
Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Programming-Based Automata Theory

Marco T. Morazán

Seton Hall University

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Quién soy?
Formal (fan of McCarthy to Felleisen)

Professor of Computer Science
Seton Hall University

Service
Chair TFP 2026, Odense Denmark
Steering Committee
Trends in Functional Programming

Founder
Trends in Functional Programming in Education

Member
Steering Committee
Implementation and Applications of Functional Languages

Some Interests
Program transformations

Optimal Lambda Lifting (IFL 2007)
Memoized Bytecode Closures (TFP 2013)

Functional Programming in Education
CS1 (Animated Problem Solving, Springer)
CS2 (Animated Program Design, Springer)
Automata Theory (Programming-Based Formal Languages and Automata Theory, Springer)
AI-Assisted Program Design (come to my IFL 2025 talk)

DSLs
FSMt (come Andrés' IFL 2025 talk)

Visualizations
Too many to list
Unrestricted Grammar Derivation (come to Andrés' IFL 2025 talk)

Validation
Automatic FSA Testing (come to Sophia's IFL 2025 talk)

Error Messages
Recipe-Based Errors (come to David's and Shamil's IFL 2025 talk)

Etc.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Tutorial Outline

Regular Languages

Regular expressions
Deterministic Finite Automata
Nondeterministic Finite Automata

Context-Free Languages

Context-free Grammars
Pushdown Automata
Context-Free Expressions (look for papers soon)

Recursively Enumerable Languages

Turing Machines
Multitape Turing Machines
Unrestricted Grammars

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Tutorial Outline

Regular Languages

Regular expressions
Deterministic Finite Automata
Nondeterministic Finite Automata

Context-Free Languages

Context-free Grammars
Pushdown Automata
Context-Free Expressions (look for papers soon)

Recursively Enumerable Languages

Turing Machines
Multitape Turing Machines
Unrestricted Grammars

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Tutorial Outline

Regular Languages

Regular expressions
Deterministic Finite Automata
Nondeterministic Finite Automata

Context-Free Languages

Context-free Grammars
Pushdown Automata
Context-Free Expressions (look for papers soon)

Recursively Enumerable Languages

Turing Machines
Multitape Turing Machines
Unrestricted Grammars

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Course Outline

Domain-Speci�c Language: FSM

Design Implement Validate Verify

Systematic Design Recipes

Validation (Unit Testing and Invariant Testing)

Veri�cation

Recipe-Based Errors

Textbook: Programming-Based Formal Languages and Automata Theory

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Course Outline

Domain-Speci�c Language: FSM

Design Implement Validate Verify

Systematic Design Recipes

Validation (Unit Testing and Invariant Testing)

Veri�cation

Recipe-Based Errors

Textbook: Programming-Based Formal Languages and Automata Theory

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation
Why would you want to do programming-based CS theory?

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation
Why would you want to do programming-based CS theory?

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

CS students dislike

Mathematical nature
Theory
Formal Notation
Lack of programming
Proofs they get wrong!

Constructivism in CS

knowledge is actively constructed by students engaged in building
activities
Common denominator: interest in software development
Tools: visualization, tutoring, simulators
PLs: Few e�orts, limited in scope: P♭

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

CS students dislike

Mathematical nature
Theory
Formal Notation
Lack of programming
Proofs they get wrong!

Constructivism in CS

knowledge is actively constructed by students engaged in building
activities
Common denominator: interest in software development
Tools: visualization, tutoring, simulators
PLs: Few e�orts, limited in scope: P♭

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

Need to integrate PLs and tools

FSM: Functional State Machines

A DSL in Racket that is a home for all
De�ne
Validate
Visualize
Verify

Tools are not enough

Systematic development: design recipes
Textbook: Programming-Based Formal Languages and Automata
Theory
Support for validation and veri�cation
Visualization: Norman Principles of E�ective Design
Development of domain jargon

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

Need to integrate PLs and tools

FSM: Functional State Machines

A DSL in Racket that is a home for all
De�ne
Validate
Visualize
Verify

Tools are not enough

Systematic development: design recipes
Textbook: Programming-Based Formal Languages and Automata
Theory
Support for validation and veri�cation
Visualization: Norman Principles of E�ective Design
Development of domain jargon

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

Need to integrate PLs and tools

FSM: Functional State Machines

A DSL in Racket that is a home for all
De�ne
Validate
Visualize
Verify

Tools are not enough

Systematic development: design recipes
Textbook: Programming-Based Formal Languages and Automata
Theory
Support for validation and veri�cation
Visualization: Norman Principles of E�ective Design
Development of domain jargon

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

Course Interest

1 2 3 4 5

0

0.2

0.4

0
0.06

0.26

0.4

0.28

0.02

0.11

0.23
0.19

0.45

0.06

0.21
0.17

0.25

0.32

0.04

0.11

0.19

0.38

0.28

P
ro
p
or
ti
o
n
o
f
R
es
p
o
n
d
en
ts

Q1.1 Q1.2 Q1.3 Q1.4

Survey Statements

Q1.1 This course is interesting.
Q1.2 Programming helped understand the material.
Q1.3 Programming increased my interest in Formal Languages and

Automata Theory.
Q1.4 The course is relevant to my Computer Science education.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

Intellectual Stimulation

1 2 3 4 5

0

0.2

0.4

0.6

0.02

0.13

0.24

0.36

0.25

0

0.13 0.11

0.49

0.26

0.01 0.04

0.25

0.57

0.13

P
ro
p
or
ti
o
n
o
f
R
es
p
o
n
d
en
ts

Q2.1 Q2.2 Q2.3

Survey Statements

Q2.1 Automata Theory is intellectually stimulating.
Q2.2 Programming state machines grammars, and regular expressions

is intellectually stimulating.
Q2.3 Programming constructive algorithms is intellectually stimulating.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

Machine simulation

1 2 3 4 5

0

0.2

0.4

0.6

0.02 0.04

0.14

0.24

0.56

0.02 0.02

0.2
0.26

0.59

0.02 0.04

0.15 0.15

0.64

0.02 0.02

0.24
0.15

0.57

P
ro
p
or
ti
o
n
o
f
R
es
p
o
n
d
en
ts

Q4.1.1 Q4.1.2 Q4.1.3 Q4.1.4

Q4.1.1 Visualizing the execution of deterministic �nite state automata is
useful.

Q4.1.2 Visualizing the execution of nondeterministic �nite state
automata is useful.

Q4.1.3 Visualizing the execution of pushdown automata is useful.
Q4.1.4 Visualizing the execution of Turing machines is useful.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Motivation

Data De�nitions

A state/nonterminal is in [A--Z]

An alphabet, Σ, is in (setof [a--z])∪[0--9]

A word is either

1. EMP

2. (listof i), i∈Σ

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

A regular expression, over an alphabet Σ, is an FSM type instance:

1. (empty-regexp)

2. (singleton-regexp "a"), where a∈ Σ
3. (union-regexp r1 r2), where r1 and r2 are

regular

expressions

4. (concat-regexp r1 r2), where r1 and r2 are

regular

expressions

5. (kleenestar-regexp r), where r is a regular

expression

6. (null-regexp) Not in our focus today

L(r) = language of r

A language that is described by a regular expression is called a regular
language.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

A regular expression, over an alphabet Σ, is an FSM type instance:

1. (empty-regexp)

2. (singleton-regexp "a"), where a∈ Σ
3. (union-regexp r1 r2), where r1 and r2 are

regular

expressions

4. (concat-regexp r1 r2), where r1 and r2 are

regular

expressions

5. (kleenestar-regexp r), where r is a regular

expression

6. (null-regexp) Not in our focus today

L(r) = language of r

A language that is described by a regular expression is called a regular
language.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions
Selectors

singleton-regexp-a kleenestar-regexp-r1

union-regexp-r1 union-regexp-r2

concat-regexp-r1 concat-regexp-r2

Predicates

empty-regexp? singleton-regexp?

union-regexp? concat-regexp?

kleenestar-regexp?

Function Template

;; regexp ... → ...
;; Purpose: ...
(de�ne (f=on=regexp rexp . . .)
(cond [(empty=regexp? rexp) . . .]

[(singleton=regexp? rexp)
. . .(f=on=string (singleton=regexp=a rexp)). . .]
[(kleenestar=regexp? rexp)
. . .(f=on=regexp (kleenestar=regexp=r1 rexp)). . .]
[(union=regexp? rexp)
. . .(f=on=regexp (union=regexp=r1 rexp)). . .
. . .(f=on=regexp (union=regexp=r2 rexp)). . .]
[else . . .(f=on=regexp (concat=regexp=r1 rexp)). . .

. . .(f=on=regexp (concat=regexp=r2 rexp)). . .]))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions
Selectors

singleton-regexp-a kleenestar-regexp-r1

union-regexp-r1 union-regexp-r2

concat-regexp-r1 concat-regexp-r2

Predicates

empty-regexp? singleton-regexp?

union-regexp? concat-regexp?

kleenestar-regexp?

Function Template

;; regexp ... → ...
;; Purpose: ...
(de�ne (f=on=regexp rexp . . .)
(cond [(empty=regexp? rexp) . . .]

[(singleton=regexp? rexp)
. . .(f=on=string (singleton=regexp=a rexp)). . .]
[(kleenestar=regexp? rexp)
. . .(f=on=regexp (kleenestar=regexp=r1 rexp)). . .]
[(union=regexp? rexp)
. . .(f=on=regexp (union=regexp=r1 rexp)). . .
. . .(f=on=regexp (union=regexp=r2 rexp)). . .]
[else . . .(f=on=regexp (concat=regexp=r1 rexp)). . .

. . .(f=on=regexp (concat=regexp=r2 rexp)). . .]))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions
Selectors

singleton-regexp-a kleenestar-regexp-r1

union-regexp-r1 union-regexp-r2

concat-regexp-r1 concat-regexp-r2

Predicates

empty-regexp? singleton-regexp?

union-regexp? concat-regexp?

kleenestar-regexp?

Function Template

;; regexp ... → ...
;; Purpose: ...
(de�ne (f=on=regexp rexp . . .)
(cond [(empty=regexp? rexp) . . .]

[(singleton=regexp? rexp)
. . .(f=on=string (singleton=regexp=a rexp)). . .]
[(kleenestar=regexp? rexp)
. . .(f=on=regexp (kleenestar=regexp=r1 rexp)). . .]
[(union=regexp? rexp)
. . .(f=on=regexp (union=regexp=r1 rexp)). . .
. . .(f=on=regexp (union=regexp=r2 rexp)). . .]
[else . . .(f=on=regexp (concat=regexp=r1 rexp)). . .

. . .(f=on=regexp (concat=regexp=r2 rexp)). . .]))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

More observers

gen-regexp-word: Nondeterministically generates a word in the language of
the given regexp

printable-regexp: Transforms the given r to a string

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

More observers

gen-regexp-word: Nondeterministically generates a word in the language of
the given regexp

printable-regexp: Transforms the given r to a string

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Design Recipe for Regular Expressions

1 Identify the input alphabet, pick a name for the regular expression, and
describe the language

2 Identify the sublanguages and outline how to compose them

3 De�ne a predicate to determine if a word is in the target language

4 Write unit tests

5 De�ne the regular expression

6 Run the tests and, if necessary, debug by revisiting the previous steps

7 Prove that the regular expression is correct

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Problem

DNA: arbitrary number of four nucleotide bases:

adenine (a) guanine (g) cytosine(c) thymine (t)

Certain genetic disorders, such as Huntington's disease, are

characterized by containing the subsequence cag

repeated two or more times in a row.

To help test programs written to detect this disorder, it is

useful to generate DNA sequences that contain such a subsequence.

Design and implement a regular expression to generate DNA

sequences with cag repeated two or more times in a row.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Step 3:

;; L={w | cagcag∈w}
(define DISORDER-DNA

(let* [(SIGMA '(a c g t))

. . .]

(concat-regexp DNA (concat-regexp CAG++ DNA)

#:sigma SIGMA

#:pred in-DISORDER-DNA?

#:gen-cases 10

#:in-lang '((c a g c a g) (g t c a g c a g t g))

#:not-in-lang '((c g a t) (g t c a g a t)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Step 3:

;; L={w | cagcag∈w}
(define DISORDER-DNA

(let* [(SIGMA '(a c g t))

. . .]

(concat-regexp DNA (concat-regexp CAG++ DNA)

#:sigma SIGMA

#:pred in-DISORDER-DNA?

#:gen-cases 10

#:in-lang '((c a g c a g) (g t c a g c a g t g))

#:not-in-lang '((c g a t) (g t c a g a t)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Step 3:

;; L={w | cagcag∈w}
(define DISORDER-DNA

(let* [(SIGMA '(a c g t))

. . .]

(concat-regexp DNA (concat-regexp CAG++ DNA)

#:sigma SIGMA

#:pred in-DISORDER-DNA?

#:gen-cases 10

#:in-lang '((c a g c a g) (g t c a g c a g t g))

#:not-in-lang '((c g a t) (g t c a g a t)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Step 3:

;; L={w | cagcag∈w}
(define DISORDER-DNA

(let* [(SIGMA '(a c g t))

. . .]

(concat-regexp DNA (concat-regexp CAG++ DNA)

#:sigma SIGMA

#:pred in-DISORDER-DNA?

