δ||x|| and
||∇r(x)|| ≤ δ for every x ∈ B(0; ǫ). It follows that the C1 distance between f and
g is at most 2(δ + ǫ2) + δ + 2ǫ2. It remains to show that g ∈ R; observe that by
construction, the critical point at the origin is generic: indeed, the Hessian matrix
of gm at the origin has entries aij , where aij = 0 for every (i, j) 6= (m,m), and
amm = 2, but the set of vectors {∇f1(0), . . . ,∇fm−1(0), (0, . . . , 0, 2)} is linearly
independent, by the choice of local coordinates. This implies that g ∈ R(U) for
some neighborhood U of the origin. On the other hand, as f was taken in R(M), it
follows that g ∈ R(Bc), where Bc is the complement of B(0; ǫ) (there, f and g co-
incide). Take a bump function θ that is equal to 0 in the complement of U ∩B(0; ρ)
and is equal to 1 in a neighborhood V of x. Let d be the C∞ norm of θ. As R(M)
is dense in C1(M), choose any g1 ∈ R(M) such that the C∞ distance between
g and g1 is less than τ/d, (where every map in a τ -neighborhood of g belongs to
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R(U). Finally define g0 = θg + (1 − θ)g1; this g0 satisfies all conditions: it belongs
to R(U), because it is τ -close to g there; it belongs to R(U c) because it is equal
to g1 there; it satisfies Sg1

∩ V = N ∩ V , because in that neighborhood it coincides
with g.
It remains to prove the second assertion of the lemma. Let ϕ be a C∞ diffeomor-
phism of M such that ϕ(x) = x, ϕ(V ) = V and ϕ−1(N) ∩ N does not contain a
neighborhood of x in N . It is clear that such a map can be obtained arbitrarily
C∞ close to the identity (for example Dϕ0 can take T0N to any other hyperplane
containd in T0M). Observe that h = gϕ is C∞ close to g, so that it belongs to
U ∩R(M); h is geometrically equivalent to g (because ih = gϕ, where i is the iden-
tity map) and Sh ∩ V = ϕ−1(Sg ∩ V ), so that Sh cannot contain a neighborhood
of x in N .

Remark 2 : A point x is preperiodic for f if there exist k ≥ 0 and p > 0 such that
fk+p(x) = fk(x). If k = 0 then x is periodic. The period of a preperiodic point
is the minimum p satisfying the above equation. Denote Pk,p(f) the set of points
x such that the above holds and k is minimum, and by Per(f) the union of the
P0,p(f) for positive p.
A periodic point x of period p is hyperbolic if the differential of fp at x has no
eigenvalue null or of modulus one. It is well known that given any p ≥ 1, the set of
maps Gp for which every periodic point of period at most p is hyperbolic, is open
and dense in every Cr(M). For every map in this open and dense set, the number
of periodic points of period at most p is finite and locally constant. It is clear that
if f ∈ Gp then P0,p(f) ∩ Sf = ∅. This argument can be completed to obtain an
open and dense set Gk,p of maps such that Pk,p(f) ∩ Sf is empty.
On the other hand, assume that a map f ∈ C1(M) has a critical point x ∈ Pk,p(f).
The second assertion of proposition 1 gives a map g ∈ R(M) ∩ Gp, C

1 close to f ,
such that x still belongs to Pk,p(g) ∩ Sg.

Lemma 2. If f ∈ I1(M), then no preperiodic point of f is critical.

Proof. Note that intersections between Pk,p(f) and Sf can be avoided by small
perturbations; what must be proved now is that this can be done within the same
class of geometric equivalence. Therefore one can assume that x ∈ S1(f) is an
isolated point of Pk,p(f), that fk(x) is hyperbolic, and that f ∈ R(M). We will
arrive to a contradiction if we can find a map g that is C1 close to f , geometrically
equivalent to f and such that no critical point of g belongs to Pk,p(g).
This will be done in local charts. Let (U, τ1) and (V, τ2) be local charts at x

and f(x) respectively. The local coordinates can be chosen so that f̃(x1, . . . , xm) =
τ2fτ

−1
1 (x1, . . . , xm) = (x2

1, . . . , xm). Let h(x1, . . . , xm) = (h1(x), x2, . . . , xm), where
h1(x) = x2

