
The 37th Symposium on Implementation and

Application of Functional Languages

October 1-3, 2025

Montevideo, Uruguay

Pre-proceedings

Contents

Regular papers 4

Recipe-Based Errors
Marco T. Morazán, Shamil Dzhatdoyev, Josephine Des Rosiers, Rose Bohrer,

Andres Garced and David Anthony Fields 5

Design and Implementation of DSLs for Unit Testing
Marco T. Morazán and Andres Garced 18

Compilation of the Stochastic Language ALEA
Baltasar Trancón Y Widemann and Markus Lepper 30

Refinement-Types Driven Development: A study
Facundo Domı́nguez and Arnaud Spiwack 42

Draft papers 54

Unrestricted Grammar Design and Visualization
Marco T. Morazán, Andres Garced and Tijana Minić 55

AI-Assisted Program Design Using Structural Recursion
Marco T. Morazán 68

Heuristics-based Type Error Diagnosis for Haskell
Niels Kwadijk and Jurriaan Hage 81

Higher-ranked region inference for polymorphic, lazy languages
Ivo Gabe de Wolff and Jurriaan Hage 89

Closures in a Higher-Order Polymorphic DSL for GPU program-
ming
Andre Rauber Du Bois, Henrique Gabriel Rodrigues and Rodrigo Geraldo

Ribeiro 102

Automatic Testing for Finite-State Machines
Marco T. Morazán, Sophia G. Turano, Andres Garced and David Anthony

Fields 107

Energy-aware Data-Parallel Functional Array Processing for Het-
erogeneous Platforms
Clemens Grelck 120

A Quantum-Control Lambda-Calculus with Multiple Measurement
Bases
Nicolas A. Monzon and Alejandro Dı́az-Caro 128

List Fold Operators in Dafny
Juan Michelini, Nora Szasz and Alvaro Tasistro 136

Formalizating System I with type Top in Agda
Agust́ın Séttimo, Cristian Sottile and Cecilia Manzino 140

Reducibility candidates modulo isomorphisms
Cristian Sottile and Alejandro Dı́az-Caro 150

Foundations of Gradual Abstract Interpretation
Gaspar Ricci, Sebastian Erdweg, Éric Tanter and Mat́ıas Toro 159

Type Checking Dependently Sorted Nominal Signatures
Maribel Fernandez, Miguel Pagano, Nora Szasz and Alvaro Tasistro 171

Regular papers

Recipe-Based Errors
Methodology, Implementation, and Evaluation

Marco T. Morazán
Seton Hall University
South Orange, NJ, USA
morazanm@shu.edu

Shamil Dzhatdoyev
Axoni, USA

New York, NY, USA
shamil.d11@gmail.com

Josephine A. Des Rosiers
Penguin Random House
New York, NY, USA

josieadesrosiers@gmail.com

Rose Bohrer
Worcester Polytechnic Institute
Worcester, Massachusetts, USA

rbohrer@wpi.edu

Andrés M. Garced
Seton Hall University
South Orange, NJ, USA
maldona2@shu.edu

David Anthony K. Fields
Seton Hall University
South Orange, NJ, USA

fieldsda@shu.edu

Abstract
The design and implementation of error messaging systems is a
long-lasting challenge for programming language developers. The
challenges become more pronounced when students are exposed
to a programming language for the first time. Poor error messages
make it challenging for students to understand and correct program-
ming bugs. In part, the problem is that the search space for a solution
is large, and students lack the experience to navigate this space.
This article puts forth the thesis that in courses following a design-
based methodology recipe-based errors help students resolve bugs.
That is, the error messaging system provides scaffolding to reduce
the size of the search space by focusing the student’s attention
on detected design errors. To explore this hypothesis, recipe-based
errors are implemented as part of, FSM, a domain-specific functional
language for the Formal Languages and Automata Theory class-
room. Each error message is enhanced with the step of the design
recipe that has not been successfully completed. In addition, the
error messaging system integrates testing–a fundamental step in
program design–as a criteria for generating error messages. Empir-
ical data collected at two US-based universities is presented that
suggests students find recipe-based errors clear, succinct, and a
factor in reducing debugging time. In addition, the data suggests
that the association of design recipe steps with error messages is
useful.

CCS Concepts
• Software and its engineering→ Functional languages; Do-
main specific languages; General programming languages;
• Theory of computation → Formal languages and automata
theory; • Applied computing→ Education.

Keywords
Error Messages, Design Recipes, Formal Languages and Automata
Theory Education, Functional Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IFL 2025, Montevideo, Uruguay
© 2025 Copyright held by the owner/author(s).

ACM Reference Format:
Marco T. Morazán, Shamil Dzhatdoyev, Josephine A. Des Rosiers, Rose
Bohrer, Andrés M. Garced, and David Anthony K. Fields. 2025. Recipe-
Based Errors: Methodology, Implementation, and Evaluation. In Proceedings
of the 37th Symposium on Implementation and Application of Functional
Languages (IFL 2025), October 1–3, 2025, Montevideo, Uruguay. ACM, New
York, NY, USA, 13 pages.

1 Introduction
Developing error messages that are useful and accurate has been a
challenge for the programming languages and the human-computer
interaction communities for at least 60 years since FORTRAN [54]
and ALGOL 60 [60] developers first took steps to generate them.
Useful and accurate error messages are important, because poor
error messages have been found to make it difficult to learn how to
program [29, 37] and to learn a new language [18, 26, 66]. These
difficulties are attributed to error messages being, for example,
cryptic [1, 2, 4, 5, 28, 35, 66], inadequate [1, 3, 9, 31, 54], frustrating
[6, 23], and a barrier to progress [5, 6, 37]. This all means that the
interaction with poor error messages is inefficient and costly [4].

These problems are accentuated in students learning the abstrac-
tions offered by a new programming language. This occurs for
multiple reasons such as the use of technical jargon in the message
[4, 15, 35, 38, 57], students not having assimilated the heuristic
to correct the first error first (when multiple errors are reported)
[6, 55], students interpreting the location highlighted for where
an error is detected as a signal for where to edit the program to
make corrections [38, 68], and the lack of precise information in the
message [26, 38]. Efforts to address these problems and create good
error messages include suggesting successful solutions by others
[25], eliminating jargon vocabulary in error messages [4, 15, 35],
using familiar classroom vocabulary in error messages [15, 38],
enhancing error messages with more information [5, 26, 31, 35, 58],
making error messages more succinct [15, 26], and reducing redun-
dant and repeated information [4, 27].

Good error messages alone, however, are only part of the solu-
tion to help students learn new abstractions. Students also need
a systematic approach for problem solving and program imple-
mentation. For example, an arguably successful approach to help
programming beginners uses a program-by-design methodology
[7, 21]. This approach utilizes a collection of domain-specific lan-
guages (DSLs) embedded in Racket [22] (commonly referred to as

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán, Dzhatdoyev, Des Rosiers, Bohrer, Garced, and Fields

the Racket student languages). These DSLs restrict the amount of
syntax a student may use to implement solutions to problems. In
addition, they have tailored-made student-friendly error-messaging
systems and are tightly-coupled with textbooks for beginners in
programming [19, 44, 45]. At the heart of the approach, first pio-
neered by Felleisen et al. [19] and later expanded to a two-semester
course by Morazán [44, 45], is the design recipe–a series of con-
crete steps, each with a specific outcome, that help students go
from a problem statement to a documented and validated solution
expressed as a program. Interestingly enough, the error messages
in the Racket student languages do not refer to the steps of the
design recipe. In the experience of the authors, this leads students
to repeatedly wonder what step of the design recipe they have
incorrectly performed when an error is thrown. Thus, suggesting
that the program-by-design methodology may benefit from error
messages that refer to the steps of the design recipe not success-
fully completed. We coin such error messages as recipe-based errors
(RBEs). The goal is to encourage students to think, when debugging,
about design recipe steps to determine the problem that led to an
error.

To explore the idea of coupling the pedagogic pillars of the
program-by-design methodology (i.e., domain-specific languages,
design recipes, error messages, textbooks, and instructors), the
error-messaging system for FSM (Functional State Machines) [53]
is redesigned to produce RBEs. FSM is a functional domain-specific
language embedded in Racket [22] developed for the Formal Lan-
guages and Automata Theory (FLAT) classroom. The worked de-
scribed is part of a larger effort to vertically integrate the program-
by-design methodology into the Computer Science curriculum.
The described contract-based error messaging system complements
Racket’s errormessaging system. That is, errormessages for Racket
syntax or misuse of Racket functions are generated by Racket’s
error messaging system. FSM’s novel error-messaging system ad-
dresses errors detected when using FSM abstractions. This is im-
portant, because generating a Racket error message referencing a
Racket function in an internal FSM implementation file breaks the
abstraction barrier expected by the programmer. That is, the pro-
grammer expects an FSM-relevant error message when FSM abstrac-
tions are used. In addition, the described system also integrates unit
testing–an essential design step–to reduce the amount of syntax
students must write for unit tests and to encourage the construction
of validated machines and grammars. Every error message gener-
ated includes a reference to an unsuccessfully completed design
recipe step. We note that FSM’s new error messaging system is the
first to ever integrate design recipes and unit testing.

To evaluate student experiences with RBEs, we explore the fol-
lowing research questions:

• RQ1: Are RBEs useful in debugging?
• RQ2:Why are RBEs useful?
• RQ3: Is a design recipe step useful in an error message?

RQ1 focuses on how students use RBEs as a debugging tool. In
contrast, if RBEs are useful in debugging, RQ2 and RQ3 focus on
message characteristics that help explain why they are useful. These
questions are explored through the administration of anonymous
surveys at two US-based universities teaching an undergraduate

FLAT course using the methodology and the RBEs described in this
article as well as the same textbook (i.e., [46]).

The article is organized as follows. Section 2 provides an overview
of designing and programming using FSM. Section 3 describes RBEs.
Section 4 discusses FSM contracts for machine and grammar con-
structors to produce RBEs. Section 5 presents how testing and con-
tracts are incorporated for RBEs. Section 6 presents the empirical
data collected. Section 7 contrasts with related work. Section 8 dis-
cusses the implications and the limitations of the presented work.
Finally, concluding remarks and directions for future work are
presented in Section 9.

2 Designing and Programming in FSM
FSM is dynamically typed and, among other features, allows pro-
grammers to easily define deterministic finite-state automata (dfa),
nondeterministic finite-state automata (ndfa), pushdown automata
(pda), Turing machines (tms), composed Turing machines (ctms)
[43], regular grammars (rgs), context-free grammars (cfgs), and
unrestricted grammars (urgs). In addition, programmers can also
implement the construction algorithms they design as part of their
constructive proofs. Integrated into FSM is a powerful suite of static
and dynamic visualization tools to help students understand FLAT
principles [47–51].

This section presents an overview of designing and implement-
ing state machines and grammars in FSM. The design recipes for
state machines and grammars are outlined and an illustrative ex-
ample for each is discussed. In addition, the arguments for machine
and grammar constructors are specified to make clear what is tested
by the novel error-messaging system. In the interest of brevity, we
use a single regular language to illustrate the design process for
both machines and grammars:

L={w|w has an odd number of as and an odd number of bs}

Although only the development of a dfa and of a rg are presented,
we note that the development for other types and machines and
grammars follows in the same manner.

2.1 State Machines
2.1.1 State Machine Constructors. The constructor signatures for
a dfa, an ndfa, a pda, and a tm are:

make-dfa: K Σ S F 𝛿 ['no-dead] → dfa
make-ndfa: K Σ S F Δ → ndfa

make-ndpda: K Σ Γ S F Δ → pda
make-tm: K Σ Δ S F [Y] → tm

K denotes a set of states. Σ denotes the input alphabet. S∈K denotes
the starting state. F⊆K denotes the set of final states. Γ denotes a
stack alphabet. A transition function and a transition relation are
denoted, respectively, by 𝛿 and Δ. Y∈F is an optional argument for
the Turing machine constructor denoting the accept state (omitting
this argument signals that the tm computes a function instead of de-
ciding or semideciding a language). Finally, the optional argument
for the dfa constructor, 'no-dead, signals that the transition func-
tion is fully specified (omitting this argument has the constructor
add a dead state and transitions into it to fully specify the transition
function).

Recipe-Based Errors IFL 2025, October 1–3, 2025, Montevideo, Uruguay

(1) Name the machine and specify alphabets
(2) Write unit tests
(3) Associate a state with tracked conditions, and identify the

start and final states.
(4) Formulate the transition relation
(5) Implement the machine
(6) Run the tests and, if necessary, redesign

Figure 1: The design recipe for state machines.

2.1.2 State Machine Argument Types. The arguments to construct
state machines are partitioned into two sets: those that do not have
dependencies and those that have dependencies. The arguments
that do not have dependencies are K, Σ, and Γ. The arguments that
have dependencies are S, F, 𝛿 , Δ, and Y. For instance, S and Y depend
on K given that both must be members of K.

The transition rules depend on K, Σ, and Γ and are represented
as lists:
tm: ((K {Σ ∪ {@ _}}) (K {Σ ∪ {L R _}})) dfa: (K Σ K)
pda: ((K {Σ ∪ {𝜖}} Γ*) (K Γ*)) ndfa: (K {Σ ∪ {𝜖}} K)

Each transition is a list that has a source state, an element to read
(which may be empty), and a destination state. In addition, pda-
rules specify the elements to pop and push and tm-rules specify the
action to take on the tape1.

2.1.3 The State Machine Design Recipe. The abbreviated design
recipe for state machines is displayed in Figure 12. To illustrate the
result of following the steps of the design recipe, consider the dfa
developed by a student displayed in Figure 2 for L (defined at the
beginning of Section 2). The FSM implementation is displayed in
Figure 2a. The results for step 1 of the design recipe are the name
odd-a-odd-b (on line 8) and the input alphabet (on line 10). The
unit tests to satisfy step 2 are displayed on lines 17–24. The tests use
RackUnit’s check-equal? [67] and use FSM’s sm-apply to apply a
given machine to a given word. Observe that students are writing a
fair amount of repeated code for testing. The conditions the states
represent to satisfy step 3 are displayed in lines 2–7. The transition
function developed for step 4 is captured on lines 13–14. The defined
dfa satisfies step 5 and running the tests for step 6 reveals that they
all pass. The transition diagram generated using FSM’s sm-graph
is displayed in Figure 2b. The start state, S, is highlighted in green
and the final state, C, is rendered using a double circle.

2.2 Grammars
2.2.1 Grammar Constructors. The constructor signatures for a reg-
ular (rg), context-free (cfg), and unrestricted (urg) grammars are:

make-rg: V Σ 𝛿 S → rg
make-cfg: V Σ 𝛿 S → cfg

make-grammar: V Σ 𝛿 S → urg
From left to right, V denotes the nonterminals; one for each syntac-
tic category needed. Σ denotes the input alphabet. The production
rules are denoted by 𝛿 . The starting nonterminal is denoted by S.

1The symbols @, _, L, and R, respectively, denote the left-end marker, a blank, moving
the head left, and moving the head right.
2The full design recipe has two extra steps for machine verification [46], which are
omitted here given that they are not relevant to the error-messaging system.

1 #lang fsm

2 ;; L = {w|w has an odd number of as and an odd number of bs}
3 ;; State Documentation
4 ;; S: even a and even b, starting state
5 ;; A: odd a and even b
6 ;; B: even a and odd b
7 ;; C: odd a and odd b, final state
8 (define odd-a-odd-b

9 (make-dfa '(S A B C)

10 '(a b)

11 'S

12 '(C)

13 '((S a A) (S b B) (A a S) (A b C)

14 (B a C) (B b S) (C a B) (C b A))

15 'no-dead))

16

17 (check-equal? (sm-apply odd-a-odd-b '()) 'reject)

18 (check-equal? (sm-apply odd-a-odd-b '(a b b a b))

19 'reject)

20 (check-equal? (sm-apply odd-a-odd-b '(a a b a a b))

21 'reject)

22 (check-equal? (sm-apply odd-a-odd-b '(a b)) 'accept)

23 (check-equal? (sm-apply odd-a-odd-b '(a b b b a a))

24 'accept)

(a) The dfa for L in FSM.

(b) The transition diagram.

Figure 2: L={words with odd a and odd b}.

2.2.2 Grammar Argument Types. The types needed to construct
grammars are also partitioned into those that do not have dependen-
cies and those that have dependencies. The following descriptions
summarize the properties tested by the error messaging system.
The arguments without dependencies are described as follows:

V: A set of symbols denoted the same way as machine states.
Σ: Denoted the same way as for state machines.

The arguments with dependencies are described as follows:
𝛿 A set of production rules.
S: S∈V.
The production rules, 𝛿 , are represented as lists whose values

depend on V and Σ:
rg: (V → {𝜖 | Σ | ΣV})
cfg: (V → {𝜖 | {Σ | V}+})
urg: ({Σ | V}∗V{Σ | V}∗ → {𝜖 | {Σ | V}+})

Each production rule must have at least one nonterminal on the
left hand side and the right hand side is an aggregate symbol. For
rg, only S may produce, 𝜖 , the empty word.

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán, Dzhatdoyev, Des Rosiers, Bohrer, Garced, and Fields

(1) Name for the grammar and specify the alphabet
(2) Associate a nonterminal with each with a nonterminal and

specify the starting nonterminal
(3) Develop the production rules
(4) Write unit tests
(5) Implement the grammar
(6) Run the tests and redesign if necessary

Figure 3: The design recipe for grammars.

2.2.3 The Grammar Design Recipe. The abbreviated design recipe
for grammars in displayed in Figure 3 [46, 52]3. As with machine
design, students are taught to systematically follow the steps.

To illustrate the results for the steps of the design recipe in
action, consider the rg displayed in Figure 4 to generate the same
language decided by the state machine developed in Section 2.1.3.
The results for Step 1 are displayed on lines 8 (the grammar’s
name is odd-a-odd-b-rg) and 10 (the alphabet is '(a b)). The
documentation for the nonterminals to satisfy Step 2 is displayed on
lines 3–7. Observe that it clearly indicates the starting nonterminal.
The production rules for Step 3 are displayed in lines 11–14. The unit
tests developed for Step 4 are on lines 17–29. Once again, observe
the amount of repeated code written for unit tests. The defined rg
satisfies Step 5 and running the tests for Step 6 reveals that they
all pass. Figure 4b displays the final derivation tree generated by
FSM’s dynamic visualization tool, grammar-viz, to illustrate word
derivation.

3 RBE Design
The error messaging system’s design follows principles that we
categorize over three dimensions: composition, content, and report-
ing time. In terms of composition, error messages use: jargon-free
vocabulary that is familiar to students from both lectures and the
textbook, a positive non-accusatory tone, and simple sentences.
The goals fostered by these characteristics include not intimidating
students, making it easier for students to comprehend the content
of messages, and making messages more easily understandable for
non-native English speakers [24].

In terms of content, error messages must logically and clearly
explain why an argument provided for a component has an error,
identify the design recipe step not successfully completed, and
only contain information relevant to the error without offering
prescriptive solutions. The goals fostered by these characteristics
include helping students focus on the reason for the error in terms of
their design efforts and on not leading students down an unfruitful
resolution path.

In terms of reporting time, error messages for arguments that do
not depend on other arguments for correctness are reported first,
error messages for optional arguments are reported only after no
error messages for required arguments are detected, and testing
errors are reported last. The goal fostered by these characteristics
is not burdening students with derivative error messages4. For
instance, an error in the non-dependent argument for the states of
3The full design recipe has two extra steps for grammar verification [52], which are
omitted here given that they are not relevant to the error-messaging system.
4Errors detected given the existence of previous errors.

1 #lang fsm

2 ;; L = {w|w has an odd number of as and an odd number of bs}
3 ;; Nonterminal Documentation
4 ;; S: generates words in L, starting nonterminal
5 ;; A: generates an even number of as and an odd number of bs
6 ;; B: generates an odd number of as and an even number of bs
7 ;; C: generates an even number of as and an even number of bs
8 (define odd-a-odd-b-rg

9 (make-rg '(S A B C)

10 '(a b)

11 '((S → aA) (S → bB)

12 (A → b) (A → aB) (A → bC)

13 (B → a) (B → aC) (B → bS)

14 (C → aB) (C → bA))

15 'S))

16

17 (check-equal? (grammar-derive odd-a-odd-b-rg '())

18 "() is not in L(G).")

19 (check-equal?

20 (grammar-derive odd-a-odd-b-rg '(a b b a b))

21 "(a b b a b) is not in L(G).")

22 (check-equal?

23 (grammar-derive odd-a-odd-b-rg '(a a b a a b))

24 "(a a b a a b) is not in L(G).")

25 (check-equal?

26 (last (grammar-derive odd-a-odd-b-rg '(a b))) '(ab))

27 (check-equal?

28 (last (grammar-derive odd-a-odd-b-rg '(a b b b a a)))

29 '(abbbaa))

(a) FSM implementation.

(b) A derivation tree using L.

Figure 4: The regular grammar for L.

Recipe-Based Errors IFL 2025, October 1–3, 2025, Montevideo, Uruguay

a machine may also cause errors in the argument for the transition
relation. Fixing the error in the argument for states may also fix
the error in the transition relation and, therefore, the student is not
burdened with the latter error.

FSM’s new error messaging system is the first to integrate de-
sign and unit testing. Syntax is provided for the programmer to
optionally provide a list of words that ought to be accepted/gener-
ated and/or a list of words that ought to be rejected/not-generated
by a proposed machine/grammar. If used, an error, indicating the
design recipe step not successfully completed, is thrown when
the expected behavior is not obtained and, as a consequence, the
machine/grammar is not constructed. In addition, the integration
of testing addresses a common student complaint regarding the
amount of repeated code needed to write unit tests (e.g., using test-
ing libraries such as RackUnit [67]). Furthermore, this feature also
allows instructors to easily run a test suite of their choice as they
grade assignments.

Finally, machine RBEs refer to one of the six steps in Figure 1.
Every machine RBE reports a single step unsuccessfully completed,
which may include multiple errors. For instance, if several words
that ought to be accepted are rejected then a single error message
referencing Step 2 and all such words is generated. Similarly, gram-
mar RBEs refer to one of the six in Figure 3 and report a single
unsuccessfully completed step, which may include multiple errors.

4 FSM Contracts
This section outlines machine- and grammar-constructor contracts.
First, the general outline for contract design is presented. Second,
contract sharing to avoid code duplication is described. Third, con-
tract implementation for arguments that do not have dependencies
is outlined. Fourth, contract implementation for arguments that
have dependencies is presented.

4.1 General Design
In general, machine- and grammar-constructor contracts combine
contracts for each of their arguments. The ->i contract combina-
tor is used for both, given that some arguments depend on other
arguments.

4.1.1 Machine-Constructor Contract Outline. The general structure
of a machine-constructor contract is outlined in Figure 5. For each
constructor argument, there is a stanza that names the argument
and associates a contract with it. Any given machine constructor
does not contain all the stanzas outlined in Figure 5. For instance,
the constructor for ndfas does not contain contracts for gamma or
accept.

The first set of stanzas are for required arguments (lines 2–8).
Within this set, the stanzas for arguments without dependencies
are listed first (lines 2–4) followed by the stanzas for arguments
with dependencies (lines 5–8). Each stanza for an argument with
dependencies includes the dependencies in a sublist after the argu-
ment’s name. This ordering is done by design to first report errors
for arguments without dependencies. As mentioned above, this
is important, for example, because fixing a bug in an argument
with no dependencies may resolve a bug in an argument with a
dependency. The reverse is not true. For instance, consider (A b C
D) being the argument for states and (B a D) being part of the

1 (→i (;; required arguments
2 [states <contract>]

3 [sigma <contract>]

4 [gamma <contract>] ;; only for make−ndpda
5 [start (states) <contract>]

6 [finals (states) <contract>]

7 [rules (states sigma <other dependencies>)

8 <contract>]

9 ;; optional arguments
10 ([add-dead <contract>] ;; only for make−dfa
11 [accept (finals) <contract>] ;; only for make−tm
12 #:accepts

13 [accepts (states sigma start finals rules

14 <other dependencies>)

15 <contract>]

16 #:rejects

17 [rejects (states sigma start finals rules

18 <other dependencies>)

19 <contract>])

20 ;; returned value
21 [result <contract>])

Figure 5: Template for machine-constructor contracts.

argument for rules. We can observe that b is a bug in the first and
that (with the given argument for states) B is a bug in the second.
Resolving the bug in states by changing b to B resolves the bug
in the transition rule. In contrast, changing B to b in the transition
rule does not resolve the bug in the argument for states. By val-
idating the argument with no dependency first, the student only
sees the first error. Thus, better focusing the student’s attention
on the reason for the error. Observe that this means that our error
messaging system has the accepted practice of fixing the first error
first built-in [55].

Following the stanzas for required arguments, the stanzas for
the optional arguments are listed (lines 10–19). Within these, the
lists for words to accept and reject are listed last. This is purposely
done, because these arguments cannot be tested before all other
arguments have satisfied their contracts. This follows by observing
that testing requires the machine to be constructed. Finally, the last
stanza is for the returned value as required by Racket contracts.

To outline using the syntax, consider the header for the ndfa
constructor:

(define/contract

(make-dfa states sigma start finals rules

#:accepts [accepts '()]

#:rejects [rejects '()])

A required argument without dependencies is states. Its stanza is
outlined as follows:

[states (and/c . . .)]

The . . . contain a contract for each property tested and they are
combined using and/c given that all must hold for the argument
to be valid. For an argument with dependencies, like finals, its
stanza is outlined as follows:

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán, Dzhatdoyev, Des Rosiers, Bohrer, Garced, and Fields

1 (→i (;; required arguments
2 [nts <contract>]

3 [sigma <contract>]

4 [delta (nts sigma) <contract>]

5 [start (nts) <contract>])

6 ;; optional arguments
7 (#:accepts [accepts (nts sigma delta start)

<contract>]

8 #:rejects [rejects (nts sigma delta start)

<contract>])

9 ;; returned value
10 [result <contract>])

Figure 6: Template for grammar-constructor contracts.

[finals (states) (and/c . . .)]

This stanza lists states as the only value it depends on. The con-
tracts provided to and/c may refer to states. Finally for keyword
parameters, the keyword must appear before its contract stanza.
For instance, the stanza for a list of words that ought to be accepted
by an ndfa is outlined as follows:

#:accepts [accepts (states sigma start finals rules)

(and/c . . .)]

The list of words that ought to be accepted depends on all argu-
ments needed for the machine under construction. This follows, as
mentioned above, by observing that the machine must be built to
apply it to each word.

4.1.2 Grammar-Constructor Contract Outline. The general struc-
ture of a grammar-constructor contract is outlined in Figure 6. The
structure is similar to that for a machine-constructor. All grammar
constructors require the same four inputs. The nonterminals, nts,
and the alphabet, sigma, do not have dependencies and are listed
first. The remaining two required arguments depend on these. Sim-
ilarly to machine constructors, the optional word lists that must
be generated and that must not be generated depend on all the
required arguments given that the grammar must be constructed.
As machine contracts, grammar contracts also have the accepted
practice of fixing the first error first built-in.

To outline using the syntax, consider the header for the rg con-
structor:

(define/contract (make-rg nts sigma delta start

#:accepts [accepts '()]

#:rejects [rejects '()])

The contract stanzas for nonterminals, production rules, and list of
words not in the language may be outlined as follows:

[nts (and/c . . .)]