#:gen-cases 10

#:in-lang '((c a g c a g) (g t c a g c a g t g))

#:not-in-lang '((c g a t) (g t c a g a t)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; L=BASE∗

(DNA (kleenestar-regexp BASE

#:sigma SIGMA

#:pred

(λ (w)

(andmap (λ (s) (list? (member s SIGMA)))

(word2lst w)))

#:gen-cases 10

#:in-lang '((g) () (t g g) (c g a) (a a t))

#:not-in-lang '()))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; L={a} U {c} U {g} U {t}
(BASE

(union-regexp

A

(union-regexp C (union-regexp G T))

#:sigma SIGMA

#:pred (λ (w)

(and (not-EMP? w)

(= (length w) 1)

(list? (member (first w) SIGMA))))

#:gen-cases 10

#:in-lang '((g) (t) (a) (c))

#:not-in-lang '((a a t) (g a t c))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; L=CAG CAG+

(CAG++ (concat-regexp CAG CAG+

#:sigma '(c a g)

#:pred (λ (w)

(and (not-EMP? w)

(>= (length w) 6)

(lst-of-cag? w)))

#:gen-cases 10

#:in-lang '((c a g c a g c a g))

#:not-in-lang '((a a c a g c g g))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; L=CAG+

(CAG+ (concat-regexp CAG CAG*

#:sigma '(c a g)

#:pred (λ (w)

(and (not-EMP? w)

(>= (length w) 3)

(lst-of-cag? w)))

#:gen-cases 10

#:in-lang '((c a g))

#:not-in-lang '((c a g c g g))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; L=CAG∗

(CAG∗ (kleenestar-regexp CAG

#:sigma '(c a g)

#:pred lst-of-cag?

#:gen-cases 10

#:in-lang '(() (c a g) (c a g c a g))

#:not-in-lang '((g g g) (a c g c a a))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; L={(c a g)}
(CAG (concat-regexp C (concat-regexp A G)

#:sigma '(c a g)

#:pred (λ (w)

(and (not-EMP? w)

(equal? w '(c a g))))

#:gen-cases 1

#:in-lang '((c a g))

#:not-in-lang '((c a g c a g))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; L={c}
(C (singleton-regexp "c"))

;; L={a}
(A (singleton-regexp "a"))

;; L={g}
(G (singleton-regexp "g"))

;; L={t}
(T (singleton-regexp "t"))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions
Document for code readers

;;word → boolean
;;Purpose: Determines if the given word is in
;; L(DISORDER=DNA)
(define (in-DISORDER-DNA? w)

(let [(L (word2lst w))]

(and (not (empty? L))

(>= (length L) 6)

(or (equal? (take L 6) '(c a g c a g))

(in-DISORDER-DNA? (rest L))))))

;; word → Boolean
;; Purpose: Determine if given list is (c a g)*
(define (lst-of-cag? w)

(let [(L (word2lst w))]

(or (empty? L)

(and (= (remainder (length L) 3) 0)

(equal? (take L 3) '(c a g))

(lst-of-cag? (drop L 3))))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions
Document for code readers

;;word → boolean
;;Purpose: Determines if the given word is in
;; L(DISORDER=DNA)
(define (in-DISORDER-DNA? w)

(let [(L (word2lst w))]

(and (not (empty? L))

(>= (length L) 6)

(or (equal? (take L 6) '(c a g c a g))

(in-DISORDER-DNA? (rest L))))))

;; word → Boolean
;; Purpose: Determine if given list is (c a g)*
(define (lst-of-cag? w)

(let [(L (word2lst w))]

(or (empty? L)

(and (= (remainder (length L) 3) 0)

(equal? (take L 3) '(c a g))

(lst-of-cag? (drop L 3))))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

;; word → (listof base)
;; Purpose: Convert given word to a list
(define (word2lst w)

(if (eq? w EMP) '() w))

;; word → Boolean
;; Purpose: Determine that given word is not empty
(define (not-EMP? w) (not (eq? w EMP)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Document for code readers

(check-gen? in-DISORDER-DNA?

'(c a g c a g)

'(a g g t c c a g c a g t a g))

(check-not-gen? in-DISORDER-DNA?

'()

'(a c g t)

'(c a t c c a a)

'(t g a c a g t a g))

(for-each (λ (w)

(check-gen? in-DISORDER-DNA? w))

(build-list

20

(λ (i)

(gen-regexp-word DISORDER-DNA))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Correctness

;; L={w | cagcag∈w}
(define DISORDER-DNA

(concat-regexp DNA (concat-regexp CAG++ DNA)))

Assume subexpressions are correct

DNA generates an arbitrary dna strand
CAG++ generates 2 or more cag strands
Therefore, DISORDER-DNA generates an arbitrary strand with at
least 2 cag strands

Do the same for the subexpressions

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Correctness

;; L={w | cagcag∈w}
(define DISORDER-DNA

(concat-regexp DNA (concat-regexp CAG++ DNA)))

Assume subexpressions are correct

DNA generates an arbitrary dna strand
CAG++ generates 2 or more cag strands
Therefore, DISORDER-DNA generates an arbitrary strand with at
least 2 cag strands

Do the same for the subexpressions

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Correctness

;; L={w | cagcag∈w}
(define DISORDER-DNA

(concat-regexp DNA (concat-regexp CAG++ DNA)))

Assume subexpressions are correct

DNA generates an arbitrary dna strand
CAG++ generates 2 or more cag strands
Therefore, DISORDER-DNA generates an arbitrary strand with at
least 2 cag strands

Do the same for the subexpressions

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Correctness

;; L={w | cagcag∈w}
(define DISORDER-DNA

(concat-regexp DNA (concat-regexp CAG++ DNA)))

Assume subexpressions are correct

DNA generates an arbitrary dna strand
CAG++ generates 2 or more cag strands
Therefore, DISORDER-DNA generates an arbitrary strand with at
least 2 cag strands

Do the same for the subexpressions

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Regular Expressions

Exercise: L = aa(ba ∪ bb)∗aa

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

a a a a a b � �
. . .

•

A
B

C

D
E

F

G

H

Input Tape

Control

Head

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Constructors
make-dfa: K Σ s F ∆ → dfa

make-ndfa: K Σ s F δ → ndfa

make-ndpda: K Σ Γ s F δ → pda

make-tm: K Σ δ s F [a] → tm

make-mttm: K Σ s F δ n [a] → mttm

Observers

sm-states sm-sigma sm-start sm-finals sm-rules sm-gamma

sm-apply sm-showtransitions

Visualizations

sm-graph sm-cmpgraph

sm-viz ndfa2dfa-viz union-viz

concat-viz ndfa2regexp-viz regexp2ndfa-viz

and more...

Testing

RBEs (David's and Shamil's talk @ IFL 2025)

FSMt (Andrés' talk @ IFL 2025)

Automatic (Sophia's talk @ IFL 2025)

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Constructors
make-dfa: K Σ s F ∆ → dfa

make-ndfa: K Σ s F δ → ndfa

make-ndpda: K Σ Γ s F δ → pda

make-tm: K Σ δ s F [a] → tm

make-mttm: K Σ s F δ n [a] → mttm

Observers

sm-states sm-sigma sm-start sm-finals sm-rules sm-gamma

sm-apply sm-showtransitions

Visualizations

sm-graph sm-cmpgraph

sm-viz ndfa2dfa-viz union-viz

concat-viz ndfa2regexp-viz regexp2ndfa-viz

and more...

Testing

RBEs (David's and Shamil's talk @ IFL 2025)

FSMt (Andrés' talk @ IFL 2025)

Automatic (Sophia's talk @ IFL 2025)

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Constructors
make-dfa: K Σ s F ∆ → dfa

make-ndfa: K Σ s F δ → ndfa

make-ndpda: K Σ Γ s F δ → pda

make-tm: K Σ δ s F [a] → tm

make-mttm: K Σ s F δ n [a] → mttm

Observers

sm-states sm-sigma sm-start sm-finals sm-rules sm-gamma

sm-apply sm-showtransitions

Visualizations

sm-graph sm-cmpgraph

sm-viz ndfa2dfa-viz union-viz

concat-viz ndfa2regexp-viz regexp2ndfa-viz

and more...

Testing

RBEs (David's and Shamil's talk @ IFL 2025)

FSMt (Andrés' talk @ IFL 2025)

Automatic (Sophia's talk @ IFL 2025)

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Constructors
make-dfa: K Σ s F ∆ → dfa

make-ndfa: K Σ s F δ → ndfa

make-ndpda: K Σ Γ s F δ → pda

make-tm: K Σ δ s F [a] → tm

make-mttm: K Σ s F δ n [a] → mttm

Observers

sm-states sm-sigma sm-start sm-finals sm-rules sm-gamma

sm-apply sm-showtransitions

Visualizations

sm-graph sm-cmpgraph

sm-viz ndfa2dfa-viz union-viz

concat-viz ndfa2regexp-viz regexp2ndfa-viz

and more...

Testing

RBEs (David's and Shamil's talk @ IFL 2025)

FSMt (Andrés' talk @ IFL 2025)

Automatic (Sophia's talk @ IFL 2025)

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

1 Name the machine and specify alphabets

2 Write unit tests

3 Identify conditions that must be tracked as input is consumed,associate a
state with each condition, and determine the start and �nal states.

4 Formulate the transition relation

5 Implement the machine

6 Test the machine

7 Design, implement, and test an invariant predicate for each state

8 ProveL=L(M)

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

;; L = {ϵ} U aa* U ab*

(define LNDFA

(make-ndfa

'(a b)

,

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

;; L = {ϵ} U aa* U ab*

(define LNDFA

(make-ndfa

'(a b)

#:rejects '((b a) (a b a) (a a b a))

#:accepts '(() (a a) (a b b b b))))

(check-reject? LNDFA '(a b a) '(b b b b b)

'(a b b b b a a a))

(check-accept? LNDFA '() '(a) '(a a a a) '(a b b))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

;; L = {ϵ} U aa* U ab*
;; State Documentation
;; S: ci = empty, starting state A: ci = ab*, �nal state
;; F: ci = empty, �nal state B: ci = aa*, �nal state
(define LNDFA

(make-ndfa

'(S A B F)

'(a b)

'S

'(A B F)

#:rejects '((b a) (a b a) (a a b a))

#:accepts '(() (a a) (a b b b b))))

(check-reject? LNDFA '(a b a) '(b b b b b)

'(a b b b b a a a))

(check-accept? LNDFA '() '(a) '(a a a a) '(a b b))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

;; L = {ϵ} U aa* U ab*
;; State Documentation
;; S: ci = empty, starting state A: ci = ab*, �nal state
;; F: ci = empty, �nal state B: ci = aa*, �nal state
(define LNDFA

(make-ndfa

'(S A B F)

'(a b)

'S

'(A B F)

`((S a A) (S a B) (S ,EMP F)

(A b A)

(B a B))

#:rejects '((b a) (a b a) (a a b a))

#:accepts '(() (a a) (a b b b b))))

(check-reject? LNDFA '(a b a) '(b b b b b)

'(a b b b b a a a))

(check-accept? LNDFA '() '(a) '(a a a a) '(a b b))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

;; word → Boolean
;; Purpose: Determine if the given word is empty
(define S-INV empty?)

;; word → Boolean
;; Purpose: Determine if the given word is empty
(define F-INV empty?)

;; word → Boolean
;; Purpose: Determine if the given word is in aa*
(define (B-INV ci)

(and (not (empty? ci))

(andmap (λ (s) (eq? s 'a)) ci)))

;; word → Boolean
;; Purpose: Determine if the given word is in ab*
(define (A-INV ci)

(and (not (empty? ci)) (eq? (first ci) 'a)

(andmap (λ (s) (eq? s 'b)) (rest ci))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

* Correctness of M

a. Prove the state invariants hold when M is applied to w∈L(M)
b. Prove that L = L(M)

* This approach of for dfas, ndfas, and pdas

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Theorem
State invariants hold when LDNFA is applied to w∈L(LNDFA).

Proof.

Proof by induction on n = the number of steps M performs to consume w.
Base Case: n = 0
If n is 0 then the consumed input must be '()and machine is in S. Clearly,
S-INV.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Proof.

Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.
Consider each transition:

(S ,EMP F) By IH, S-INV holds. After consuming no input,
ci=EMP. Thus, F-INV holds.
(S a A) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci=a. Thus, ci∈ab∗ and A-INV holds.
(S a B) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci∈aa∗ and B-INV holds.
(A b A) By IH, A-INV holds, which means ci∈ab∗. After consuming
b, ci∈ab∗ and A-INV holds.
(B a B) By IH, B-INV holds, which means ci∈aa∗. After consuming
a, ci∈aa∗ and B-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Proof.

Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.
Consider each transition:

(S ,EMP F) By IH, S-INV holds. After consuming no input,
ci=EMP. Thus, F-INV holds.

(S a A) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci=a. Thus, ci∈ab∗ and A-INV holds.
(S a B) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci∈aa∗ and B-INV holds.
(A b A) By IH, A-INV holds, which means ci∈ab∗. After consuming
b, ci∈ab∗ and A-INV holds.
(B a B) By IH, B-INV holds, which means ci∈aa∗. After consuming
a, ci∈aa∗ and B-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Proof.

Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.
Consider each transition:

(S ,EMP F) By IH, S-INV holds. After consuming no input,
ci=EMP. Thus, F-INV holds.
(S a A) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci=a. Thus, ci∈ab∗ and A-INV holds.

(S a B) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci∈aa∗ and B-INV holds.
(A b A) By IH, A-INV holds, which means ci∈ab∗. After consuming
b, ci∈ab∗ and A-INV holds.
(B a B) By IH, B-INV holds, which means ci∈aa∗. After consuming
a, ci∈aa∗ and B-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Proof.

Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.
Consider each transition:

(S ,EMP F) By IH, S-INV holds. After consuming no input,
ci=EMP. Thus, F-INV holds.
(S a A) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci=a. Thus, ci∈ab∗ and A-INV holds.
(S a B) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci∈aa∗ and B-INV holds.

(A b A) By IH, A-INV holds, which means ci∈ab∗. After consuming
b, ci∈ab∗ and A-INV holds.
(B a B) By IH, B-INV holds, which means ci∈aa∗. After consuming
a, ci∈aa∗ and B-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Proof.

Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.
Consider each transition:

(S ,EMP F) By IH, S-INV holds. After consuming no input,
ci=EMP. Thus, F-INV holds.
(S a A) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci=a. Thus, ci∈ab∗ and A-INV holds.
(S a B) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci∈aa∗ and B-INV holds.
(A b A) By IH, A-INV holds, which means ci∈ab∗. After consuming
b, ci∈ab∗ and A-INV holds.