1 − ǫρ(||x||)x1, ǫ is an arbitrary positive number and ρ satisfies the fol-
lowing conditions: The function ρ is C∞, ρ(0) = 1, ρ(x) = 0 for every |x| > 1 and
the C2 norm of ρ is less than a constant k. The map g will be τ−1

2 hτ1. To see that

g satisfies the above condition we note that h is C1 close to f̃ if ǫ is small enough,
that g(x) = f(x) and that x is not a critical point of g: hence Pk,p(g) ∩ Sg = ∅. It
remains to show that f and g are geometrically equivalent and for this it is enough
to prove that f̃ and h are geometrically equivalent.
The equation of the critical points of h is ∂1h1(x) = 0; as ∂11h1 is close to 2 if ǫ is
small it follows by the implicit function theorem that there exists a C∞ function
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c(x2, . . . , xm) whose graph is the set of critical points of h. Define

ψ(y) = (y1 − h1(c(y2, . . . , ym), y2, . . . , ym), y2, . . . , ym),

so that

ψ(h1(x), x2, . . . , xm) = (h1(x) − h1(c(x2, . . . , xm), x2, . . . , xm), x2, . . . , xm).

If ϕ1(x) is a function such that ϕ2
1(x) = h1(x)− h1(c(x2, . . . , xm), x2, . . . , xm) then

f̃ϕ = ψh, where ϕ(x) = (ϕ1(x), x2, . . . , xm). It remains to prove that ϕ is a C∞

diffeomorphism. Note that

h1(x) − h1(c(x2, . . . , xm), x2, . . . , xm) = α(x1, . . . , xm)(x1 − c(x2, . . . , xm))2

with α a positive C∞ function. �

Proposition 2. If f ∈ I1(M), then there exist neighborhoods U of f and U of Sf

such that U ∩ hn(U) = ∅ for every n ≥ 1 and every h ∈ U .

Proof. It is first claimed that fn(Sf ) does not intersect Sf if n ≥ 1.
Assume by contradiction that f ∈ I1(M), and that there exists a point x ∈ Sf such
that fn(x) ∈ Sf for some (minimum) n > 0. By proposition 1, one can assume
that f ∈ R. Let {Uj : 0 ≤ j ≤ n} be a disjoint sequence of open sets such that
each Uj is a neighborhood of f j(x) and f(Uj) ⊂ Uj+1. This is possible since x is
not preperiodic.
Note then that fn(Sf ) is a codimension one submanifold of M containing fn(x);
indeed, f(Sf∩U0) is a submanifold since the restriction of f to S1(f) is an immersion
whenever x is a fold point. Then the fact that Dffj(x) is an immersion for every
j ≥ 1 implies the asserted.
Now apply lemma 1. The first assertion there, gives a map g ∈ R for which Sg

contains a neighborhood of gn(x) in N = fn(Sf ∩ U0) (note that the support of
this perturbation is contained in Un, so fn(Sf ∩U0)∩Un = gn(Sg ∩U0)∩Un. The
second perturbation gives a map h for which Sh ∩ hn(Sh) has empty interior in the
submanifold hn(Sh ∩ Un). The support of this last perturbation is also contained
in Un, hence the set of critical points in U0 and their images until n are the same
for f , g and h. A contradiction follows, because, on one hand, g and h must be
topologically conjugate since lemma 1 says that g and h are geometrically equivalent
C1 perturbations of f , and on other hand, g and h cannot be topologically conjugate
since a such a conjugacy must carry points is the interior of Sg∩gn(Sg) (a nonempty
set) to points in the interior of Sh ∩ hn(Sh) (empty). This proves the claim.
Now assume that the conclusion of the proposition is false. Then one can find a
map g arbitrarily C1 close to f , a point x and an integer j such that x and gj(x)
are arbitrarily close to Sf . By an argument similar to that of Franks’ lemma, ([F])

one can find a small C1 perturbation g1 of f such that x and gj
1(x) = gj(x) are

both contained in Sg1
. This contradicts the first claim. �

We have the desired conclusion:

Corollary 1. If f ∈ I1(M), then Ω(f) ∩ Sf = ∅.