[delta (nts sigma start) (and/c . . .)]

#:rejects

[rejects (states sigma delta start) (and/c . . .)]

As done for machines, and/c combines contracts for each property
tested. Recall that delta depends on start given that only start
may generate 𝜖 in a rg and that #:rejects depends on all required
arguments because the grammar must be constructed to test words.

4.2 Ordering of Errors and Design Recipe Steps
Observe that the ordering of the stanzas in contracts for machine
and grammar constructors guarantee that errors for required ar-
guments are thrown before optional arguments. For the required
arguments, further observe, that errors for arguments without de-
pendencies are thrown before errors for arguments with depen-
dencies and that errors for arguments with dependencies are only
thrown if no errors are detected with arguments that do not have
dependencies. Finally, the last error thrown is for testing after no
errors are detected in all other arguments.

This framework does not always report errors in the same order
that corresponds to the order in which the steps of the design recipe
are listed. For example, testing errors for machines, related to step
2 of the design recipe for state machines, are thrown after errors
for arguments with dependencies that are always associated with a
latter design recipe step. Unfortunately, this is unavoidable given
that it is impossible to report testing failures until the machine
is successfully constructed. To the extent possible, however, an
effort is made to report errors detected following the order of the
arguments expected by the constructors.

4.3 Contract Sharing
The contracts for several constructor arguments have checks in
common. For instance, machine-constructor contracts need to de-
termine that the arguments given for the states, the alphabet, the
final states, the rules, and the stack alphabet have no duplicates.
Similarly, grammar-constructor contracts need to determine this for
the arguments given for the nonterminals, the input alphabet, and
the production rules. In addition, the step of the design recipe that
is not successfully completed depends on the component tested:

states Step 3 machine alphabet Step 1
final states Step 3 machine rules Step 4

nonterminals Step 2 grammar alphabet Step 1
stack alphabet Step 1 grammar rules Step 3

Instead of writing a tailor-made contract to test for no duplicates
for each of these arguments, contracts may be shared by abstract-
ing over the argument tested and the step of the design recipe not
successfully completed.

To illustrate the abstraction, consider the implementation dis-
played in Figure 7 to test for no duplicates. The contract takes as
input the component tested, type, and a design recipe step, step,
that is unsuccessfully completed upon failure. The error message is
formatted using step, the values duplicated (i.e., the value returned
by return-duplicates), and type. We note that Racket’s contract
system automatically highlights the code where the error occurs.

4.4 Contracts without Dependencies
These contracts test properties of the given argument without re-
gard for other arguments. For instance, the argument provided for
the nonterminals of a grammar is tested to determine that the argu-
ment is a list, that each element is valid (as defined in Section 2.2.2),
and that it contains no duplicates. If any of these conditions are
not met then the programmer is informed that step 2 of the design
recipe for grammars has not been successfully completed. The con-
tract stanza for nonterminals in a grammar contract is implemented
using and/c as follows:

Recipe-Based Errors IFL 2025, October 1–3, 2025, Montevideo, Uruguay

(define (no-duplicates/c type step)

(make-flat-contract

#:name

(string->symbol (format "distinct-list-of-~a" type))

#:first-order (𝜆 (vals) (not (check-duplicates vals)))

#:projection

(𝜆 (blame)

(𝜆 (vals)

(current-blame-format format-error)

(if (not (check-duplicates vals))

vals

(raise-blame-error

blame

vals

(format "Step ~a of the design recipe has not

been successfully completed. The

following values, ~a, are duplicated

in the given ~a"

step

(return-duplicates vals)

type))))))

Figure 7: The shared contract to determine no duplicates.

[nts (and/c (is-a-list/c "nonterminals" "two")

(valid-listof/c

valid-nt?

"nonterminal"

"list of nonterminals"

#:rule "two")

(no-duplicates/c "nonterminals" "two"))]

Three contracts are combined. The first determines if the given
argument is a list and on failure constructs a message indicating
that the argument for the nonterminals must be a list and that step
2 of the design recipe has not been successfully completed. The
second determines that the argument is a valid list of nonterminals.
The predicate valid-nt? is used to determine if a given list element
is a valid nonterminal. Finally, the third, as described in Section 4.3,
determines if there are no duplicates. The choice to use a string
to indicate the unsuccessfully completed design recipe step upon
failure comes from our classroom experience. Students consistently
expressed that the use of a string, instead of a number, makes the
error message clearer5.

To illustrate a debugging session related to arguments without
dependencies, consider the misuse of make-rg:

(define abstar (make-rg '(S a S) '(a B)

'((S -> 𝜖) (S -> aA) (A -> bS))

'S)

Evaluation yields the following error message:
Step two of the design recipe has not been successfully
completed. The following: (a) are not valid nonterminals
in the given list of nonterminals: (S a S).

5Admittedly, we are not sure why. We speculate that since the design recipe is English
prose, using words brings a student’s mind back to thinking about the text in the error
message instead of code.

The reader can appreciate that the message is succinct, includes
the unsuccessfully completed design recipe step, is not prescriptive,
and reports a single error. Upon reading the message, the student
changes the lowercase a in the list of nonterminals to uppercase.
Reevaluation generates the following error message:
Step two of the design recipe has not been successfully
completed. The following values, (S), are duplicated in
the given nonterminals: (S A S).

Once again, the message focuses the student on a single error. The
student deletes the duplicate S and upon reevaluation gets:
Step one of the design recipe has not been successfully
completed. The following: (B) are not valid lowercase
alphabet letters in the given input alphabet: (a B).

Upon changing B to lowercase in the alphabet argument, the gram-
mar is successfully constructed.

4.5 Contracts with Dependencies
These contracts test properties of the given argument using argu-
ments with no dependencies that have been vetted for their required
properties. For instance, the argument provided for pda transition
rules is tested to determine that it is a list, that each rule has the
right structure, that each rule only refers to elements in the argu-
ments provided for the states, the input alphabet, and the stack
alphabet, and that there are no duplicated rules. If any of these
conditions fail then step 4 of the design recipe for state machines
has not been successfully completed. The contract stanza for pda
rules is:

[rules (states sigma gamma)

(and/c (is-a-list/c "machine rules" "four")

correct-ndpda-rule-structures/c

(correct-ndpda-rules/c states sigma gamma)

(no-duplicates/c "rules" "four"))]

The first contract determines if the argument is a list and is given
two strings for the component and the recipe step not successfully
completed. The second checks if the rule structure is correct (i.e.,
a list containing a sublist of length 3 and a sublist of length two).
This contract is only used to test pda rules and is not shared and,
therefore, has no inputs. The third determines if each rule properly
refers only to the states, the input alphabet, and the stack alphabet.
This contract is only used for pda rules and, therefore, does not
require input to identify the component nor the design recipe step
not successfully completed upon failure. Finally, the fourth contract
determines if there are no duplicated rules.

To illustrate a student debugging session consider:
(define wcw^r

(make-ndpda '(S P Q F) '(a b c) '(a b) 's '(F)

'(((S 𝜖 𝜖) (P 𝜖)) ((P a 𝜖) (P (a)))

((P b 𝜖) (P (b))) ((P c) (Q 𝜖))

((Q a (a)) (Q 𝜖)) ((Q v (b)) (q 𝜖))

((Q 𝜖 𝜖) (F 𝜖)))))

Evaluation yields the following error message:
Step three of the design recipe has not been
successfully completed. The given starting state:
s is not a valid state.

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán, Dzhatdoyev, Des Rosiers, Bohrer, Garced, and Fields

Upon capitalizing s and reevaluating, the generated error message
is:
Step four of the design recipe has not been
successfully completed. The following rules have
structural errors:

Rule ((P c) (Q 𝜖)):
The first part of the rule, (P c), does not have
the correct structure. It must be a list with
three elements.

The student has omitted the list of elements to pop from the stack.
In this instance, the student does not want to pop anything off the
stack. Upon changing (P c) to (P c ()) and reevaluating, the
following error message is obtained:
Step four of the design recipe has not been
successfully completed. The following rules have
structural errors:

Rule ((Q v (b)) (q 𝜖)):
The first element in the second part of the rule, q,
is not a valid state.

Reading the error message makes the student realize that q must
be capitalized. Reevaluating produces the following error:
Step four of the design recipe has not been
successfully completed. The following rules have errors,
which make them invalid: Rule ((Q v (b)) (Q 𝜖)): v is
not in the given input alphabet.

The student realizes the typo: v instead of b. Upon fixing it, the pda
is successfully constructed.

5 Incorporating Testing into FSM Contracts
To assist students and instructors to more easily validate machines
and grammars, contracts are leveraged to easily test the expected
result for given words. In addition, when these testing facilities
are used the result is a validated machine/grammar. The syntax for
machine/grammar constructors allows for two optional keyword
parameters: a list of words that ought to be rejected/not-generated
(the rejects list) and a list of words that ought to be accepted/gener-
ated (the accepts list). The contracts for these arguments are listed
last and, therefore, only report an error, if any, after the contracts
for all other machine/grammar components are satisfied and the
machine/grammar may safely be built. This approach results in
three advantages. First, it cuts down on the amount of coding re-
quired by the programmers as they do not have to write boilerplate
testing code for each word (but still may if they so desire). Second,
the user gets one error message listing the words that do not pro-
duce the expected result instead of multiple test failure reports (i.e.,
one for each word that causes a test to fail). Third, it simplifies how
instructors may use their own test suites during grading by simply
plugging in their own accepts and rejects lists.

The contracts for these optional arguments follow the same
general design based on three (sub)contracts. The first tests that the
argument is a list of words and takes as input a string identifying if
the tests are for accepts or for rejects. The second tests that the
given words only contains elements in sigma. It is given the input
alphabet argument and, to build the error message upon failure,
a symbol to identify the list tested. In this manner, students are

(define ALOM

(make-ndfa

'(S A B C) '(a b c) 'S '(A B C)

'((S 𝜖 A) (S 𝜖 B) (S 𝜖 C) (A b A) (A c A)

(B a B) (B c B) (C a C) (C b C))

#:accepts '((a a c) (a b c) (b a b b c) (b x))

#:rejects '((c a a) (s b))))

Figure 8: An ndfa for words missing at least on of (a b c).

explicitly warned about invalid testing words. The third takes as
input all the arguments needed to build the machine/grammar and
a Boolean to identify if the words ought to be accepted/generated
or not. This contract builds the machine/grammar and accumulates
words that do not produce the expected result to build the error
message. For example, the #accepts and #rejects contract for
make-ndfa are implemented as follows:

(#:accepts [accepts (states sigma start finals rules)

(and/c

(listof-words/c "accepts")

(words-in-sigma/c sigma 'accepts)

(ndfa-input/c states sigma start finals rules #t))]

#:rejects [rejects (states sigma start finals rules)

(and/c

(listof-words/c "rejects")

(words-in-sigma/c sigma 'rejects)

(ndfa-input/c states sigma start finals rules #f))]

To illustrate a debugging session around testing lists, let Σ=(a
b c) and consider the ndfa displayed in Figure 8 to decide the
language containing all words that have at least one input alphabet
letter missing. The first error message generated is:

Step two of the design recipe has not been
successfully completed. The following words
in the accepts list contain symbols not
included in sigma: ((b x)).

The student corrects the typo by changing x to c. The next error
message generated is:

Step six of the design recipe has not been
successfully completed. The constructed machine
does not accept the following words: ((a b c)
(b a b b c)).

Upon moving the two words that ought to be rejected to the rejects
list the next error generated is:

Step two of the design recipe has not been
successfully completed. The following words in
the reject list contain symbols not included
in sigma: ((s b)).

Here the student mistyped s instead of a. Upon correcting the typo,
the error message generated is:

Step six of the design recipe has not been
successfully completed. The constructed machine
does not reject the following words: ((c a a)
(a b)).

Recipe-Based Errors IFL 2025, October 1–3, 2025, Montevideo, Uruguay

Q1 Q2 Q3 Q4 Q5 Q6
𝜇 3.8 3.5 3.5 3.7 3.9 3.9
𝑒𝑡𝑎 4 4 4 4 4 4
Mo 4 4 4 4 4 4
Table 1: Descriptive Statistics.

The student now sees that the two identified words clearly ought to
be accepted and moves them to the accepts list. Upon reevaluation
the machine is successfully constructed validated.

6 Empirical Data
This section presents empirical data collected from students at
Seton Hall University and Worcester Polytechnic Institute over
three offerings of the course: 2 at Seton Hall University (Spring
2024 and Spring 2025) and 1 at Worcester Polytechnic Institute
(Spring 2024). The courses enrolled 117 students and 63 volunteered
to participate in an anonymous survey. Seventeen respondents
identified as female, forty-three as male, one as nonbinary, one
as agender, and one did not respond this question. The age of all
respondents is between 18 and 23. All respondents were taking
their first FLAT course and, with the exception of one pursuing a
Mathematics degree, are majoring in Computer Science. None of the
respondents received any benefit or compensation for participating
in the study.

The survey includes questions measuring student perceptions
about the debugging usefulness and properties of RBEs. Students
indicate agreement with a statement using a Likert scale [36]: [1]
Strongly diasgree. . .Strongly agree [5], including, [3], a
neutral response option. The survey includes the following six
questions:

(1) Q1 Recipe-based errors are useful in debugging
(2) Q2 Recipe-based errors are clear
(3) Q3 Recipe-based errors are informative
(4) Q4 Recipe-based errors cut down my debugging time
(5) Q5 The length of recipe-based errors is appropriate
(6) Q6 Associating a step of the design recipe with an error

message is useful
In the presentation of the data, we describe responses 4 and 5 as
“tend to agree” and responses 1 and 2 and “tend to disagree.”

The distribution of responses is displayed in Figure 9 and sum-
mary descriptive statistics, mean (𝜇), median (𝜂), and mode (Mo),
for each question are displayed in Table 1. For all questions, we
observe a fairly normal distribution (i.e., 𝜇≈𝜂=Mo) indicating that
responses around the mean are more frequent that responses away
from the mean. All distributions are slightly negatively skewed
indicating that the majority of responses are above the mean (i.e.,
responses 4 and 5).

For Q1, we observe that a majority of respondents, 63%, tend to
agree that RBEs are useful in debugging. A small minority, 10%, tends
to disagree, but not strongly. This suggests that the primary goal of
RBEs, to be useful in the debugging process, has been achieved. A
little over a quarter of the respondents (27%), however, feel neutral
about this statement. A cohort of neutral students is always ex-
pected for many different reasons. For example, there are students

that ignore the steps of the design recipe, students that rather con-
sult the documentation, and students that make no effort to debug
their designs. Nonetheless, we feel that there is likely more that
may be done to reduce the neutrality cohort. For example, having
one or more lectures whose sole purpose is to illustrate how to
debug using RBEs may help make RBEs useful for an even larger
cohort of students.

The responses for Q2–Q5 shed some light on why RBEs are useful
in debugging. A majority tends to agree that RBEs are clear (Q2,
55%) and informative (Q3, 51%)). Thus, suggesting that students
understand the error messages. A majority finding that RBEs cut
down on debugging time (Q4, 59%) suggests that RBEs effectively
hone students onto the cause of a bug. Finally, amajority responding
that the length of RBEs is appropriate suggests that the messages
are succinct, which encourages students to read them.

For Q6, we observe that a majority of respondents, 66%, tend to
agree that associating a design recipe step with an error is useful.
We also observe that a very small minority, 13%, tends to disagree.
This is a very encouraging result, because it suggests that the design
recipe step included in an RBE helps students in their debugging
efforts. It is also noteworthy that at 21% this question exhibits the
smallest neutral cohort among all survey questions. Thus, suggest-
ing that students in general value the information that a design
recipe step conveys.

7 Related Work
There is evidence in the literature that difficult-to-read error mes-
sages impact a programmer’s performance [2]. Despite decades of
research on error messages systems, a 2019 ITiCSE working group
report found that error messages continued to be described as in-
adequate, useless, frustrating, cryptic, confusing, and a barrier to
progress [4]. They recommended a set of guidelines for developers
of error messaging systems that include making error messages
comprehensible using a positive tone and providing relevant con-
text to help understand the error. FSM’s error messaging system has
adopted these recommendations and introduces a new dimension
in the context to understand the cause of an error: a failed design
recipe step. A two-fold approach is taken to make error messages
comprehensible using a polite tone. On the one hand, FSM error
messages match the language found in the textbook used for in-
struction and purposely avoid faulting, blaming, or demeaning the
programmer as suggested by the literature [10, 14, 42, 66]. On the
other hand, instructors are encouraged to use in the classroom the
vocabulary found in the textbook for instruction and in FSM error
messages. To provide further relevant context to help understand
the error, FSM error messages highlight the location of the error
and provide information about the values and the types related to
the error as suggested by the literature [20].

The negative consequences on novices stemming from error
messages that are not easily comprehended are well-documented
[28, 32–34, 40]. Messages that are not easily comprehended also
have consequences for instructors that must invest time and effort
explaining them to enable students to correct their mistakes [12, 23,
62]. To address this problem several error-messaging systems offer
more informative and/or enhanced error messages [12, 17, 31, 59,
65]. For example, Rust [30, 39] offers extended error explanations

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán, Dzhatdoyev, Des Rosiers, Bohrer, Garced, and Fields

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0

0.1

0.27

0.41

0.22

0.02

0.19

0.24

0.38

0.17

0.02

0.15

0.32 0.32

0.19

0.03

0.11

0.27

0.31
0.28

0

0.05

0.26

0.4

0.29

0.03

0.1

0.21

0.31

0.35

Pr
op

or
tio

n
of

Re
sp
on

de
nt
s

Q1 Q2 Q3 Q4 Q5 Q6

Figure 9: Data distribution for survey questions.

by including unique error codes in error messages that may be
consulted by the programmer [64]. On the other hand, Elm [13, 61]
and Clang [63] offer helpful hints to fix errors. In contrast, FSM
enhances error messages by associating them with a design recipe
step.

Marceau et al. first suggested that making error messages com-
prehensible goes beyond what is generated by a compiler or an
interpreter [38]. They suggest to treat error messages as an integral
part of course design, to make error messages nonprescriptive, and
to phrase error messages using the vocabulary employed in the
classroom. The work done with the FSM error messaging system
expands on this idea by putting forth that the language employed in
error messages and in the classroom ought to match the language
in the textbook used for instruction and by including the step of
the design recipe not successfully completed.

8 Discussion
We discuss the work’s implications and lessons learned. The first
two subsections specifically address our research questions. The
remaining subsections address openness towards non-mainstream
programming languages and study limitations.

8.1 RBEs and the Debugging Interaction Loop
We answer RQ1, Are RBEs useful in debugging?, based on the results
obtained for Q1–Q6. Majorities tend to agree with all questions
and these majorities are substantially larger than the dissenting
minorities. Thus, our answer to RQ1 is a strong affirmative answer
supported by the context provided by the results obtained by Q2–
Q6.

Though further research is needed to confirm how RBEs are
useful. We hypothesize that RBEs are useful through the debugging
interaction loop:

while (code throws an RBE)

read RBE

revise code

Code revisions present students with a huge range of potential ac-
tions to choose from. That is, if an unguided code revision process
is followed then there is an arbitrary number of code editions a
student may perform. We observe this every semester. Students
get stuck when confronted with a large action space. This is espe-
cially true of students that ignore following the steps of the design
recipe. Such students expend long periods of time on undirected
experimentation (a.k.a. hacking or tinkering). Reading the RBE is
a feedback step, software’s opportunity to assess the user’s past
actions in an effort to guide future user actions during code revision.
Thus, we explain the key intended benefit of RBEs as a feedback
mechanism: RBEs scaffold the broad action space of program-
ming around a much narrower action space, the steps of the
design recipe. When students are stuck, software and instruc-
tor alike can encourage them to revisit a specific design recipe
step and address a specific issue within it, simplifying their search
space for a correct solution. The ability of RBEs to provide this
encouragement in real time is critical to its success: a study using a
previous-generation design-recipe approach reported that students
typically did not return to earlier design recipe steps during debug-
ging in the absence of such encouragement [11]. RBEs directly offer
such encouragement by highlighting a design recipe step unsuc-
cessfully completed. Furthermore, RBEs are a specific instance of
a broader strategy within error message research: automatically
hinting programmers toward potential solutions [4].

8.2 RBEs are a Key Quality Factor
RQ2, Why are RBEs useful?, is directly addressed by Q2–Q6. Majori-
ties agree with all questions, substantially more than those who

Recipe-Based Errors IFL 2025, October 1–3, 2025, Montevideo, Uruguay

disagree. Neutral answers are substantial, but less common than
agreeing answers. Notably, the most agreed survey question is Q5
addressing RBEs’ length appropriateness. This result is noteworthy
because message length has been consistently identified as an im-
portant challenge in the literature [4, 5, 15, 26, 27, 31, 35, 58]. The
second most agreed survey question is Q6 assessing the usefulness
of design recipe steps in RBEs. Thus, indicating that design recipe
step numbers are critical to the debugging interaction loop. Our
answer to RQ2 is that RBEs are useful, because students find them
clear, informative, and of the proper length as well as a factor in
reducing debugging time.

We further reflect on perceived usefulness to answer, “Is a de-
sign recipe step useful in an error message?,” RQ3. In our context,
usefulness is fundamentally tied to pedagogy. The importance of
message vocabulary choice is well-cited [4], including alignment
with classroom vocabulary. We ensure our classroom vocabulary
is consistent with FSM, which requires instructor familiarity with
FSM. Marceau argues that error message design is essential to cur-
riculum design [38]. In this light, we see RBEs as a first step to-
ward strengthening integration between the debugging loop and the
program-by-design methodology as a whole. When a student sees a
design recipe step number in a message, this number has meaning
in their textbooks, lectures, interactions with course staff, and men-
tal models. Our goal is that once a student identifies which step
has an issue, they can review classroom examples to understand
how the same step was approached for different applications. RBEs
aim to encourage their reader to retrieve their knowledge about a
step, which they learned from the textbook or from the lectures.
Therefore, we offer a strong affirmative answer for RQ3.

8.3 Openness to Less-Used Languages
The work described is part of a larger programming-based effort to
develop a new curriculum approach for FLAT courses. Throughout
this larger project, language choice has been a common topic, with
potential instructors asking whether students are discouraged by
the use of a domain-specific language embedded in Racket. Such
questions are appropriate, as students in one Racket-based intro-
ductory programming class cited the language choice as a primary
source of discontent [8].

Our survey results suggest high approval of the Racket-based
FSM language in the context of a FLAT course (e.g., error message
quality is rated favorably). We hypothesize that this approval is ex-
plained by differences in context. At both institutions, introductory-
level Racket courses are prerequisite to the FLAT course, meaning
that students have familiarity with Racket as a language. Familiar-
ity with existing tools is known to be a decision-making factor for
programmers [41], so we designed our questions with familiarity
bias in mind. For example, we asked students about a specific FSM
feature which is not present in vanilla Racket. Familiarity may still
play a subtler role: because our students have already become fa-
miliar with Racket, they need not repeat the growing pains of first-
time Racket programmers and, thus, have greater opportunity to
engage with FSM’s specifics as intended. During instructor-student
interactions, several students proposed another theme: their lan-
guages preferences differed between courses. Though these specific
students perceived Racket to be detached from programming tasks

in industry, they also perceived FLAT courses as theory-focused.
When their course goal was to strengthen theoretical understand-
ing instead of building software, they were open to the use of a
programming language which they also viewed as abstract.

8.4 Limitations
A notable limitation is that our evaluation is not a controlled trial
(i.e., we do not divide into control and test groups). Though this
limitation is nontrivial, it is relatively common in education-related
research. Classrooms cannot be controlled like laboratory envi-
ronments, varying greatly depending on instructor, students, and
environment. Furthermore, most universities, including ours, are
unlikely to approve offering differing quality of instruction among
sections of a course for the purpose of conducting a study. Moreover,
our questions were part of a larger survey studying the FSM teach-
ing approach overall for the first time. In this context, where RBEs
are tightly integrated with FSM pedagogy, creating control and test
groups would effectively require running two parallel, substantially
different courses.

Tight integration between course software and pedagogy is itself
a limitation. Software needs maintenance over time. We reduce this
concern by building on the Racket language, whose DrRacket [20]
teaching environment is historically well-maintained. The effects of
RBEs are unclear outside classroom environments, but we argue this
limitation is appropriate. Scaffolding builds expertise; as expertise
matures, programmers becomemore effective at debugging without
scaffolds [56]. Likewise, a study of programmer sense of belonging
found scaffolded errors mattered most at the novice level [16].

Our evaluation is exclusively quantitative. Though this approach
scales well to large class sizes, it leaves out the details of individual
experiences. In our classroom experience, students are often able to
vocalize their experiences in narrative form, highlighting specific
moments of success or struggle. Future work can use qualitative
methods to elicit narrative student experiences, drawing out details
beyond our quantitative data.

Our evaluation considers specific student populations at specific
moments and places, leading to diversity limitations. Our two in-
stitutions provide a diversity of academic background. One is a
technical university where Computer Science is the largest major.
The other is a liberal arts university where Computer Science is
a medium-sized major. However, both institutions are located in
the same geographic region and Computer Science students are
mostly male European Americans. Thus, our sample population
may not be representative of the broader and diverse Computer
Science student population.

9 Concluding Remarks
This article puts forth a novel error messaging system that encour-
ages thinking of errors in terms of design. The error messaging
system is implemented as part of FSM–a functional DSL developed
for the Formal Languages and Automata Theory classroom. It in-
tegrates the steps of the design recipe with which students learn
to design and implement state machines and grammars, and inte-
grates unit tests–an essential step in the design process–to generate
error messages. Empirical data collected from two US-based uni-
versities suggests that students find that the generated messages

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán, Dzhatdoyev, Des Rosiers, Bohrer, Garced, and Fields

clear, useful, succinct, and successfully help reduce debugging time.
Furthermore, the data suggests that students find the association
of design recipe steps with error messages useful. In summary, the
novel error messaging system is well-received by students. In part,
we attribute the success of the system to using the same language
in the classroom, in the textbook of instruction, and in the error
messages.

Future work includes performing more empirical studies on the
impact of including testing as part of the error messaging system
and on the impact the error messaging system may have on female
and on minority students. Future work also includes extending the
work presented to the construction of multitape Turing machines.