(B a B) By IH, B-INV holds, which means ci∈aa∗. After consuming
a, ci∈aa∗ and B-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Proof.

Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.
Consider each transition:

(S ,EMP F) By IH, S-INV holds. After consuming no input,
ci=EMP. Thus, F-INV holds.
(S a A) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci=a. Thus, ci∈ab∗ and A-INV holds.
(S a B) By IH, S-INV holds, which means ci=EMP. After consuming
a, ci∈aa∗ and B-INV holds.
(A b A) By IH, A-INV holds, which means ci∈ab∗. After consuming
b, ci∈ab∗ and A-INV holds.
(B a B) By IH, B-INV holds, which means ci∈aa∗. After consuming
a, ci∈aa∗ and B-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Theorem
L = L(LNDFA)

w∈L ⇒ w∈L(LNDFA)

Assume w∈L. This means w=EMP ∨ w∈ab∗ ∨ w∈aa∗. There is a

computation for each possible instance of w:

w=EMP: (S, EMP) ⊢ (F, EMP)

w∈ab∗: (S, ab∗) ⊢ (A, b∗) ⊢∗ (A, EMP)

w∈aa∗: (S, aa∗) ⊢ (B, a∗) ⊢∗ (B, EMP)

Thus, w∈L(LNDFA).
w∈L(LNDFA) ⇒ w∈L

Assume w∈L(LNDFA). This means LNDFA halts in F, B, or A after

consuming w. Given that invariants always hold, w∈L.
* w/∈L ⇔ w/∈L(LNDFA) by contraposition.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Theorem
L = L(LNDFA)

w∈L ⇒ w∈L(LNDFA)

Assume w∈L. This means w=EMP ∨ w∈ab∗ ∨ w∈aa∗. There is a

computation for each possible instance of w:

w=EMP: (S, EMP) ⊢ (F, EMP)

w∈ab∗: (S, ab∗) ⊢ (A, b∗) ⊢∗ (A, EMP)

w∈aa∗: (S, aa∗) ⊢ (B, a∗) ⊢∗ (B, EMP)

Thus, w∈L(LNDFA).

w∈L(LNDFA) ⇒ w∈L

Assume w∈L(LNDFA). This means LNDFA halts in F, B, or A after

consuming w. Given that invariants always hold, w∈L.
* w/∈L ⇔ w/∈L(LNDFA) by contraposition.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Theorem
L = L(LNDFA)

w∈L ⇒ w∈L(LNDFA)

Assume w∈L. This means w=EMP ∨ w∈ab∗ ∨ w∈aa∗. There is a

computation for each possible instance of w:

w=EMP: (S, EMP) ⊢ (F, EMP)

w∈ab∗: (S, ab∗) ⊢ (A, b∗) ⊢∗ (A, EMP)

w∈aa∗: (S, aa∗) ⊢ (B, a∗) ⊢∗ (B, EMP)

Thus, w∈L(LNDFA).
w∈L(LNDFA) ⇒ w∈L

Assume w∈L(LNDFA). This means LNDFA halts in F, B, or A after

consuming w. Given that invariants always hold, w∈L.

* w/∈L ⇔ w/∈L(LNDFA) by contraposition.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Theorem
L = L(LNDFA)

w∈L ⇒ w∈L(LNDFA)

Assume w∈L. This means w=EMP ∨ w∈ab∗ ∨ w∈aa∗. There is a

computation for each possible instance of w:

w=EMP: (S, EMP) ⊢ (F, EMP)

w∈ab∗: (S, ab∗) ⊢ (A, b∗) ⊢∗ (A, EMP)

w∈aa∗: (S, aa∗) ⊢ (B, a∗) ⊢∗ (B, EMP)

Thus, w∈L(LNDFA).
w∈L(LNDFA) ⇒ w∈L

Assume w∈L(LNDFA). This means LNDFA halts in F, B, or A after

consuming w. Given that invariants always hold, w∈L.
* w/∈L ⇔ w/∈L(LNDFA) by contraposition.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines
An alternative design (using closure properties of regular languages)

;; L = {ϵ}
;; State Documentation: S: ci = empty
(define E (make-ndfa '(S) '(a b) 'S '(S) '()))

;; L = aa*
;; State Documentation
;; S: ci = empty F: ci = a+
(define A+ (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F a F))))

;; L = ab*
;; State Documentation
;; S: ci = empty F: ci = a+
(define AB* (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F b F))))

;; L = {ϵ} U aa* U ab*
(define LNDFA (sm-union E (sm-union A+ AB*)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines
An alternative design (using closure properties of regular languages)

;; L = {ϵ}
;; State Documentation: S: ci = empty
(define E (make-ndfa '(S) '(a b) 'S '(S) '()))

;; L = aa*
;; State Documentation
;; S: ci = empty F: ci = a+
(define A+ (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F a F))))

;; L = ab*
;; State Documentation
;; S: ci = empty F: ci = a+
(define AB* (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F b F))))

;; L = {ϵ} U aa* U ab*
(define LNDFA (sm-union E (sm-union A+ AB*)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines
An alternative design (using closure properties of regular languages)

;; L = {ϵ}
;; State Documentation: S: ci = empty
(define E (make-ndfa '(S) '(a b) 'S '(S) '()))

;; L = aa*
;; State Documentation
;; S: ci = empty F: ci = a+
(define A+ (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F a F))))

;; L = ab*
;; State Documentation
;; S: ci = empty F: ci = a+
(define AB* (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F b F))))

;; L = {ϵ} U aa* U ab*
(define LNDFA (sm-union E (sm-union A+ AB*)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines
An alternative design (using closure properties of regular languages)

;; L = {ϵ}
;; State Documentation: S: ci = empty
(define E (make-ndfa '(S) '(a b) 'S '(S) '()))

;; L = aa*
;; State Documentation
;; S: ci = empty F: ci = a+
(define A+ (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F a F))))

;; L = ab*
;; State Documentation
;; S: ci = empty F: ci = a+
(define AB* (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F b F))))

;; L = {ϵ} U aa* U ab*
(define LNDFA (sm-union E (sm-union A+ AB*)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines
An alternative design (using closure properties of regular languages)

;; L = {ϵ}
;; State Documentation: S: ci = empty
(define E (make-ndfa '(S) '(a b) 'S '(S) '()))

;; L = aa*
;; State Documentation
;; S: ci = empty F: ci = a+
(define A+ (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F a F))))

;; L = ab*
;; State Documentation
;; S: ci = empty F: ci = a+
(define AB* (make-ndfa '(S F) '(a b) 'S '(F)

'((S a F) (F b F))))

;; L = {ϵ} U aa* U ab*
(define LNDFA (sm-union E (sm-union A+ AB*)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Finite-State Machines

Exercise: Σ={c,d}. Design, implement, & verify a dfa for:
L = {w|w has even number of c's and even number of d's}

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Constructor

make-cfg: N T R S → cfg

* R∈{N → {N ∪ T ∪ {ϵ}}+}

Observers

grammar-nts grammar-sigma grammar-rules

grammar-start grammar-derive

Testing

check-derive? check-not-derive?

#:accepts #:rejects

Visualization

grammar-viz

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Constructor

make-cfg: N T R S → cfg

* R∈{N → {N ∪ T ∪ {ϵ}}+}

Observers

grammar-nts grammar-sigma grammar-rules

grammar-start grammar-derive

Testing

check-derive? check-not-derive?

#:accepts #:rejects

Visualization

grammar-viz

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Constructor

make-cfg: N T R S → cfg

* R∈{N → {N ∪ T ∪ {ϵ}}+}

Observers

grammar-nts grammar-sigma grammar-rules

grammar-start grammar-derive

Testing

check-derive? check-not-derive?

#:accepts #:rejects

Visualization

grammar-viz

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Constructor

make-cfg: N T R S → cfg

* R∈{N → {N ∪ T ∪ {ϵ}}+}

Observers

grammar-nts grammar-sigma grammar-rules

grammar-start grammar-derive

Testing

check-derive? check-not-derive?

#:accepts #:rejects

Visualization

grammar-viz

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

1. Pick a name for the grammar and specify the alphabet

2. De�ne each syntactic category and associate each with a
nonterminal clearly specifying the starting nonterminal

3. Develop the production rules

4. Write unit tests

5. Implement the grammar

6. Run the tests and redesign if necessary

7 For each syntactic category design and implement an
invariant predicate to determine if a given word satis�es
the role of the syntactic category

8 For words in L(G) prove that the invariant predicates hold
for every derivation step.

9 Prove that L = L(G)

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

;; L = {ww^r | w in {a, b}*}

(define pali

(make-cfg

'(a b)

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

;; L = {ww^r | w in {a, b}*}
;; Syntactic Categories Documentation
;; S: generates a palindrome, starting nt
(define pali

(make-cfg

'(S)

'(a b)

'S

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

;; L = {ww^r | w in {a, b}*}
;; Syntactic Categories Documentation
;; S: generates a palindrome, starting nt
(define pali

(make-cfg

'(S)

'(a b)

`((S ,ARROW ,EMP) (S ,ARROW a) (S ,ARROW b)

(S ,ARROW aSa) (S ,ARROW bSb))

'S

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

;; L = {ww^r | w in {a, b}*}
;; Syntactic Categories Documentation
;; S: generates a palindrome, starting nt
(define pali

(make-cfg

'(S)

'(a b)

`((S ,ARROW ,EMP) (S ,ARROW a) (S ,ARROW b)

(S ,ARROW aSa) (S ,ARROW bSb))

'S

#:rejects '((a b) (b a a) (a b b b))

#:accepts '(() (a) (b) (a a b b a a))))

(check-not-derive? pali '(a a a b) '(b b a))

(check-derive? pali '(a a a) '(b b b b)

'(a b b a a a a b b a))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

;; L = {ww^r | w in {a, b}*}

;; word → Boolean
;; Purpose: Determine if S should generate the given word
(define (S-INV wrd)

(let* [(wlen (quotient (length wrd) 2))

(w (take wrd wlen))

(wrd-w (drop wrd wlen))

(w^r (if (= (length w) (length wrd-w))

wrd-w

(rest wrd-w)))]

(equal? w (reverse w^r))))

(check-inv-fails? S-INV '(b a b a)

'(a a a a a b))

(check-inv-holds? S-INV '(a a) '(a b a)

'(b b a b b b a b b))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Theorem

Invariants hold deriving w∈L(pali).

Proof.

Proof by induction on n = the height of derivation tree.
Base Case: n = 1
Yield is either EMP, a, or b. For all, w and wr equal EMP.
Thus, S-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Inductive Step:
Assume: NT invariants hold for n = k.
Show: NT invariants hold for n = k+1.

Consider each production for n = k+1:
(S → aSa) By IH, S-INV holds. This means (rhs) S
generates wcwr , where c∈{a, b, EMP}. By using this rule,
the yield is awcwra. Observe that (wra)r=a(wr)r=aw.
Thus, S-INV holds.

(S → bSb) By IH, S-INV holds. This means (rhs) S
generates wcwr , where c∈{a, b, EMP}. By using this rule,
the yield is bwcwrb. Observe that (wrb)r=b(wr)r=bw.
Thus, S-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Inductive Step:
Assume: NT invariants hold for n = k.
Show: NT invariants hold for n = k+1.

Consider each production for n = k+1:
(S → aSa) By IH, S-INV holds. This means (rhs) S
generates wcwr , where c∈{a, b, EMP}. By using this rule,
the yield is awcwra. Observe that (wra)r=a(wr)r=aw.
Thus, S-INV holds.

(S → bSb) By IH, S-INV holds. This means (rhs) S
generates wcwr , where c∈{a, b, EMP}. By using this rule,
the yield is bwcwrb. Observe that (wrb)r=b(wr)r=bw.
Thus, S-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Inductive Step:
Assume: NT invariants hold for n = k.
Show: NT invariants hold for n = k+1.

Consider each production for n = k+1:
(S → aSa) By IH, S-INV holds. This means (rhs) S
generates wcwr , where c∈{a, b, EMP}. By using this rule,
the yield is awcwra. Observe that (wra)r=a(wr)r=aw.
Thus, S-INV holds.

(S → bSb) By IH, S-INV holds. This means (rhs) S
generates wcwr , where c∈{a, b, EMP}. By using this rule,
the yield is bwcwrb. Observe that (wrb)r=b(wr)r=bw.
Thus, S-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Theorem
L = L(pali)

w∈L ⇒ w∈L(pali)
Assume w∈L. This means w=aPa or bPb, where P is a palindrome. S
generates w by repeatedly applying S → aSa or S → bSb until S → ϵ, S →
a, or S → b is applied. Thus, w∈L(pali).

w∈L(pali) ⇒ w∈L
Assume w∈L(pali). This means w is generated by S. Given that invariants
always hold, w∈L.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Theorem
L = L(pali)

w∈L ⇒ w∈L(pali)
Assume w∈L. This means w=aPa or bPb, where P is a palindrome. S
generates w by repeatedly applying S → aSa or S → bSb until S → ϵ, S →
a, or S → b is applied. Thus, w∈L(pali).

w∈L(pali) ⇒ w∈L
Assume w∈L(pali). This means w is generated by S. Given that invariants
always hold, w∈L.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

Theorem
L = L(pali)

w∈L ⇒ w∈L(pali)
Assume w∈L. This means w=aPa or bPb, where P is a palindrome. S
generates w by repeatedly applying S → aSa or S → bSb until S → ϵ, S →
a, or S → b is applied. Thus, w∈L(pali).

w∈L(pali) ⇒ w∈L
Assume w∈L(pali). This means w is generated by S. Given that invariants
always hold, w∈L.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Context-Free Grammars

EXERCISE

Design and implement a grammar for:
L = {w | w has balanced parenthesis}, where o = (and c =).

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Would like to have a machine that decides if a given word is a member of a
CFL

What should such a machine look like?