Finishing this section, the main perturbation result is presented:

Lemma 3. Let M be a compact manifold, f be a map in I1(M) and W a neigh-
borhood of Sf . There exists a C1 neighborhood U of f such that if a map g ∈ U is
equal to f in W , then f and g are geometrically equivalent.
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Proof. Note first that there exist ρ > 0, λ0 > 0, and a C1 neighborhood U0 of f
such that, for every x ∈ W c (W c is the complement of W ), λ ≤ λ0 and g ∈ U0, it
holds that the restriction of g to B(x;λ) (the ball of center x and radius λ) is one
to one, and that

(1) g(B(x;λ)) ⊃ B(g(x); ρλ).

This assertion is clear, since for every g in a whole C1 neighborhood of f , the norm
of the inverse of Dgx at a point x ∈W c is uniformily bounded.
Let δ = inf{d(x, y) : f(x) = f(y), x ∈ W c and x 6= y}. If δ = 0, then there exist
sequences {xn} ⊂W c and {yn} such that f(xn) = f(yn) and 0 < d(xn, yn) → 0; if
w is a limit point of both sequences, then w is a critical point of f , this contradicts
w /∈ W , and proves δ > 0. Moreover, diminishing the neighborhood U0, one can be
obtain that inf{d(x, y) : g(x) = g(y), x ∈W c and x 6= y} ≥ δ/2
To prove the assertion, C1 diffeomorphisms ϕ and ψ must be found such that
fϕ = ψg. Take ψ equal to the identity map. Let λ be a positive number less than
half the distance from Sf to W c and less than min{λ0, δ/4} and take g ∈ U0 such
that the C0 distance between f and g is less than min{δ, ρλ}. It is claimed now
that if x /∈ W then there exists y ∈M such that:

(1) f(y) = g(x).
(2) d(x, y) ≤ δ/4.
(3) d(z, x) > δ/2 if f(z) = g(x) and z 6= y.

The first statement follows from equation 1 and the fact that g(x) ∈ B(f(x); ρλ);
hence the second item holds by the choice of λ. Note that y /∈ W , otherwise
g(y) = f(y) = g(x) and d(x, y) < δ/4, contradicting the definition of δ. Therefore
d(y, z) ≥ δ whenever f(z) = f(y) and z 6= y. The third item follows. Then, given
x /∈ W there exists a unique point y ∈ f−1(g(x)) that minimizes the distance to
x. The same assertion holds for points x ∈ W , because there one can take y = x.
Define ϕ(x) = y. It follows that with this ϕ the equation fϕ = g holds. If fx

denotes the restriction of f to the ball B(x;λ), then ϕ(x) = f−1
x g(x) in W c, from

which the required smoothness of ϕ is obtained. Finally, the C1 distance between
ϕ and the identity can be made arbitrarily small by diminishing δ. Therefore ϕ is
a diffeomorphism. �

§3. Hyperbolicity

Lemma 4. If f ∈ I1(M) then every periodic point of f is hyperbolic.

Proof. Suppose that f has a nonhyperbolic periodic point x with period n. Let g
be a map in R such that x is periodic nonhyperbolic for g, has period n and every
other periodic point of period less than or equal to n of g is hyperbolic. To do
this, first perturb f to a map such that the periodic point x is nonhyperbolic but
is isolated within the set of periodic points of period n of f . Then apply the usual
mechanisms to make the other periodic points of period at most n are hyperbolic.
Now we construct two C∞ maps, arbitrarily C1 close to f , such that the periodic
point x is hyperbolic for both maps but has different character (the dimension of
the stable space changes) and such that the perturbation has support outside the
set of critical points of f . By lemma 3 these maps are geometrically equivalent,
which contradicts the fact that f ∈ I1(M). �
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Proof of theorem A

By corollary 1 no critical point is wandering. By lemma 4, every periodic point is
hyperbolic. Now we use theorem A of Aoki, Moriyazu and Sumi in [AMS], that
implies the following:
If a map f with Sf ∩Ω(f) = ∅ has a C1 neighborhood contained in the set of map-
pings having every periodic point hyperbolic, then the nonwandering set of f has a
hyperbolic structure and the set of periodic points of f are dense in the nonwander-
ing set of f .
As shown by Przytycki ([P]), this is not enough to obtain the C1 Ω-stability of f :
for this it will be necessary to show first that each basic piece is either expanding
or injective. We will prove the Ω-stability of f directly from the definition.
Let U be the neighborhood of f given by the definition of I1(M) and U such that
proposition 2 holds for U and U . Let W be a neighborhood of Sf whose closure is
contained in U . There exists a C1 neighborhood U0 ⊂ U of f such that:

(1) The conclusions of lemma 3 hold for the neighborhoods W of Sf and U0 of
f .