References
[1] Sanaa M. Algaraibeh. 2022. Techniques for Enhancing Compiler Error Mes-

sages. In Proceedings of the 2022 ACM Conference on International Comput-
ing Education Research - Volume 2 (Lugano and Virtual Event, Switzerland)
(ICER ’22). Association for Computing Machinery, New York, NY, USA, 1–2.
doi:10.1145/3501709.3544292

[2] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler Error
Messages?. In Proceedings of the 39th International Conference on Software Engi-
neering (Buenos Aires, Argentina) (ICSE ’17). IEEE, New York City, USA, 575–585.
doi:10.1109/ICSE.2017.59

[3] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error Mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Computing
Machinery, New York, NY, USA, 126–131. doi:10.1145/2839509.2844584

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
doi:10.1145/3344429.3372508

[5] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Effective Compiler Error Message Enhance-
ment for Novice Programming Students. Computer Science Education 26, 2-3
(2016), 148–175. doi:10.1080/08993408.2016.1225464

[6] Brett A. Becker, Cormac Murray, Tianyi Tao, Changheng Song, Robert McCart-
ney, and Kate Sanders. 2018. Fix the First, Ignore the Rest: Dealing with Mul-
tiple Compiler Error Messages. In Proceedings of the 49th ACM Technical Sym-
posium on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE
’18). Association for Computing Machinery, New York, NY, USA, 634–639.
doi:10.1145/3159450.3159453

[7] Annette Bieniusa, Markus Degen, Phillip Heidegger, Peter Thiemann, Stefan
Wehr, Martin Gasbichler, Michael Sperber, Marcus Crestani, Herbert Klaeren, and
Eric Knauel. 2008. HtDP and DMDA in the Battlefield: A Case Study in First-Year
Programming Instruction. In Proceedings of the 2008 International Workshop on
Functional and Declarative Programming in Education (Victoria, BC, Canada)
(FDPE ’08). Association for Computing Machinery, New York, NY, USA, 1–12.
doi:10.1145/1411260.1411262

[8] Rose Bohrer. 2023. Centering Humans in the Programming Languages Class-
room: Building a Text for the Next Generation. In Proceedings of the 2023 ACM
SIGPLAN International Symposium on SPLASH-E, SPLASH-E 2023, Cascais, Portu-
gal, 25 October 2023, Molly Q. Feldman and Michael Hilton (Eds.). ACM, 26–37.
doi:10.1145/3622780.3623646

[9] P. J. Brown. 1983. Error Messages: The Neglected Area of the Man/Machine
Interface. Commun. ACM 26, 4 (apr 1983), 246–249. doi:10.1145/2163.358083

[10] Andrew Buxton and Lesley Trenner. 1987. An Experiment to Assess the Friendli-
ness of Error Messages from Interactive Information Retrieval Systems. J. Inf.
Sci. 13, 4 (jul 1987), 197–209. doi:10.1177/016555158701300403

[11] Francisco Enrique Vicente Castro and Kathi Fisler. 2020. Qualitative Analyses
of Movements Between Task-level and Code-level Thinking of Novice Program-
mers. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, SIGCSE 2020, Portland, OR, USA, March 11-14, 2020, Jian Zhang, Mark
Sherriff, Sarah Heckman, Pamela A. Cutter, and Alvaro E. Monge (Eds.). ACM,
487–493. doi:10.1145/3328778.3366847

[12] Natalie J Coull. 2008. SNOOPIE: Development of a Learning Support Tool for Novice
Programmers within a Conceptual Framework. Ph.D. University of St Andrews, St
Andrews, Scotland. http://hdl.handle.net/10023/522.

[13] Evan Czaplicki. 2015. Compiler Errors for Humans. https://elm-
lang.org/news/compiler-errors-for-humans. Last accessed: June 2025.

[14] Carla De Lira. 2017. Improving the Learning Experiences of First-Year Computer
Science Students with Empathetic IDEs. In Proceedings of the 2017 ACM Confer-
ence on International Computing Education Research (Tacoma, Washington, USA)
(ICER ’17). Association for Computing Machinery, New York, NY, USA, 293–294.
doi:10.1145/3105726.3105742

[15] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B. Powell. 2021. On Designing Programming Er-
ror Messages for Novices: Readability and its Constituent Factors. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 55, 15 pages. doi:10.1145/3411764.3445696

[16] Maja Dornbusch and Jan Vahrenhold. 2024. "In the Beginning, I Couldn’t Nec-
essarily Do Anything With It": Links Between Compiler Error Messages and
Sense of Belonging. In Proceedings of the 2024 ACM Conference on International
Computing Education Research - Volume 1, ICER 2024, Melbourne, VIC, Australia,
August 13-15, 2024, Paul Denny, Leo Porter, Margaret Hamilton, and Briana B.
Morrison (Eds.). ACM, 14–26. doi:10.1145/3632620.3671105

[17] Thomas Dy and Ma. Mercedes Rodrigo. 2010. A Detector for Non-Literal Java Er-
rors. In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’10). Association for Computing
Machinery, New York, NY, USA, 118–122. doi:10.1145/1930464.1930485

[18] Joseph Eremondi, Wouter Swierstra, and Jurriaan Hage. 2019. A Framework for
Improving Error Messages in Dependently-Typed Languages. Open Computer
Science 9, 1 (2019), 1–32. doi:10.1515/comp-2019-0001

[19] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing (Second ed.). MIT Press, Cambridge, MA, USA.

[20] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. 2002. DrScheme: A Pro-
gramming Environment for Scheme. J. Funct. Program. 12, 2 (mar 2002), 159–182.
doi:10.1017/S0956796801004208

[21] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (Glasgow,
Scotland, United Kingdom) (ICER ’14). Association for Computing Machinery,
New York, NY, USA, 35–42. doi:10.1145/2632320.2632346

[22] Matthew Flatt, Robert Bruce Findler, and PLT. 2024. The Racket Reference. PLT.
https://docs.racket-lang.org/reference/index.html Last accessed: June 2025.

[23] T. Flowers, C.A. Carver, and J. Jackson. 2004. Empowering Students and Building
Confidence in Novice Programmers through Gauntlet. In 34th Annual Frontiers
in Education, 2004. FIE 2004. (Savannah, GA, USA). IEEE, New York City, USA,
T3H/10–T3H/13 Vol. 1. doi:10.1109/FIE.2004.1408551

[24] Philip J. Guo. 2018. Non-Native English Speakers Learning Computer Program-
ming: Barriers, Desires, and Design Opportunities. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–14.
doi:10.1145/3173574.3173970

[25] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.
What Would Other Programmers Do: Suggesting Solutions to Error Messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New
York, NY, USA, 1019–1028. doi:10.1145/1753326.1753478

[26] Bart Heemskerk. 2020. The Error that is the Error Message: Comparing Information
Expectations of Novice Programmers Against the Information in Python Error
Messages. Master’s thesis. Delft University of Technology, Delft, The Netherlands.

[27] C. D. Hundhausen, D. M. Olivares, and A. S. Carter. 2017. IDE-Based Learning
Analytics for Computing Education: A Process Model, Critical Review, and Re-
search Agenda. ACM Trans. Comput. Educ. 17, 3, Article 11 (aug 2017), 26 pages.
doi:10.1145/3105759

[28] Matthew C. Jadud. 2006. An Exploration of Novice Compilation Behaviour in BlueJ.
Ph.D. Thesis. University of Kent at Canterbury, Cantebury, UK.

[29] Caitlin Kelleher, Dennis Cosgrove, and David Culyba. 2002. Alice2: Pro-
gramming Without Syntax Errors. In User Interface Software and Technology
- UIST 2002 (Paris, France), Vol. 2. ACM, ACM, New York, NY, USA, 35–36.
https://uist.acm.org/archive/adjunct/2002/pdf/demos/p35-kelleher.pdf.

[30] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language. No
Starch Press, USA.

[31] Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause of Er-
ror Messages in Python. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Associ-
ation for Computing Machinery, New York, NY, USA, 524–530. doi:10.1145/
3287324.3287381

[32] Sarah K. Kummerfeld and Judy Kay. 2003. The Neglected Battle Fields of Syntax
Errors. In Proceedings of the Fifth Australasian Conference on Computing Education
- Volume 20 (Adelaide, Australia) (ACE ’03). Australian Computer Society, Inc.,
AUS, 105–111.

[33] Thomas E. Kurtz. 1978. BASIC. SIGPLAN Not. 13, 8 (aug 1978), 103–118.
doi:10.1145/960118.808376

Recipe-Based Errors IFL 2025, October 1–3, 2025, Montevideo, Uruguay

[34] Michael J. Lee and Amy J. Ko. 2011. Personifying Programming Tool Feedback
Improves Novice Programmers’ Learning. In Proceedings of the Seventh Interna-
tional Workshop on Computing Education Research (Providence, Rhode Island,
USA) (ICER ’11). Association for Computing Machinery, New York, NY, USA,
109–116. doi:10.1145/2016911.2016934

[35] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A. Becker. 2023. Using Large Language Models to En-
hance Programming Error Messages. In Proceedings of the 54th ACM Techni-
cal Symposium on Computer Science Education V. 1 (Toronto, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 563–569.
doi:10.1145/3545945.3569770

[36] Rensis Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology 140 (1932), 1–55.

[37] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education (Larnaca, Cyprus)
(ITiCSE 2018 Companion). Association for Computing Machinery, New York, NY,
USA, 55–106. doi:10.1145/3293881.3295779

[38] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind Your
language: On Novices’ Interactions with Error Messages. In Proceedings of the
10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Portland, Oregon, USA) (Onward! 2011). Association for
Computing Machinery, New York, NY, USA, 3–18. doi:10.1145/2048237.2048241

[39] Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust Language. In Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology
(Portland, Oregon, USA) (HILT ’14). Association for Computing Machinery, New
York, NY, USA, 103–104. doi:10.1145/2663171.2663188

[40] Davin McCall. 2016. Novice Programmer Errors - Analysis and Diagnostics. Ph. D.
Dissertation. University of Kent,. https://kar.kent.ac.uk/61340/

[41] Leo A. Meyerovich and Ariel S. Rabkin. 2013. Empirical Analysis of Program-
ming Language Adoption. SIGPLAN Not. 48, 10 (oct 2013), 1–18. doi:10.1145/
2544173.2509515

[42] Rolf Molich and Jakob Nielsen. 1990. Improving a Human-Computer Dialogue.
Commun. ACM 33, 3 (mar 1990), 338–348. doi:10.1145/77481.77486

[43] Marco Morazán. 2023. Composing Turing Machines in FSM. In Proceedings of the
2023 ACM SIGPLAN International Symposium on SPLASH-E (Cascais, Portugal)
(SPLASH-E 2023). Association for Computing Machinery, New York, NY, USA,
38–49. doi:10.1145/3622780.3623647

[44] Marco T. Morazán. 2022. Animated Problem Solving - An Introduction to Program
Design Using Video Game Development. Springer, Cham, Switzerland. doi:10.1007/
978-3-030-85091-3

[45] Marco T. Morazán. 2022. Animated Program Design - Intermediate Program Design
Using Video Game Development. Springer, Cham, Switzerland. doi:10.1007/978-
3-031-04317-8

[46] Marco T. Morazán. 2024. Programming-Based Formal Languages and Automata
Theory - Design, Implement, Validate, and Prove. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-43973-5

[47] Marco T. Morazán and Oliwia Kempinski. 2024. Using Computation Graphs to
Explain Nondeterminism to Students. In Proceedings of the 2024 ACM SIGPLAN
International Symposium on SPLASH-E (Pasadena, CA, USA) (SPLASH-E ’24).
Association for Computing Machinery, New York, NY, USA, 23–33. doi:10.1145/
3689493.3689978

[48] Marco T. Morazán and Tijana Minić. 2024. Finite-State Automaton To/From
Regular Expression Visualization. Electronic Proceedings in Theoretical Computer
Science 405 (July 2024), 36–55. doi:10.4204/eptcs.405.3

[49] Marco T. Morazán and Tijana Minić. 2024. Nondeterministic to Deterministic
Finite-State Machine Visualization: Implementation and Evaluation. In Proceed-
ings of the 2024 on Innovation and Technology in Computer Science Education V. 1
(Milan, Italy) (ITiCSE 2024). Association for Computing Machinery, New York,
NY, USA, 262–268. doi:10.1145/3649217.3653641

[50] Marco T. Morazán, Tijana Minić, and Oliwia Kempinski. 2024. Visualizing Com-
posed Turing Machines. In Proceedings of the 2024 ACM SIGPLAN International
Symposium on SPLASH-E (Pasadena, CA, USA) (SPLASH-E ’24). Association for
Computing Machinery, New York, NY, USA, 34–44. doi:10.1145/3689493.3689979

[51] Marco T. Morazán, Joshua M. Schappel, and Sachin Mahashabde. 2020. Vi-
sual Designing and Debugging of Deterministic Finite-State Machines in FSM.
Electronic Proceedings in Theoretical Computer Science 321 (August 2020), 55–77.
doi:10.4204/eptcs.321.4

[52] Marco T. Morazán. 2025. Grammar Verification for Students: A Grammar Design
Recipe with Verification Steps. In Proceedings of the 17th International Conference
on Computer Supported Education - Volume 2: CSEDU. INSTICC, SciTePress, 662–
669. doi:10.5220/0013216500003932

[53] Marco T. Morazán and Rosario Antunez. 2014. Functional Automata - Formal
Languages for Computer Science Students. Electronic Proceedings in Theoretical
Computer Science 170 (Dec. 2014), 19–32. doi:10.4204/eptcs.170.2

[54] P. G. Moulton and M. E. Muller. 1967. DITRAN—A Compiler Emphasizing
Diagnostics. Commun. ACM 10, 1 (jan 1967), 45–52. doi:10.1145/363018.363060

[55] Jonathan P. Munson and Elizabeth A. Schilling. 2016. Analyzing Novice Program-
mers’ Response to Compiler Error Messages. J. Comput. Sci. Coll. 31, 3 (jan 2016),
53–61. doi:10.5555/2835377.2835386

[56] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky
– a qualitative analysis of novices’ strategies. In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE 2008, Portland, OR,
USA, March 12-15, 2008, J. D. Dougherty, Susan H. Rodger, Sue Fitzgerald, and
Mark Guzdial (Eds.). ACM, 163–167. doi:10.1145/1352135.1352191

[57] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-
piler Error Messages: What Can Help Novices?. In Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science Education (Portland, OR, USA)
(SIGCSE ’08). Association for ComputingMachinery, New York, NY, USA, 168–172.
doi:10.1145/1352135.1352192

[58] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach. In Proceedings of the
2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery, New York,
NY, USA, 74–82. doi:10.1145/3105726.3106169

[59] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (oct 2017), 24 pages. doi:10.1145/3077618

[60] Brian Randell and Lawford J. Russell. 1964. Algol-60 Implementation. Academic
Press, Inc., USA.

[61] R.H. Richens. 1983. Elm. Cambridge University Press, Cambridge, UK.
[62] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into

Programming Language Syntax. ACM Trans. Comput. Educ. 13, 4, Article 19 (nov
2013), 40 pages. doi:10.1145/2534973

[63] The Clang Team. 2024. Clang: A C Language Family Frontend for LLVM.
https://clang.llvm.org/. Last accessed: June 2025.

[64] The Rust Team. 2024. Rust Compiler Development Guide. Rust-Lang. Last accessed:
June 2025.

[65] Suzanne Marie Thompson. 2006. An Exploratory Study of Novice Programming
Experiences and Errors. Master. University of Victoria, Victoria, BC, Canada.

[66] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and
What They Mean. Adv. in Hum.-Comp. Int. 2010, Article 3 (jan 2010), 26 pages.
doi:10.1155/2010/602570

[67] Noel Welsh and Ryan Culpepper. 2024. RackUnit: Unit Testing (v8.12 ed.). PLT
Racket. Last accessed: June 2025.

[68] John Wrenn and Shriram Krishnamurthi. 2017. Error Messages are Classifiers:
A Process to Design and Evaluate Error Messages. In Proceedings of the 2017
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Vancouver, BC, Canada) (Onward!
2017). Association for Computing Machinery, New York, NY, USA, 134–147.
doi:10.1145/3133850.3133862

Design and Implementation of DSLs for Unit Testing
Marco T. Morazán
Seton Hall University
South Orange, NJ, USA
morazanm@shu.edu

Andrés M. Garced
Seton Hall University
South Orange, NJ, USA
maldona2@shu.edu

Abstract
More intuitive abstractions for software development are made
possible by domain-specific languages. Although the use of domain-
specific languages has proliferated, the sound software practice of
testing (programs written in a DSL) has not kept up with the pace
of development. Many domain-specific languages do not provide
syntax to express unit tests nor do they provide the infrastructure
for test evaluation. This article presents a set of design principles
to guide the development of a unit testing infrastructure within a
domain-specific language. These principles embrace domain knowl-
edge and put forth a much neglected aspect: the user evaluation of
the offered abstractions. The design of a unit testing domain-specific
language using these principles is outlined and its implementation
is described. In addition, the results of a small formative study sug-
gest that the developed domain-specific language for unit testing is
well-received by its users.

CCS Concepts
• Software and its engineering→ Domain specific languages;
• Human-centered computing→ Interaction design;

Keywords
Domain-Specific Languages, Unit Testing, Implementation
ACM Reference Format:
Marco T. Morazán and Andrés M. Garced. 2025. Design and Implementation
of DSLs for Unit Testing. In Proceedings of the 37th Symposium on Implemen-
tation and Application of Functional Languages (IFL 2025), October 1–3, 2025,
Montevideo, Uruguay. ACM, New York, NY, USA, 12 pages.

1 Introduction
The beginning of the domain-specific languages (DSLs) era is usually
attributed to to Peter J. Landin [37]. In his seminal paper, The Next
700 Programming Languages [16], Landin argues for a diversity of
languages to service a diversity of application areas. Since Landin,
the number of DSLs has mushroomed and they have become a
common tool for a myriad of domains. For example, GraphViz’s
DOT language [10] is a DSL for representing abstract graphs, HTML
[33] and CCS [25] are DSLs for web page design, SQL [6] is a DSL for
managing data in a relational database, iTask [30] is a DSL for task-
oriented programming, funQ [2] is a DSL for functional quantum
programming, and FitNesse is a DSL for test-driven development
in a .NET environment. In fact, the cited DSLs are only a minuscule

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IFL 2025, Montevideo, Uruguay
© 2025 Copyright held by the owner/author(s).

part of the DSLs in existence today, which may be in the thousands
[20].

Unlike a general-purpose programming language (GPL) that tar-
gets problem solving in all application domains, a DSL targets a
specific application domain [7, 12, 24, 35–37]. Typically, this leads
to gains in expressibility that reduce the distance between a prob-
lem as a domain expert understands it and a program [12]. In turn,
this enables domain experts, that may not be programmers, to con-
tribute to software customization. This is achieved by raising the
abstraction level to capture commonalities in the problem domain
that may be reused and added as concepts in a DSL [37] to more
clearly specify solutions to problems and communicate the intent
of a program [7, 13].

Given the level of abstraction a DSL provides, a great deal of
domain logic is hidden in the implementation. Therefore, it is im-
portant to test its implementation [37]. Such testing is done mostly
in two ways. In the first, unit tests may be written in the host GPL
to validate an embedded DSL’s implementation [36]. This approach
likely excludes domain experts that are not programmers and pro-
grammers that are not familiar with the host GPL. In the second,
unit tests are written in the DSL [36]. This approach adds some
complexity to DSL implementation, because syntax and dynamic
semantics need to support, respectively, expressing and executing
unit tests. This approach is attractive, because it allows program-
mers that use the DSL to validate their programs through testing.
Providing unit testing to DSL programmers, in part, inspires the
work presented in this article.

Surprisingly, it is not uncommon for DSL implementations to
fail to include unit testing facilities (e.g., GraphViz’s DOT and HTML).
Given that testing is an integral part of software development, we
argue that DSLs need to provide syntax and dynamic semantics
to express and execute unit tests. This must be done, however, in
a manner that is meaningful and useful to programmers as well
as to domain experts. Otherwise, it is unlikely to de adopted by
either stake holders. To this end, this article makes the following
contributions:

• Proposes design criteria for unit-testing DSLs
• Illustrates the unit testing interface satisfying the outlined
criteria using a sample target DSL
• Outlines the implementation of the unit-testing DSL for the
sample target DSL
• Presents the results of a formative human factors study eval-
uating the unit testing DSL

The article is organized as follows. Section 2 describes the pro-
posed design criteria for unit-testing DSLs. Section 3 briefly de-
scribes the target DSL. Section 4 presents the interface for the unit-
testing DSL for the target language. Section 5 outlines the imple-
mentation of the unit-testing DSL. Section 6 presents the empirical

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán and Garced

data collected from a small formative study to ascertain the useful-
ness of the unit-testing DSL. Section 7 compares and contrasts with
related work. Finally, Section 8 presents concluding remarks and
directions for future work.

2 Design Principles for Developing a Unit
Testing DSL

Given that DSLs are used to develop software, programmers and
domain experts ought to be able to perform testing. Inevitably, this
requires designing and implementing a DSL for expressing tests.
That is, unit tests have their own syntax and semantics and, thus,
may be thought of as a domain-specific programming language.

Every DSL implementation may be divided into 5 core aspects
[20, 36, 37]:

Concrete Syntax Defines what programmers write and is
typically described using a context-free
grammar

Abstract Syntax Defines the representation of a program
in computer memory

Static Semantics Defines the static properties of programs
Dynamic Semantics Defines how programs are evaluated
Design Environment Defines services provided to assist with

program writing and refinement
Of these, the most relevant to domain experts and programmers
using a given DSL are the concrete syntax, the static semantics, the
dynamic semantics, and the design environment. Rarely, if ever, are
the users of a DSL concerned with abstract syntax.

Conspicuously absent from the core aspects of DSL implementa-
tion outlined above is evaluation. The development of a DSL goes
beyond technical achievements that work. Considering that the
main purpose of a DSL is to offer expressibility and abstractions that
ought to make program development easier for both programmers
and non-programmers, it is necessary to conduct human factors
studies to ascertain if the offered abstractions meet this goal. Thus,
we add a sixth core aspect for DSL implementation:

User Evaluation Determine user satisfaction and impres-
sions

We further expand on these core aspects relevant to users with a
focus on the development of a DSL to express unit tests.

The concrete syntax ought to make writing and reading unit test
relatively easy for all DSL users. To this end, the concrete syntax
ought to:
• use domain jargon, not GPL or generic jargon
• easily express domain abstractions
• be concise
• clearly communicate the purpose of a test to a domain expert

Such characteristics make a unit tests easy to write, read, and un-
derstand. As a consequence stake holders are likely to learn and
adopt the language for unit tests. When a variety of unit testing
categories are offered, a balance must be struck between language
cacophony (i.e., the number of DSLs) and the size of a DSL (i.e., the
DSL ought not become a GPL) [7].

The static semantics aid in correctly writing unit tests. In essence,
constraints need to be defined that programs must conform to.
These constraints may include:

• the correct writing of unit tests (e.g., the correct number of
expressions are provided for testing)
• unit tests are properly typed

Such characteristics help ensure that unit testing “vocabulary” is
properly used. It assists all stake holders in writing tests that are
correct and prevent errors at interpretation/compile time.

The dynamic semantics aid in understanding how unit tests are
evaluated. This includes the handling of errors. The characteristics
that important for unit testing are:
• test evaluation needs to make sense to domain experts, not
just programmers
• the reason for a failed test needs to havemeaning to a domain
expert
• failed test reports use domain jargon
• failed test reports should not prescribe solutions
• failed test reports are concise and succinct

Such characteristics help prevent DSL programmers from being
overwhelmed, exhausted, or discouraged trying to pinpoint the
reason a test fails. Like some error messaging systems (e.g., [21,
39]), failed test reports should not prescribe solutions. Prescribing
solutions may lead stake holders down unfruitful refinement paths.
In addition, careful attention to the length of failed tests reports is
important to encourage programmers and domain experts to read
them. If such reports are too long, a tendency to ignore them may
take root.

The design environment ought to provide services that aid pro-
grammers and domain experts to correct failed unit tests. These
services ought to present a low extraneous cognitive load to make
them easy to understand. Some of the services the design environ-
ment may provide related to unit testing are:
• failed test location in the program
• failed test syntax highlighting in the program
• reinforce the failed test report as accurately as possible

Like done by error messaging systems that pinpoint where in the
program an error occurs [1], pinpointing the location of failed tests
assists programmers to quickly focus on debugging. Reinforcing the
failed test report means that, for example, instead of highlighting an
entire test, only the values that cause the test to fail are highlighted.
This is possible, for instance, when the syntax allows to express
multiple test values in a single unit test.

User evaluation is important, because it can help the evolution
of a unit testing DSL. Human factors studies can help determine DSL
abstractions that are considered useful and ought to be kept as well
as abstractions that are difficult to use and need to be refined. Such
studies may be performed through the use of surveys, interviews,
and observational sessions.

3 Target DSL
To illustrate the implementation of a DSL for unit testing, FSM
(Functional State Machines) [28] is used as the target language
in which to embed such a DSL. The DSL developed for unit test-
ing is referred to as FSMt (FSM testing language). FSM itself is a
domain-specific language, embedded in Racket [5], for the Formal
Languages and Automata Theory (FLAT) classroom. It is used to
harness CS student interest in programming to make FLAT topics

Design and Implementation of DSLs for Unit Testing IFL 2025, October 1–3, 2025, Montevideo, Uruguay

more palatable. For the purposes of this article, we target the sub-
set of FSM that is used to build state machines (i.e., deterministic
finite-state machines (dfas), nondeterministic finite-state machines
(ndfas), pushdown automata (pdas), Turing machines (tms), and
multitape Turing machines (mttms)), and to build grammars (i.e.,
regular (rg), context-free (cfg), and unrestricted (urg)). Briefly,
state machines are used to decide or semidecide languages1. Given
a word, a machine either accepts or rejects. Grammars are used
to derive words. Given a word, a grammar returns a derivation
or indicates that the word is not in the grammar’s language. In
this article, we endeavor to use examples that are easy to follow.
Readers seeking more details on these models on computation are
referred to any standard FLAT textbook (e.g., [17, 19, 22, 27, 31, 32]).

Formerly, to write unit tests, FSM programmers needed to use
RackUnit [38]–a unit testing framework for Racket. Specifically,
tests were written using check-equal?, which requires two expres-
sions to evaluate. By convention, the first is the expression to test
and the second expression is for the expected value. If these are
equal the tests passes and no failed test report is generated. Other-
wise, the test fails and a failed test report is printed to the terminal.

To briefly illustrate programming in FSM, we present an example
of building a state machine and an example of building a grammar.
For each, unit testing is highlighted.

3.1 FSM State Machine Example
Figure 1a displays the FSM implementation for a dfa to decide

the language of all words with an even number of as and an odd
number of bs over the alphabet {a, b}. The machine has four states
that are described as follows in terms of the read input:

S An even number of as and an even number of bs have been
read. This is the starting state.
N An even number of as and an odd number of bs have been
read. This is the only final state
M An odd number of as and an odd number of bs have been
read.
P An odd number of as and an even number of bs have been
read.
The transition function defines how the machine changes states

upon reading the next element in the input word. For instance,
consider the transition rule (M b P). This transition states that
if the machine is in state M and reads a b then it moves to state P.
Observe this transition is correct. When the machine is in M, an
odd number of as and an odd number of bs have been read. If a b
is read, then an odd number of as and an even number of bs have
been read, which is the condition that P represents. The transition
diagram for EVEN-A-ODD-B is displayed in Figure 1b.

To test state machines, the FSM primitive sm-apply is used. It
takes as input a state machine and a word, applies the machine
to the word, and returns a symbol for the result: either 'accept
or 'reject. In Figure 1a, the unit tests for EVEN-A-ODD-B are dis-
played on lines 13–34. Each test uses check-equal? to test a single
word. Running the code in Figure 1a yields that all tests pass and
no test failure reports are printed.

1In this article, we do not concern ourselves with tms and mttms that, instead of
deciding or semideciding a language, compute a function.