Write a program to decide anbn

Call an auxiliary function that takes as input w's sub-word without the
leading as, if any, and an accumulator with w's leading as

3 conditions:

1. If the given word is empty then testing if the

given accumulator is empty is returned.

2. If the first element of the given word is a then

false is returned.

3. Otherwise, return the conjunction of testing if the

accumulator is not empty and checking the rest of both the

given word and the given accumulator.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Would like to have a machine that decides if a given word is a member of a
CFL

What should such a machine look like?

Write a program to decide anbn

Call an auxiliary function that takes as input w's sub-word without the
leading as, if any, and an accumulator with w's leading as

3 conditions:

1. If the given word is empty then testing if the

given accumulator is empty is returned.

2. If the first element of the given word is a then

false is returned.

3. Otherwise, return the conjunction of testing if the

accumulator is not empty and checking the rest of both the

given word and the given accumulator.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata
#lang fsm
;; word → Boolean
;; Purpose: Decide if given word is in a^nb^n
(de�ne (is=in=a^nb^n? w)

;; word (listof symbol) → Boolean
;; Purpose: Determine if �rst given word has only bs that match as in the
;; second given word
;; Accumulator Invariant
;; acc = the unmatched a's at the beginning of w
;; Assume: w in (a b)*
(de�ne (check wrd acc)
(cond [(empty? wrd) (empty? acc)]

[(eq? (�rst wrd) 'a) #f]
[else (and (not (empty? acc))

(check (rest wrd) (rest acc)))]))

(check (dropf w (λ (s) (eq? s 'a))) ;; everything after initial a's
(takef w (λ (s) (eq? s 'a))))) ;; the initial a's

;; Tests for is=in=anbn?
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b a a b b))
(check=pred is=in=a^nb^n? '())
(check=pred is=in=a^nb^n? '(a a b b))

The acc is a stack
The program �rst pushes all the as at the beginning of the given word onto the accumulator
The auxiliary function pops an a for each recursive call
Suggests extending an ndfa with a stack to remember part of the consumed input

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata
#lang fsm
;; word → Boolean
;; Purpose: Decide if given word is in a^nb^n
(de�ne (is=in=a^nb^n? w)

;; word (listof symbol) → Boolean
;; Purpose: Determine if �rst given word has only bs that match as in the
;; second given word
;; Accumulator Invariant
;; acc = the unmatched a's at the beginning of w
;; Assume: w in (a b)*
(de�ne (check wrd acc)
(cond [(empty? wrd) (empty? acc)]

[(eq? (�rst wrd) 'a) #f]
[else (and (not (empty? acc))

(check (rest wrd) (rest acc)))]))

(check (dropf w (λ (s) (eq? s 'a))) ;; everything after initial a's
(takef w (λ (s) (eq? s 'a))))) ;; the initial a's

;; Tests for is=in=anbn?
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b a a b b))
(check=pred is=in=a^nb^n? '())
(check=pred is=in=a^nb^n? '(a a b b))

The acc is a stack
The program �rst pushes all the as at the beginning of the given word onto the accumulator
The auxiliary function pops an a for each recursive call
Suggests extending an ndfa with a stack to remember part of the consumed input

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata
#lang fsm
;; word → Boolean
;; Purpose: Decide if given word is in a^nb^n
(de�ne (is=in=a^nb^n? w)

;; word (listof symbol) → Boolean
;; Purpose: Determine if �rst given word has only bs that match as in the
;; second given word
;; Accumulator Invariant
;; acc = the unmatched a's at the beginning of w
;; Assume: w in (a b)*
(de�ne (check wrd acc)
(cond [(empty? wrd) (empty? acc)]

[(eq? (�rst wrd) 'a) #f]
[else (and (not (empty? acc))

(check (rest wrd) (rest acc)))]))

(check (dropf w (λ (s) (eq? s 'a))) ;; everything after initial a's
(takef w (λ (s) (eq? s 'a))))) ;; the initial a's

;; Tests for is=in=anbn?
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b a a b b))
(check=pred is=in=a^nb^n? '())
(check=pred is=in=a^nb^n? '(a a b b))

The acc is a stack
The program �rst pushes all the as at the beginning of the given word onto the accumulator
The auxiliary function pops an a for each recursive call
Suggests extending an ndfa with a stack to remember part of the consumed input

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata
#lang fsm
;; word → Boolean
;; Purpose: Decide if given word is in a^nb^n
(de�ne (is=in=a^nb^n? w)

;; word (listof symbol) → Boolean
;; Purpose: Determine if �rst given word has only bs that match as in the
;; second given word
;; Accumulator Invariant
;; acc = the unmatched a's at the beginning of w
;; Assume: w in (a b)*
(de�ne (check wrd acc)
(cond [(empty? wrd) (empty? acc)]

[(eq? (�rst wrd) 'a) #f]
[else (and (not (empty? acc))

(check (rest wrd) (rest acc)))]))

(check (dropf w (λ (s) (eq? s 'a))) ;; everything after initial a's
(takef w (λ (s) (eq? s 'a))))) ;; the initial a's

;; Tests for is=in=anbn?
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b b))
(check=pred (λ (w) (not (is=in=a^nb^n? w))) '(a b a a b b))
(check=pred is=in=a^nb^n? '())
(check=pred is=in=a^nb^n? '(a a b b))

The acc is a stack
The program �rst pushes all the as at the beginning of the given word onto the accumulator
The auxiliary function pops an a for each recursive call
Suggests extending an ndfa with a stack to remember part of the consumed input

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A (nondeterministic) pushdown automaton, pda, is an
instance of:

(make=ndpda K Σ Γ S F δ)

The transition relation, δ, is a �nite subset of:

((K × (Σ ∪ {EMP}) × Γ+ ∪ {EMP}) × (K × Γ+ ∪ {EMP})).
((A a p) (B g)) means that the machine is in state A, reads a from the
input tape, pops p o� the stack, pushes g onto the stack, and moves to B

May be nondeterministic

((P EMP EMP) (Q j)) is a push operation that does not consult the input
tape nor the stack

((P EMP j) (Q EMP)) is a pop operation

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A (nondeterministic) pushdown automaton, pda, is an
instance of:

(make=ndpda K Σ Γ S F δ)

The transition relation, δ, is a �nite subset of:

((K × (Σ ∪ {EMP}) × Γ+ ∪ {EMP}) × (K × Γ+ ∪ {EMP})).

((A a p) (B g)) means that the machine is in state A, reads a from the
input tape, pops p o� the stack, pushes g onto the stack, and moves to B

May be nondeterministic

((P EMP EMP) (Q j)) is a push operation that does not consult the input
tape nor the stack

((P EMP j) (Q EMP)) is a pop operation

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A (nondeterministic) pushdown automaton, pda, is an
instance of:

(make=ndpda K Σ Γ S F δ)

The transition relation, δ, is a �nite subset of:

((K × (Σ ∪ {EMP}) × Γ+ ∪ {EMP}) × (K × Γ+ ∪ {EMP})).
((A a p) (B g)) means that the machine is in state A, reads a from the
input tape, pops p o� the stack, pushes g onto the stack, and moves to B

May be nondeterministic

((P EMP EMP) (Q j)) is a push operation that does not consult the input
tape nor the stack

((P EMP j) (Q EMP)) is a pop operation

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A (nondeterministic) pushdown automaton, pda, is an
instance of:

(make=ndpda K Σ Γ S F δ)

The transition relation, δ, is a �nite subset of:

((K × (Σ ∪ {EMP}) × Γ+ ∪ {EMP}) × (K × Γ+ ∪ {EMP})).
((A a p) (B g)) means that the machine is in state A, reads a from the
input tape, pops p o� the stack, pushes g onto the stack, and moves to B

May be nondeterministic

((P EMP EMP) (Q j)) is a push operation that does not consult the input
tape nor the stack

((P EMP j) (Q EMP)) is a pop operation

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A pda con�guration is a member of (K × Σ∗ × Γ∗)

A computation step moves the machine from a starting con�guration to a
new con�guration using a single rule denoted as:

(P, xw, a) ⊢ (Q, w, g)

Zero or more steps are denoted using ⊢∗

A computation of length n on a word, w, is denoted by:

C0 ⊢ C1 ⊢ C2 ⊢ . . . ⊢ Cn, where Ci is a pda con�guration.

If a pda, M, starting in the starting state consumes all the input and reaches
a �nal state with the stack empty then M accepts. Otherwise, M rejects

A word, w, is in the language of M, L(M), if there is a computation from the
starting state that consumes w and M accepts

It does not matter that there may be computations that reject w.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A pda con�guration is a member of (K × Σ∗ × Γ∗)

A computation step moves the machine from a starting con�guration to a
new con�guration using a single rule denoted as:

(P, xw, a) ⊢ (Q, w, g)

Zero or more steps are denoted using ⊢∗

A computation of length n on a word, w, is denoted by:

C0 ⊢ C1 ⊢ C2 ⊢ . . . ⊢ Cn, where Ci is a pda con�guration.

If a pda, M, starting in the starting state consumes all the input and reaches
a �nal state with the stack empty then M accepts. Otherwise, M rejects

A word, w, is in the language of M, L(M), if there is a computation from the
starting state that consumes w and M accepts

It does not matter that there may be computations that reject w.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A pda con�guration is a member of (K × Σ∗ × Γ∗)

A computation step moves the machine from a starting con�guration to a
new con�guration using a single rule denoted as:

(P, xw, a) ⊢ (Q, w, g)

Zero or more steps are denoted using ⊢∗

A computation of length n on a word, w, is denoted by:

C0 ⊢ C1 ⊢ C2 ⊢ . . . ⊢ Cn, where Ci is a pda con�guration.

If a pda, M, starting in the starting state consumes all the input and reaches
a �nal state with the stack empty then M accepts. Otherwise, M rejects

A word, w, is in the language of M, L(M), if there is a computation from the
starting state that consumes w and M accepts

It does not matter that there may be computations that reject w.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A pda con�guration is a member of (K × Σ∗ × Γ∗)

A computation step moves the machine from a starting con�guration to a
new con�guration using a single rule denoted as:

(P, xw, a) ⊢ (Q, w, g)

Zero or more steps are denoted using ⊢∗

A computation of length n on a word, w, is denoted by:

C0 ⊢ C1 ⊢ C2 ⊢ . . . ⊢ Cn, where Ci is a pda con�guration.

If a pda, M, starting in the starting state consumes all the input and reaches
a �nal state with the stack empty then M accepts. Otherwise, M rejects

A word, w, is in the language of M, L(M), if there is a computation from the
starting state that consumes w and M accepts

It does not matter that there may be computations that reject w.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A pda con�guration is a member of (K × Σ∗ × Γ∗)

A computation step moves the machine from a starting con�guration to a
new con�guration using a single rule denoted as:

(P, xw, a) ⊢ (Q, w, g)

Zero or more steps are denoted using ⊢∗

A computation of length n on a word, w, is denoted by:

C0 ⊢ C1 ⊢ C2 ⊢ . . . ⊢ Cn, where Ci is a pda con�guration.

If a pda, M, starting in the starting state consumes all the input and reaches
a �nal state with the stack empty then M accepts. Otherwise, M rejects

A word, w, is in the language of M, L(M), if there is a computation from the
starting state that consumes w and M accepts

It does not matter that there may be computations that reject w.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

A state invariant predicate may be associated with each state

An invariant predicate has two inputs: the consumed input and the stack

It must test and relate the invariant conditions for and between the
consumed input and the stack.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Design and implement a pda for L = anbn

How may the stack be used?

Accumulate the read as

Match bs by popping as

After all the input is read, the machine ought to move to a �nal state

It accepts if the stack is empty. Otherwise, it rejects

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Design and implement a pda for L = anbn

How may the stack be used?

Accumulate the read as

Match bs by popping as

After all the input is read, the machine ought to move to a �nal state

It accepts if the stack is empty. Otherwise, it rejects

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Design and implement a pda for L = anbn

How may the stack be used?

Accumulate the read as

Match bs by popping as

After all the input is read, the machine ought to move to a �nal state

It accepts if the stack is empty. Otherwise, it rejects

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Design and implement a pda for L = anbn

How may the stack be used?