(2) If f1 and f2 belong to U0 then there exists a map F = F (f1, f2) ∈ U such
that F is equal to f1 in W and equal to f2 in the complement of U .

Let U1 ⊂ U0 be a neighborhood of f such that F (f1, f2) ∈ U0 whenever f1 and f2
belong to U1.
Let g ∈ U1, and h = F (g, f) ∈ U0. By lemma 3, g and h are topologically equiva-
lent. By proposition 2, the periodic points of f and h are contained in U c, where
the maps coincide. It follows that Per(f) = Per(h), which implies that f = h in
Ω(f) = Ω(h), and we conclude that f and h are Ω- equivalent.

§4. Location of critical sets.

In this section we prove theorem B. It was already shown that every critical
point of an f ∈ I1(M) is wandering, and that f is an Axiom A map. It follows that
every point is contained in the stable set of some basic piece and in the unstable set
of a basic piece. It will be shown that a basic piece whose stable (resp. unstable)
set intersects Sf must be a periodic attractor (resp. an expanding set). Indeed, if
this is not the case, and a stable or unstable manifold of a basic piece of another
type contains a critical point, then this critical point can be perturbed in the same
class of geometric equivalence in order to produce some nonequivalent dynamical
consequences.
We refer the reader to the article of Przytycki ([P]) for the definitions of stable and
unstable sets and properties of Axiom a maps. It is clear, and will be used in the
sequel, that Pk,p(f) is an invariant of topological conjugacy, as well as the union of
the stable (resp. unstable) sets of its points.
The idea is the following: Let z be a generic critical point of fold type of f and
assume that it belongs to the stable manifold of a basic piece that is not a periodic
attractor. By the density of periodic points in each basic piece, it can be assumed
without loss of generality, that there exists a periodic point x of f whose stable
manifold contains z.
A first lemma will be needed show that by means of a C1 perturbation, one can
create a map g having a segment L close to z such that the image of L is a unique
point. If maps g1 and g2 are geometrically equivalent to g, then there exists a
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segment L1 (resp. L2) where g1 (resp. g2) is constant. Then g1 and g2 are topo-
logically equivalent, and the conjugacy must send L1 to L2 and g1(L1) to g2(L2).
A contradiction will be found if one can put the point g1(L1) in the stable manifold
of the g1-periodic point x and the point g2(L2) outside the stable manifold of a
periodic point of period equal to that of x. This will be possible since, by assump-
tion, the periodic point x of f was not an attractor. The proof for the repelling
case uses a similar argument.
Note that by proposition 1, one can choose the map f in R, preserving its other
properties.

Lemma 5. Let z be a fold point of a map f in R, U a C1 neighborhood of f and
U a neighborhood of x. Then there exists a map g ∈ U and a segment L ⊂ U such
that Sg = Sf ∪ L and L ∩ Sf = ∅.
Moreover, g is constant in L.

A segment is the image of a smooth injective curve α : [0, 1] →M .

Proof. One can assume that f(x1, . . . , xm) = (x2
1, . . . , xm) and the point z is the

origin.
Given ǫ0 > 0 and r ∈ (0, a), there exist an interval I ⊂ R, and a C2 function q such
that

• q(x) = x2 for |x| ≥ r/2
• q(x) is C1 ǫ0-close to x→ x2.
• For every x, q′′(x) ≥ 0 and q(x) = 0 if and only if x ∈ I.
• The interval I is contained in (0, r/2)

Define a function g1 as follows:

g1(x1, . . . , xm) = hρ(x1, . . . , xm) + x1q
′(x1) − q(x1),

where, given any ρ > 0, hρ is a function such that hρ(x) = 0 for every |x| > r,
while for every |x| ≤ r/2 it holds that

hρ(x1, . . . , xm) = ρ

∫ x1

0

t(x2
2 + · · · + x2

m)dt.

depending just on r, one can choose ρ small in order to obtain that hρ is C∞

arbitrarily close to the null function.
Finally define

g(x1, . . . , xm) = (g1(x1, . . . , xm), x2, . . . , xm).