1 (define EVEN-A-ODD-B

2 (make-dfa

3 '(S M N P) ;; the states
4 '(a b) ;; the alphabet
5 'S ;; the starting state
6 '(N) ;; the final states
7 ;; the transition function
8 '((S a P) (S b N) (M a N) (M b P)

9 (N a M) (N b S) (P a S) (P b M))

10 ;; optional argument: transition function is fully specified
11 'no-dead))

12 ;; Unit tests for EVEN−A−ODD−B
13 (check-equal? (sm-apply EVEN-A-ODD-B '())

14 'reject)

15 (check-equal? (sm-apply EVEN-A-ODD-B '(a b b a))

16 'reject)

17 (check-equal? (sm-apply EVEN-A-ODD-B '(b a b b a a))

18 'reject)

19 (check-equal? (sm-apply EVEN-A-ODD-B '(a b))

20 'reject)

21 (check-equal? (sm-apply EVEN-A-ODD-B '(a b b b b))

22 'reject)

23 (check-equal? (sm-apply EVEN-A-ODD-B '(b a b b a a b))

24 'reject)

25 (check-equal? (sm-apply EVEN-A-ODD-B '(b))

26 'accept)

27 (check-equal? (sm-apply EVEN-A-ODD-B '(b b b))

28 'accept)

29 (check-equal? (sm-apply EVEN-A-ODD-B '(a b b a b))

30 'accept)

31 (check-equal? (sm-apply EVEN-A-ODD-B '(a a b))

32 'accept)

33 (check-equal? (sm-apply EVEN-A-ODD-B '(a a a b a b b))

34 'accept)

(a) FSM implementation.

(b) Transition diagram.

Figure 1: An FSM dfa for L={w|w has an even number of a and
an odd number of b}.

To illustrate test failure reports, consider changing the expected
value for each test in Figure 1a from 'accept to 'reject and vice
versa. A subset of the 11 failed test reports in displayed in Fig-
ure 2. Each error report includes the actual and expected values,

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán and Garced

Figure 2: Failed test reports for state machines.

the location of the failed test, and the failed test predicate (i.e.,
check-equal?). Clicking on the icon in the top left corner of each
failed test reports causes the failed test to be highlighted in the
program window. For instance, clicking on the icon for the second
failed test report (for the test on lines 15–16 in Figure 1a) yields:

Observe that the entire unit test expression is highlighted.

3.2 FSM Grammar Example
Figure 3 displays the FSM implementation for a cfg to derive

the language of all words containing an arbitrary number of as

1 (define a2nb2n

2 (make-cfg '(S) ;; nonterminals
3 '(a b) ;; terminals
4 '((S → 𝜖) ;; production rules
5 (S → aSb))

6 'S)) ;; starting nonterminal
7 ;; Unit tests for a2nb2n
8 (check-equal?

9 (grammar-derive a2nb2n '(a b a))

10 "(a b a) is not in L(G).")

11 (check-equal?

12 (grammar-derive a2nb2n '(b b b))

13 "(b b b) is not in L(G).")

14 (check-equal?

15 (last (grammar-derive a2nb2n '()))

16 '𝜖)

17 (check-equal?

18 (last (grammar-derive a2nb2n '(a b)))

19 'ab)

20 (check-equal?

21 (last (grammar-derive a2nb2n '(a a b b)))

22 'aabb)

23 (check-equal?

24 (last (grammar-derive a2nb2n '(a a a b b b)))

25 'aaabbb)

26 (check-equal?

27 (last (grammar-derive

28 a2nb2n

29 '(a a a a a b b b b b)))

30 'aaaaabbbbb)

Figure 3: An FSM cfg for L=a𝑛b𝑛 .

followed by the same number of bs over the alphabet {a, b}. That
is, the grammar’s language is L=anbn. The grammar has a single
syntactic category (i.e., nonterminal symbol) described as follows:

S Derives a word in anbn

The production rules define how a nonterminal on the left-hand side
may be substituted with the amalgamation of symbols on the right-
hand side. For instance, consider the production rule (S → aSb).
This rule states that the nonterminal symbol S may be substituted
with aSb to advance the derivation of a word. Observe that this
production rule is correct. If S generates a word in L, then this rule
generates aanbnb, which is also in L.

To test grammars, the FSM primitive grammar-derive is used. It
takes as input a grammar and a word and returns a derivation for
the word or a string indicating that the word is not in the grammar’s
language. In Figure 3, the unit tests for a2nb2n are displayed on
lines 8–30. Each use of check-equal? tests a single word derivation.
Running the code in Figure 3 yields that all tests pass and no test
failure reports are printed. If the tests were changed so that they all

Design and Implementation of DSLs for Unit Testing IFL 2025, October 1–3, 2025, Montevideo, Uruguay

<test>
::= (check-reject? <machine> <word>∗)
::= (check-accept? <machine> <word>∗)
::= (check-reject? <machine> (<word> <head-pos>)∗)
::= (check-accept? <machine> (<word> <head-pos>)∗)

(a) FSMt concrete syntax for state machine tests.

<test> ::= (check-not-derive? <grammar> <word>∗)
::= (check-derive? <grammar> <word>∗)

(b) FSMt concrete syntax for grammar tests.

Figure 4: FSMt concrete syntax.

fail, the resulting failed test reports look similar to those in Figure 2.
In the interest of brevity, they are omitted.

4 The FSMt Interface
Even a cursory look at the FSM code in Figure 1a and Figure 3 reveals
that writing unit tests is tedious, repetitive, and verbose. In fact,
this is a reason why a significant cohort of students invariably com-
plains every semester. Much to their credit, they are not mistaken.
The unit tests in Figure 1a are all very similar. They all differ by
only two elements: the word being tested and the expected value
expression. All the unit tests in Figure 3 are also very similar. They
all differ by three elements: the word being tested, the expected
value expression, and the test expression. This strongly suggests
that an abstraction is needed that hides (the repetitive) testing logic.
This is exactly what DSLs excel at and this section describes the
interface for FSMt. The description is divided into four parts based
on four of the elements relevant to all DSL users as identified in
Section 2: the concrete syntax, the static semantics, the dynamic se-
mantics, and the design environment. We note that user evaluation
is discussed in Section 6.

4.1 Concrete Syntax
The concrete syntax to write unit tests for state machines is dis-
played in Figure 4a. There are four varieties of unit testing expres-
sions. The first two are used for dfas, ndfas, and pdas. The first is
to test words that ought to be rejected by a given machine. The sec-
ond is to test words that ought to be accepted by a given machine.
Each requires a machine and an arbitrary number of test words.
The second two varieties are used to test tms and mttms. For these
varieties, each requires a machine and an arbitrary number of pairs.
Each pair contains a word and the machine’s initial head position.

The concrete syntax to write unit tests for grammars is displayed
in Figure 4b. There are two varieties of unit testing expressions. The
first is used to test words that should not be derived by the given
grammar. The second is used to test words that ought be derived
by the given grammar. Each requires a grammar and an arbitrary
number of test words.

Observe that each unit-testing expression uses domain jargon.
For instance, accept, reject, derive, and not-derive are used
instead of the generic term equal found in Figure 1a and Figure 3.
This helps to clearly communicate to domain experts and DSL pro-
grammers the purpose of the test. In addition, the abstraction is

easily expressed. There is no longer a need, for example, to refer to
sm-apply or grammar-derive. Finally, observe that unit tests may
now be written concisely without sacrificing clarity. The unit tests
from Figure 1a are refactored as follows:

(check-reject? EVEN-A-ODD-B

'() '(a b b a) '(b a b b a a)

'(a b) '(a b b b b)

'(b a b b a a b))

(check-accept? EVEN-A-ODD-B

'(b) '(b b b) '(a b b a b)

'(a a b) '(a a a b a b b))

The unit tests from Figure 3 are refactored as follows:

(check-not-derive? a2nb2n '(b b b) '(a b a))

(check-derive? a2nb2n

'() '(a a b b) '(a a a b b b)

'(a b) '(a a a a a b b b b b))

The reader can appreciate the striking difference in length and
domain-specific expressibility.

4.2 Static Semantics
The FSMt syntax is checked for several static constraints:
• At least two expressions are provided
• The first expression provided has the following type:
– a state machine for machine tests
– a grammar for grammar tests
• All but the first provided expressions have the following
type:
– a word for grammar, dfa, ndfa, and pda tests
– a test pair for tm and mttm tests
• A test pair contains a word and a valid index into the word
• A word is a list of symbols all of which are contained in the
machine’s alphabet or the grammar’s alphabet, respectively,
for machine and grammar tests

Checking these static constraints prevents writing improper
unit tests (e.g., testing grammar using sm-apply) that is possible
using a GPL testing framework such as RackUnit. Checking the
type of the first given expression guarantees that the provided
syntax is not used with the incorrect computation model, thus,
reinforcing the domain knowledge. That is, a machine either accepts
or rejects a word and a grammar either derives or does not derive a
word. The constraints on words guarantee that only valid words
are tested. Assume the alphabet of a state machine or a grammar
is Σ. These static constraints on words guarantee that machines
are only applied to and grammars are only used to try to derive
words in Σ*. Such a constraint makes intuitive sense to domain
experts (e.g., think of a FLAT Professor that is not a programmer)
and precludes attempting to use arbitrary words that are not valid
for a given machine or grammar. For instance, a machine whose
alphabet is {a,b} can not be tested with a word that contains a c.

4.3 Dynamic Semantics
The dynamic semantics are described as follows (assuming static
checks have passed):

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán and Garced

• For machine tests, the given machine is applied to every
given word or test pair using sm-apply
• For grammar tests, the given grammar is applied to every
given word using grammar-derive
• A single failed test report is generated for all test words that
fail to produce the expected result
• Every failed test report contains text similar to a recipe-based
error message [3, 29] indicating the step of the design recipe
[27] not successfully completed and the words that fail to
produce the expected result

The dynamic semantics fulfill the expectations of domain experts.
That is, machines are used to determine word membership in a
language and grammars are used to derive words in a language.

To illustrate how a failed test report has meaning to a domain ex-
pert (in our case, students in a FLAT course), consider the following
FSMt expression for the grammar displayed in Figure 3:

(check-derive?

a2nb2n

'(b a) '(a) '(a a a a b b b b) '(b))

The generated fail test report is:
Step 6 of the design recipe has not been successfully
completed. The constructed grammar, a2nb2n, does not
derive the following words: (b a) (a) (b)

The step of the design recipe unsuccessfully completed (i.e., the
step that requires writing unit tests) has meaning for the domain
experts from lectures and the textbook [27] used for instruction.
Observe that a failed test report contains the grammar/machine
used in the tests. In this manner, the report has immediate meaning
when several grammars/machine are defined in the same program
file.

Finally, to illustrate that failed test reports are succinct and con-
cise, consider the reports generated for:

(check-reject?

EVEN-A-ODD-B

'(b) '(b b b) '(a b b a b) '(a a b)

'(a a a b a b b))

(check-accept?

EVEN-A-ODD-B

'() '(a b b a) '(b a b b a a) '(a b)

'(a b b b b) '(b a b b a a b))

These are the same unit tests that generate the 11 failed test reports
partially displayed in Figure 2. The use of FSMt as illustrated above
generates:
Step 6 of the design recipe has not been successfully
completed. The constructed machine, EVEN-A-ODD-B, does
not reject the following words: (b) (b b b) (a b b a b)
(a a b) (a a a b a b b)

Step 6 of the design recipe has not been successfully
completed. The constructed machine, EVEN-A-ODD-B, does
not accept the following words: () (a b b a)
(b a b b a a) (a b) (a b b b b) (b a b b a a b)

Undoubtedly, it is preferable to read these two succinct and concise
failed test reports rather than 11 generic failed test reports that
carry no domain-specific knowledge produced by the GPL’s testing
framework

4.4 Design Environment
The DrRacket IDE [4] is used to provide the failed test locations and
syntax highlighting in a program’s file. To this end, for every failed
test report only the tested words that cause the FSMt expression to
fail are highlighted. Programmers can jump and see the highlighted
results by clicking on the icon included in the report (i.e., the same
icon discussed in Section 3.1).

To illustrate the use of highlighting, consider, once again, the
following FSMt expression first used in Section 4.3:

(check-derive?

a2nb2n

'(b a) '(a) '(a a a a b b b b) '(b))

The generated report inside the DrRacket IDE is displayed as fol-
lows:

Clicking on the icon in the top left corner leads to the following
display in the program’s definition window:

As can be observed, only the words not derived by a2nb2n are
highlighted. Thus, precisely identifying the locations and reasons
for the failed tests report.

5 Implementation
This section describes the implementation of FSMt. The presenta-
tion is also organized around 4 of the 6 core implementation aspects
identified in Section 2: concrete syntax, static semantics, dynamic
semantics, and design environment. Given that the target domain
is unit testing for FSM, FSMt never throws an exception (e.g., as is
usually done when a static constraint is violated). Instead, it always
generates a warning when a static constraint is violated or a test
fails. When a static constraint is violated, the tests are not evaluated.

5.1 Concrete Syntax
FSMt is implemented using Racket macros [5, Chapter 16]. Racket
macros are the right tool for the job for two reasons. The first is
that they provide a straightforward means for implementing the
concrete syntax described in Section 4.1. The second is that they
provide access to syntax objects that are used to implement code
highlighting when a warning report is generated (e.g., as described
in Section 4.4).

To manipulate syntax at runtime, the syntax object must be
encoded as a runtime value at compilation time to provide access to
information such as the syntax type (e.g., the expression type) and
the source location in the program’s file. This information is used
to customize failed test reports and to correctly target expressions
for highlighting.

Design and Implementation of DSLs for Unit Testing IFL 2025, October 1–3, 2025, Montevideo, Uruguay

1 (define-syntax (check-in-lang? stx)

2 (syntax-parse stx

3 [(check-in-lang?)

4 #'(handle-no-vals (val-stx-pair stx #'stx))]

5 [(check-in-lang? val1)

6 #'(handle-one-val

7 val1

8 (val-stx-pair stx #'stx))]

9 [(check-in-lang? val1 w ...)

10 #'(execute-rt-checks

11 #t

12 (val-stx-pair val1 #'val1)

13 (list (val-stx-pair w #'w) ...))]))

Figure 5: Primary FSMtmacro.

One of the two primary FSMtmacros is displayed in Figure 5. This
macro generates code for testing words that ought to be accepted
by a state machine or ought to be generated by a grammar. There
is an analogous macro, check-not-in-lang, for words that ought
to be rejected by a state machine or ought to not be generated by a
grammar. The macro in Figure 5 implements generic syntax used
to expand the FSMt syntax check-accept? and check-derive?. It
dispatches on whether or not the static requirement of providing
one FSM value and at least one test value is met. Based on this, there
are three different cases to pattern match:

(check-in-lang?) No expressions are provided for the test
(check-in-lang? val1) Only one expression is provided for the
test
(check-in-lang? val1 w . . .) At least two expressions are pro-
vided for the test

When zero or one expression is provided to a test, a warning mes-
sage is displayed, respectively, by the macro-generated function call
to handle-no-vals (line 4) and handle-one-val (line 6). When
the proper number of expressions is provided to a test, static con-
straints violations and failed test reports, if any, are displayed by the
macro-generated function call to execute-rt-checks. If no static
errors are detected, this function is responsible for running all the
tests. Each of these functions manipulates both runtime values and
syntax objects. A value is associated with the syntax that generates
it through the use of, val-stx-pair, a structure that contains the
runtime value (e.g., val1 and w) and its corresponding syntax object
(e.g., #'val1 and #'w).

To illustrate how these functions are implemented, consider
the implementation of execute-rt-checks displayed in Figure 6.
This function dispatches on the type of FSM value tested (i.e., state
machine or grammar), which is extracted from the val-stx-pair
instance provided for it as input2. If the given FSM value is not a
state machine or grammar, a warning is thrown and the tests are
not executed. Otherwise, the tests are executed by a test-checking
function (e.g., check-grammar), which checks if the elements in
wlist are valid. If they are not valid, a warning is thrown and the
2Unlike dfas, ndfas, and pdas, a separate stanza for tms is used, because the tested
value are not just words. They also contain the head’s starting position.

(define (execute-rt-checks accept? fsmval wlist)

(cond

[(tm? (val-stx-pair-val fsmval))

(check-tm accept? fsmval wlist)]

[(fsa-pda? (val-stx-pair-val fsmval))

(check-machine accept? fsmval wlist)]

[(grammar? (val-stx-pair-val fsmval))

(check-grammar accept? fsmval wlist)]

[else

(display-fsmt-warning

(warning:invalid-fsmval fsmval))]))

Figure 6: Top-level function to run tests.

tests are not evaluated. Otherwise, the tests are evaluated and, if
necessary, failed test reports are generated.

Finally, FSMt concrete syntax is transformed to check-in-lang?
syntax as follows:

(define-syntax check-accept?

(make-rename-transformer #'check-in-lang?))

(define-syntax check-derive?

(make-rename-transformer #'check-in-lang?))

In essence, any use of check-accept? and check-derive? syntax
is rewritten as check-in-lang? syntax. An analogous transforma-
tion is done from check-reject? and check-not-derive? syntax
to check-not-in-lang? syntax.

5.2 Static Semantics
Static tests are performed at runtime in FSMt to create more in-
formative warning reports. Before any tests are evaluated, static
properties are validated. Each static property tested is represented
using a property-check structure that has 4 characteristics: a pred-
icate, test values, a constructor for a structure that represents a FSMt
warning, and an FSM value (i.e., a state machine or a grammar). The
predicate must hold for all test values. If it does not, then a warning
structure is constructed. This structure is eventually used to gener-
ate the string containing the test values that cause the predicate to
fail. The FSM value is used in the displayed warning message when
the syntax value that it is generated from is an identifier. That is,
if the machine or grammar is bound to a name, then this name is
used in the warning message.

To illustrate how checks are implemented, consider the imple-
mentation of check-machine displayed in Figure 7. Recall that this
function is called by the FSMt top-level function to run tests dis-
played in Figure 6. It takes as input a Boolean to indicate if the
given words are tested for acceptance or rejection, a val-stx-pair
structure for a state machine (i.e., a dfa, an ndfa, or a pda), and a list
of val-stx-pairs for the words. There are three static properties
that are validated. The first check validates that each of the given
expressions for words is a list of symbols (line 3). The second check
validates that each word is formed by elements in the given ma-
chine’s alphabet (line 4). The third check performs the tests (lines

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán and Garced

1 (define (check-machine accept? M words)

2 (run-property-checks

3 (property-check (listof symbol?) words warn:fsmt:app:sm:invalid-word M)

4 (property-check (valid-word-elems/c (val-stx-pair-val M)) words warn:fsmt:app:sm:invalid-sigma M)

5 (if accept?

6 (property-check (word-accepted? (val-stx-pair-val M)) words warn:fsmt:app:sm:accept M)

7 (property-check (word-rejected? (val-stx-pair-val M)) words warn:fsmt:app:sm:reject M))))

Figure 7: Implementation of check-machine.

1 (define (run-p-checks . p-checks)

2 (for

3 ([p-check (in-list p-checks)]

4 #:do [(define errVals

5 (accumulate-err-vals

6 (property-check-contract p-check)

7 (property-check-testVals p-check)))]

8 #:final (not (null? errVals)))

9 (when (not (null? errVals))

10 (display-fsmt-warning

11 ((property-check-errType p-check)

12 (property-check-fsmVal p-check)

13 errVals)))))

Figure 8: Implementation of property validation.

5–7). This last check uses the given Boolean to determine if tests
for accepting or rejecting the words are being evaluated.

5.3 Dynamic Semantics
The order in which the tests are performed by check-machine (and,
similarly, for check-tm and check-grammar) implements an impor-
tant dynamic feature: the precedence of warnings. For machines,
first every word argument must be a list, second every word must
only contain machine-alphabet elements, and third every word
needs to produce the expected test outcome. The precedence of
warnings is important to create an accurate warning message and
avoid misleading programmers towards a symptom of a mistake
rather than to the source of the mistake. For example, testing a
word for acceptance/rejection before (or without determining) that
the word is valid input to the machine would generate a failed test
warning. This may not be incorrect, but it is not accurate enough.
The source of the mistake is not that the test using this word failed.
Instead, it is that the word is not valid input for the machine. In
essence, the precedence of errors helps guarantee that more accu-
rate warnings or failed test reports are generated.

To illustrate how the static checks and the tests are performed,
the implementation of run-p-checks is displayed in Figure 8. For
each property checked, the predicate in the property-check in-
stance is applied to all the values being tested, which are also con-
tained in the property-check instance. The values for which the
property fails are accumulated. If any such values exist for a given

• warn:fsmt
– warn:fsmt:test
∗ warn:fsmt:test:no-cases
∗ warn:fsmt:test:no-fsm-val
∗ warn:fsmt:test:no-testvals
∗ warn:fsmt:test:invalid-fsm-val

– warn:fsmt:app
∗ warn:fsmt:app:gmr
· warn:fsmt:app:gmr:invalid-word
· warn:fsmt:app:gmr:invalid-terminal
· warn:fsmt:app:gmr:derive
· warn:fsmt:app:gmr:not-derive

∗ warn:fsmt:app:sm
· warn:fsmt:app:sm:accept
· warn:fsmt:app:sm:reject
· warn:fsmt:app:sm:invalid-elem
· warn:fsmt:app:sm:invalid-word

∗ warn:fsmt:app:tm
· warn:fsmt:app:tm:invalid-arity
· warn:fsmt:app:tm:invalid-head-pos
· warn:fsmt:app:tm:invalid-head-pos-index
· warn:fsmt:app:tm:no-left-hand-marker
· warn:fsmt:app:tm:invalid-word
· warn:fsmt:app:tm:invalid-elem
· warn:fsmt:app:tm:accept
· warn:fsmt:app:tm:reject

Figure 9: Warning structure inheritance hierarchy.

check, the remaining properties are not checked and a warning
is generated by display-fsmt-warning using the structure repre-
senting the instance of the warning type, the FSM value, and the
accumulated values. This is how a single warning is dynamically
generated for multiple values, thus, avoiding such a generation for
each individual value.

FSMt warning messages are created using a generic interface
that abstracts over the warning structure hierarchy displayed in
Figure 9. To briefly describe this hierarchy, we note that there are
two variants for FSMt warnings: test and app. The test variant is
used for static checks to validate that the FSMt syntax is correctly
used (e.g., at least two expressions are provided). It has 4 variants
(from top to bottom) for when no values are provided, when no
FSM value is provided, for when no test words are provided, and
for when an incorrect FSM value is provided. The app variant is

Design and Implementation of DSLs for Unit Testing IFL 2025, October 1–3, 2025, Montevideo, Uruguay

(define-generics fsmt-warning

(named-multi-failure fsmt-warning)

(named-single-failure fsmt-warning)

(anon-multi-failure fsmt-warning)

(anon-single-failure fsmt-warning)

(create-warning-str fsmt-warning)

(display-fsmt-warning fsmt-warning)

#:fallbacks

[(define (create-warning-str warning)

(cond [(warn:fsmt:app? warning)

(if (identifier?

(val-stx-pair-stx

(warn:fsmt-fsm-expr warning)))

(if (single-warning? warning)

(named-single-failure warning)

(named-multi-failure warning))

(if (single-warning? warning)

(anon-single-failure warning)

(anon-multi-failure warning)))]

[(warn:fsmt? warning)

(if (identifier?

(val-stx-pair-stx

(warn:fsmt-fsm-expr warning)))

(named-single-failure warning)

(anon-single-failure warning))]

[else

(raise-user-error

"Invalid error type raised.")]))])

Figure 10: Generation of FSMt generics.

used for all other static constraints and for test evaluation. It has 3
variants: one for grammars (gmr), one for non-tm state machines
(sm), and one for tms (tm). Each of these has variants. For example,
the gmr has variants (from top to bottom) for when a word is not
a list, for when a word contains elements not in the grammar’s
alphabet, for when a word that ought to be derived is not, and for
when a word that ought to not be derived is derived. In the interest
of brevity, the variants of sm and tm are not described.

This generic interface allows for different implementations to be
defined per structure variant for the same generic function. This is
important, because it allows for the generation of customized warn-
ing messages inspired by recipe-based error messages (discussed in
Section 4). Such an approach has two benefits: the first is that all
message generators for a warning type are encapsulated within the
definition of its structure. The second is that the generic functions
abstract away the use of structures to display a warning.

An abbreviated version of the implementation of this generic
interface is displayed in Figure 10. The first expression is an identi-
fier that defines the name of the interface (i.e., fsmt-warning). The
following expressions define the headers for the generic functions.
The keyword argument #:fallbacks allows for the definition of

default implementations of the generic functions. In this exam-
ple, only a default function for create-warning-str is provided
(hence, the abbreviated nature of the figure). This function gener-
ates the string that is used in a warning message. It dispatches on
the structure variant of warn:fsmt given as input. For each variant,
the syntax that generated the given FSM value is tested to determine
if it is an identifier. If so, the generation of the warning makes use
of it. Otherwise, the warning message generated is anonymous.
In addition, for a warn:fsmt:app instance, the warning structure
(i.e., warning) is tested to determine if it represents a single check
failure or multiple check failures and, accordingly, the grammar
used in the warning message is adjusted.

5.4 Design Environment
The DrRacket IDE is used to highlight syntax when warnings are
raised and to prevent the FSM programmer from examining the
trace stack, which contains information that is not relevant to
understanding the warning. To implement both features, Racket
exception structures are used.

To display FSMt warning messages, Racket error output ports
are used through the error-display-handler function. This func-
tion takes as input a Racket exception structure that must include
the warning string and a list of source locations to highlight. The
warning string is generated by the generic functions discussed in
Section 5.3 (see Figure 10). The source locations are generated by the
FSMt macros (e.g., see Figure 5), which are stored inside generated
val-stx-pair instances.

To make the trace stack inaccessible to FSMt programmers, FSMt
warnings use the Racket exception variant exn:fail:user. When
such a variant is provided to error-display-handler, the stack
trace is not displayed to the programmer. This is important, because
it prevents FSM programmers from ignoring the highlighted syntax
and looking for the reason for the warning in the FSMt implemen-
tation. In essence, providing access to the trace stack violates the
abstraction provided by the FSMt interface.

6 Human Factors Formative Study
This sections presents the results obtained from a small formative
study. First, the empirical data is presented. Second, the limitations
and threats to validity are discussed.

6.1 Empirical Results
To measure perceptions about FSMt, Seton Hall University’s spring
2025 undergraduate Formal Languages andAutomata Theory course
students answered an anonymous survey. All of its 10 students
volunteered to participate. The students are all 3rd or 4th year Com-
puter Science majors between the ages of 20 and 23. The sample
consists of 30% females and 70% males. No student received any
benefit or compensation for their participation.

Using a Likert scale [18] to respond, 1 (Strongly disagree) to 5
(Strongly agree), with 3 as a neutral response, the survey presents
the following statements:

Q1.1 Writing tests using check-equal? is straightforward
Q1.2 Writing tests using check-accept? and check-reject? is
straightforward

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán and Garced

1 2 3 4 5

0

0.2

0.4

0.6

0

0.1

0

0.3

0.6

0 0 0

0.4

0.6

0 0 0

0.4

0.6

0

0.1

0.4

0.3

0.2

0

0.1

0.4

0.3

0.2

Pr
op

or
tio

n
of

Re
sp
on

de
nt
s

Q1 Q2 Q3 Q4 Q5

Figure 11: Data distribution for anonymous survey.