Accumulate the read as

Match bs by popping as

After all the input is read, the machine ought to move to a �nal state

It accepts if the stack is empty. Otherwise, it rejects

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Name: a^nb^n Σ = {a b}

;; Tests for a^nb^n
(check=reject? a^nb^n '(a) '(b b) '(a b b)

'(a b a a b b) '(a a b b a b))
(check=accept? a^nb^n '() '(a a b b) '(a a a a a b b b b b))

States

;; States
;; S: ci = a∗ = stack, start state

;; M: ci = (append (listof a) (listof b))
;; ∧ stack = a∗

;; ∧ |ci a's| = |stack| + |ci \texttt{b}s|

;; F: ci = (append (listof a) (listof b))
;; ∧ |stack| = 0
;; ∧ |ci a's|=|ci b's|, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Name: a^nb^n Σ = {a b}

;; Tests for a^nb^n
(check=reject? a^nb^n '(a) '(b b) '(a b b)

'(a b a a b b) '(a a b b a b))
(check=accept? a^nb^n '() '(a a b b) '(a a a a a b b b b b))

States

;; States
;; S: ci = a∗ = stack, start state

;; M: ci = (append (listof a) (listof b))
;; ∧ stack = a∗

;; ∧ |ci a's| = |stack| + |ci \texttt{b}s|

;; F: ci = (append (listof a) (listof b))
;; ∧ |stack| = 0
;; ∧ |ci a's|=|ci b's|, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Name: a^nb^n Σ = {a b}

;; Tests for a^nb^n
(check=reject? a^nb^n '(a) '(b b) '(a b b)

'(a b a a b b) '(a a b b a b))
(check=accept? a^nb^n '() '(a a b b) '(a a a a a b b b b b))

States

;; States
;; S: ci = a∗ = stack, start state

;; M: ci = (append (listof a) (listof b))
;; ∧ stack = a∗

;; ∧ |ci a's| = |stack| + |ci \texttt{b}s|

;; F: ci = (append (listof a) (listof b))
;; ∧ |stack| = 0
;; ∧ |ci a's|=|ci b's|, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Name: a^nb^n Σ = {a b}

;; Tests for a^nb^n
(check=reject? a^nb^n '(a) '(b b) '(a b b)

'(a b a a b b) '(a a b b a b))
(check=accept? a^nb^n '() '(a a b b) '(a a a a a b b b b b))

States

;; States
;; S: ci = a∗ = stack, start state

;; M: ci = (append (listof a) (listof b))
;; ∧ stack = a∗

;; ∧ |ci a's| = |stack| + |ci \texttt{b}s|

;; F: ci = (append (listof a) (listof b))
;; ∧ |stack| = 0
;; ∧ |ci a's|=|ci b's|, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Name: a^nb^n Σ = {a b}

;; Tests for a^nb^n
(check=reject? a^nb^n '(a) '(b b) '(a b b)

'(a b a a b b) '(a a b b a b))
(check=accept? a^nb^n '() '(a a b b) '(a a a a a b b b b b))

States

;; States
;; S: ci = a∗ = stack, start state

;; M: ci = (append (listof a) (listof b))
;; ∧ stack = a∗

;; ∧ |ci a's| = |stack| + |ci \texttt{b}s|

;; F: ci = (append (listof a) (listof b))
;; ∧ |stack| = 0
;; ∧ |ci a's|=|ci b's|, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Transition Relation

Push all a and nondeterministically move to M

((S ,EMP ,EMP) (M ,EMP)) ((S a ,EMP) (S (a)))

Match all b and nondeterministically move to F

((M b (a)) (M ,EMP)) ((M ,EMP ,EMP) (F ,EMP))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Transition Relation

Push all a and nondeterministically move to M

((S ,EMP ,EMP) (M ,EMP)) ((S a ,EMP) (S (a)))

Match all b and nondeterministically move to F

((M b (a)) (M ,EMP)) ((M ,EMP ,EMP) (F ,EMP))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

;; L = {a^nb^n | n >= 0}
;; States
;; S ci = (listof a) = stack, start state
;; M ci = (append (listof a) (listof b)) AND
;; (length ci as) = (length stack) + (length ci bs)
;; F ci = (append (listof a) (listof b)) and all as and bs matched,
;; �nal state
;; The stack is a (listof a)
(de�ne a^nb^n (make=ndpda '(S M F) '(a b) '(a) 'S '(F)

`(((S ,ϵ ,ϵ) (M ,ϵ))
((S a ,ϵ) (S (a)))
((M b (a)) (M ,ϵ))
((M ,ϵ ,ϵ) (F ,ϵ)))))

;; Tests for a^nb^n
(check=reject? a^nb^n '(a) '(b b) '(a b b) '(a b a a b b)

'(a a b b a b))
(check=accept? a^nb^n '() '(a a b b) '(a a a a a b b b b b))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata
;; word stack → Boolean
;; Purpose: Determine if ci and stack are the same (listof a)
(de�ne (S=INV ci stck)
(and (= (length ci) (length stck))

(andmap (λ (i g) (and (eq? i 'a) (eq? g 'a))) ci stck)))
;; Tests for S=INV
(check=inv=fails? S=INV '(() (a a)) '((a) ()) '((b b b) (b b b)))
(check=inv=holds? S=INV '(() ()) '((a a a) (a a a)))

;; word stack → Boolean
;; Purpose: Determine if ci = ϵ or a+b+ AND the stack
;; only contains a AND |ci as| = |stack| + |ci bs|
(de�ne (M=INV ci stck)
(let* [(as (takef ci (\lamb (s) (eq? s 'a))))

(bs (takef (drop ci (length as)) (λ (s) (eq? s 'b))))]
(and (equal? (append as bs) ci)

(andmap (λ (s) (eq? s 'a)) stck)
(= (length as) (+ (length bs) (length stck))))))

;; Tests for M=INV
(check=inv=fails? M=INV '((a a b) (a a)) '((a)'())

'((a a a b) (a a a)) '((a a a b) (a)))
(check=inv=holds? M=INV

'(() ()) '((a) (a)) '((a b) ())
'((a a a b b) (a)))

;; word stack → Boolean Purpose: Determine if ci=a^nb^n & empty stack
(de�ne (F=INV ci stck)
(let* [(as (takef ci (λ (s) (eq? s 'a))))

(bs (takef (drop ci (length as)) (λ (s) (eq? s 'b))))]
(and (empty? stck) (equal? (append as bs) ci) (= (length as) (length bs)))))

;; Tests for F=INV
(check=inv=fails? F=INV '((a a b) ()) '((a) ()) '((a a a b) (a a a)) '((b b b) (b b

b)))
(check=inv=holds? F=INV '(() ()) '((a b) ()) '((a a b b) ()))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata
;; word stack → Boolean
;; Purpose: Determine if ci and stack are the same (listof a)
(de�ne (S=INV ci stck)
(and (= (length ci) (length stck))

(andmap (λ (i g) (and (eq? i 'a) (eq? g 'a))) ci stck)))
;; Tests for S=INV
(check=inv=fails? S=INV '(() (a a)) '((a) ()) '((b b b) (b b b)))
(check=inv=holds? S=INV '(() ()) '((a a a) (a a a)))

;; word stack → Boolean
;; Purpose: Determine if ci = ϵ or a+b+ AND the stack
;; only contains a AND |ci as| = |stack| + |ci bs|
(de�ne (M=INV ci stck)
(let* [(as (takef ci (\lamb (s) (eq? s 'a))))

(bs (takef (drop ci (length as)) (λ (s) (eq? s 'b))))]
(and (equal? (append as bs) ci)

(andmap (λ (s) (eq? s 'a)) stck)
(= (length as) (+ (length bs) (length stck))))))

;; Tests for M=INV
(check=inv=fails? M=INV '((a a b) (a a)) '((a)'())

'((a a a b) (a a a)) '((a a a b) (a)))
(check=inv=holds? M=INV

'(() ()) '((a) (a)) '((a b) ())
'((a a a b b) (a)))

;; word stack → Boolean Purpose: Determine if ci=a^nb^n & empty stack
(de�ne (F=INV ci stck)
(let* [(as (takef ci (λ (s) (eq? s 'a))))

(bs (takef (drop ci (length as)) (λ (s) (eq? s 'b))))]
(and (empty? stck) (equal? (append as bs) ci) (= (length as) (length bs)))))

;; Tests for F=INV
(check=inv=fails? F=INV '((a a b) ()) '((a) ()) '((a a a b) (a a a)) '((b b b) (b b

b)))
(check=inv=holds? F=INV '(() ()) '((a b) ()) '((a a b b) ()))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata
;; word stack → Boolean
;; Purpose: Determine if ci and stack are the same (listof a)
(de�ne (S=INV ci stck)
(and (= (length ci) (length stck))

(andmap (λ (i g) (and (eq? i 'a) (eq? g 'a))) ci stck)))
;; Tests for S=INV
(check=inv=fails? S=INV '(() (a a)) '((a) ()) '((b b b) (b b b)))
(check=inv=holds? S=INV '(() ()) '((a a a) (a a a)))

;; word stack → Boolean
;; Purpose: Determine if ci = ϵ or a+b+ AND the stack
;; only contains a AND |ci as| = |stack| + |ci bs|
(de�ne (M=INV ci stck)
(let* [(as (takef ci (\lamb (s) (eq? s 'a))))

(bs (takef (drop ci (length as)) (λ (s) (eq? s 'b))))]
(and (equal? (append as bs) ci)

(andmap (λ (s) (eq? s 'a)) stck)
(= (length as) (+ (length bs) (length stck))))))

;; Tests for M=INV
(check=inv=fails? M=INV '((a a b) (a a)) '((a)'())

'((a a a b) (a a a)) '((a a a b) (a)))
(check=inv=holds? M=INV

'(() ()) '((a) (a)) '((a b) ())
'((a a a b b) (a)))

;; word stack → Boolean Purpose: Determine if ci=a^nb^n & empty stack
(de�ne (F=INV ci stck)
(let* [(as (takef ci (λ (s) (eq? s 'a))))

(bs (takef (drop ci (length as)) (λ (s) (eq? s 'b))))]
(and (empty? stck) (equal? (append as bs) ci) (= (length as) (length bs)))))

;; Tests for F=INV
(check=inv=fails? F=INV '((a a b) ()) '((a) ()) '((a a a b) (a a a)) '((b b b) (b b

b)))
(check=inv=holds? F=INV '(() ()) '((a b) ()) '((a a b b) ()))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

L = anbn ci = the consumed input w∈(sm-sigma M)∗

F=(sm-finals M) P = a^nb^n

Theorem
The state invariants hold when P is applied to w.

The proof is by induction on, n, the number of transitions to consume w

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Base Case

When P starts, S-INV holds because ci = '()and the stack = '()

Observe that empty transitions into M and F may lead to accept and,
therefore, we must establish that the invariants for these states also
hold
After using ((S EMP EMP) (M EMP)), M-INV holds because
ci='()and the stack='()

After using ((M EMP EMP) (F EMP)), F-INV also holds because
ci='()and the stack='()

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Assume INVs hold for k steps. Show they hold for the k+1 step

Proof invariants hold after each nonempty transition:
((S a EMP) (S (a)))

By inductive hypothesis, S-INV holds
After consuming an a and pushing an a, P may reach S and by empty transition M
Note that an empty transition into F with a nonempty stack cannot lead to an
accept. Therefore, we do not concern ourselves about P making such a transition
S-INV and M-INV hold because both the length of the consumed input and of the
stack increased by 1, thus, remaining of equal length and because both continue to
only contain as

((M b (a)) (M ,EMP)):

By inductive hypothesis, M-INV holds
After consuming a b and popping an a, P may reach M or nondeterministically
reach F because it may eventually accept
M-INV holds because ci continues to be as followed by bs, the stack can only contain
as, and the number of as in ci remains equal to the sum of the number of bs in ci
and the length of the stack.
F-INV holds because for a computation that ends with an accept the read b is the
last symbol in the given word and popping an a makes the stack empty, ci continues
to be the read as followed by the read bs, and, given that the stack is empty, the
number of as equals the number of bs in the consumed input.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Assume INVs hold for k steps. Show they hold for the k+1 step

Proof invariants hold after each nonempty transition:
((S a EMP) (S (a)))

By inductive hypothesis, S-INV holds
After consuming an a and pushing an a, P may reach S and by empty transition M
Note that an empty transition into F with a nonempty stack cannot lead to an
accept. Therefore, we do not concern ourselves about P making such a transition
S-INV and M-INV hold because both the length of the consumed input and of the
stack increased by 1, thus, remaining of equal length and because both continue to
only contain as

((M b (a)) (M ,EMP)):

By inductive hypothesis, M-INV holds
After consuming a b and popping an a, P may reach M or nondeterministically
reach F because it may eventually accept
M-INV holds because ci continues to be as followed by bs, the stack can only contain
as, and the number of as in ci remains equal to the sum of the number of bs in ci
and the length of the stack.
F-INV holds because for a computation that ends with an accept the read b is the
last symbol in the given word and popping an a makes the stack empty, ci continues
to be the read as followed by the read bs, and, given that the stack is empty, the
number of as equals the number of bs in the consumed input.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Assume INVs hold for k steps. Show they hold for the k+1 step

Proof invariants hold after each nonempty transition:
((S a EMP) (S (a)))

By inductive hypothesis, S-INV holds
After consuming an a and pushing an a, P may reach S and by empty transition M
Note that an empty transition into F with a nonempty stack cannot lead to an
accept. Therefore, we do not concern ourselves about P making such a transition
S-INV and M-INV hold because both the length of the consumed input and of the
stack increased by 1, thus, remaining of equal length and because both continue to
only contain as

((M b (a)) (M ,EMP)):

By inductive hypothesis, M-INV holds
After consuming a b and popping an a, P may reach M or nondeterministically
reach F because it may eventually accept
M-INV holds because ci continues to be as followed by bs, the stack can only contain
as, and the number of as in ci remains equal to the sum of the number of bs in ci
and the length of the stack.
F-INV holds because for a computation that ends with an accept the read b is the
last symbol in the given word and popping an a makes the stack empty, ci continues
to be the read as followed by the read bs, and, given that the stack is empty, the
number of as equals the number of bs in the consumed input.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Proving L = L(P)

Lemma
w∈L ⇔ w∈L(P)

Proof.

(⇒) Assume w∈L. This means that w = anbn. Given that state invariants always hold, there is a
computation that has P consume all the as, then consume all the bs, and then reach F with an
empty stack. Therefore, w∈L(P).
(⇐) Assume w∈L(P). This means that M halts in F, the only �nal state, with an empty stack
having consumed w. Given that the state invariants always hold we may conclude that w = anbn.
Therefore, w∈L.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Proving L = L(P)

Lemma
w∈L ⇔ w∈L(P)

Proof.

(⇒) Assume w∈L. This means that w = anbn. Given that state invariants always hold, there is a
computation that has P consume all the as, then consume all the bs, and then reach F with an
empty stack. Therefore, w∈L(P).
(⇐) Assume w∈L(P). This means that M halts in F, the only �nal state, with an empty stack
having consumed w. Given that the state invariants always hold we may conclude that w = anbn.
Therefore, w∈L.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Time to have some fun!

According to Chomsky: RL ⊂ CFL

Prove it!

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Time to have some fun!

According to Chomsky: RL ⊂ CFL

Prove it!

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

Time to have some fun!

According to Chomsky: RL ⊂ CFL

Prove it!