Note that the intersection of Sg with the ball centered at the origin and of radius
r/2 is the set of points x such that

∂1g1(x) = ∂1hρ(x) + x1q
′′(x1) = x1



q′′(x1) + ρ

m
∑

j=2

x2
j



 = 0,

that equals the union of x1 = 0 with the set of points {(x1, . . . , xm)} such that
x1 ∈ I and x2 = · · · = xm = 0. On the other hand, g = f in |x| > r. Finally, in
the annulus |x| ∈ (r/2, r), g(x) is C∞ close to f if one makes ρ small. From the
general theory of singularities it follows that the intersection of Sg and the annulus
is a submanifold arbitrarily close to Sf , so one can perturb in a small neighborhood
of this annulus just to make coincide Sg with Sf there without changing the map
in the r/2 neighborhood of the origin. �
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Note that g(L) = f(z), but g(L) /∈ g(Sg \ L).

Proof of theorem B

Part 1. The map f belongs to I1(M), and has a critical point z contained in the
stable manifold W s(x, f) of a fixed point x that is not an attractor. It can also be
assumed that f is generic and that z is a fold type point.
To produce a perturbation g1 of f such that L ∩W s(x; g1) 6= ∅, just take the map
g of the previous lemma. If the neighborhood U was taken such that its future it-
erates under f do not intersect U , then g(L) = f(z) belongs to the stable manifold
of x.
The construction of the map g2 is not so easy, because the intersection of the sta-
ble manifold of x with the neighborhood U can have infinitely many components.
Consider first the case where the basic piece that contains the periodic point x
is not an attractor. The same proof made for Axiom A diffeomorphisms can be
adapted to show that the union of the basins of the attracting basic pieces is open
and dense. Before applying the lemma, perturb the mp f in U so that z belongs to
the basin of an attractor, without changing the class of geometric equivalence of f
nor the condition of critical point of z. Indeed, let τ be a translation supported in a
small neighborhood W of f(U) (that is not necessarily open) such that τ(f(z)) ∈ B
where B is equal to the intersection of the basin of an attractor with f(U). Define
the new map f ′ as follows: if y ∈ U , then fy) = τ(f(y)), and if y /∈ U , then
f ′(y) = f(y). Note that if W is sufficiently small, then the preimages of W are
disjoint open sets, so f ′ is well defined, smooth, and close to f . Moreover, by the
choice of U (disjoint of its future iterates) it holds that the set B is still contained
in the basin of an attractor of f ′. Now one can apply the lemma, with L contained
in the basin ot the referred attractor, giving a map g2 that is geometrically but not
topologically equivalent to g1.
To treat the remaining case, assume Λ is an attracting basic piece and that x ∈ Λ.
Let W be a neighborhood of Λ such that f(W ) ⊂ W and f is injective in W (f
is injective in Λ because f is Ω-stable). Let g be a map like in the lemma so that
L is contained in the basin of Λ. Let k > 0 be the first positive integer such that
y = gk(L) ∈ W ; as periodic points are dense in Λ one can perturb the map g in
a neighborhood of Λ to a map g2 such that y belongs to the stable manifold of a
periodic point of period greater than that of x. This last perturbation must be
geometrically equivalent ot g1, but cannot be topologically equivalent.
Part 2. The map f belongs to I1(M) and there exists a nonrepelling fixed point
x whose unstable set contains a critical point z. The unstable set is defined as the
union of the images of a local unstable manifold. Now there exists a neighborhood
U of z such that the future images of U do not intersect U . This implies that a
perturbation of f in U does not produce any change in Wu(x, f) ∩ U . So one can
find a perturbation satisfying that both extreme points of L are contained in the
complement of Wu and another perturbation satisfying that at least one extreme
point of L belongs to Wu.

§5. Sufficient conditions and examples

This section contains the proof of the partial converse, theorem C of the intro-
duction. In the mentioned article [IPR], the existence of C3 structurally maps was



STABILITY MODULUS SINGULAR SETS 13

shown. These were perturbations of complex polynomials, so the components of
the set of critical points were arbitrarily small, which provide some simplifications
on the proof presented here, that follows the same ideas.