Q1.3 Writing tests using check-derive? and check-not-derive?
is straightforward
Q1.4 I prefer to use check-accept? and check-reject? over check-
equal? to write unit tests for state machines
Q1.5 I prefer to use check-derive? and check-not-derive? over
check-equal? to write unit tests for grammars

The distribution of responses is displayed in Figure 11. For Q1.1, we
observe that an overwhelming majority of respondents, 90%, tend
to agree (responses 4 and 5) that writing tests using check-equal?
is straightforward. There is a small minority, 10%, that tends to
disagree (responses 1 and 2), but not strongly. This result establishes
a high bar for FSMt to meet.

The distribution of responses for Q1.2 and Q1.3 reveal that 100%
of respondents tend to agree (responses 4 and 5) that test writing
using FSMt is straightforward. These are very encouraging results,
because they suggest that the conciseness and use of domain jargon
is well-received by the respondents. This result is also somewhat
surprising given that the book of instruction [27] utilizes check-
equal? to express unit tests. Our expectation was that some cohort
of students would feel that it is more straightforward to emulate
the textbook.

The distributions of responses for Q1.4 and Q1.5 reveal a bit more
nuanced picture. For both, we observe that 50% of the respondents
tend prefer (responses 4 and 5) to write unit tests using FSMt over
check-equal?. For each distribution there is, however, a significant
proportion, 40%, that feels neutral and a small minority, 10%, that
disagrees but not strongly. This result is extremely positive. We
have that half the respondents prefer to write unit tests using a
technology that is new to them (i.e., FSMt) for which they have no
further guide but lectures and the FSM documentation [26]. Our
expectation was to see a much larger cohort tending to disagree
(responses 1 and 2). Instead, we observe that this larger cohort feels
neutral. Our expectation is that as documentation improves (and
when a new edition of the textbook is released), we ought to see an
even larger cohort tending to agree.

6.2 Limitations and Threats to Validity
We acknowledge that the study presented has limitations and
threats to validity. An obvious threat to validity is the small sample
size. In addition, the sample was drawn from amostly homogeneous
population. That is, the overwhelming majority of Computer Sci-
ence students at SHU are European American men. Therefore, it is
unclear if the same results would be observed using a larger sample
chosen from a more diverse Computer Science student population.
To address these problems, future iterations of the SHU course shall
be studied and efforts will be made to make it a interuniversity
study.

Another limitation of the study is its quantitative nature. Quanti-
tative studies fail to capture the personal experiences of participants
and, therefore, fail to capture the instances when respondents felt
FSMt was useful or a hindrance. To address this limitation, future
work includes the use of open-ended survey questions and obser-
vational studies.

In many social and physical sciences, it is common to study a
population by comparing a control and an experimental group. In
our case, the experimental group would use FSMt (i.e., the inde-
pendent variable) and the control group would only use RackUnit.
Since this was not possible, we cannot claim that the independent
variable is fully isolated. It is unclear if we can address this issue.
University officials would raise ethical questions about providing
different educational experiences to students for the sake of a study.

Finally, the formulation of the survey is a limitation. In retrospect,
it is obvious that the survey does not address some important issues
such as the length and the quality of fail tests reports, and whether
the use of domain jargon was a strength or a hindrance. To address
this shortcoming, future studies will include statements about fail
test reports that address these characteristics.

7 Related Work
Several efforts have been made to develop DSLs for expressing tests.
We briefly describe some of these efforts. jMock is a DSL for test-
driven development using Mock Objects in Java [8, 9]. This DSL

Design and Implementation of DSLs for Unit Testing IFL 2025, October 1–3, 2025, Montevideo, Uruguay

eases the construction on Mock Objects that are used for testing
purposes. One of the achievements obtained is that code reads like a
declarative specification instead of an imperative API. In this regard,
jMock and FSMt are similar. In contrast, the work presented does not
need to mimic (i.e., mock) machines or grammars that have not (yet)
been written. Neither jMock’s web presence (http://jmock.org/) nor,
to the best of our knowledge, the use of other Mock-based DSLs
(e.g., [11]) have reported the results obtained from user studies.

FitNesse is an acceptance testing DSL [23]. In FitNesse, tests
are expressed as tables of input data and expected output data. This
language facilitates the creation of these test tables. Like FSMt, how
tests are evaluated is hidden in the language’s implementation. In
contrast, FSMt and jMock do not use tables to express tests in a
declarative style. To the best of our knowledge, no user studies
have been conducted.

Wu, Grey, and Menik develop a DSL testing framework by lever-
aging the testing framework of an underlying GPL [40]. Their sys-
tem maps DSL tests to GPL tests and report the results at the DSL
level (i.e., the domain expert is only aware of the testing at the DSL
level). In contrast, FSMt does not map unit testing to the testing
framework of the host language (i.e., Racket). Instead, it keeps the
evaluation of the tests within the context of the target language (i.e.,
FSM). In further contrast, Wu et al. do not present an user feedback.

Juhnke and Tichy explored the development of automotive test-
ing DSLs [14]. They conclude that a generic testing DSL is not suit-
able and that system specific DSLs are needed. They focus on the
systematic development of testing DSLs that extract domain-specific
concepts from automotive test case specifications. They do not
present, as the work cited above, any user feedback. In contrast,
the work presented in this article focuses on a single DSL and on
improving and reporting the testing experience for the DSL users.

Providing support for testing in DSLs is considered by many a
costly and challenging task [15]. To address this challenge, a generic
Test Description Language standard, TDL [34], has been developed
by ETSI (European Telecommunications Standards Institute). TDL
allows test descriptions to be specified which, in turn, are used to
implement concrete tests in a DSL. Given its generic nature, TDL
does not address domain-specific knowledge required to write tests
in an executable DSL and does not include execution facilities [15].
To address these shortcomings, Khorram et al. developed a generic
DSL testing framework based on a refinement of TDL that extracts
domain knowledge from a target DSL and on the implementation of
a TDL interpreter for test execution [15]. Their evaluation reports
success with generating a testing framework for some DSLs and
also highlights some shortcomings associated with time-dependent
behavior. No user feedback is reported.

8 Concluding Remarks
This article presents design principles for the development of em-
bedded unit-testing domain-specific languages. It advocates 5 de-
velopment aspects, directly related to DSL users, that need to be
addressed: concrete syntax, static semantics, dynamic semantics,
design environment, and user evaluation. The first four must be
informed by domain knowledge to capture necessary abstractions
and make them part of the language implementation. Given that
unit-testing domain-specific languages are about making it easier

for humans, both programmers and non-programmers, to read and
write tests, the need for user evaluation is necessary. Poorly cap-
tured abstractions, complicated syntax, and unclear semantics, for
example, may derail the adoption of a unit-testing domain-specific
language. Human studies can inform developers of problem areas to
improve as well as features that work well and ought to be kept. In
addition, this article presents FSMt–a unit-testing domain-specific
language for, FSM, a language developed for the Automata and For-
mal Languages classroom. Its development is outlined through the
lens of the 5 identified development aspects and its macro-based
implementation is illustrated. The collected empirical data from a
formative study suggests that FSMt was well-received by its users
on its maiden voyage.

Future work includes extending the developed language to en-
compass the testing of FSM regular expressions. In addition, future
work also includes performing larger empirical studies over several
iterations of the course to increase sample size and performing in-
teruniversity studies to increase population diversity. Finally, future
work also includes development of macro-generated contracts for
FSM primitives to offer better error messages.

References
[1] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-

vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
doi:10.1145/3344429.3372508

[2] Matilda Blomqvist, Nicklas Boto, Beata Burreau, Fabian Forslund, Marcus Jorgens-
son, and Joel Rudsberg. 2021. A Functional Quantum Programming Language.
Last Accessed: June 2025.

[3] Shamil Dzhatdoyev, Josephine A. Des Rosiers, and Marco T. Morazán. 2024. Error
Messages for Students Taught Using a Systematic Program Design Curriculum. In
Trends in Functional Programming - 25th International Symposium, TFP 2024, South
Orange, NJ, USA, January 10-12, 2024, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 14843), Jason Hemann and Stephen Chang (Eds.). Springer,
195–219. doi:10.1007/978-3-031-74558-4_9

[4] Robert Bruce Findler. 2014. DrRacket: The Racket Programming Environment.
Racket Language Documentation (2014).

[5] Matthew Flatt, Robert Bruce Findler, and PLT. 2024. The Racket Guide. PLT.
https://docs.racket-lang.org/guide/ last accessed: March 2025.

[6] Marin Fotache and Catalin Strimbei. 2015. SQL and Data Analysis. Some Implica-
tions for Data Analysits and Higher Education. Procedia Economics and Finance
20 (2015), 243–251. doi:10.1016/S2212-5671(15)00071-4

[7] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley
Professional.

[8] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. 2004. Mock Roles,
not Objects. In Companion to the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications (Vancouver,
BC, CANADA) (OOPSLA ’04). Association for Computing Machinery, New York,
NY, USA, 236–246. doi:10.1145/1028664.1028765

[9] Steve Freeman and Nat Pryce. 2006. Evolving an Embedded Domain-Specific
Language in Java. In Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications (Portland, Oregon,
USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA,
855–865. doi:10.1145/1176617.1176735

[10] Emden R. Gansner and Stephen C. North. 2000. An Open Graph Visualization
System and Its Applications to Software Engineering. Softw. Pract. Exper. 30, 11
(September 2000), 1203–1233. doi:10.1002/1097-024X(200009)30:11<1203::AID-
SPE338>3.0.CO;2-N

[11] Colin S. Gordon. 2024. Mocking Temporal Logic. In Proceedings of the 2024
ACM SIGPLAN International Symposium on SPLASH-E (Pasadena, CA, USA)
(SPLASH-E ’24). Association for Computing Machinery, New York, NY, USA,
98–109. doi:10.1145/3689493.3689980

[12] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2009. Domain-Specific
Languages in Practice: A User Study on the Success Factors. In Model Driven
Engineering Languages and Systems, Andy Schürr and Bran Selic (Eds.). Springer

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán and Garced

Berlin Heidelberg, Berlin, Heidelberg, 423–437.
[13] Paul Hudak. 1996. Building Domain-Specific Embedded Languages. ACMComput.

Surv. 28, 4es (Dec. 1996), 196–es. doi:10.1145/242224.242477
[14] Katharina Juhnke and Matthias Tichy. 2019. A Tailored Domain Analysis Method

for the Development of System-Specific Testing DSLs Enabling Their Smooth
Introduction in Automotive Practice. In 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). 10–18. doi:10.1109/
SEAA.2019.00011

[15] Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, and Gerson Sunyé. 2021.
Adapting TDL to Provide Testing Support for Executable DSLs. The Journal of
Object Technology 20, 3 (2021), 6:1–15. doi:10.5381/jot.2021.20.3.a6

[16] P. J. Landin. 1966. The Next 700 Programming Languages. Commun. ACM 9, 3
(March 1966), 157–166. doi:10.1145/365230.365257

[17] Harry R. Lewis and Christos H. Papadimitriou. 1997. Elements of the Theory
of Computation (2nd ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
doi:10.1145/300307.1040360

[18] Rensis Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology 140 (1932), 1–55.

[19] Peter Linz. 2011. An Introduction to Formal Languages and Automata (5th ed.).
Jones and Bartlett Publishers, Inc., USA.

[20] Ralf Lämmel. 2018. Software Languages: Syntax, Semantics, and Metaprogramming
(1st ed.). Springer Publishing Company, Incorporated.

[21] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind Your
language: On Novices’ Interactions with Error Messages. In Proceedings of the
10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Portland, Oregon, USA) (Onward! 2011). Association for
Computing Machinery, New York, NY, USA, 3–18. doi:10.1145/2048237.2048241

[22] John C. Martin. 2002. Introduction to Languages and the Theory of Computation
(3 ed.). McGraw-Hill, Inc., USA.

[23] Robert C. Martin, Micah D. Martin, Patrick Wilson-Welsh, and FitNesse contrib-
utors. [n. d.]. FitNesse User Guide. https://fitnesse.org/FitNesse/UserGuide.html.
Last Accessed: June 2025.

[24] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and How
to Develop Domain-Specific Languages. ACM Comput. Surv. 37, 4 (Dec. 2005),
316–344. doi:10.1145/1118890.1118892

[25] Eric A Meyer. 2006. CSS: The Definitive Guide. O’Reilly Media, Inc.
[26] Marco T. Morazán. 2024. FSM. Seton Hall University, South Orange, NJ, USA.

https://morazanm.github.io/fsm/fsm/index.html last accessed: June 2025.
[27] Marco T. Morazán. 2024. Programming-Based Formal Languages and Automata

Theory - Design, Implement, Validate, and Prove. Springer. doi:10.1007/978-3-031-
43973-5

[28] Marco T. Morazán and Rosario Antunez. 2014. Functional Automata–Formal
Languages for Computer Science Students. In Proceedings 3rd International Work-
shop on Trends in Functional Programming in Education, TFPIE 2014, Soesterberg,

The Netherlands, 25th May 2014 (EPTCS, Vol. 170), James L. Caldwell, Philip K. F.
Hölzenspies, and Peter Achten (Eds.). 19–32. doi:10.4204/EPTCS.170.2

[29] Marco T. Morazán, Shamil Dzhatdoyev, Josephine A. Des Rosiers, Rose Bohrer,
Andrés M. Garced, and David Anthony K. Fields. 2025. Recipe-Based Errors:
Methodology, Implementation, and Evaluation. In Proceedings of the 37th Sympo-
sium on Implementation and Application of Functional Languages (Montevideo,
Uruguay) (IFL ’25). Association for Computing Machinery, New York, NY, USA.
Under review.

[30] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. 2007. iTasks: Executable
Specifications of Interactive Fork flow Systems for the Web. In Proceedings of
the 12th ACM SIGPLAN International Conference on Functional Programming
(Freiburg, Germany) (ICFP ’07). Association for Computing Machinery, New York,
NY, USA, 141–152. doi:10.1145/1291151.1291174

[31] Elaine Rich. 2019. Automata, Computability and Complexity: Theory and Applica-
tions. Pearson Prentice Hall.

[32] Michael Sipser. 2013. Introduction to the Theory of Computation (3rd ed.). Cengage
Learning, USA.

[33] Raúl Tabarés. 2021. HTML5 and the Evolution of HTML; Tracing the Ori-
gins of Digital Platforms. Technology in Society 65 (2021), 101529. doi:10.1016/
j.techsoc.2021.101529

[34] Andreas Ulrich, Sylvia Jell, Anjelika Votintseva, and Andres Kull. 2014. The ETSI
Test Description Language TDL and its application. In 2014 2nd International Con-
ference on Model-Driven Engineering and Software Development (MODELSWARD).
601–608.

[35] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific Languages:
An Annotated Bibliography. SIGPLAN Not. 35, 6 (June 2000), 26–36. doi:10.1145/
352029.352035

[36] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-
lander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. 2013. DSL
Engineering: Designing, Implementing and Using Domain-Specific Languages. dsl-
book.org. http://www.dslbook.org

[37] Andrzej Wasowski and Thorsten Berger. 2023. Domain-Specific Languages: Effec-
tive Modeling, Automation, and Reuse. Springer, Germany.

[38] Noel Welsh and Ryan Culpepper. 2024. RackUnit: Unit Testing (v8.12 ed.). PLT
Racket. https://docs.racket-lang.org/rackunit/index.html last accessed: March
2025.

[39] John Wrenn and Shriram Krishnamurthi. 2017. Error Messages are Classifiers:
A Process to Design and Evaluate Error Messages. In Proceedings of the 2017
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Vancouver, BC, Canada) (Onward!
2017). Association for Computing Machinery, New York, NY, USA, 134–147.
doi:10.1145/3133850.3133862

[40] Hui Wu, Jeff Gray, and Marjan Mernik. 2009. Unit Testing for Domain-Specific
Languages. In Domain-Specific Languages, Walid Mohamed Taha (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 125–147.

Compilation of the Stochastic Language ALEA
Baltasar Trancón y Widemann

Brandenburg University of Applied Sciences
Brandenburg an der Havel, Germany

trancon@th-brandenburg.de

Markus Lepper
semantics gGmbH
Berlin, Germany

Abstract
Alea is a domain-specific declarative language for stochastic ex-
periments. The language has clean and simple semantics for two
evaluation modes: a static one for calculation of the probability
distribution of outcomes, and a dynamic one for pseudo-random
sampling. The reference implementation is an interpreter written in
Java which follows the presentation of semantics closely, strongly
prioritizing clarity over performance. Here, we describe the key
requirements and concepts for an optimizing compiler to JVM byte-
code, and evaluate the performance impact of compilation.

CCS Concepts
• Software and its engineering→ Domain specific languages;
Compilers; • Applied computing→ Mathematics and statistics;
•Mathematics of computing→ Distribution functions; • Theory
of computation→ Categorical semantics.

Keywords
Stochastics, Domain-Specific Language, Compilation, Optimization

ACM Reference Format:
Baltasar Trancón y Widemann and Markus Lepper. 2025. Compilation of
the Stochastic Language ALEA. In Proceedings of 37th Symposium on Im-
plementation and Application of Functional Languages (IFL ’25). ACM, New
York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Alea [11] is a domain-specific language for modeling manually
performable random experiments. The language is intended for both
educational and recreational use, in the teaching of stochastics, in
simulations and in the design, analysis and play of games of chance.

To this end, alea is essentially a purely functional expression
language with syntax and semantics that very closely mimic the
conventions of elementary mathematics, extended orthogonally
with randomness primitives. The language constructs are chosen
such that typical informal specifications of ‘educational’ random
experiments can be formalized rigorously and concisely. An alea
program can be either analyzed statically, calculating the exact
probability distribution of outcomes, or executed dynamically for
pseudo-random sampling and simulation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IFL ’25, Montevideo, Uruguay
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0.
00

0.
04

0.
08

0.
12

Figure 1: Example Distribution, 𝑛 = 4

1.1 Motivating Example
Before language features are discussed in more technical detail, the
following example shall give a characteristic first impression.

Consider the informal specification:
“Roll 𝑛 identical six-sided dice, and sum only the odd
values.”

Note that without the qualifier “odd” the result is described by a
known distribution [1], but with it there is no such result. A for-
malization that is also an effective implementation in alea (except
for the value of the parameter 𝑛) can be given as follows:

dice := ⟨ ~uniform{1..6} | _ ← [1..n] ⟩;
score := (+)⟨ d ← dice | d \\ 2 = 1 ⟩
(See Figure 1 for a probability distribution computed by the alea

system, and visualized with an R script.)
Alea has exact (unbounded precision) rational numbers as prim-

itive data; here only naturals are used. Besides, there are three kinds
of collections distinguished by bracket shape: Square [] for (finite)
lists; curly {} for (finite) sets; angled ⟨⟩ or baggy NO for bags (finite
multisets).

Simple collections are given by enumeration or as an interval.
{1..6} denotes the set of the natural numbers from 1 to 6, both
inclusive. Likewise, [1..n] denotes the list of (one occurrence each
of) the natural numbers from 1 to 𝑛.

By design, alea avoids both notoriously partial operations such
as indexed element access, and higher-order functions. Collections
are processed with comprehensions (effectively map and filter op-
erations) and monoid morphisms (effectively reduce operations).

In the example above, the expression assigned (let-bound) to
dice is a map-like comprehension that iteratively draws values
from the list [1..n], assigns each to an anonynmous variable _,
evaluates the random expression ~uniform{1..6} (the uniformly
distributed choice from the given set) repeatedly and independently,
and collects the results in a bag, forgetting the iteration order.

The expression assigned to score is a filter-like comprehension
that retains only the odd elements of dice, which is then reduced

IFL ’25, October 01–03, 2025, Montevideo, Uruguay Trancón y Widemann and Lepper

with the monoidal operation +. Reduction is notated by applying
a nominally binary function to a collection instead. The binary
function must obey algebraic laws on the element type [3]: It must
be associative for all kinds of collections, commutative for bags and
sets, and idempotent for sets. Furthermore, a neutral element must
be known if the collection is possibly empty.

If a final let binding (here for score) is not followed by another
expression, it determines the overall value.

The example gives an alea program in a single expression, al-
beit structured with let bindings, that refers to predefined primi-
tive/library operations. Indeed, in the current version of the lan-
guage, there are no user-defined abstractions. While the language
is planned to grow and be equipped with user-level function defini-
tions and other means for reuse, the current simple state suffices
to cover many typical real-world examples, and to exhibit many
interesting implementation challenges.

1.2 Contributions
In the present paper, we address the following topics:
• Aspects of the semantic design of alea that are relevant to
compilation (section 2);
• the reference interpreter, and how its direct implementation
of the semantic structures causes overhead in several ways
(section 3);
• compilation tactics that derive from the preceding observa-
tions (section 4);
• empirical evaluations that, even with a small set of bench-
marks, both corroborate the compilation tactics and expose
their limitations (section 5).

The major findings can summarized thus:
• There is significant ‘impedance mismatch’ between a declar-
ative source language with monadic data structures and
semantics, and an imperative target language.
• This issue can be addressed tactically by marrying the declar-
ative optimization technique of deforestation to the impera-
tive builder pattern for incremental buildup of complex data
structures without temporaries.
• The employed techniques deserve a more rigorous and ab-
stract treatment, for verification and broader application, re-
spectively. The present paper reports on experimental work
that may serve as a proof of concept; more research is needed
in the future.
• Ironically, data structures other than lists (sets and bags)
prove valuable at the source level for mitigating combinato-
rial explosion, but limit the benefits of optimizing compila-
tion, for the same reasons.

2 Semantics
We summarize definitions of alea semantics, as far as they are
relevant for the following discussion. See [11] for more details.

2.1 Evaluation Semantics
The semantics of core alea, after elimination of syntactic sugar,
follows the approach of Moggi [7]: Syntax-directed rules for big-
step evaluation are given, and together form an evaluation function,

as a morphism in the Kleisli category of a monad that captures the
effects of evaluation. Thus, the two evaluationmodes of alea (static-
probabilistic and dynamic-sampling) are quite similar, sharing most
of the framework and rules, but differ in the underlying monad.

Since alea is not Turing-complete, and generally forbids partially
defined, divergent or recursive expressions, the category of sets
and total functions suffices as a base. Furthermore, the ‘administra-
tive’ natural transformations associated with the semantic monads
are all computable. Hence Alea programs are always amenable to
brute-force evaluation: Not only dynamic, but also static evalua-
tion is complete, even though combinatorial explosion may lead to
practically intractable complexity.

For static evaluation to a probability distribution of outcomes, the
finitely supported rational-valued distributions are the appropriate
effect monad. They comewith rather beneficial algebraic properties;
namely, they form a commutative strong (or symmetric monoidal)
monad that yields a unique canonical interpretation of terms, and
all of the monad operations are straightforwardly computable.

For dynamic evaluation to a pseudo-random sample, a state
monad that contains a pseudo-random number generator (PRNG)
is the appropriate effect monad. This one is not commutative, such
that the actually sampled outcome depends on the order of evalua-
tion of non-overlapping subterms. Thus, the evaluation function
takes a random seed (initial state) as an additional parameter and
is finitely set-valued. However, given an ideal PRNG, the proba-
bility of outcomes averaged over all seeds would converge to the
statically calculated distribution.

2.2 Types and Functions
A strong and rich but mostly implicit type system ensures that
evaluation of alea expressions does not go wrong. The (sub-)type
system is organized as a lattice with top and bottom types, and
generally structural subtyping rules. Expressions are assigned a
most specific type by simple bottom-up inference.

2.2.1 The Type Hierarchy. There is a hierarchy of four number
types, namely rationals, integers, naturals and Booleans, Q ⊐ Z ⊐
N ⊐ B. The unbounded number types include a special not-a-
number value NaN for undefined arithmetics, with IEEE 754-like
semantics. The Booleans are just the numbers {0, 1}.

For aggregate data, there are homogenenous finite collection
types. They are distinguished by kind (list, bag, set), nonemptiness,
and element type. Subtyping among collections is structural; for
example, the type [N+] of nonempty lists of naturals is a proper
subtype of the type [Z∗] of possibly empty lists of integers.

Non-recursive algebraic datatypes can be constructed freely from
record and tagged union types. The empty record type () serves
as the unit type. A tagged union of units serves as an enumerated
type. Subtyping among records and tagged unions is structural; for
example the record type (𝑥 :N, 𝑦:N, 𝑧:N) is a subtype of (𝑥 :N, 𝑧:Q),
whereas the enumerated type {@one(),@many()} is a subtype
of {@one(),@two(),@many()}. The latter rule implies that tags
can be used ad-hoc, without committing to a particular algebraic
datatype; the most specific type of a tagging expression @𝑡 (𝑎) is
the singular union {@𝑡 (𝐴)} where 𝐴 is the most specific type of
the argument 𝑎. However, tags are marked syntactically with @ to
distinguish them from variable/function identifiers.

Compilation of the Stochastic Language ALEA IFL ’25, October 01–03, 2025, Montevideo, Uruguay

The semantics of alea types is set-theoretic. Every type 𝑇 is
assigned an extension [[𝑇]] ∈ P(U), a subset of the untyped data
universe U, and the subtype relationship is sound; it entails the
subset relationship of extensions:

𝑇 ⊑ 𝑈 =⇒ [[𝑇]] ⊆ [[𝑈]]
2.2.2 Function Type Signatures. Functions in alea are overloaded
in the sense that they may admit more than one type signature in
various ways. For example, the operation + is highly overloaded.
On the one hand, as arithmetic addition it exhibits homomorphic
overloading [9] on the number types. On the other hand, as list
concatenation it exhibits parametric overloading on the element
type 𝑇 , as well as nonemptiness overloading in the sense that a
concatenated list is possibly empty only if both constituents are.

(+) : N × N→ N (+) : [𝑇∗] × [𝑇∗] → [𝑇∗]
(+) : Z × Z→ Z (+) : [𝑇∗] × [𝑇+] → [𝑇+]
(+) : Q × Q→ Q (+) : [𝑇+] × [𝑇∗] → [𝑇+]

In order to make type inference in the presence of function
overloading tractable, alea requires overloaded functions to be
coherent and compact:

Coherence means that each function identifier 𝑓 is associated
with a single partial function on the untyped universe, 𝑓 : U ↛ U.
Each type signature 𝑓 : 𝐴→ 𝐵 is merely a contract that the function
𝑓 is total on the extension of the domain type 𝐴, and yields values
from the extension of the range type 𝐵:

𝑎 ∈ [[𝐴]] =⇒ 𝑓 (𝑎) ∈ [[𝐵]]
Compactness means that for each function 𝑓 a procedure is

known that, for each concrete application with known argument
type, selects a finite set of matching type signatures that capture
all relevant information. To be precise, given an argument 𝑎 with
most specific type 𝐴′, find 𝑛 type signatures 𝑓 : 𝐴1 → 𝐵1, . . . ,
𝑓 : 𝐴𝑛 → 𝐵𝑛 that all match (on the domain side) in the sense
𝐴′ ⊑ 𝐴𝑖 . Then assign the application 𝑓 (𝑎) the greatest lower bound
of ranges 𝐵′ =

∧
𝐵𝑖 , since all of the contracts apply simultaneously.