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

;; ndfa → pda
;; Purpose: Convert the given ndfa to a pda

(de�ne (ndfa2pda M #:accepts [accs '()] #:rejects [rejs '()])

(let [(states (sm=states M))
(sigma (sm=sigma M))
(start (sm=start M))
(�nals (sm=�nals M))
(rules (sm=rules M))]

(make=ndpda states sigma '() start �nals

(map (λ (r)
(list (list (�rst r) (second r) ϵ)

(list (third r) ϵ)))
rules)

#:accepts accs
#:rejects rejs)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

;; ndfa → pda
;; Purpose: Convert the given ndfa to a pda

(de�ne (ndfa2pda M #:accepts [accs '()] #:rejects [rejs '()])

(let [(states (sm=states M))
(sigma (sm=sigma M))
(start (sm=start M))
(�nals (sm=�nals M))
(rules (sm=rules M))]

(make=ndpda states sigma '() start �nals

(map (λ (r)
(list (list (�rst r) (second r) ϵ)

(list (third r) ϵ)))
rules)

#:accepts accs
#:rejects rejs)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

;; ndfa → pda
;; Purpose: Convert the given ndfa to a pda

(de�ne (ndfa2pda M #:accepts [accs '()] #:rejects [rejs '()])

(let [(states (sm=states M))
(sigma (sm=sigma M))
(start (sm=start M))
(�nals (sm=�nals M))
(rules (sm=rules M))]

(make=ndpda states sigma '() start �nals

(map (λ (r)
(list (list (�rst r) (second r) ϵ)

(list (third r) ϵ)))
rules)

#:accepts accs
#:rejects rejs)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

;; ndfa → pda
;; Purpose: Convert the given ndfa to a pda

(de�ne (ndfa2pda M #:accepts [accs '()] #:rejects [rejs '()])

(let [(states (sm=states M))
(sigma (sm=sigma M))
(start (sm=start M))
(�nals (sm=�nals M))
(rules (sm=rules M))]

(make=ndpda states sigma '() start �nals

(map (λ (r)
(list (list (�rst r) (second r) ϵ)

(list (third r) ϵ)))
rules)

#:accepts accs
#:rejects rejs)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

;; ndfa → pda
;; Purpose: Convert the given ndfa to a pda

(de�ne (ndfa2pda M #:accepts [accs '()] #:rejects [rejs '()])

(let [(states (sm=states M))
(sigma (sm=sigma M))
(start (sm=start M))
(�nals (sm=�nals M))
(rules (sm=rules M))]

(make=ndpda states sigma '() start �nals

(map (λ (r)
(list (list (�rst r) (second r) ϵ)

(list (third r) ϵ)))
rules)

#:accepts accs
#:rejects rejs)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Pushdown Automata

;; ndfa → pda
;; Purpose: Convert the given ndfa to a pda

(de�ne (ndfa2pda M #:accepts [accs '()] #:rejects [rejs '()])

(let [(states (sm=states M))
(sigma (sm=sigma M))
(start (sm=start M))
(�nals (sm=�nals M))
(rules (sm=rules M))]

(make=ndpda states sigma '() start �nals

(map (λ (r)
(list (list (�rst r) (second r) ϵ)

(list (third r) ϵ)))
rules)

#:accepts accs
#:rejects rejs)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages
A Turing machine language recognizer is an instance of:

(make=tm K Σ R S F Y)

R is a transition relation

A Turing machine language recognizer requires two �nal states usually
named Y and N

When a Turing machine reaches a �nal state it halts and performs no more
transitions

Two special symbols that may appear of the input tape: LM and BLANK

(both FSM constants)

A Turing machine rule, tm-rule, is an element of:

(list (list N a) (list M A))

N is non-halting state

a∈{Σ ∪ {LM BLANK}},

M∈K
A is an action∈{Σ ∪ {RIGHT LEFT}

If A∈Σ then the machine writes A in the tape position under the tape's head

When LM is read the tm must move the tape's head right (regardless of the
state it is in)

May not overwrite LM

The tm cannot �fall o�" the left end of the input tape

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages
A Turing machine language recognizer is an instance of:

(make=tm K Σ R S F Y)

R is a transition relation

A Turing machine language recognizer requires two �nal states usually
named Y and N

When a Turing machine reaches a �nal state it halts and performs no more
transitions

Two special symbols that may appear of the input tape: LM and BLANK

(both FSM constants)

A Turing machine rule, tm-rule, is an element of:

(list (list N a) (list M A))

N is non-halting state

a∈{Σ ∪ {LM BLANK}},

M∈K
A is an action∈{Σ ∪ {RIGHT LEFT}

If A∈Σ then the machine writes A in the tape position under the tape's head

When LM is read the tm must move the tape's head right (regardless of the
state it is in)

May not overwrite LM

The tm cannot �fall o�" the left end of the input tape

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages
A Turing machine language recognizer is an instance of:

(make=tm K Σ R S F Y)

R is a transition relation

A Turing machine language recognizer requires two �nal states usually
named Y and N

When a Turing machine reaches a �nal state it halts and performs no more
transitions

Two special symbols that may appear of the input tape: LM and BLANK

(both FSM constants)

A Turing machine rule, tm-rule, is an element of:

(list (list N a) (list M A))

N is non-halting state

a∈{Σ ∪ {LM BLANK}},

M∈K
A is an action∈{Σ ∪ {RIGHT LEFT}

If A∈Σ then the machine writes A in the tape position under the tape's head

When LM is read the tm must move the tape's head right (regardless of the
state it is in)

May not overwrite LM

The tm cannot �fall o�" the left end of the input tape

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages
A Turing machine language recognizer is an instance of:

(make=tm K Σ R S F Y)

R is a transition relation

A Turing machine language recognizer requires two �nal states usually
named Y and N

When a Turing machine reaches a �nal state it halts and performs no more
transitions

Two special symbols that may appear of the input tape: LM and BLANK

(both FSM constants)

A Turing machine rule, tm-rule, is an element of:

(list (list N a) (list M A))

N is non-halting state

a∈{Σ ∪ {LM BLANK}},

M∈K
A is an action∈{Σ ∪ {RIGHT LEFT}

If A∈Σ then the machine writes A in the tape position under the tape's head

When LM is read the tm must move the tape's head right (regardless of the
state it is in)

May not overwrite LM

The tm cannot �fall o�" the left end of the input tape

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages
A Turing machine language recognizer is an instance of:

(make=tm K Σ R S F Y)

R is a transition relation

A Turing machine language recognizer requires two �nal states usually
named Y and N

When a Turing machine reaches a �nal state it halts and performs no more
transitions

Two special symbols that may appear of the input tape: LM and BLANK

(both FSM constants)

A Turing machine rule, tm-rule, is an element of:

(list (list N a) (list M A))

N is non-halting state

a∈{Σ ∪ {LM BLANK}},

M∈K
A is an action∈{Σ ∪ {RIGHT LEFT}

If A∈Σ then the machine writes A in the tape position under the tape's head

When LM is read the tm must move the tape's head right (regardless of the
state it is in)

May not overwrite LM

The tm cannot �fall o�" the left end of the input tape

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

A Turing machine con�guration is a triple: (state natnum tape)

Only the �touched" part of the tape is displayed

The touched part of the input tape includes the left-end marker and
anything speci�ed in the initial tape value including blanks

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

A computation, Ci ⊢∗ Cj , is valid for M if and only if M can move from Ci to
Cj using zero or more transitions

A word, w, is accepted by a tm language recognizer if it reaches the �nal
accepting state

Otherwise, w is rejected

A Turing machine language recognizer's execution may be observed using
sm-viz

State invariant predicates take as input the �touched" part of the input
tape and the position, i, of the input tape's next element to read

The predicate asserts a condition about the touched input that must hold
which may or may not be in relation to the head's position

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

A computation, Ci ⊢∗ Cj , is valid for M if and only if M can move from Ci to
Cj using zero or more transitions

A word, w, is accepted by a tm language recognizer if it reaches the �nal
accepting state

Otherwise, w is rejected

A Turing machine language recognizer's execution may be observed using
sm-viz

State invariant predicates take as input the �touched" part of the input
tape and the position, i, of the input tape's next element to read

The predicate asserts a condition about the touched input that must hold
which may or may not be in relation to the head's position

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

A computation, Ci ⊢∗ Cj , is valid for M if and only if M can move from Ci to
Cj using zero or more transitions

A word, w, is accepted by a tm language recognizer if it reaches the �nal
accepting state

Otherwise, w is rejected

A Turing machine language recognizer's execution may be observed using
sm-viz

State invariant predicates take as input the �touched" part of the input
tape and the position, i, of the input tape's next element to read

The predicate asserts a condition about the touched input that must hold
which may or may not be in relation to the head's position

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

A computation, Ci ⊢∗ Cj , is valid for M if and only if M can move from Ci to
Cj using zero or more transitions

A word, w, is accepted by a tm language recognizer if it reaches the �nal
accepting state

Otherwise, w is rejected

A Turing machine language recognizer's execution may be observed using
sm-viz

State invariant predicates take as input the �touched" part of the input
tape and the position, i, of the input tape's next element to read

The predicate asserts a condition about the touched input that must hold
which may or may not be in relation to the head's position

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Let's now design a nondeterministic Turing machine

The transition relation does not have to be a function

L = a* ∪ a*b

Name: a*Ua*b Σ = {a b}

;; PRE: tape = LMw AND i = 1

Tests

;; Tests for a*Ua*b
(check=reject? a*Ua*b

`((,LM b b) 1)
`((,LM a a b a) 1))

(check=accept? a*Ua*b
`((,LM ,BLANK) 1)
`((,LM b) 1)
`((,LM a b) 1)
`((,LM a a a) 1)
`((,LM a a a b) 1))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Let's now design a nondeterministic Turing machine

The transition relation does not have to be a function

L = a* ∪ a*b

Name: a*Ua*b Σ = {a b}

;; PRE: tape = LMw AND i = 1

Tests

;; Tests for a*Ua*b
(check=reject? a*Ua*b

`((,LM b b) 1)
`((,LM a a b a) 1))

(check=accept? a*Ua*b
`((,LM ,BLANK) 1)
`((,LM b) 1)
`((,LM a b) 1)
`((,LM a a a) 1)
`((,LM a a a b) 1))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Let's now design a nondeterministic Turing machine

The transition relation does not have to be a function

L = a* ∪ a*b

Name: a*Ua*b Σ = {a b}

;; PRE: tape = LMw AND i = 1

Tests

;; Tests for a*Ua*b
(check=reject? a*Ua*b

`((,LM b b) 1)
`((,LM a a b a) 1))

(check=accept? a*Ua*b
`((,LM ,BLANK) 1)
`((,LM b) 1)
`((,LM a b) 1)
`((,LM a a a) 1)
`((,LM a a a b) 1))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Let's now design a nondeterministic Turing machine

The transition relation does not have to be a function

L = a* ∪ a*b

Name: a*Ua*b Σ = {a b}

;; PRE: tape = LMw AND i = 1

Tests

;; Tests for a*Ua*b
(check=reject? a*Ua*b

`((,LM b b) 1)
`((,LM a a b a) 1))

(check=accept? a*Ua*b
`((,LM ,BLANK) 1)
`((,LM b) 1)
`((,LM a b) 1)
`((,LM a a a) 1)
`((,LM a a a b) 1))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

When the machine starts in S nothing has been read

If the input word is empty the machine moves to accept

If the �rst element is an a then the machine nondeterministically moves to
a state A to read a∗ or to a state B to read a∗b

Upon reading a∗ in A the machine may accept

Upon reading a∗b in B the machine moves to state C to determine if the
end of the input word has been reached and then moves to either accept or
reject

From C the machine may accept upon reading a blank and reject otherwise.

The states may documented as follows:

;; States (i is the position of the head)
;; S: no tape elements read, starting sate
;; A: tape[1..i=1] has only a
;; B: tape[1..i=1] has only a
;; C: tape[1..i=2] has only a and tape[i=1] = b
;; Y: tape[i] = BLANK and tape[1..i=1] in a* or a*b,
;; �nal accepting state
;; N: tape[1..i=1] != a* nor a*b, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

When the machine starts in S nothing has been read

If the input word is empty the machine moves to accept

If the �rst element is an a then the machine nondeterministically moves to
a state A to read a∗ or to a state B to read a∗b

Upon reading a∗ in A the machine may accept

Upon reading a∗b in B the machine moves to state C to determine if the
end of the input word has been reached and then moves to either accept or
reject

From C the machine may accept upon reading a blank and reject otherwise.

The states may documented as follows:

;; States (i is the position of the head)
;; S: no tape elements read, starting sate
;; A: tape[1..i=1] has only a
;; B: tape[1..i=1] has only a
;; C: tape[1..i=2] has only a and tape[i=1] = b
;; Y: tape[i] = BLANK and tape[1..i=1] in a* or a*b,
;; �nal accepting state
;; N: tape[1..i=1] != a* nor a*b, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

When the machine starts in S nothing has been read

If the input word is empty the machine moves to accept

If the �rst element is an a then the machine nondeterministically moves to
a state A to read a∗ or to a state B to read a∗b

Upon reading a∗ in A the machine may accept

Upon reading a∗b in B the machine moves to state C to determine if the
end of the input word has been reached and then moves to either accept or
reject

From C the machine may accept upon reading a blank and reject otherwise.

The states may documented as follows:

;; States (i is the position of the head)
;; S: no tape elements read, starting sate
;; A: tape[1..i=1] has only a
;; B: tape[1..i=1] has only a
;; C: tape[1..i=2] has only a and tape[i=1] = b
;; Y: tape[i] = BLANK and tape[1..i=1] in a* or a*b,
;; �nal accepting state
;; N: tape[1..i=1] != a* nor a*b, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

When the machine starts in S nothing has been read

If the input word is empty the machine moves to accept

If the �rst element is an a then the machine nondeterministically moves to
a state A to read a∗ or to a state B to read a∗b

Upon reading a∗ in A the machine may accept

Upon reading a∗b in B the machine moves to state C to determine if the
end of the input word has been reached and then moves to either accept or
reject

From C the machine may accept upon reading a blank and reject otherwise.