Definition 3. A C1 map f satisfies the noncritical relations property if there exist
open connected sets {U1, U2, . . . , Un} such that:

(1) Sf ⊂ ∪iUi.
(2) The closures of the sets Ui are disjoint.
(3) Given nonnegative integers j and l such that f j(Uk) ∩ f l(Ui) 6= ∅, then

j = l and k = i.
(4) The restriction of f to the closure of f j(Ui) is injective for every j > 0 and

1 ≤ i ≤ n.

It is important to note that items 3 and 4 do not represent an infinite number
of conditions, since, under the hypothesis of theorem C, each component of Sf is
entirely contained in the basin of a unique periodic attractor and hence is even-
tually contained in an open set where the map is injective. Therefore, each Ui is
contained in a component of the basin of an attractor.

Denote by Bf the union of the basins of the periodic attractors of f . Define
also the Julia set of f as the set of nonwandering points of f that are not periodic
attractors. This set was denoted by Ω′(f). The first assertion describes global
aspects of the dynamics of every g in a neighborhood of f .

Lemma 6. If f satisfies the hypothesis of theorem C, then the following assertions
hold:

(1) M = Bf ∪ Ω′(f).

(2) Either Bf is empty (and f is an expanding map) or M = Bf , (A denotes
the closure of the set A).

(3) f is C1 Ω-stable, and hence the same conclusions hold for every map g in
a C1 neighborhood of f .

Proof. Assume that there exists a point x ∈ M \ Bf and let U be a neighborhood
of x. As the sequence {fn(x)} converges to Ω(f), there exists an m > 0 such that
fm(x) ∈ Ω′(f) and hence x ∈ Ω′(f) by assumption (4). This proves the first item.
If U ⊂ Ω′(f) then Ω′(f) = M , hence Bf is empty or U ∩Bf 6= ∅.
As f is Axiom A, has no cycles by hypothesis (3) of theorem C, and every critical
point is wandering, then the theorem of Przytycki implies that f is C1 Ω-stable. �

There exists a uniform constant of expansivity for the restrictions of the maps
g in a neighborhood of f to the respective Julia sets. Let ǫ be this constant. Let
α > 0 be less than ǫ and less than the the distance between different Ui’s. Let U be
a C1 neighborhood of f such that every g ∈ U is Ω-equivalent to f and such that
Sg ⊂ ∪Ui. The number α and neighborhood U will be diminished later. Take g1
and g2 in U that are Z-geometrically equivalent, where Z is the C0 neighborhood
of the identity of size α. One has:

(2) ϕg1 = g2ψ,

where the distance from ψ(x) and ϕ(x) to x is less than α for every x ∈M .
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Proof of theorem C.

The idea is to construct a conjugacy h from Bg1
to Bg2

that is ǫ-C0 close to the
identity in a neighborhood of Ω′(g1), and then continuously extend it to the closure
of Bg1

= M , using that Ω′(g1) is expanding.
Construction of a fundamental domain.

Let x be an attracting periodic point of f ; assume that x is fixed to simplify
notation. Let V be a neighborhood of x such that the closure of f(V ) is contained
in V and f restricted to V is injective. The first step consists in construct an
open set V ′ ⊂ V such that the same properties of V hold and such that for every
Ui contained in the basin of x there exists a positive integer ni such that fni(Ui)
is contained in the interior of the fundamental domain V ′ \ f(V ′). Assume first
that there exists only one of the sets Ui contained in the basin of x. Let n be the
minimum positive integer such that the closure of fn(Ui) is contained in V and
denote by W the closure of fn(Ui). As the point x cannot belong to W , there
exists a finite number of future iterates of V that intersect W , say that fp(V )∩W
is empty for every p > N . Define a sequence of compact sets {W0,W1, . . . ,WN}
such that the following holds:

• W0 = W .
• Wk is contained in the interior of Wk+1 for every k = 0, . . .N − 1.
• WN is contained in V and does not intersect fp(V ) for every p > N .
• f(WN ) ∩WN = ∅.