In order for 𝐵′ to be most specific, there must not be another set of
matching type signatures, finite or infinite, that results in a more
specific bound 𝐵′′ ⊏ 𝐵′.

Together, coherence and compactness cover the most common
cases of polymorphism: Functions with disjoint domains can be
combined unambiguously in ad-hoc overloading by taking their
union. A family of functions with parametric overloading can be
realized by giving a natural implementation [12]; since all type ex-
pressions are covariant, the unique most specific type instantiation
is easy to find. Functions in homomorphic overloading over a chain
of types (subalgebras) can be realized by giving the just largest
implementation.

A consequence of coherent homomorphic overloading is that
alea cannot have exact division on rationals and truncated division
on integers as overloaded variants of the same operator: A function
that has both type signatures 𝑓 : Z × Z→ Z and 𝑓 : Q × Q→ Q
must not distinguish an argument of integer type and an argument
of rational type that is accidentally an integer. Therefore, alea
writes exact division as / and truncated division as //, similar to
dynamically typed languages such as Python, albeit for different
reasons.

3 Reference Implementation
The reference implementation of alea reflects the structure of
evaluation semantics faithfully. By traversal of an abstract syntax
tree (AST) for a core alea program, either a probability distribution
of outcomes or a pseudo-random sample (with side effects on the
supplied PRNG) can be calculated.

The host language is Java. The interpreter uses the Java standard
library in a straightforward way to implement alea data: Exact
numbers are built on java.math.BigInteger, with rationals repre-
sented as fractions, and collections use the framework java.util,
with bags represented as positive integer-valued maps.

While the reference interpreter is useful as proof of concept and
for simple demonstrations, there are some evident performance
issues that arise from its naïvely puristic approach. Performance
is problematic for both evaluation modes in different ways: Cal-
culating the probability distribution of all possible outcomes of a
complex program is a potentially rather long-running computation.
By comparison, pseudo-random sampling is a much simpler task,
but one that would have to be repeated very often if used in Monte
Carlo simulations or game engines.

Clearly, getting rid of interpretation overhead is desirable in
each scenario. Hence an optimizing compiler is being developed.
We envision the use of compiled alea for scalable applications,
while retaining the reference interpreter for tracing and debugging
purposes, and as a light-weight test oracle.

3.1 Causes of Overhead
We have identified a number of issues with a naïve interpretation
that follows the semantic rules literally. Some of these are theo-
retical in nature, others technical. A few are worthwhile to solve
directly as refinements to the reference interpreter, whereas the
majority require deep optimizations best left to a compiler.

3.1.1 Node Classification. The most obvious technical overhead of
an interpreter based on AST traversal is its data-driven control flow:
At each step, the current AST node must be classified dynamically,
in order to select the appropriate evaluation rule. This classification
may not be a particularly expensive operation when done once (for
example, if the interpreter builds on the double-dispatch Visitor
pattern [2], classification amounts to two nested virtual method
calls), but needs to be repeated every time that particular expression
is evaluated. Since alea deals heavily with iterative constructs in
both explicit (collections) and implicit (distributions) form, that
cause the same subexpression to be evaluated many times, the
overhead from naïve AST node classification is significant.

3.1.2 Function Overloading Resolution. Type inference only checks
that all possible argument values for a function application are
within the domain of the untyped coherent implementation. In
practice, functions may come with ad-hoc polymorphism, and dif-
ferent code may need to be executed for different classes of values;
thus a dynamic classification of the untyped argument is required
for selecting the appropriate code variant.

This issue is similar to those faced by implementations of dynam-
ically typed languages, since the concept of coherent overloading
imposes a statically untyped view. Here, it could be resolved by

IFL ’25, October 01–03, 2025, Montevideo, Uruguay Trancón y Widemann and Lepper

proactively changing the binding of a function name to a specialized
implementation during type inference.

3.1.3 Constant Expressions. For the most part, alea is purely func-
tional, deterministic and strongly terminating. The exceptions, ran-
dom primitives, are syntactically marked. Thus it is both safe and
easy to fold (evaluate) constant expressions ahead of time.

This cause of overhead can and should reasonably be addressed
already in the reference interpreter. Since both constant folding
and type inference are strictly bottom-up, they can even operate
in lockstep, such that a folded constant expression can be assigned
a more specific type by examining its actual value. For example,
(-4)/(-2) could be recognized post hoc as a natural number, and
in general the need for complex literals would be greatly reduced.
Since type refinement changes the set of well-typed programs, the
rules for constant folding need to be explicit. We plan to specify and
mandate constant folding in an upcoming version of the language.

3.1.4 Bag Multiplicities. Bags are an intermediate collection kind
between lists and sets: Like lists, they account for multiple occur-
rences of the same element, but like sets they do not account for
element order. [5] Bags play a central role in many typical applica-
tions for alea, much more so than for other functional program-
ming languages. A composite random experiment often performs
several simpler ones and aggregates the results. If the order is of
no importance, as in “roll identical dice”, then using bags instead of
lists can remove a lot of combinatorial overhead, in particular from
static analysis. For example, the rolls ⟨2, 2, 5⟩, ⟨2, 5, 2⟩ and ⟨5, 2, 2⟩
are equivalent and can be lumped together as a single possible
outcome.

Furthermore, map, filter and reduce operation on bags can ex-
ploit the knowledge that some element occurs multiple times. For
simplicity, consider a bag that contains just one element 𝑛 times:

𝑏 = ⟨𝑐, . . . , 𝑐︸ ︷︷ ︸
𝑛

⟩

Filtering this bag as in ⟨ x ← b | p ⟩ requires just one evalu-
ation of (x := c; p) in any case.

Likewise, mapping over this bag as in ⟨ e | x ← b ⟩ requires
just one evaluation of (x := c; e), if e is deterministic; otherwise,
if e contains randomness primitives, such as ~uniform in the in-
troductory example, the evaluation is to be repeated 𝑛 times with
stochastically independent outcomes.

Reducing this bag as in f(b) requires O(log𝑛) applications of f.
Since all operations eligible for reduction must be associative, the
result can be computed efficiently using the algorithm known as
‘exponentiation by squaring’.

3.1.5 Monad Semantics for Comprehensions. Comprehension no-
tation is provided as syntactic sugar in alea. The reduction to core
constructs follows the approach of Wadler [14], recognizing that
each collection kind is a monad with zero. While quite elegant
as theoretical semantics, in practice this approach suffers from
the issue that a great number of small intermediate collections is
implied.

Generator clauses are reduced to an iteration primitive, a first-
order counterpart of Haskell’s monad binding operator≫=. We

write it in the following form, with the appropriate bracket shape
for the desired kind of collection and marked with !:

[es | x ← C]!

In primitive form, there is exactly one generator clause, no filter
clause, and an expression on the left hand side that yields not a
single element, but a subcollection of arbitrary size. The semantics
can be explained in terms of the collection monad multiplication
operation join which concatenates a collection of collections:

{ join [(x := v1; es), . . ., (x := v𝑛; es)]

Consider the first line of the introductory example:

dice := ⟨ ~uniform{1..6} | _ ← ⟨1..n⟩ ⟩
The comprehension expression is already nearly in primitive

form; only the singular element-forming expression needs to be
wrapped in a singleton bag:

dice := ⟨ ⟨~uniform{1..6}⟩ | _ ← ⟨1..n⟩ ⟩!
Interpreted naïvely, this translation prescribes the (avoidable)

creation of 𝑛 intermediate singleton bags. The situation is even
worse for filter clauses. Consider the second line of the introductory
example:

score := (+)⟨ d ← dice | d \\ 2 = 1 ⟩
This notation uses some syntactic sugar to mimic the conven-

tions of mathematical set-builder notation. In Haskell-style com-
prehension notation, the generator is placed to the right of the bar,
with a trivial implied element expression remaining on the left:

score := (+)⟨ d | d ← dice; d \\ 2 = 1 ⟩
The reduction to core alea represents filter clauses as if-then-else

expressions:

score := (+)⟨ (d \\ 2 = 1) ? ⟨d⟩ : ⟨⟩ | d ← dice ⟩!
As a result, every odd element of dice gets wrapped in a single-

ton bag while every even one gets replaced with an empty bag, and
then the resulting bags, of average size between zero and one, are
concatenated.

3.1.6 Immediate Reduction. Several idioms in alea encourage the
building of a collection with a comprehension, only to reduce it
immediately with a monoid operation. In the second line of the
introductory example, a bag is constructed and used only to sum
its elements.

An evenmore drastic waste of intermediate data structures arises
in counting: Since the Booleans are just the numbers {0, 1}, it is
natural in alea to express the counting of elements that satisfy
a Boolean property as the sum of mapped (not filtered!) property
results, seen as natural numbers:

count := (+)⟨ d \\ 2 = 1 | d ← dice ⟩
A näive interpretation replaces every even/odd element of dice

by the constant bag ⟨0⟩/⟨1⟩ , respectively, concatenates the bags,
and sums the elements; the number of intermediate data structures
exceeds the result value even in the best case.

Compilation of the Stochastic Language ALEA IFL ’25, October 01–03, 2025, Montevideo, Uruguay

4 Compilation
The newly developed compiler complements the alea reference
interpreter and is currently hosted in the same IDE. It acts as a just-
in-time compiler, translating an AST on the fly to JVM bytecode,
the executable format of the host platform. This bytecode is initially
interpreted at a lower level by the JVM, but for long-running or
often-repeated computations it is bound to become ‘hot’ eventually,
and attract the attention of the JVM just-in-time compiler to native
machine code.

For generating the bytecode, and loading and instantiating the
newly defined class right away, the embedded DSL LLJava-live [10]
is used. This ensures that no external tools or storage are required;
code generation operates entirely on pure Java libraries and local
JVM heap memory.

4.1 Causes of Overhead Revisited
This section parallels section 3.1, and describes how compilation
can address each cause of overhead.

4.1.1 Node Classification. By generating code from an AST, the
issues of dynamic traversal and node classification are of course
eliminated entirely, and reduced to the native control flow of the
target language, JVM bytecode. The whole AST structure and the
traversal glue code are flattened into a sequence of JVM instructions
that define a single monolithic method.

4.1.2 Function Overloading Resolution. The alea compiler uses
the results of type inference to rebind library function applications
to specialized variants, if available. This eliminates not only the
runtime overhead of choosing between ad-hoc polymorphic vari-
ants, but allows allows for primitive data, particularly numbers,
to be encoded in more native and less boxed ways than as mere
subsets of the untyped universe.

Fully rolled out, this optimization comes at a steep price: In-
terpreted and compiled code require technically different, but se-
mantically equivalent library implementations. This is further com-
pounded by constant folding during compilation, which does not
truly belong to either world. In the current stage of development of
the prototype compiler, library functions are being specialized in-
crementally as required by examples, while for the rest the untyped
implementation is used as a suboptimal fallback.

4.1.3 Constant Expressions. For some expressions, constant folding
during the type inference phase is of dubious value. Consider a com-
prehension of the form [e | x ← l], where e is a complex expres-
sion and l = [v1, . . ., v𝑛] is a constant list of some length𝑛 ≫ 1.
While it is theoretically sound to replace the comprehension with
the ‘folded’ expression [(x := v1; e), . . ., (x := v𝑛; e)], this
substitution amplifies the complexity of e 𝑛-fold.

The compiler is free to hoist such constant-valued but unfolded
expressions out of the regular execution path, and compute and
store their value ahead of time or lazily on demand. Thus, the
collection value can be computed using iteration concepts of the
target language, without having to literally replicate the element-
forming expression e; but its value, once computed and stored, need
not be recomputed for repeated evaluations of the whole.

4.1.4 Bag Multiplicities. The optimizations for multiple occur-
rences of an element in a bag processed by filter and reduce opera-
tions are local in nature, and hence easily implemented already in
the reference interpreter. The optimization for map requires infor-
mation about deterministic subexpressions. These can be identified
by simple bottom-up propagation, implemented as an additional
analysis pass in the compiler.

4.1.5 Monad Semantics for Comprehensions. The reduction of com-
prehension expressions to natural monad operations is not intrin-
sically bad. If the implementations of collections in the target lan-
guage are fractal in nature, such that the natural and efficient way
to form a larger data structure is to compose smaller ones, then
there is no clear case for optimization. However, this is decidedly
not the case for the JVM backend, or any other translation to an
object-oriented target language for that matter.

Collections in OO languages are essentially mutable, and hence
optimized for individual–incremental construction: Creating a new
collection object may incur a substantial overhead, whereas adding
elements one by one to an existing collection is fairly cheap on
average. The translation scheme used by a compiler needs to take
such characteristics into account in order to generate efficient target
code. In the OO case, side effects on a context-defined collection
object are vastly preferable to masses of subcollections containing
at most one element each.

Fortunately, the structure of alea core allows for a general op-
timization strategy that covers the patterns resulting from com-
prehensions, and possibly other expressions that are accidentally
similar. Positions of subexpression in the abstract syntax can be
classified as either argument or result positions: The branches of
(Boolean, other numeric, and tagged) case distinctions, the bodies
of let expressions, and the left hand sides of iteration primitives are
result positions, all other are argument positions. Note that result
positions are called so because they may determine (parts of) the
result of the containing expression, and are hence necessarily of
the same type.

For subexpressions in argument positions, the compiled code
must inject the result value into the data flow. On the JVM, this
generally means pushing the value onto the operand stack. For
subexpressions in result positions, the default action is the same.
However, when compiling code for an iteration primitive, a different
behavior can be set and propagated downwards to transitive result
positions: If the subexpression result is a collection (necessarily of
the same kind and element type) whose size and element-forming
expressions are statically known, then these are added one-by-one
to a collection-under-construction (CuC) created for the iteration
primitive. Otherwise, the subcollection is computed and copied to
the CuC one-by-one using a loop (or a framework method addAll).
The former clause of this strategy eliminates all the synthetic sub-
collections of size one, or even zero, incurred by map and filter
operations, while the latter is a safe fallback for other subexpres-
sions.

Figure 2 shows a simple example computing the non-decreasing
subset of the Cartesian product of two sets L and R: The evident user-
level expression (A) is reduced to alea core (B). For clarity, imple-
mentations on the target platform are exemplified for deterministic

IFL ’25, October 01–03, 2025, Montevideo, Uruguay Trancón y Widemann and Lepper

evaluation only; both probability distributions and pseudo-random
sampling require some extra machinery.

A naïve Java-pseudocode implementation (C) is given (the ac-
tual compiler generates JVM bytecode directly), which follows the
structure of the core AST one to one. It summarizes the effective
computation run by the reference interpreter, dynamic AST tra-
versal and related technical issues aside; an optimizing compiler
should not produce code that performs worse than this baseline.

For contrast, an optimized, context-aware imperative implemen-
tation (D) is given, which creates a CuC for the outermost itera-
tion primitive, and propagates the task of adding elements to all
transitive argument positions. Thereby the singleton and empty
subcollections arising from map and filter clauses, respectively,
are entirely eliminated. Since, for safety reasons, collection values
should not be mutable after they have been computed, a Builder
pattern [2] is used to separate the (mutable) construction phase
from the (immutable) use phase of the collection.

4.1.6 Immediate Reduction. If a collection created from a compre-
hension is used only once for a reduction, then the intermediate
data structure can be eliminated altogether. This situation can be
detected locally, if the comprehension expression is literally nested
within the reduction expression. We assume that let bindings that
are used at most once are eliminated by means of substitution; this
reduces most realistic cases of single use to literal nesting.

Imperative elimination of reduced collections works by preempt-
ing the rule described in the preceding section: Instead of having
subexpressions in result positions contribute to a CuC, make them
update an accumulator using the binary reduction operation. If
the source collection is possibly empty, initialize the accumula-
tor with the appropriate neutral element; otherwise, initialize the
accumulator with the first element.

Figure 3 shows the compilation scheme applied to the introduc-
tory example, in analogy to Figure 2. The optimized implementation
exemplifies the hoisting of the loop-invariant constant value s1
as discussed in section 4.1.3, as well as the replacement of a bag
builder with the accumulator accu3 for immediate reduction.

4.2 Compiling for Pseudo-Random Sampling
The state monad underlying the semantics for dynamic pseudo-
random sampling causes no essential effort in an imperative im-
plementation. Merely holding a reference to a fixed PRNG object,
which encapsulates its own mutable state, throughout the evalua-
tion, and tapping into randomness as a side effect, is sufficient.

Note that the semantics are not deterministic; the order of calls
to the PRNG from independent subexpressions or from iterations
on unordered collections is unspecified. Thus, interpreted and com-
piled code may differ in the samples that are actually produced,
even for the same random seed. The two are only guaranteed to be
equivalent in ideal probability (running a perfect PRNG with truly
random seed).

4.3 Compiling for Static Analysis
The distribution monad underlying the semantics for static analysis
is significantly more complex. Fortunately, it is similar enough to
the collection monads for the same basic optimizing compilation
techniques to be applied.

In a typical alea expression, only a few subexpressions are
truly random; most operations are determistic in nature. A naïve
implementation would calculate probability distributions locally
for all AST nodes, wrap the results of deterministic computations
in ‘singleton’ Dirac distributions, and combine the distributions
for disjoint subexpressions stochastically independently (by cross-
multiplication).

A strategy that is better adopted to the target environment al-
locates a distribution-under-construction (DuC), and has all non-
iterative subexpressions, also those in argument positions, con-
tribute probability-weighted results. Instead of multiplying distri-
butions out after creation, the probability tree is traversed only
virtually, accumulating multiplicative local probability values along
the path. For every random subexpression, there needs to be a loop
over the possible outcomes and their local probabilities, with the
remainder of evaluation nested within the loop body. For all of
the deterministic operations, however, the loop is known to have
exactly one iteration (with probability one), and can be eliminated.

Figure 4 shows the compilation scheme applied to a simple exam-
ple that computes the average of two dice. The optimized implemen-
tation exemplifies the loops introduced for random subexpression,
and the linear code for deterministic follow-up computations.

For iterative subexpressions (comprehensions), the situation is
more complicated: A collection of distributions (of elements) must
be transposed into a distribution of collections. In theory, this op-
eration is specified naturally by a distributive law between the
respective monads for lists and bags; see [6] for a recent presen-
tation. By contrast, for sets there is no such law [15]. This fact
matches well with semantic requirements for expressions that are
not referentially transparent: Set iteration []! is handled as if it
were about bags at first, and only the result coerced to a set by
forgetting multiplicities. For instance, in an expression

{ {~uniform{1..6}, ~uniform{1..6}} | i ← S }!

there should be exactly two stochastically independent die rolls for
each element of 𝑆 , whereas a naïve set reading would (wrongly)
imply both that identical element expressions could be unified
before evaluation, and that the same element expression could be
re-evaluated idempotently.

In practice, a statically optimized implementation as above is not
quite straightforward, since the number of nested loops required
depends on the size of the collection. The current alea compiler
uses a dynamic iterative auxiliary function; possibly more efficient
approaches are a topic for future research.

5 Empirical Measurement
The compilation strategy has been evaluated in practice on a num-
ber of examples. Since the compiler is currently under construction,
‘compiled’ Alea programs have been simulated by manual coding
in Java. For a fair comparison, the hand-written code uses only opti-
mizations that are realistically expected to be applied automatically
in the compiler.1

The Alea compiler is designed to produce JVM bytecode that
can be optimized further by the JVM just-in-time compiler (JIT). In

1We expect to be able to substitute actual compiled code in time for the post-
proceedings publication of this paper.

Compilation of the Stochastic Language ALEA IFL ’25, October 01–03, 2025, Montevideo, Uruguay

A: User-Level Expression
{ (a, b) | a ← L; b ← R; a ≤ b }

B: Core Expression
{ { (a ≤ b) ? {(a, b)} : {} | b ← R }! | a ← L }!

C: Monadic Implementation (Pseudo-Java)
return bind(L, a → bind(R, b → leq(a, b) ? singleton(tuple(a, b)) : emptySet()));

D: Imperative Implementation (Pseudo-Java)
SetBuilder⟨Pair⟨Rational⟩ ⟩ cuc = new SetBuilder⟨ ⟩();
for (Rational a : L) {

for (Rational b : R) { // result positions

if (leq(a, b)) {

cuc.add(pair(a, b)); // singleton

}

else { // empty

}

}

}

return cuc.build();

Figure 2: Compiling a Filtered Cartesian Product

A: User-Level Expression
dice := ⟨ ~uniform{1..6} | _ ← ⟨1..n⟩ ⟩;
score := (+)⟨ d ← dice | d \\ 2 = 1 ⟩
B: Core Expression
(+)⟨ (d \\ 2 = 1) ? ⟨d⟩ : ⟨ ⟩ | d ← ⟨ ⟨~uniform{1..6}⟩ | _ ← ⟨1..n⟩ ⟩! ⟩!
C: Monadic Implementation (Pseudo-Java)
return reduce(Natural::add, 0,

bind(bind(bagRange(1, n), __ → uniform(setRange(1, 6))),

d → eq(mod(d, 2), 1) ? singleton(d) : emptyBag()));

D: Imperative Implementation (Pseudo-Java)
Set⟨Natural⟩ s1 = setRange(1, 6); // hoisted constant

BagBuilder⟨Natural⟩ cuc2 = new BagBuilder⟨ ⟩();
for (Natural _tmp2 : bagRange(1, n)) {

cuc2.add(uniform(s1));

}

Bag⟨Natural⟩ s2 = cuc2.build();

Natural accu3 = 0; // immediate reduction

for (BagElement⟨Natural⟩ d : s2) {

if (eq(mod(d.getValue(), 2), 1)) { // boolean to Natural

accu3 = accu3.add(1 * d.getMultiplicity());

}

else {

// accu3 = accu3.add(0 * d.getMultiplicity());

}

}

return accu3;

Figure 3: Compiling an Immediate Reduction

IFL ’25, October 01–03, 2025, Montevideo, Uruguay Trancón y Widemann and Lepper

A/B: User-Level/Core Expression
(~uniform{1..6} + ~uniform{1..6}) / 2

C: Monadic Implementation (Pseudo-Java)
return product(uniformDistr(setRange(1, 6)),

uniformDistr(setRange(1, 6)))

.map(Rational::add)

.map(x → x.divide(2));

D: Imperative Implementation (Pseudo-Java)
DistributionBuilder⟨Natural⟩ duc = new DistributionBuilder⟨ ⟩();
Set⟨Natural⟩ s1 = setRange(1, 6);

for (Natural v1 : s1) { // random

Probability p1 = 1/6;

for (Natural v2 : s1) { // random

Probability p2 = p1 * 1/6;

Natural v3 = v1.add(v2); // deterministic

Probability p3 = p2; // omit * 1

Natural v4 = v3.divide(2); // deterministic

Probability p4 = p3; // omit * 1

duc.add(v4, p4);

}

}

return duc.build();

Figure 4: Compiling a Probability Distribution

particular, the Alea compiler keeps the target code small by realiz-
ing complex operations as static method calls to a runtime library,
which are expected to be inlined by the JIT. We have measured only
the performance of the overall result.

All measurements have been performed on a machine with a
Core i7-12700H 20-core CPU and 16GiB of RAM, running Ubuntu
24.04.02 and OpenJDK 21.0.7. Reported times are wallclock times
measured with System.nanoTime precision, for Alea running on
a JVM as a single thread, and thus utilizing a single CPU core.

For each test case, the JIT has first been warmed up by running
the program under test repeatedly for several seconds. Then, timing
data for the same number of repetitions are collected. To mitigate
the influence of outliers caused by rare events such as large-scale
garbage-collection (GC) pauses, robust statistics are used: All re-
ported figures are median values, and the dispersion of data has
been controlled by median absolute deviation (MAD), which is less
than 6% for each data set.

We have observed some metastable variability between runs of
the experimental setup. Without detailed investigation, it is unclear
whether this is due to the JIT, the GC, and/or the heavy use of hash
tables in Alea data. However, the resulting dispersion is typically
less than 10%, and does not invalidate any of the findings below.

5.1 Motivating Example Revisited
Figure 5 summarizes the measurements for a family of instances
of the introductory example. The size parameter 𝑛 (the number of
dice) ranges from 1 to 10. The program is fixed; code has not been
specialized for a particular value of 𝑛.

The top row shows measurements for the dynamic evaluation
mode, the computation of a single pseudo-random sample. Both
interpreted and compiled code show the expected linear growth of
running times. Speedup by compilation is consistently between 12
and 15.

The bottom row shows measurements for the static evaluation
mode, the computation of the overall probability distribution of
outcomes. Note the logarithmic time scale. Speedup by compila-
tion is only significant for small instances; for 𝑛 = 10 it is down
to a meagre 1.04. Nevertheless, this is not actually disappointing,
considering the particular nature of the example:

• For larger 𝑛, the effort is dominated by the construction of
all possible values of dice. The interpreter and the compiler
use not only the same algorithm, but also essentially the
same implementation. The overhead of traversing the tiny
program is negligible; hence measurable speedup can only
come from the subsequent summing operation.
• The growth curve in logarithmic scaling is apparently flatten-
ing, due to the fact that there are significantly less bags than
(the exponentially many) lists of 𝑛 dice rolls; permutations
are collapsed into a single representative. While this reduc-
tion of combinatorial pressure is beneficial for the theoretical
complexity of an Alea program, it compresses the potential
for optimization in a compiler. In particular, approaches that
try to eliminate intermediate bags by recursive enumeration
of elements are generally doomed, since they operate on
virtual lists and cannot straightforwardly benefit from the
collapsing of duplicates up to permutation.

Compilation of the Stochastic Language ALEA IFL ’25, October 01–03, 2025, Montevideo, Uruguay

2 4 6 8 10

0
2

4
6

8
10

Sampling, Running Times

T
im

e
(µ

s)

n

interpreted
compiled

2 4 6 8 10

0
5

10
15

20
25

Sampling, Speedup by Compilation

S
pe

ed
up

n

2 4 6 8 10

1e
+

00
1e

+
02

1e
+

04

Distribution, Running Times

T
im

e
(µ

s)

n

interpreted
compiled

2 4 6 8 10

0
5

10
15

20
25

Distribution, Speedup by Compilation

S
pe

ed
up

n

Figure 5: Compiling the Introductory Example

5.2 Complex Example
To evaluate the effect of more complex deterministic computations
applied to a combinatorial bag situation, we have generalized the
motivating example from [11]:

Roll 𝑛 ten-sided dice. For every die that shows a ten,
roll another and add it to the pool. Count the number
of dice that show values greater than five. Compare to
the number of dice that show a one. If the difference is
positive, you win by that amount. If the difference is
zero or negative, you lose. If there are no values greater
than five but there is a one, you lose badly.

See Figure 6 for the Alea source code. Figure 7 summarizes the
measurements. The observed behavior is qualitatively similar to the
previous case, but slightly more favorable to the compiler. Sampling
receives a consistent speedup of about 15 from compilation. The
calculation of distributions is improved significantly only for small
instances. As expected, the speedup stagnates at a higher level than
for the previous case; for 𝑛 = 7 the interpreted time is 14.66 s, and
the compiled time is 6.65 s, so the speedup is still 2.2. Note that
compilation is expected to take less than 0.1 s; it easily pays off
even with a single use.