The states may documented as follows:

;; States (i is the position of the head)
;; S: no tape elements read, starting sate
;; A: tape[1..i=1] has only a
;; B: tape[1..i=1] has only a
;; C: tape[1..i=2] has only a and tape[i=1] = b
;; Y: tape[i] = BLANK and tape[1..i=1] in a* or a*b,
;; �nal accepting state
;; N: tape[1..i=1] != a* nor a*b, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

When the machine starts in S nothing has been read

If the input word is empty the machine moves to accept

If the �rst element is an a then the machine nondeterministically moves to
a state A to read a∗ or to a state B to read a∗b

Upon reading a∗ in A the machine may accept

Upon reading a∗b in B the machine moves to state C to determine if the
end of the input word has been reached and then moves to either accept or
reject

From C the machine may accept upon reading a blank and reject otherwise.

The states may documented as follows:

;; States (i is the position of the head)
;; S: no tape elements read, starting sate
;; A: tape[1..i=1] has only a
;; B: tape[1..i=1] has only a
;; C: tape[1..i=2] has only a and tape[i=1] = b
;; Y: tape[i] = BLANK and tape[1..i=1] in a* or a*b,
;; �nal accepting state
;; N: tape[1..i=1] != a* nor a*b, �nal state

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Transition relation

((S ,BLANK) (Y ,BLANK))

((S a) (A ,RIGHT))

((S a) (B ,RIGHT))

((S b) (C ,RIGHT))

((A a) (A ,RIGHT))

((A ,BLANK) (Y ,BLANK))

((B a) (B ,RIGHT))

((B b) (C ,RIGHT))

((C a) (N ,RIGHT))

((C b) (N ,RIGHT))

((C ,BLANK) (Y ,BLANK)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Transition relation

((S ,BLANK) (Y ,BLANK))

((S a) (A ,RIGHT))

((S a) (B ,RIGHT))

((S b) (C ,RIGHT))

((A a) (A ,RIGHT))

((A ,BLANK) (Y ,BLANK))

((B a) (B ,RIGHT))

((B b) (C ,RIGHT))

((C a) (N ,RIGHT))

((C b) (N ,RIGHT))

((C ,BLANK) (Y ,BLANK)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Transition relation

((S ,BLANK) (Y ,BLANK))

((S a) (A ,RIGHT))

((S a) (B ,RIGHT))

((S b) (C ,RIGHT))

((A a) (A ,RIGHT))

((A ,BLANK) (Y ,BLANK))

((B a) (B ,RIGHT))

((B b) (C ,RIGHT))

((C a) (N ,RIGHT))

((C b) (N ,RIGHT))

((C ,BLANK) (Y ,BLANK)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

Transition relation

((S ,BLANK) (Y ,BLANK))

((S a) (A ,RIGHT))

((S a) (B ,RIGHT))

((S b) (C ,RIGHT))

((A a) (A ,RIGHT))

((A ,BLANK) (Y ,BLANK))

((B a) (B ,RIGHT))

((B b) (C ,RIGHT))

((C a) (N ,RIGHT))

((C b) (N ,RIGHT))

((C ,BLANK) (Y ,BLANK)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines
Implementation

;; States (i is the position of the head)
;; S: no tape elements read, starting sate
;; A: tape[1..i=1] has only a
;; B: tape[1..i=1] has only a
;; C: tape[1..i=2] has only a and tape[i=1] = b
;; Y: tape[i] = BLANK and tape[1..i=1] = a* or a*b,
;; �nal accepting state
;; N: tape[1..i=1] != a* or a*b, �nal state
;; L = a* U a*b PRE: tape = LMw AND i = 1
(de�ne a*Ua*b (make=tm '(S A B C Y N)

`(a b)
`(((S ,BLANK) (Y ,BLANK))
((S a) (A ,RIGHT))
((S a) (B ,RIGHT))
((S b) (C ,RIGHT))
((A a) (A ,RIGHT))
((A ,BLANK) (Y ,BLANK))
((B a) (B ,RIGHT))
((B b) (C ,RIGHT))
((C a) (N a))
((C b) (N b))
((C ,BLANK) (Y ,BLANK)))

'S
'(Y N)
'Y))

;; Tests for a*Ua*b
(check=reject? a*Ua*b `((,LM b b) 1) `((,LM a a b a) 1))
(check=accept? a*Ua*b `((,LM ,BLANK) 1) `((,LM b) 1)

`((,LM a b) 1) `((,LM a a a) 1)
`((,LM a a a b) 1))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

;; tape natnum → Boolean Purpose: Determine that no tape elements read
(de�ne (S=INV t i) (= i 1))

;; tape natum → Boolean
;; Purpose: Determine that tape[1..i=1] only has a
(de�ne (B=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean Purpose: Determine that tape[1..i=1] only has a
(de�ne (A=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean
;; Purpose: Determine that tape[1..i=2] has only a and tape[i=1] = b
(de�ne (C=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (= i 2)))

(eq? (list=ref t (sub1 i)) 'b)))

;; tape natnum → Boolean
;; Purpose: Determine that tape[i] = BLANK and tape[1..i=1] = a* or tape[1..i=1] =

a*b
(de�ne (Y=INV t i)
(or (and (= i 2) (eq? (list=ref t (sub1 i)) BLANK))

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))
(let* [(front (takef (rest t) (λ (s) (eq? s 'a))))

(back (takef (drop t (add1 (length front))) (λ (s) (not (eq? s BLANK)))))]
(equal? back '(b))))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

;; tape natnum → Boolean Purpose: Determine that no tape elements read
(de�ne (S=INV t i) (= i 1))

;; tape natum → Boolean
;; Purpose: Determine that tape[1..i=1] only has a
(de�ne (B=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean Purpose: Determine that tape[1..i=1] only has a
(de�ne (A=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean
;; Purpose: Determine that tape[1..i=2] has only a and tape[i=1] = b
(de�ne (C=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (= i 2)))

(eq? (list=ref t (sub1 i)) 'b)))

;; tape natnum → Boolean
;; Purpose: Determine that tape[i] = BLANK and tape[1..i=1] = a* or tape[1..i=1] =

a*b
(de�ne (Y=INV t i)
(or (and (= i 2) (eq? (list=ref t (sub1 i)) BLANK))

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))
(let* [(front (takef (rest t) (λ (s) (eq? s 'a))))

(back (takef (drop t (add1 (length front))) (λ (s) (not (eq? s BLANK)))))]
(equal? back '(b))))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

;; tape natnum → Boolean Purpose: Determine that no tape elements read
(de�ne (S=INV t i) (= i 1))

;; tape natum → Boolean
;; Purpose: Determine that tape[1..i=1] only has a
(de�ne (B=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean Purpose: Determine that tape[1..i=1] only has a
(de�ne (A=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean
;; Purpose: Determine that tape[1..i=2] has only a and tape[i=1] = b
(de�ne (C=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (= i 2)))

(eq? (list=ref t (sub1 i)) 'b)))

;; tape natnum → Boolean
;; Purpose: Determine that tape[i] = BLANK and tape[1..i=1] = a* or tape[1..i=1] =

a*b
(de�ne (Y=INV t i)
(or (and (= i 2) (eq? (list=ref t (sub1 i)) BLANK))

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))
(let* [(front (takef (rest t) (λ (s) (eq? s 'a))))

(back (takef (drop t (add1 (length front))) (λ (s) (not (eq? s BLANK)))))]
(equal? back '(b))))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

;; tape natnum → Boolean Purpose: Determine that no tape elements read
(de�ne (S=INV t i) (= i 1))

;; tape natum → Boolean
;; Purpose: Determine that tape[1..i=1] only has a
(de�ne (B=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean Purpose: Determine that tape[1..i=1] only has a
(de�ne (A=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean
;; Purpose: Determine that tape[1..i=2] has only a and tape[i=1] = b
(de�ne (C=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (= i 2)))

(eq? (list=ref t (sub1 i)) 'b)))

;; tape natnum → Boolean
;; Purpose: Determine that tape[i] = BLANK and tape[1..i=1] = a* or tape[1..i=1] =

a*b
(de�ne (Y=INV t i)
(or (and (= i 2) (eq? (list=ref t (sub1 i)) BLANK))

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))
(let* [(front (takef (rest t) (λ (s) (eq? s 'a))))

(back (takef (drop t (add1 (length front))) (λ (s) (not (eq? s BLANK)))))]
(equal? back '(b))))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

;; tape natnum → Boolean Purpose: Determine that no tape elements read
(de�ne (S=INV t i) (= i 1))

;; tape natum → Boolean
;; Purpose: Determine that tape[1..i=1] only has a
(de�ne (B=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean Purpose: Determine that tape[1..i=1] only has a
(de�ne (A=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

;; tape natnum → Boolean
;; Purpose: Determine that tape[1..i=2] has only a and tape[i=1] = b
(de�ne (C=INV t i)
(and (>= i 2) (andmap (λ (s) (eq? s 'a)) (take (rest t) (= i 2)))

(eq? (list=ref t (sub1 i)) 'b)))

;; tape natnum → Boolean
;; Purpose: Determine that tape[i] = BLANK and tape[1..i=1] = a* or tape[1..i=1] =

a*b
(de�ne (Y=INV t i)
(or (and (= i 2) (eq? (list=ref t (sub1 i)) BLANK))

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))
(let* [(front (takef (rest t) (λ (s) (eq? s 'a))))

(back (takef (drop t (add1 (length front))) (λ (s) (not (eq? s BLANK)))))]
(equal? back '(b))))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Theorem
State invariants hold when a*Ua*b is applied to w.

The proof, as before, is done by induction on, n, the number of steps taken by a*Ua*b. Let
a*Ua*b = (make-tm K Σ R S F Y).

Proof.

Base case: n = 0
If no steps are taken a*Ua*b may only be in S. By precondition, the head's position is 1.
This means S-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Theorem
State invariants hold when a*Ua*b is applied to w.

The proof, as before, is done by induction on, n, the number of steps taken by a*Ua*b. Let
a*Ua*b = (make-tm K Σ R S F Y).

Proof.
Base case: n = 0
If no steps are taken a*Ua*b may only be in S. By precondition, the head's position is 1.
This means S-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Proof.
Inductive Step:
Assume: State invariants hold for a computation of length n = k
Show: State invariants hold for a computation of length n = k + 1

Let w = xcy, such that x,y∈Σ∗, |x|=k, and c∈{Σ ∪ {BLANK}}. The �rst k + 1 steps:

(S 1 xcy) ⊢∗ (U r xcy) ⊢ (V s xcy), where V∈K ∧ U∈K-{N Y}

That is, the �rst k transitions take the machine to state U and move the head to position r
without changing the contents of the tape

The k + 1 transition takes the machine to state V and leaves the head in position s without
changing the contents of the tape

We must show that the state invariant holds for the k + 1 transition

Note that a rule of the form ((I @) (I ,RIGHT)) is never used because the machine never
moves left and by precondition the head starts in position 1

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Proof.
Inductive Step:
Assume: State invariants hold for a computation of length n = k
Show: State invariants hold for a computation of length n = k + 1

Let w = xcy, such that x,y∈Σ∗, |x|=k, and c∈{Σ ∪ {BLANK}}. The �rst k + 1 steps:

(S 1 xcy) ⊢∗ (U r xcy) ⊢ (V s xcy), where V∈K ∧ U∈K-{N Y}

That is, the �rst k transitions take the machine to state U and move the head to position r
without changing the contents of the tape

The k + 1 transition takes the machine to state V and leaves the head in position s without
changing the contents of the tape

We must show that the state invariant holds for the k + 1 transition

Note that a rule of the form ((I @) (I ,RIGHT)) is never used because the machine never
moves left and by precondition the head starts in position 1

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Proof.
We make an argument for each rule that may be used:

((S ,BLANK) (Y ,BLANK)): By inductive hypothesis, S-INV holds. This means that before

using this rule nothing has been read from the input word because the head is in position 1.
Reading the blank means the input word is empty. Thus, Y-INV holds.

((S a) (A ,RIGHT)): By inductive hypothesis, S-INV holds. This means that before using

this rule nothing has been read from the input word because the head is in position 1. Using
this rule means that the read part of the input word only contains a and that the head moves
to position 2. Therefore, A-INV holds.

((B b) (C ,RIGHT)): By inductive hypothesis, B-INV holds. This means that the read part

of the input word is a member of a* and, the head's position, i ≥ 2. Reading a b means
the read part of the input word is a member of a*b and that i ≥ 2 continues to hold. Thus,
C-INV holds.

((C a) (N ,RIGHT)): By inductive hypothesis, C-INV holds. This means that the read part

of the input word is a member of a*b. Reading an a means the input word is not a member
of a* nor a*b. Thus, N-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Proof.
We make an argument for each rule that may be used:

((S ,BLANK) (Y ,BLANK)): By inductive hypothesis, S-INV holds. This means that before

using this rule nothing has been read from the input word because the head is in position 1.
Reading the blank means the input word is empty. Thus, Y-INV holds.

((S a) (A ,RIGHT)): By inductive hypothesis, S-INV holds. This means that before using

this rule nothing has been read from the input word because the head is in position 1. Using
this rule means that the read part of the input word only contains a and that the head moves
to position 2. Therefore, A-INV holds.

((B b) (C ,RIGHT)): By inductive hypothesis, B-INV holds. This means that the read part

of the input word is a member of a* and, the head's position, i ≥ 2. Reading a b means
the read part of the input word is a member of a*b and that i ≥ 2 continues to hold. Thus,
C-INV holds.

((C a) (N ,RIGHT)): By inductive hypothesis, C-INV holds. This means that the read part

of the input word is a member of a*b. Reading an a means the input word is not a member
of a* nor a*b. Thus, N-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Proof.
We make an argument for each rule that may be used:

((S ,BLANK) (Y ,BLANK)): By inductive hypothesis, S-INV holds. This means that before

using this rule nothing has been read from the input word because the head is in position 1.
Reading the blank means the input word is empty. Thus, Y-INV holds.