Then define

V ′ = V \
k=N
⋃

k=1

f−k(Wk),

and prove that V ′ satisfies the above claim. Indeed, if x ∈ V , then f(x) belongs
to the interior of V ; if, in adition, x /∈ f−k(Wk), then f(x) does not belong to
f1−k(Wk) whose interior contains f1−k(Wk−1), because f is a diffeomorphism in
V . This proves that V ′ \ f(V ′) is a fundamental domain for f . Finally, if y ∈ V ′,
then y /∈ f−1(W1), that contains f−1(W ) in its interior; this implies that W is
contained in the interior of the fundamental domain.
Assume now that U1, . . . , UL are contained in the basin of x, and let ni such that
fni(Ui) is contained in V for the first time. The proof is equal if one defines now
W = ∪fni(Ui), because the preimage of one of the sets fni(Ui) cannot intersect an
image of an Uj .
The open set U can be diminished again in order to assume that V ′ \g(V ′) is a fun-
damental domain whose intersection with fni(Ui) contains gni(Sg ∩ Ui) whenever
Ui is contained in the basin of x and g ∈ U . For i = 1, 2, denote by xi the fixed
point that the map gi has in V ′.
Defintion of the conjugacy h in the neighborhood V ′ of x1.

It is easy to construct a local conjugacy between g1 and g2 that is close to the
identity, but this local homeomorphism may not preserve critical images. We refer
the reader to [IPR] where a similar construction was done (there, the critical com-
ponents Ui were arbitrarily small and the manifold was two dimensional).
Let α be diminished again in order that α is less than the distance between different
fni(Ui)’s. Let Zi(g1) be the closure of gni

1 (Ui) and Zi(g2) = ϕ(Zi(g1)). As ϕ is
α-C0 close to the identity, it follows that Zi(g2) contains gni

2 (Sg2
∩ Ui). For each



STABILITY MODULUS SINGULAR SETS 15

g = g1, g2 let Z ′
i(g) be a small neighborhood of Zi(g). The construction begins with

a homeomorphism h:

h : V ′ \
⋃

i

(∪n≥0g
n
1 (Z ′

i(g1))) → V ′ \
⋃

i

(∪n≥0g
n
2 (Z ′

i(g2))),

such that hg1 = g2h, and such that the C0 distance between h and the identity is
less than ρ, an arbitrary positive constant to be determined later. Next define h = ϕ
in Zi(g1) and finally extend h to Z ′

i(g1)\Zi(g1), such that h is a homeomorphism α-
C0 close to the identity. To prove that this last extension is possible, note that the
boundary of Zi(g) can be taken smooth and that Z ′

i(g) may be taken as the union
of a tubular neighborhood of the boundary of Zi(g) with Zi(g). Note also that the
boundary of fni(Ui) has a finite number of components, so the positive number α
can be taken small in order that ϕ identifies components of the boundaries of Zi(g1)
and Zi(g2) in the same way that h identifies components of the boundary of Z ′

i(g1)
and Z ′

i(g2). It follows that the problem of constructing this last extension is reduced
to show that a C1 map that is C0 close to the identity on an embedded manifold,
can be extended to a homeomorphism that coincides with the identity outside a
tubular neighborhood of it. Once h was defined in the fundamental domain, one
can extend it dinamically to the whole V ′.
Definition of h in the basin Bg1

.

This part is subdivided into two steps. The first one consists in extending h to the
complement in Bg1

of the union of the preimages of the ∪iZi(g1). First extend h
to the first preimage of V ′. For g = g1, g2 let

V 1(g) = g−1(V ′ \ ∪Zi(g)).

Note that hg1 is a finite to one covering map from each component of V 1(g1) to a
component of V ′ \ ∪Z ′

i(g2). The map g2 is a covering map from each component
of V 1(g2) to a component of V ′ \∪Zi(g2). The domains of these covering maps are
homeomorphic and there exists an obvious isomorphism between the first homotopy
groups associated. The actions of corresponding coverings on homotopy groups are
equal modulus that isomorphism. From this it follows that there exists a unique
lift h̃ : V 1(g1) → V 1(g2) such that hg1 = g2h̃ and h̃(x1) = x2. By construction the

map h̃ is a homeomorphism that extends h.
This proceeding can be repeated to further preimages, thus giving an extension of
the conjugacy h to a homeomorphism

(3) h : Bg1
\ ∪n≥0g

−n
1 (∪i(Zi(g1))) → Bg2

\ ∪n≥0g
−n
2 (∪i(Zi(g2))).