5.3 Highly Optimizable Example
As an example where optimizing compilation is expected to make
a dramatic difference, consider the average of two random integers
chosen uniformly from {1, . . . , 𝑛}, a parametric generalization of
the example discussed in section 4.3.

dice1 := ⟨ ~uniform{1..10} | _ ← ⟨1..n⟩ ⟩;
tens := ⟨ d | d ← dice1; d = 10 ⟩;
dice2 := ⟨ ~uniform{1..10} | _ ← tens ⟩;
dice := dice1 + dice2;

succs := (+)⟨ d > 5 | d ← dice ⟩;
fails := (+)⟨ d = 1 | d ← dice ⟩;
diff := succs - fails;

verdict := diff > 0 ? @win(diff)

: (succs = 0 && fails > 0

? @botch : @lose)

Figure 6: Complex Bag-of-Dice Example [11]

(~uniform{1..n} + ~uniform{1..n}) / 2

Figure 8 summarizes the measurements for a family of instances.
For pseudo-random sampling, the speedup is consistently greater
than 20. For larger 𝑛, the naïve running time is dominated by the
creation of the set {1..n}. The compiler evaluates it entirely during
constant folding, and sets up a lookup array for constant-time
sampling. (In the upcoming version, the interpreter will also be able
to benefit from mandatory constant folding at type-checking time.)

For static calculation of distributions, the compiler can eliminate
intermediate distributions of size O(𝑛2) which empirically take
about O(𝑛3) to construct. The resulting drop in the exponent of
growth can be seen in the doubly logarithmical bottom-left plot.

IFL ’25, October 01–03, 2025, Montevideo, Uruguay Trancón y Widemann and Lepper

1 2 3 4 5 6 7 8

0
5

10
15

20

Sampling, Running Times

T
im

e
(µ

s)

n

interpreted
compiled

1 2 3 4 5 6 7 8

0
5

10
15

20
25

Sampling, Speedup by Compilation

S
pe

ed
up

n

1 2 3 4 5 6 7 8

1e
+

00
1e

+
03

1e
+

06

Distribution, Running Times

T
im

e
(µ

s)

n

interpreted
compiled

1 2 3 4 5 6 7 8

0
5

10
15

20
25

Distribution, Speedup by Compilation

S
pe

ed
up

n

Figure 7: Compiling a Complex Bag-of-Dice Example

1 2 5 10 20 50 100 200

0.
01

0.
10

1.
00

10
.0

0

Sampling, Running Times

T
im

e
(µ

s)

n

interpreted
compiled

1 2 5 10 20 50 100 200

1
5

20
10

0
50

0

Sampling, Speedup by Compilation

S
pe

ed
up

n

1 2 5 10 20 50 100 200

1e
−

01
1e

+
02

1e
+

05

Distribution, Running Times

T
im

e
(µ

s)

n

interpreted
compiled

1 2 5 10 20 50 100 200

1
2

5
20

50

Distribution, Speedup by Compilation

S
pe

ed
up

n

Figure 8: Compiling a Highly Optimizable Example

Compilation of the Stochastic Language ALEA IFL ’25, October 01–03, 2025, Montevideo, Uruguay

5.4 Resource Use During Compilation
Since the compiler is not yet fully operational, there are no actual
measurements of the running time of compilation. However, from a
case study using the same code generator library LLJava-live [10],
we can infer that compilation of a simple program completes on
the order of a few milliseconds (when the compiler is warmed up).

6 Conclusion
We have investigated the implementation of alea, a functional
domain-specific language for stochastic experiments. Alea stands
out among stochastic languages due to its computable static seman-
tics, which favors systematic bottom-up calculation over computer
algebra heuristics. We have demonstrated how the structural sub-
type system and various monads structure the formal semantics of
the language, in which ways naïve interpretation of the semantic
rules is inefficient, and how to tackle these issues in a compiler.

Empirical measurements show consistent speedups for pseudo-
random sampling of at least 10–20. In this evaluation mode, com-
pilation pays off predictably if a large number of samples is to be
served.

For the static evaluation mode resulting in overall distributions,
results are more nuanced. Programs with a large proportion of de-
terministic computation can be optimized to great effect, whereas
ironically, using bags as data structures squeezes out a lot of op-
timization potential already at the source level. The facts that the
interpreter and compiler share the workhorse routines for inter-
changing collections and distributions, and that the same JIT acts
on both environments, leave little room for improvement.

6.1 Related Work
There is a vast number of experimental languages that employ
probabilistic constructs in some way. See [11] for an assessment of
the unique position of alea in the design space.

6.1.1 Deforestation. The idea that intermediate data structures
arising from playing by the rules of a functional language can
and should be eliminated is not new at all; it has been studied as
deforestation [13]. In typical presentations [4, 8], deforestation is
conveniently formulated as a rewriting procedure, where source
and target language are of the same nature.

In the alea compiler, the optimization is coupled with the para-
digm shift to a target platform with imperative data structures. We
feel that this makes the technique a bit less clear, but at the same
time even more urgently required.

6.1.2 Java Stream Framework. The Java stream framework is an
approach to object-oriented data structures that takes a leaf out of
the functional book: In this framework, streams are abstract element
sources. A stream can retrieve data elements from a collection or
compute them on the fly. Stream computation is organized into
linear pipelines withmap and filter operations. Batch computations
are performed lazily element-by-element, and possibly in parallel.
Streams are consumed and either collected in a new collection, or
reduced to a result value.

Converting a collection to a stream, performing computations
that abstract from storage, and deciding on a target collection or

reduction operation only in the end is also a way to get rid of in-
termediate data structures. It differs from deforestation in so far as
streams just enumerate elements without further structure infor-
mation; lists and sets are straightforward to handle by enumeration,
but bags (elements with multiplicities) and distributions (elements
with probabilities) are not.

6.2 Future Work
The development of the syntax and semantics of alea, as well as
the reference interpreter and the compiler, are in progress.

6.2.1 User-Defined Abstractions. The current version of alea pro-
gram syntax is restricted to expressions that invoke predefined
library operations. The addition of user-defined deterministic func-
tions and random distributions is foreseen to pose additional prob-
lems for a compiler, such as stable ABI design and inter-procedural
optimization.

6.2.2 Modular Optimization Passes. The current prototype of the
alea compiler is, apart from the AST-constructing frontend that
is shared with the interpreter, essentially a single pass. While this
makes for a simple and compact software architecture, it is techni-
cally difficult to isolate the various optimization techniques, and
quantify their individual impact independently. A refactored, more
modular compiler, acting on one or more intermediate representa-
tions, would improve not only maintainability, but also empirical
measurability.

6.2.3 Parallel Evaluation. Even though Java streams are no direct
match for the needs of alea, due to their lack of direct support
for the most prominent data structures, bags and distributions,
their ability to parallelize batch computations under the hood is an
attractive feature. The current alea interpreter and compiler do
not support the usage of more than one core, but the majority of
alea iterations are in fact embarassingly parallel, and that situation
should be exploited somehow.

6.2.4 Nested Collections. In the sense of section 4.1.5, generator
clauses of a comprehension are not result positions. As a conse-
quence, comprehensions nested to the right are not subject to de-
forestation (compare also section 4.1.3). This may be surprising,
because for lists, which are the dominant collection shape in most
functional programming languages, there is no obvious reason.
A nested list comprehension

[e | x ← [f | y ← L]]

can be flattened with no downsides:
[(x := f; e) | y ← L]

The situation for bags and sets, however, is more complicated:
The intermediate collection can be significantly simpler than the
original source L, if the element-forming expression f happens
to be non-injective. For bags, duplicate intermediate elements are
lumped together and can benefit from the optimizations discussed
in section 3.1.4 when it comes to the iterated evaluation of e. For
sets, duplicates are even eliminated altogether by idempotence. See
also the discussion on the number of possible collections in sec-
tion 5.1. For deciding which cases are improvable by deforestation,
or perhaps by specialized techniques, more research is needed.

IFL ’25, October 01–03, 2025, Montevideo, Uruguay Trancón y Widemann and Lepper

Acknowledgments
Anonymous reviewers have contributed valuable remarks and sug-
gestions.

References
[1] Camila Caiado and Pushpa Rathie. Polynomial coefficients and distribution

of the sum of discrete uniform variables. (2007). Retrieved June 13, 2025 from
https://durham-repository.worktribe.com/output/1158118.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. isbn:
0-201-63361-2.

[3] Jeremy Gibbons. 2016. Comprehending ringads. In A List of Successes That Can
Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday. Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella, (Eds.)
Springer International Publishing, Cham, 132–151. doi:10.1007/978-3-319-3093
6-1_7.

[4] Andrew Gill, John Launchbury, and Simon Peyton Jones. 1993. A short cut
to deforestation. In Proceeding of the Conference on Functional Programming
Languages and Computer Architecture. ACM, 223–232. doi:10.1145/165180.1652
14.

[5] Paul F. Hoogendijk and Roland C. Backhouse. 1994. Relational programming
laws in the tree, list, bag, set hierarchy. Science of Computer Programming, 22,
1-2, 67–105. doi:10.1016/0167-6423(94)90008-6.

[6] Dexter Kozen and Alexandra Silva. 2024. Multisets and distributions. In Logics
and Type Systems in Theory and Practice: Essays Dedicated to Herman Geuvers
on The Occasion of His 60th Birthday. Venanzio Capretta, Robbert Krebbers,
and Freek Wiedijk, (Eds.) Springer Nature Switzerland, Cham, 168–187. isbn:
978-3-031-61716-4. doi:10.1007/978-3-031-61716-4_11.

[7] Eugenio Moggi. 1991. Notions of computation and monads. Information and
Computation, 93, 1, 55–92. Selections from 1989 IEEE Symposium on Logic in
Computer Science. doi:10.1016/0890-5401(91)90052-4.

[8] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing by the
rules: rewriting as a practical optimisation technique in ghc. In 2001 Haskell
Workshop. ACM SIGPLAN. Retrieved Aug. 29, 2025 from https://www.microso
ft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-pra
ctical-optimisation-technique-in-ghc/.

[9] Alex Shafarenko and Sven-Bodo Scholz. 2004. General homomorphic over-
loading. In Proceedings of the 16th International Conference on Implementation
and Application of Functional Languages. Springer, Lübeck, Germany, 195–210.
isbn: 3540260943. doi:10.1007/11431664_12.

[10] Baltasar Trancón yWidemann andMarkus Lepper. 2021. LLJava live at the loop:
a case for heteroiconic staged meta-programming. In Proceedings of the 18th
ACM SIGPLAN International Conference on Managed Programming Languages
and Runtimes. Herbert Kuchen and Jeremy Singer, (Eds.) ACM, 113–126. doi:10
.1145/3475738.3480942.

[11] Baltasar Trancón y Widemann and Markus Lepper. 2025. Alea iacta est: a
declarative domain-specific language for manually performable random ex-
periments. In Proceedings 14th International Workshop on Trends in Functional
Programming in Education (Electronic Proceedings in Theoretical Computer
Science). Rose Bohrer, (Ed.) Vol. 424. Open Publishing Association, 67–86.
doi:10.4204/EPTCS.424.4.

[12] PhilipWadler. 1989. Theorems for free! In Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture
(FPCA ’89). Association for Computing Machinery, New York, NY, USA, 347–
359. doi:10.1145/99370.99404.

[13] Philip Wadler. 1990. Deforestation: transforming programs to eliminate trees.
Theoretical Computer Science, 73, 2, 231–248. doi:10.1016/0304-3975(90)90147-A.

[14] Philip Wadler. 1992. Comprehending monads. Mathematical Structures in Com-
puter Science, 2, 4, 461–493. doi:10.1017/S0960129500001560.

[15] Maaike Zwart and Dan Marsden. 2022. No-go theorems for distributive laws.
Logical Methods in Computer Science, 18, 1. doi:10.46298/lmcs-18(1:13)2022.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Refinement-Types Driven Development: A study
Facundo Domínguez

Tweag
France

facundo.dominguez@tweag.io

Arnaud Spiwack
Tweag
France

arnaud.spiwack@tweag.io

Abstract
This paper advocates for the broader application of SMT solvers
in everyday programming, challenging the conventional wisdom
that these tools are solely for formal methods and verification. We
claim that SMT solvers, when seamlessly integrated into a com-
piler’s static checks, significantly enhance the capabilities of ordi-
nary type checkers in program composition. Specifically, we argue
that refinement types, as embodied by Liquid Haskell, enable the
use of SMT solvers in mundane programming tasks.

Through a case study on handling binder scopes in compilers,
we envision a future where ordinary programming is made sim-
pler and more enjoyable with the aid of refinement types and SMT
solvers. As a secondary contribution, we present a prototype im-
plementation of a theory of finite maps for Liquid Haskell’s solver,
developed to support our case study.

CCS Concepts
• Software and its engineering→ Software verification;Auto-
mated static analysis; Formal software verification; •Theory
of computation → Program verification; Program analysis.

Keywords
refinement types, Liquid Haskell, SMT solvers, program design
ACM Reference Format:
Facundo Domínguez and Arnaud Spiwack. 2025. Refinement-Types Driven
Development: A study. In . ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
SMT solvers are useful to the ordinary activity of programming.
This is what we would like to convince the reader of. More pre-
cisely, our claim is that an SMT solver, well-integrated in a com-
piler, complements an ordinary type checker and can, in fact, be
used much in the same way. SMT solvers and type checkers are
good at enforcing different kinds of properties, broadening the
ways in which we can design our programs.

SMT solvers, when it comes to their application to program-
ming, are usually paired in the literature with terms like “formal
methods” or “verification” [1, 3, 4, 11, 19, 24]. We would like to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

challenge the wisdom that we reach for SMT-solver-based tools
when we need formal methods. We would benefit from using SMT
solvers inmundane programs. Not because itmakes programsmore
correct, but because it helps us write the programs we want.

We will be arguing, in particular, that refinement types, in the
guise of Liquid Haskell [21], let you do just that. Even though Liq-
uid Haskell is also usually invoked together with phrases like “for-
mal methods” or “verification” [9, 10, 16, 20].

Through a case study, we will argue for a future where program-
ming, ordinary programming, is made easier and more pleasant
thanks to refinement types and SMT solvers, even though the tech-
nology is not ready yet, as we discuss in Section 4. Our case study
will be the handling of binders’ scopes in compilers.We distill from
the experience a set of principles that were useful to us and which
could apply to other scenarios with this programming style. A sec-
ondary contribution is a prototype implementation of a theory of
finite maps for Liquid Haskell’s solver, to support our case study,
and which we discuss in Section 3.5.

2 Capture-avoiding substitutions
Binding scope management is recognized as a persistent annoy-
ance when writing compilers. It is easy to get wrong and it is a
source of mistakes to the point that many have proposed disci-
plines to preventmismanagement of scopes.The canonical mistake
example is name capture in substitutions like (𝜆𝑥.𝑦) [𝑦 := 𝑡]. The
result of this substitution is 𝜆𝑥.𝑡 . Thus (𝜆𝑥 .𝑦) [𝑦 := 𝑥] is 𝜆𝑥.𝑥 . An
easy mistake!

Compiler authors have proposed many disciplines to help make
scope more manageable. The GHC Haskell compiler, for instance,
uses an approach to avoid name capture called the rapier [15]. All
term-manipulating functions carry an additional scope set contain-
ing all the variables that appear free in its arguments. This set is
used both to decide what to rename a binder to, in order to avoid
name capture, and it is also used to skip renaming a binder if it
would not capture any free variables. Figure 1 shows an implemen-
tation of substitution for the untyped lambda calculus.

2.1 The foil
The rapier was not enough, however, for Maclaurin et al. [12] who
report that despite using the rapier they struggled with frequent
scope issues in their compiler. They set out to enforce the scope
properties of the rapier with Haskell’s type system. A stunt that
has often been attempted, butMaclaurin et al.’s approach, that they
name the foil, is probably the first to succeed at enforcing such in-
variants without incurring an unreasonable amount of boilerplate.
In Section 2.3, wewill argue that we can achieve similar guarantees
more economically with SMT solvers.

Here is our distillation of the properties that Maclaurin et al. set
out to guarantee (see also [12, Section 4]):

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Facundo Domínguez and Arnaud Spiwack

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

data Exp = Var Int | App Exp Exp | Lam Int Exp

substitute :: Set Int -> Subst Exp -> Exp -> Exp

substitute scope s e0 = case e0 of

Var i -> lookupSubst s i

App e0 e1 -> App (substitute scope s e0) (substitute scope s e1)

Lam i e

| member i scope,

let j = freshVar scope ->

Lam j $ substitute (insert j scope) (extendSubst s i (Var j)) e

| otherwise ->

Lam i $ substitute (insert i scope) (extendSubst s i (Var i)) e

freshVar :: Set Int -> Int

freshVar s = case lookupMax s of Nothing -> 0; Just i -> i + 1

Figure 1: Rapier style substitution

(1) Every traversed binder must be added to the scope set, oth-
erwise its name could be accidentally used later where a
fresh name was intended.

(2) Every traversed binder must be renamed if it is already a
member of the scope set, because this name could other-
wise be captured as above.

(3) When renaming a binder, the new name must not belong
to the scope set.

(4) When renaming a binder, the occurrences of the old bound
variable need to be substituted with the new name.

(5) The initial scope set must contain the free variables in the
input term and in the range of the substitution to apply.

These properties are exigent, though they do not ensure that we
can only write correct substitution functions. For instance, with
all these properties it’s possible to write a function which takes
(𝑥 𝑦) [𝑥 := 𝑥] to (𝑦 𝑥). But as anticipated in the introduction, we
are not concerned with full correctness.

Maclaurin et al. propose a library with types Scope n, Name n,
and NameBinder n l. A value of type Scope n is a set of names,
where the type index n is the name of the set at the type level.
A value of type Name n is a name that belongs to the scope set n.
A value of type NameBinder n l is a name b such that adding b to
scope set n results in the scope set l. These types are to be used in
the abstract syntax tree of terms:

data Exp n = Var (Name n)

| App (Exp n) (Exp n)

| forall l. Lam (NameBinder n l) (Exp l)

Then the operations and type checking on the new types will
guide the user into respecting the scope requirements when imple-
menting substitution.
substitute :: Distinct o => Scope o -> Subst Expr i o -> Expr i -> Expr o

This type signature says that no names shadow each other in the
scope set o. It also says that the substitution will take an expression
with free variables in a scope set i and produce an expression with
free variables in a scope set o.

There are mechanisms to check that a scope set is a subset of an-
other, to assert that no name shadows another one in a given scope
set, to reason that expressions with free variables in one scope (Exp
n) can be coerced to expressions with free variables in a superset
(Exp l), and to introduce scope sets that extend others with freshly
created names. They also provide an implementation of maps of

variables to expressions, that is the substitutions to apply, with an
interface that uses the new types as well. There is for instance the
following function to produce fresh variables:
withRefreshed

:: Distinct o

=> Scope o

-> Name i

-> (forall (o' :: S). DExt o o' => NameBinder o o' -> r)

-> r

Using the constraint DExt, this type signature says that scope
set o' extends the scope set owith the given NameBinder o o'. This
bindermay have the same name as the provided Name i if it was not
present in o, otherwise it will be a fresh name. As another example,
the following function always produces a fresh name.
withFresh

:: Distinct n

=> Scope n

-> (forall l . DExt n l => NameBinder n l -> r)

-> r

With ingenious engineering and design, the foil meets its rather
ambitious goal. But it is unfortunate that the authors needed to
be ingenious. All things equal, we prefer program components to
be straightforward. Because ingenious solutions take time, and be-
cause straightforward solutions are easier to adapt when the pa-
rameters of the problem evolve.

2.2 A Liquid Haskell primer
We will turn next to Liquid Haskell as our proposed solution, but
first let us introduce Liquid Haskell briefly. Liquid Haskell is a
plugin for Haskell which statically checks that programs respect
signatures provided by the programmer. There are two key differ-
ences between Liquid Haskell signature checking and a classical
type checker:

• The checking process consists in generating logical con-
straints or proof obligations which are then fed to an SMT
solver, leveraging the powerful capabilities of SMT solvers
to reason about numbers, arrays, strings, and other sorts.

• Signatures are expressed with refinement types of the form
{x:b | p}, which denote values of base type b that satisfy
predicate p. We will write sometimes b<p> to denote {x:b

| p x}. Refinements are subject to subtyping in the same
way as subsets in set theory, so that we have
{-@ f :: {x:Int | x > 1} -> {x:Int | x > 0} @-}

f :: Int -> Int

f x = x

Liquid Haskell reads refinement type signatures and other anno-
tations from inside special Haskell comments {-@ … @-}. We will
skip them in our snippets when it is unambiguous.

The predicates in the refinement types are in a language of ex-
pressions referred to as the logic language. For the sake of this pa-
per, we can regard it as a subset of Haskell, except that predicates
are assembled both from regular Haskell functions and functions
that are only available in the logic language.

We will use sparingly the following form of refinement type
signature.
{-@ idInt :: forall <p :: Int -> Bool>. Int<p> -> Int<p> @-}

idInt :: Int -> Int

idInt x = x

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Refinement-Types Driven Development: A study Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

We say that p is an abstract predicate, and it is inferred by Liquid
Haskell depending on the context in which idInt is used.

A function like member, which comes from the module Data.Set

in the containers package, is linked by Liquid Haskell to the SMT
solver’s theory of sets.
import Data.Set

assume member :: Ord a

=> x:a -> xs:(Set a) -> {v:Bool | v <=> Set_mem x xs}

Refinement type signatures starting with the assume keyword de-
clare that the correspondingHaskell function honors the signature,
but it is not checked. In this case, it is because Data.Set is an exter-
nal dependency that Liquid Haskell can not check. But it can also
be applied to our own functions.

Here Set_mem is a symbol that Liquid Haskell maps to the theory
of sets in the SMT solver. While Liquid Haskell does not check
that member behaves as declared in the refinement type signature,
it will assume the property in the return refinement type whenever
member is used in a program.

Notice how the predicate on the return type mentions both ar-
guments. Liquid Haskell lets us express refinement types which
relate arguments with each other, and with the result in this man-
ner. This obviates the need to give a type-level name to arguments
using existential quantification.

To define a function only available to use in Liquid Haskell an-
notations, we can use the measure keyword, such as:
measure listElts :: [a] -> Set a

listElts [] = {v | (Set_emp v)}

listElts (x:xs) = {v | v = Set_cup (Set_sng x) (listElts xs) }

Here Set_cup and Set_sng are predefined functions to express the
union of sets and the singleton set respectively.

It is also possible to define uninterpreted symbols by simply
omitting the definition. It would look like this
measure listElts :: [a] -> Set a

The meaning of the function would then be given by assume refine-
ment type signatures on other functions. See for instance the use
of the domain function in the following section.

2.3 The rapier, refined
We argue, next, that using Liquid Haskell to enforce the require-
ments from Section 2.1 is more straightforward than using the type
checker alone.The code presented in this section is available in the
file Subst1.hs1.

We define a function freeVars in the same module as substi-

tute, which collects the free variables of an expression. We note
that this function is only used in refinement type signatures, and
in particular, it is not evaluated when calling to substitute.
freeVars :: Exp -> Set Int

freeVars e = case e of

Var i -> singleton i

App e1 e2 -> union (freeVars e1) (freeVars e2)

Lam i e -> difference (freeVars e) (singleton i)

Next, we need to give the following refined signature to the
freshVar of Figure 1:
{-@ assume freshVar :: s:Set Int -> {v:Int | not (member v s)} @-}

1https://github.com/tweag/ifl2025-liquidhaskell/blob/main/src/examples/Subst1.hs

This signature is assumed rather than checked. We could choose
to check it, but Liquid Haskell does not have a good built-in un-
derstanding of the lookupMax function that we use. So instead, we
choose to assume the signature. This is our first principle of pro-
gramming with refinement types:

PRinciple 1. Typically, refinement types allow you to reduce the
trusted code base, but they also offer you a choice. When it is easier
to prove a result by hand than with the SMT solver, you can assume
the property and justify it informally.

In this article, by trusted code base, we mean the portion of a
codebasewhere the programmermust prove the desired properties
herself rather than relying on static checks to enforce said proper-
ties. Tooling like compilers, type checkers, SMT solvers, and oper-
ative systems are excluded from this definition.

It is good discipline to justify systematically why assumptions
should hold. An incorrect assumption could make Liquid Haskell
accept programs that do not meet the properties we mean to check.
The consequences range through the whole gamut from incorrect
results, to security vulnerabilities and crashes, depending on the
kind of checks.

Finally, we will take as a parameter a datatype representing sub-
stitutions (i.e. finite maps of variables to terms). To represent this
parameter in our studywe take an abstract type and assume the nec-
essary properties that a substitution type needs to respect. Since
this is ordinary programming, not a verification project, we need
to test our code, and we provide a concrete type for that sake. But
using an abstract type ensures that we can support any efficient
substitution type.
data Subst t -- opaque

{-@ measure domain :: Subst e -> Set Int @-}

assume lookupSubst

:: forall <p :: Exp -> Bool>.

s:Subst Exp<p>

-> {k:Int | member k (domain s)}

-> Exp<p>

assume extendSubst

:: s:Subst a

-> i:Int

-> a

-> {v:Subst a | union (domain s) (singleton i) = domain v }

Notice that the logical function domain, which stands for the set
of variables that the substitution defines, is uninterpreted. It must
be since it is an assumption.

That’s it, this is the entirety of our trusted code base for this
example. For the most part, it required thinking about what prop-
erties we wanted to enforce, but not much about how they ought
to be enforced.

In order to deal with scope checks, we define a type alias ScopeExp
S, that is the type of all expressions whose free variables are in the
set S2.
{-@ type ScopedExp S = {e:Exp | isSubsetOf (freeVars e) S} @-}

Functions like isSubsetOf and difference come from the Data.Set

module. We can give now the following signature to substitute

2In type aliases, Liquid Haskell expects parameter names corresponding to terms (i.e.
not types) to start with an uppercase letter.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Facundo Domínguez and Arnaud Spiwack

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

{-@

substitute

:: scope:Set Int

-> s:Subst (ScopedExp scope)

-> ScopedExp (domain s)

-> ScopedExp scope

@-}

substitute :: Set Int -> Subst Exp -> Exp -> Exp

Remarkably, this implementation for substitute, where we check
static scopes, is unchanged from the implementation of Figure 1.
This will not always be the case, but this exemplifies how using
Liquid Haskell to enforce invariants tends to create less boilerplate
than a type-based approach.

The refinement type signature of substitute is a direct transla-
tion of the Haskell type signature used by the foil.
substitute :: Distinct o => Scope o -> Subst Expr i o -> Expr i -> Expr o

The foil’s Scope o type becomes a regular set scope:Set Int of names,
there’s no need for the type parameter o, which the foil uses as
a type-level name for the scope, since we can directly refer to
scope in terms. The foil’s Subst Expr i o type becomes s:Subst

(ScopedExp scope), the parameter i is omitted and referred to as
domain s instead.The foil’s Expr i type becomes ScopedExp (domain

s), which still requires the free variables of the input expression to
be in the domain of the substitution. And finally, both return types
Expr o and ScopedExp scope require the free variables of the output
to be in the given scope set.