((S a) (A ,RIGHT)): By inductive hypothesis, S-INV holds. This means that before using

this rule nothing has been read from the input word because the head is in position 1. Using
this rule means that the read part of the input word only contains a and that the head moves
to position 2. Therefore, A-INV holds.

((B b) (C ,RIGHT)): By inductive hypothesis, B-INV holds. This means that the read part

of the input word is a member of a* and, the head's position, i ≥ 2. Reading a b means
the read part of the input word is a member of a*b and that i ≥ 2 continues to hold. Thus,
C-INV holds.

((C a) (N ,RIGHT)): By inductive hypothesis, C-INV holds. This means that the read part

of the input word is a member of a*b. Reading an a means the input word is not a member
of a* nor a*b. Thus, N-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Proof.
We make an argument for each rule that may be used:

((S ,BLANK) (Y ,BLANK)): By inductive hypothesis, S-INV holds. This means that before

using this rule nothing has been read from the input word because the head is in position 1.
Reading the blank means the input word is empty. Thus, Y-INV holds.

((S a) (A ,RIGHT)): By inductive hypothesis, S-INV holds. This means that before using

this rule nothing has been read from the input word because the head is in position 1. Using
this rule means that the read part of the input word only contains a and that the head moves
to position 2. Therefore, A-INV holds.

((B b) (C ,RIGHT)): By inductive hypothesis, B-INV holds. This means that the read part

of the input word is a member of a* and, the head's position, i ≥ 2. Reading a b means
the read part of the input word is a member of a*b and that i ≥ 2 continues to hold. Thus,
C-INV holds.

((C a) (N ,RIGHT)): By inductive hypothesis, C-INV holds. This means that the read part

of the input word is a member of a*b. Reading an a means the input word is not a member
of a* nor a*b. Thus, N-INV holds.

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Theorem
L = L(a*Ua*b)

Lemma
w ∈ L ⇔ w ∈ L(a*Ua*b)

Proof.

(⇒) Assume w ∈ L. This means that w ∈ a∗ or w ∈ a∗b. Given that state invariants always hold,
a*Ua*b must halt in Y after reading w. Thus, w ∈ L(a*Ua*b).
(⇐) Assume w ∈ L(a*Ua*b). This means that a*Ua*b halts in Y after consuming w. Given that
the invariants always hold, w ∈ a∗ or w ∈ a∗b. Thus, w ∈ L.

Lemma
w /∈ L ⇔ w /∈ L(a*Ua*b)

Proof.

By contraposition

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Theorem
L = L(a*Ua*b)

Lemma
w ∈ L ⇔ w ∈ L(a*Ua*b)

Proof.

(⇒) Assume w ∈ L. This means that w ∈ a∗ or w ∈ a∗b. Given that state invariants always hold,
a*Ua*b must halt in Y after reading w. Thus, w ∈ L(a*Ua*b).
(⇐) Assume w ∈ L(a*Ua*b). This means that a*Ua*b halts in Y after consuming w. Given that
the invariants always hold, w ∈ a∗ or w ∈ a∗b. Thus, w ∈ L.

Lemma
w /∈ L ⇔ w /∈ L(a*Ua*b)

Proof.

By contraposition

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Turing Machines

Theorem
L = L(a*Ua*b)

Lemma
w ∈ L ⇔ w ∈ L(a*Ua*b)

Proof.

(⇒) Assume w ∈ L. This means that w ∈ a∗ or w ∈ a∗b. Given that state invariants always hold,
a*Ua*b must halt in Y after reading w. Thus, w ∈ L(a*Ua*b).
(⇐) Assume w ∈ L(a*Ua*b). This means that a*Ua*b halts in Y after consuming w. Given that
the invariants always hold, w ∈ a∗ or w ∈ a∗b. Thus, w ∈ L.

Lemma
w /∈ L ⇔ w /∈ L(a*Ua*b)

Proof.

By contraposition

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

Let's develop a design idea!

Maybe it is easier to design a multitape Turing machine?

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

1. Nondeterministically decide if the input is not empty.

If so, go to 2. Otherwise, go to 3

2. Copy w to the auxiliary tapes

3. Traverse the auxiliary tape left as long as matching a's,

b's, and c's are read

4. If a blank is read on all auxiliary tapes move to accept

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

Let's develop a design idea!

Maybe it is easier to design a multitape Turing machine?

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

1. Nondeterministically decide if the input is not empty.

If so, go to 2. Otherwise, go to 3

2. Copy w to the auxiliary tapes

3. Traverse the auxiliary tape left as long as matching a's,

b's, and c's are read

4. If a blank is read on all auxiliary tapes move to accept

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

Let's develop a design idea!

Maybe it is easier to design a multitape Turing machine?

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

1. Nondeterministically decide if the input is not empty.

If so, go to 2. Otherwise, go to 3

2. Copy w to the auxiliary tapes

3. Traverse the auxiliary tape left as long as matching a's,

b's, and c's are read

4. If a blank is read on all auxiliary tapes move to accept

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

Let's develop a design idea!

Maybe it is easier to design a multitape Turing machine?

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

1. Nondeterministically decide if the input is not empty.

If so, go to 2. Otherwise, go to 3

2. Copy w to the auxiliary tapes

3. Traverse the auxiliary tape left as long as matching a's,

b's, and c's are read

4. If a blank is read on all auxiliary tapes move to accept

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

;; S: Nothing has been read

;; C: Everything read is copied to an auxiliary tape such
;; For all j<i, {t1[i] t2[i] t3[i]} = {a b c}

;; D: Everything read is copied to an auxiliary tape such
;; For all j<=i, {t1[i] t2[i] t3[i]} = {a b c}

;; G: T0 copied to auxiliary tapes such that
;; For all j>i, {t1[i] t2[i] t3[i]} = {a b c}

;; Y: w has equal number of a's, b's, and c's

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

;; S: Nothing has been read

;; C: Everything read is copied to an auxiliary tape such
;; For all j<i, {t1[i] t2[i] t3[i]} = {a b c}

;; D: Everything read is copied to an auxiliary tape such
;; For all j<=i, {t1[i] t2[i] t3[i]} = {a b c}

;; G: T0 copied to auxiliary tapes such that
;; For all j>i, {t1[i] t2[i] t3[i]} = {a b c}

;; Y: w has equal number of a's, b's, and c's

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

;; S: Nothing has been read

;; C: Everything read is copied to an auxiliary tape such
;; For all j<i, {t1[i] t2[i] t3[i]} = {a b c}

;; D: Everything read is copied to an auxiliary tape such
;; For all j<=i, {t1[i] t2[i] t3[i]} = {a b c}

;; G: T0 copied to auxiliary tapes such that
;; For all j>i, {t1[i] t2[i] t3[i]} = {a b c}

;; Y: w has equal number of a's, b's, and c's

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

;; S: Nothing has been read

;; C: Everything read is copied to an auxiliary tape such
;; For all j<i, {t1[i] t2[i] t3[i]} = {a b c}

;; D: Everything read is copied to an auxiliary tape such
;; For all j<=i, {t1[i] t2[i] t3[i]} = {a b c}

;; G: T0 copied to auxiliary tapes such that
;; For all j>i, {t1[i] t2[i] t3[i]} = {a b c}

;; Y: w has equal number of a's, b's, and c's

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

;; PRE (LM BLANK w) AND t0pos=1, t1pos=0, t2pos=0, t3pos=0

;; S: Nothing has been read

;; C: Everything read is copied to an auxiliary tape such
;; For all j<i, {t1[i] t2[i] t3[i]} = {a b c}

;; D: Everything read is copied to an auxiliary tape such
;; For all j<=i, {t1[i] t2[i] t3[i]} = {a b c}

;; G: T0 copied to auxiliary tapes such that
;; For all j>i, {t1[i] t2[i] t3[i]} = {a b c}

;; Y: w has equal number of a's, b's, and c's

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

L = {w |w has equal number of a's, b's, and c's}

(de�ne EQABC=ND
(make=mttm
'(S Y C D G)
`(a b c)
'S
'(Y)
<transition relation>
4
'Y))

;; Tests for EQABC=ND
(check=reject? EQABC=ND

`((,LM ,BLANK a a b b a c c) 1)
`((@ ,BLANK a a b b a c c) 1)
`((@ ,BLANK a a a) 1))

(check=accept? EQABC=ND
`((,LM ,BLANK a c c b a b) 1)
`((@ ,BLANK) 1)
`((@ ,BLANK c c a b a b a b c) 1))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

(list
(list '(S (_ _ _ _)) '(C (R R R R)))
(list '(S (_ _ _ _)) '(G (R R R R)))

;; copy an a to any tape
(list '(C (a _ _ _)) '(D (a a _ _)))
(list '(D (a a _ _)) '(C (R R _ _)))
(list '(C (a _ _ _)) '(D (a _ a _)))
(list '(D (a _ a _)) '(C (R _ R _)))
(list '(C (a _ _ _)) '(D (a _ _ a)))
(list '(D (a _ _ a)) '(C (R _ _ R)))

;; copy a b to any tape
(list '(C (b _ _ _)) '(D (b b _ _)))
(list '(D (b b _ _)) '(C (R R _ _)))
(list '(C (b _ _ _)) '(D (b _ b _)))
(list '(D (b _ b _)) '(C (R _ R _)))
(list '(C (b _ _ _)) '(D (b _ _ b)))
(list '(D (b _ _ b)) '(C (R _ _ R)))
;; copy a c to any tape
(list '(C (c _ _ _)) '(D (c c _ _)))
(list '(D (c c _ _)) '(C (R R _ _)))
(list '(C (c _ _ _)) '(D (c _ c _)))
(list '(D (c _ c _)) '(C (R _ R _)))
(list '(C (c _ _ _)) '(D (c _ _ c)))
(list '(D (c _ _ c)) '(C (R _ _ R)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

(list
(list '(S (_ _ _ _)) '(C (R R R R)))
(list '(S (_ _ _ _)) '(G (R R R R)))

;; copy an a to any tape
(list '(C (a _ _ _)) '(D (a a _ _)))
(list '(D (a a _ _)) '(C (R R _ _)))
(list '(C (a _ _ _)) '(D (a _ a _)))
(list '(D (a _ a _)) '(C (R _ R _)))
(list '(C (a _ _ _)) '(D (a _ _ a)))
(list '(D (a _ _ a)) '(C (R _ _ R)))

;; copy a b to any tape
(list '(C (b _ _ _)) '(D (b b _ _)))
(list '(D (b b _ _)) '(C (R R _ _)))
(list '(C (b _ _ _)) '(D (b _ b _)))
(list '(D (b _ b _)) '(C (R _ R _)))
(list '(C (b _ _ _)) '(D (b _ _ b)))
(list '(D (b _ _ b)) '(C (R _ _ R)))
;; copy a c to any tape
(list '(C (c _ _ _)) '(D (c c _ _)))
(list '(D (c c _ _)) '(C (R R _ _)))
(list '(C (c _ _ _)) '(D (c _ c _)))
(list '(D (c _ c _)) '(C (R _ R _)))
(list '(C (c _ _ _)) '(D (c _ _ c)))
(list '(D (c _ _ c)) '(C (R _ _ R)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

(list
(list '(S (_ _ _ _)) '(C (R R R R)))
(list '(S (_ _ _ _)) '(G (R R R R)))

;; copy an a to any tape
(list '(C (a _ _ _)) '(D (a a _ _)))
(list '(D (a a _ _)) '(C (R R _ _)))
(list '(C (a _ _ _)) '(D (a _ a _)))
(list '(D (a _ a _)) '(C (R _ R _)))
(list '(C (a _ _ _)) '(D (a _ _ a)))
(list '(D (a _ _ a)) '(C (R _ _ R)))

;; copy a b to any tape
(list '(C (b _ _ _)) '(D (b b _ _)))
(list '(D (b b _ _)) '(C (R R _ _)))
(list '(C (b _ _ _)) '(D (b _ b _)))
(list '(D (b _ b _)) '(C (R _ R _)))
(list '(C (b _ _ _)) '(D (b _ _ b)))
(list '(D (b _ _ b)) '(C (R _ _ R)))
;; copy a c to any tape
(list '(C (c _ _ _)) '(D (c c _ _)))
(list '(D (c c _ _)) '(C (R R _ _)))
(list '(C (c _ _ _)) '(D (c _ c _)))
(list '(D (c _ c _)) '(C (R _ R _)))
(list '(C (c _ _ _)) '(D (c _ _ c)))
(list '(D (c _ _ c)) '(C (R _ _ R)))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

;; match as, bs, and cs
(list '(C (_ _ _ _)) '(G (_ L L L)))
(list '(G (_ a b c)) '(G (_ L L L)))
(list '(G (_ a c b)) '(G (_ L L L)))
(list '(G (_ b a c)) '(G (_ L L L)))
(list '(G (_ b c a)) '(G (_ L L L)))
(list '(G (_ c a b)) '(G (_ L L L)))
(list '(G (_ c b a)) '(G (_ L L L)))
(list '(G (_ _ _ _)) '(Y (_ _ _ _))))

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

DEMO!

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

For Unrestricted Grammars attend Andrés' IFL 2025 talk!

Programming-
Based

Automata
Theory

Marco T.
Morazán

Tutorial
Outline

Motivation
Regular
Expressions

Regular
Languages
Regular
Expressions

Finite-State
Machines

Context-Free
Languages
Context-Free
Grammars

Pushdown
Automata

Recursively
Enumerable
Languages
Turing Machines

Multitape Turing
Machines

Unrestricted
Grammars

Recursively Enumerable Languages

THANK YOU!!! :-)

	Tutorial Outline
	Motivation
	Regular Expressions

	Regular Languages
	Regular Expressions
	Finite-State Machines

	Context-Free Languages
	Context-Free Grammars
	Pushdown Automata

	Recursively Enumerable Languages
	Turing Machines
	Multitape Turing Machines
	Unrestricted Grammars