The second step consists in the extension of h to the preimages of Zi. The home-
omorphism h can be extended in an unique way to a conjugacy defined in the
preimages of g−j

1 (Zi(g1)) for every i and j such that j < ni, because g1 was injec-

tive there. To define it in g−ni

1 (Zi(g1)) = Ui one must use the map ψ of equation
2, to take care of the critical set contained there. It is claimed now that h (given
by equation 3) must coincide with ψ in the boundary of Ui. Note that f is an
immersion if restricted to the (smooth) boundary of Ui. It follows that there exists
a number c > 0 such that two points in the boundary of Ui that have the same
image under f must be at a distance at least 2c. Let α be diminished again in
such a way that α < c. If also the neighborhood U of f is diminished, then the
same property holds for every g there. Note also that as the restrictions of both
ψ and h to the boundary of Ui satisfy the functional equation Φg1 = g2ϕ (where
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Φ is the unknown variable of the equation), it comes that ψ and h coincide in a
relative open subset of the boundary of Ui. But as both maps are α-C0 close to
the identity, then the claim follows. therefore one can extend h to Ui as equal to
ψ. the remaining extension to the preiamges of the sets Ui is know obvious.
Extension to the boundary.

This part is similar to the proof given in [IPR]. Fix a neighborhood U of the Julia
set of f where f is expanding, say that with an adapted metric one has that the
differential of f expands in U at a rate λ > 1. By lemma 6 it holds that there
exists some positive constant N such that f−n(V ′ \ f(V ′)) is contained in U for
every n ≥ N . This also holds for every g ∈ U . Moreover the constant ρ given in the
definition of h in the fundamental domain can be taken small so that h is ǫ-C0 close
to the identity in g−N

1 (V ′ \ g1(V ′)). Using the expansion of g1 in U one can show,
as in [IPR], corollary 3, that h is ǫ-C0 close to the identity. Then,taking sequences
and using the expansivity of g1 in Ω′(g1) the fact that h can be extended to the
boundary of Bg1

can be made as in the above reference. Trivially the extended h
is a conjugacy between g1 and g2. This proves the theorem.

An example. In [IPR] examples of perturbations of complex polynomials were
shown to be C3 structurally stable. In that case, each component of the set of
critical points was a small Jordan curve whose image was disjoint from its interior.
We show now how to construct a stable map in the sphere such that Sf is a circle
whose image is contained in the component of its complement that contains the
fixed attracting point. Let f(x, y) = ρ(x2 − y2 + λy, 2xy + µx) defined in a ball
Br of center the origin radius r = 1/2. If ρ, λ and µ are small positive numbers,
then the origin is an attractor and the set of critical points is a circle contained
in Br. Moreover, if ρ is diminished again, then f(Sf ) is contained in the bounded
component of the complement of Sf . It can also be seen that the restriction of f to
Sf is injective, from which it follows that f(Sf) is also a topological circle and that
the origin is contained in the bounded component of its complement. This makes
f a C3 geometrically stable map, in the sense that it is geometrically equivalent
to each C3 perturbation (to prove this assertion and the injectivity of f |Sf consult
[DGRRV]).
To define f in the whole sphere, let it coincide with z → z2 in the annulus
{z : |z| ∈ [3/4, 5/4]} and with a map g that in the complement of the ball of
radius 2 verifies that 1/g(1/z) = f(z). Then extend f to the whole sphere. It holds
that the set of critical points of f has two components each contained in the basin
of an attracting fixed point, the origin and ∞. The nonwandering set contains an
expanding basic piece {z : |z| = 1}. Moreover the extended map f is still C3

geometrically stable. By theorem C it follows that f is C3 structurally stable.
Final comment.

We do not know examples of maps satisfying the hypothesis of theorem C in di-
mension greater than two. To find other examples of structurally stable maps,
one would have to admit saddle type basic pieces, which represents an additional
difficulty, since their unstable manifolds have a wild behaviour, as they can have
infinitely many intesection points. Przytycki has presented the simplest possible
example in the last section of [P]. As far as we know, nobody has ever answered
his question about the C1 structural stability of this example.
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