Figure 1 uses that a substitution s :: Subst (ScopedExp scope)

also has (refined) type s :: Subst (ScopedExp (insert i scope)),
as there are recursive calls like
substitute (insert i scope) (extendSubst s i (Var i))

which requires
extendSubst s i (Var i) :: Subst (ScopedExp (insert i scope))

which in turn requires
s :: Subst (ScopedExp (insert i scope))

This kind of subtyping is trivial with refinement types. It is the
default behavior. Whereas with an ML type system, subtyping is
not a typical feature. The foil, for instance, needs an explicit func-
tion to cast substitutions when extending a scope. This is our next
principle:

PRinciple 2. Refinement types add a layer of subtyping on top of
your type system. When your program is best modeled with subtyp-
ing you should consider refinement types.

The type of lambda terms is also unchanged, as the well-scoping
invariant is applied to a whole term at once. A nice consequence of
it is that functions that do not benefit from all the scope checking
business can simply take a naked term and ignore it. The freeVars

function, for example, is implemented on naked terms.

2.4 A hybrid approach
Our refinement type signature of substitute follows the type sig-
nature of Maclaurin et al. to the letter. Yet we can introduce the fol-
lowing bug in substitute from Figure 1, where we omit the fresh
binder j:
...

Lam i e

| member i scope ->

Lam i $ substitute (insert i scope) (extendSubst s i (Var i)) e

| otherwise -> ...

Liquid Haskell flags no errors but the program will still misbehave
as follows (in pseudo-Haskell).

substitute {x} (𝜆x.y) [y := x] = (𝜆x.x)
What is going on? The binder i is now capturing free variables

in the range of the substitution.The signature is, in fact, indifferent
to whether the binder i is already present or not in the scope set.
There is no mechanism to prevent adding a binder that is already
present in the scope set. That is, we fail to enforce Property (2)
from Section 2.1. And, more to the point, how could we? “Never
add a binder to the scope set that is already present” is not a set
theoretical property. It is not even a functional property. It is a kind
of temporal invariant.

Such temporal invariants are not naturally expressed in the logic
of Liquid Haskell. But they are quite easy to implement with ab-
stract types. So let us use an abstract type. What we need to do
is to ensure that whenever we see a new binder it must be tested
against the scope, and that this test is packaged together with fresh
name generation.

We follow the foil and introduce an abstract type Scope and a
function withRefreshed. The types are a little simpler because we
do not need existential quantification to reflect value-level objects
at the type level, but otherwise these are the same functions and
types as in Section 2.1.
newtype Scope = UnsafeScope { unsafeUnScope :: (Set Int) }

{-@

predicate Member E S = Set.member E (unsafeUnScope S)

withRefreshed :: s:Scope -> i:Int

-> {p:(Scope, Int) |

not (Member (snd p) s) && fst p == union s (singleton (snd p))}

@-}

withRefreshed :: Scope -> Int -> (Scope, Int)

withRefreshed (UnsafeScope s) i

| Set.member i s = let j = freshVar s in (UnsafeScope (insert j s), j)

| otherwise = (UnsafeScope (insert i s), i)

We needed to add a refinement type signature to withRefreshed

to serve as glue with the Liquid Haskell world. This refinement
type signature tells Liquid Haskell precisely that withRefreshed

does both membership checking and fresh variable call: the vari-
able returned by withRefreshed is not in the old scope but is in the
new scope.

We make the type Scope abstract to enforce that binders are al-
ways refreshed when traversed, as withRefreshed is the only way
to test for membership and to extend a scope.This is whywe define
a Member predicate alias, only available in the logic, but provide no
member function inHaskell for Scopes.The full code for this example
can be found in the file Subst2.hs3.

This is our next principle for refinement types:

PRinciple 3. Refinement types and abstract types are best at en-
forcing different kind of properties. You should use the simpler solu-
tion for each property that you need, as refinement types and abstract
types mix well.

3https://github.com/tweag/ifl2025-liquidhaskell/blob/main/src/examples/Subst2.hs

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Refinement-Types Driven Development: A study Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3 Unification
Now that we have established the refined rapier interface, let us
show how it can be applied to a more realistic example: solving
first-order equational formulas. Specifically, we will be solving a
form of Horn clauses in the Herbrand domain. This is the sort of
unification problem which can show up when type-checking pro-
grams with GADTs [17]. Scope management in such a solver is a
much trickier business than in the case of mere substitutions and,
in the authors’ experience, something where any help from the
compiler is welcome. The source code of this section can be found
in the file Unif.hs4.

In addition to variables, still represented as integers, we have
unification variables. Unification variables have their own scopes:
the formula∃𝑥 .∀𝑦.𝑥 = 𝑦 does not have a solution. It will be reduced
to a formula of the form 𝑓𝑥 = 𝑦 where 𝑓𝑥 is a unification variable;
we very much don’t want this unification problem to succeed: we
shall make it so that 𝑦 is not in the permissible scope for 𝑓𝑥 .

Furthermore, the unification algorithm will perform substitu-
tions. Substitutions are blocked by unification variables as we do
not know what they stand for yet. So a unification variable, in our
syntax, is a pair (𝑓 , [𝑥0 := 𝑡0, . . . , 𝑥𝑛 := 𝑡𝑛]) of a unification vari-
able proper and a suspended substitution. Where {𝑥0, . . . , 𝑥𝑛} is
the scope of 𝑓 . Such a pair is akin to a skolem function application
𝑓 (𝑡0, . . . , 𝑡𝑛). Notice in particular, how the solution of 𝑓 can only
have free variables in {𝑥0, . . . , 𝑥𝑛}, but (𝑓 , [𝑥0 := 𝑡0, . . . , 𝑥𝑛 := 𝑡𝑛])
may live in a different scope altogether. This type of unification
problem is tricky because there are multiple intermingled scopes
to manage, rather than one like in the case of substitution (Sec-
tion 2).
type Var = Int

type SkolemApp = (Var, Subst Term)

Thisway, our formula∃𝑥 .∀𝑦.𝑥 = 𝑦will be reduced to (𝑓𝑥 , []) = 𝑦
which does not have a solution. On the other hand ∀𝑥 .∃𝑦.𝑥 = 𝑦
becomes 𝑥 = (𝑓𝑦, [𝑥 := 𝑥]) so 𝑥 is a solution for 𝑓𝑦 and the formula
is solvable.

Our unification algorithm is a first-order variant of pattern uni-
fication [13] sufficient to eliminate equalities to the left of implica-
tion in the style proposed by Miller and Viel [14]. The main func-
tions, sans refined signatures, can be found in Figure 2. Unifica-
tion algorithms can get pretty finicky, for the sake of simplicity
our algorithm is not as complete as it could be and will miss some
solutions5.

At the heart of the algorithm is substitution inversion [23]: when
encountering an equality of the form

(𝑓𝑥 , [𝑦 := 𝑎, 𝑧 := 𝑏]) = 𝑢

If there is a solution, we want it to be

𝑓𝑥 := 𝑢 [𝑎 := 𝑦,𝑏 := 𝑧]
This is the same as pattern unification, except that it does not need
terms to contain functions. The inverseSubst function is responsi-
ble for this inversion.

4https://github.com/tweag/ifl2025-liquidhaskell/blob/main/src/examples/Unif.hs
5Wehave, on the other hand, tried tomake the algorithm correct, so if it finds unsound
solution it is a bug and we apologize.

We are choosing a language of term with both regular variables
(representing variables bound by universal quantifiers), skolem ap-
plications representing unification variables with their substitu-
tions, and sufficient constructors to encode arbitrary terms. Here
is the concrete type of term, as well as that of formula where the
only thing to remark is that the left-hand side of implications is a
single equality.

data Term

= V Var | SA SkolemApp | U | L Term | P Term Term

data Formula

= Eq Term Term -- equality

| Conj Formula Formula -- conjunctions

| Then (Term, Term) Formula -- a = b => f

| Exists Var Formula -- existential quantification

| Forall Var Formula -- universal quantification

In Figure 2, the function unify takes a rapier scope parameter
containing all the variables that can appear free in the input for-
mula. This set is used to rename Forall binders when doing substi-
tutions. For instance, unifying the following formula

∀𝑥 .∀𝑦.∃𝑧.𝑦 = 𝐿(𝑥) ⇒ ∀𝑥 .𝑦 = 𝑧

reduces to unifying

∀𝑥 .∀𝑦.∃𝑧.(∀𝑥 .𝑦 = 𝑧) [𝑦 := 𝐿(𝑥)]

and the substitution needs to rename the inner binder 𝑥 .
In a preceding pass (Section 3.1), existential quantifiers are re-

placed with skolem applications, so in unify we assume that there
is no existential quantifier. We have functions substituteFormula

and substitute to apply substitutions in formulas and terms re-
spectively, and substituteSkolems to substitute unification vari-
ables in formulas.We have a function skolemSet to collect the skolem
applications of a term. And a function fromListSubst to construct
a substitution from a list of pairs [(Var, Term)].

The functions substEq and unifyEq are simplified here for the
sake of presentation.They handlemore cases in the reference source
code, but these cases are not essential to our discussion.

The function unifyEq defines what a good solution should be.
One of the conditions is that whatever term t' is proposed as so-
lution for a skolem i, it needs to have as free variables only those
in the domain of the substitution defining the skolem application
(scope check). For instance, in (𝑓𝑥 , [𝑥 := 𝑦]) = 𝑃 (𝑦,𝑦), 𝑃 (𝑥, 𝑥) is
a solution that satisfies the scope check, but 𝑃 (𝑥,𝑦) would be a
solution that doesn’t since 𝑦 is not in the domain of [𝑥 := 𝑦].

Another condition is that the skolem i should not occur in the
solution t' (occurs check). For instance, in the previous example
𝑓𝑥 := 𝑃 (𝑥, 𝑓𝑥) is a solution that doesn’t pass the occurs check. In
addition, since we are inverting a substitution to find t', we might
not find solutions if we cannot invert the substitution. This imple-
mentation only inverts substitutions where variables are mapped
to variables. That is, we solve (𝑓 , [𝑧 := 𝑥]) = 𝐿(𝐿(𝑥)) to get the
solution 𝑓 := 𝐿(𝐿(𝑧)) but we do not try solving, say, (𝑓 , [𝑧 :=
𝐿(𝑥)]) = 𝐿(𝐿(𝑥))).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Facundo Domínguez and Arnaud Spiwack

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

unify :: Set Int -> Formula -> Maybe [(Var, Term)]

unify s (Forall v f) = unify (Set.insert v s) f

unify s (Exists v f) = error "unify: the formula has not been skolemized"

unify s (Conj f1 f2) = do

unifyF1 <- unify s f1

unifyF2 <- unify s (substituteSkolems f2 unifyF1)

return (unifyF1 ++ unifyF2)

unify s f@(Then (t0, t1) f2) =

let subst = fromListSubst (substEq t0 t1)

in unify s (substituteFormula s subst f2)

unify s (Eq t0 t1) = unifyEq t0 t1

substEq :: Term -> Term -> [(Var, Term)]

substEq (V i) t1 = [(i, t1)]

substEq t0 (V i) = [(i, t0)]

substEq _ _ = []

unifyEq :: Term -> Term -> Maybe [(Var, Term)]

unifyEq t0 t1@(SA (i, s))

| Just s' <- inverseSubst $ narrowForInvertibility (freeVars t0) s

, let t' = substitute s' t0

, not (Set.member i (skolemSet t'))

, Set.isSubsetOf (freeVars t') (domain s)

= Just [(i, t')]

unifyEq t0@(SA _) t1 = unifyEq t1 t0

unifyEq _ _ = Nothing

-- | @narrowForInvertibility vs s@ removes pairs from @s@ if the

-- range is not a variable, or if the range is not a member of @vs@.

narrowForInvertibility :: Set Var -> Subst Term -> Subst Term

narrowForInvertibility vs (Subst xs) =

Subst [(i, V j) | (i, V j) <- xs, Set.member j vs]

inverseSubst :: Subst Term -> Maybe (Subst Term)

inverseSubst (Subst xs) = fmap Subst (go xs)

where

go [] = Just []

go ((i, V j) : xs) = fmap ((j, V i) :) (go xs)

go _ = Nothing

Figure 2: Conditional unification

3.1 A look at skolemization
Figure 3 shows the function to replace existential quantifiers with
unification variables. This example is interesting because the com-
plexity of managing the scopes for both universal and existential
quantifiers considerably exceeds the canonical example of the rapier.

The skolemize function takes a set sf as an argument as well as
a finite map m as the state of a state monad. The set sf is the scope
set of variables that have been introduced with universal quantifi-
cation, and can appear free in the input formula. The finite map m

contains the variables that have been introduced with existential
quantification together with their own scopes, that is, the univer-
sally quantified variables in scope at the original existential binder.

We pass the map m as a monadic state, because we do not want
to generate the same unification variable for existential binders ap-
pearing on different subformulas, since unification variables scope
over the entire formula. For instance, the following formula

∀𝑥 .∃𝑦.𝑥 = 𝑦 ∧ ∀𝑧.∃𝑦.𝑧 = 𝑦

should produce unification variables like

∀𝑥 .𝑥 = 𝑦 [𝑥 := 𝑥] ∧ ∀𝑧.𝑧 =𝑤 [𝑥 := 𝑥, 𝑧 := 𝑧]

skolemize :: Set Int -> Formula -> State (IntMap (Set Int)) Formula

skolemize sf (Forall v f) = do

m <- get

put (IntMap.insert v sf m)

f' <- skolemize (Set.insert v sf) f

pure (Forall v f')

skolemize sf (Exists v f) = do

m <- get

let u = if IntMap.member v m then

freshVar (Set.fromList (IntMap.keys m))

else

v

m' = IntMap.insert u sf m

put m'

let subst = fromListSubst [(v, SA (u, fromSetIdSubst sf))]

skolemize sf (substituteFormula sf m' subst f)

skolemize sf (Conj f1 f2) = do

f1' <- skolemize sf f1

f2' <- skolemize sf f2

pure (Conj f1' f2')

skolemize sf f@(Then (t0, t1) f2) = do

f2' <- skolemize sf f2

pure (Then (t0, t1) f2')

skolemize _ f@Eq{} = pure f

Figure 3: Skolemization

It would be a mistake to call both unification variables 𝑦 and𝑤 the
same. Their occurrences even have different scopes!

We expect the set sf to be a subset of the keys in m. This is to
reflect the fact that, for debugging purposes, we do not want uni-
fication variables to be called the same as universally quantified
variables. It is not a strict requirement, but one that makes the out-
put of skolemize considerably easier to read.

Yet, we do need to keep the scope set sf separate from themonadic
state because it is needed to construct the skolem function appli-
cations where existential variables are found.

Here is the refinement type signature of skolemize.
type ScopedFormula S = {f:Formula | isSubsetOf (freeVarsFormula f) S}

assume skolemize

:: sf:Set Int

-> f:ScopedFormula sf

-> State

<{\m0 ->

isSubsetOf sf (IntMapSetInt_keys m0)

&& consistentScopes m0 f

}

, {\m0 v m ->

consistentScopes m v

&& existsCount v = 0

&& isSubsetOf (freeVarsFormula v) sf

&& intMapIsSubsetOf m0 m

}>

(IntMap (Set Int)) Formula

This type signature is, admittedly, a bit involved. However while
we were designing this case study, skolemize stayed without a re-
fined signature until pretty much the very end. This is possible
because the inherent subtyping of refinement types makes it easy
to use unrefined and refined functions together. Of course this pre-
vented us from having guarantees for the program end-to-end, but
it is fine to add guarantees only where you need them. What you

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Refinement-Types Driven Development: A study Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

choose to harden will not have to infect the rest of the program.
Which leads us to our next principle

PRinciple 4. Functions with refined signature and without mix
well. You should first use refinement types on function with the best
power-to-weight ratio. You can incrementally add stronger types on
more functions as your program evolves.

LiquidHaskell helpfully lets us treat the statemonad as equipped
with a Hoare logic State<pre,post>. The supporting code for the
refined state monad is not readily available in Liquid Haskell. It
probably should be, but in the meantime, it can be found in Liquid
Haskell’s test suite, so we simply copied it in the file State.hs6.

The main conjuncts of the postconditon are consistentScopes m

v and existsCount v = 0, the rest are invariants used by the recur-
sive calls of skolemize.

• existsCount v = 0means that skolemize returns a formula
without existential quantifiers. As it is a requirement of
unify.

• consistentScopes m v means that skolemize returns a for-
mula 𝐹 such that all the occurrences of any unification vari-
able 𝑖 in 𝐹 have an attached substitution whose domain is
the scope of 𝑖 as reported by m. This is our main scope in-
variant for this section.

While it is possible to define skolemize with a set of unification
variables in the state instead of a finite map, the map choice makes
easier to express the consistency of the unification scopes. Chang-
ing the functions to make them easier to explain is a topic which
we will find again later on.

This signature for skolemize cannot be checkedwith LiquidHaskell
today due to a bug, so we ended up assuming the refinement type
signature in keeping with Principle 1.The rest of the code does not
benefit less because of it.

3.2 The theory of unifyEq

Let us now turn to the unifyEq function, which is a traditional unifi-
cation function: it takes an equation and returns definitions for its
unification variables. The refined signature that we give to unifyEq

statically enfoces scope checks, occurs checks, and the consistency
of scopes in the result and in the arguments.
type ConsistentScopedTerm S M =

{t:Term | isSubsetOf (freeVars t) S && consistentScopesTerm M t}

unifyEq

:: s:Set Int

-> m:IntMap (Set Int)

-> t0:ConsistentScopedTerm s m

-> t1:ConsistentScopedTerm s m

-> Maybe

[(v :: Var

, {t:Term |

consistentScopesTerm m t}

&& isSubsetOfJust (freeVars t) (IntMap.lookup v m)

&& not (Set.member v (skolemSet t))

}]

The predicate consistentScopesTerm m t is only used in refine-
ment types, and checks that the domains of the unification vari-
ables’ substitutions in a term t are the scopes given by m.
6https://github.com/tweag/ifl2025-liquidhaskell/blob/main/src/examples/State.hs

consistentScopesTerm :: IntMap (Set Int) -> Term -> Bool

consistentScopesTerm m (V _) = True

consistentScopesTerm m (SA (i, s)) =

IntMap.lookup i m == Just (domain s)

&& consistentScopesSubst m s

consistentScopesTerm m U = True

consistentScopesTerm m (L t) = consistentScopesTerm m t

consistentScopesTerm m (P t0 t1) =

consistentScopesTerm m t0 && consistentScopesTerm m t1

consistentScopesSubst :: IntMap (Set Int) -> Subst Term -> Bool

consistentScopesSubst m (Subst xs) =

all (\(_, t) -> consistentScopesTerm m t) xs

We would like to draw the reader’s attention to the parameters
of s and m in the refinement type signature of the unifyEq function,
conspicuously absent in the implementation of Figure 2. This is be-
cause, in the source code, we have extended the implementation
of unifyEq and many other functions with these parameters. We
could reconstruct these scope assumptions in the functions’ pre-
conditions, but it is more involved, and requires a great deal more
lemmas to convince the SMT solver.

PRinciple 5. It is easier to express properties and to use an SMT
solver when assumptions are explicit rather than reconstructing as-
sumptions that are implicit. Do not hesitate to pass assumptions as
arguments to functions, even if those arguments are not used by the
function.

Note that compilers typically remove such obviously unused ar-
guments during compilation. GHC certainly does. So there is es-
sentially no computational cost to these extra arguments anyway.

3.3 Totality and unify

There is not much more to add for the unify function, but let us
take this opportunity to talk about the totality requirement. Here
is its signature.
unify

:: s:Set Int

-> m:IntMap (Set Int)

-> {f:ConsistentScopedFormula s m | existsCount f = 0}

-> Maybe

[(v :: Var

, { t:Term |

consistentScopesTerm m t

&& isSubsetOfJust (freeVars t) (IntMap.lookup v m)

&& not (Set.member v (skolemSet t))

}

)] / [formulaSize f]

Notice the precondition existsCount = 0. It is not optional. In-
deed, the Exists case of unify in Figure 2 raises an error. Liquid
Haskell, however, requires functions to be total. We need this pre-
condition so that Liquid Haskell can prove that this case never oc-
curs.

This totality requirement is not necessary to refinement types
in general. However, in the case of Haskell, laziness lets us write
{-@ bad :: () -> { false } @-}

bad :: () -> ()

bad _ = let {-@ f :: { false } @-}

f = error "never happens"

in (_ -> ()) f

It may seem that Liquid Haskell could accept this function because
f appears to prove false. In a strict language this would not be a

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Facundo Domínguez and Arnaud Spiwack

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

big problem as badwould loop and any attempt at using badwould
diverge. But bad is actually a total function. Liquid Haskell rejects
bad because it fails to prove that f is total, hence refuses to accept
its signature.

This is alsowhy the signature of unify endswith / [formulaSize

f]. Liquid Haskell needs to prove that unify terminates and, be-
cause of the substitutions, unify is not a structurally recursive func-
tion. So Liquid Haskell needs a little help in the form of a termina-
tion metric. We use here the number of connectives in the argu-
ment formula, which is unaffected by substitution since we only
substitute inside terms.

3.4 Lemmas in Liquid Haskell
In the previous sections we have seen that the refined implemen-
tation can be different from the classical version by adding compu-
tationally irrelevant arguments. Another way in which they could
differ is with the addition of lemmas.

Take, for instance, the unifyFormula functionwhich ties together
skolemize and unify, it differs from its classical implementation as
follows:

unifyFormula :: Set Int -> IntMap (Set Int) -> Formula -> Maybe [(Var, Term)]

unifyFormula s m f =

let m' = addSToM s m

- skf = skolemize s f

+ skf = skolemize s f ? lemmaConsistentSuperset m m' f

(f'', m'') = runState skf m'

in unify s m'' f''

This idiom e?p means “use lemma p when checking e”. Lemmas
are not used automatically, this is how Liquid Haskell is instructed
to use them with parameter values supplied by the user.

Lemmas, in Liquid Haskell, are ordinary functions. Proofs by
inductions arise from ordinary (total!) recursion. In the case of
lemmaConsistentSuperset the proof is entirely straightforward

{-@

lemmaConsistentSuperset

:: m0:IntMap (SetInt)

-> {m1:IntMap (Set Int) | intMapIsSubsetOf m0 m1}

-> {f:Formula | consistentScopes m0 f}

-> {consistentScopes m1 f}

@-}

lemmaConsistentSuperset

:: IntMap (Set Int) -> IntMap (Set Int) -> Formula -> ()

lemmaConsistentSuperset m0 m1 (Forall _ f) =

lemmaConsistentSuperset m0 m1 f

lemmaConsistentSuperset m0 m1 (Exists _ f) =

lemmaConsistentSuperset m0 m1 f

lemmaConsistentSuperset m0 m1 (Conj f1 f2) =

lemmaConsistentSuperset m0 m1 f1

? lemmaConsistentSuperset m0 m1 f2

lemmaConsistentSuperset m0 m1 (Then (t0, t1) f2) =

lemmaConsistentSupersetTerm m0 m1 t0

? lemmaConsistentSupersetTerm m0 m1 t1

? lemmaConsistentSuperset m0 m1 f2

lemmaConsistentSuperset m0 m1 (Eq t0 t1) =

lemmaConsistentSupersetTerm m0 m1 t0

? lemmaConsistentSupersetTerm m0 m1 t1

So straightforward, in fact that the proof was largely written
by AI-based code completion. Since lemmas do not have computa-
tional content ({p} is a shorthand for {_:() | p }), we only care

about the existence of a proof, making code completion particu-
larly useful. LiquidHaskell understanding the theory of finitemaps
(see Section 3.5) is crucial in making this proof so terse.

The lemma lemmaConsistentSuperset uses an analogous lemma
lemmaConsistentSupersetTerm for terms, whose proof ultimately de-
pends on the following lemmawhichwemust assume of the substi-
tution data type. Unsurprisingly, the substitution interface needs
to satisfy more properties than in Section 2.3 to accommodate uni-
fication variable scopes.
assume lemmaConsistentSupersetSubst

:: m0:_

-> {m1:_ | intMapIsSubsetOf m0 m1}

-> {s:_ | consistentScopesSubst m0 s}

-> {consistentScopesSubst m1 s}

3.5 Extending Liquid Haskell to support IntMap

Our unification case study uses the theory of finite maps. Liquid
Haskell, however does not support a theory of finite maps7. It is
possible to do without it. In a first approximation we did much of
this study in vanilla Liquid Haskell. But we lost out on automation:
we got more lemmas to prove and pass around. Properties like the
scope check, or the lemma lemmaConsistentSuperset, involved op-
erations on finite maps and were more convoluted.

To support this study, we implemented the theory of finite maps
for Liquid Haskell. It is not ready to integrate in future release yet,
for one thing: we only support finite maps with Int as their do-
main and Set Int as their codomain. It could easily be adapted for
any fixed domain and codomain types, but it is not yet a general
solution that can be instantiated at any domain or codomain type.
But our ultimate intent is to upstream these changes. Our modi-
fications can be found in the file ifl25-liquidhaskell.patch8 and
the file ifl25-liquid-fixpoint.patch9.

The theory of finite maps is a good example of a theory that
Liquid Haskell wants to support: it is both powerful, and widely
applicable. Pragmatically, it is also one that is reasonably easy to
support with SMT solvers by translating it to the theory of arrays.

On the syntax front, Liquid Haskell allows to link a Haskell type
with a particular representation in the SMT solver.
{-@ embed IntMap * as IntMapSetInt_t @-}

Here we are indicating that IntMap b must be represented as
IntMapSetInt_t in the logic. IntMapSetInt_t is an alias for Array

Int (Option (Set Int)). An array is an entity that associates keys
with values, and which has an equality predicate, and it is defined
as one of the theories in SMT-LIB, the standard interface to SMT
solvers [2]. The keys in this case are integers, and the values are
either None if the key is not in the map, or Some s if the key maps
to a set s. The Option type is a copy of Haskell’s Maybe. We do not
reuse Maybe as Liquid Haskell’s framework to connect to the SMT
solver is reused for other languages (e.g. [8]), and we prefer to keep
the implementation free of language specific details. Here is the
declaration of the Option data type in SMT-LIB.
(declare-datatype Option (par (a) (None (Some (someVal a)))))

7Issue to support maps in the Liquid Haskell repository: https://github.com/ucsd-
progsys/liquidhaskell/issues/2534
8https://github.com/tweag/ifl2025-liquidhaskell/blob/main/src/patches/ifl25-liquidhaskell.patch
9https://github.com/tweag/ifl2025-liquidhaskell/blob/main/src/patches/ifl25-liquid-fixpoint.patch

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Refinement-Types Driven Development: A study Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

We arranged for Liquid Haskell to include this declaration in
the preamble of any queries to the SMT solver. The types Array,
Int, and Set are already known to the tooling. It does not matter
what type b is instantiated to, the embed annotation will always set
the same representation for IntMap b, and this is a limitation that
would need to be addressed to support maps properly.

The array theory allows to describe how to retrieve the value
associated with a key, and how to update the value. On the Haskell
front, we link these operations to those of the IntMap b type.

define IntMap.empty = (IntMapSetInt_default None)

define IntMap.insert x y m = IntMapSetInt_store m x (Some y)

define IntMap.lookup x m =

if (isSome (IntMapSetInt_select m x)) then

(GHC.Internal.Maybe.Just (someVal (IntMapSetInt_select m x)))

else

GHC.Internal.Maybe.Nothing

The operations IntMapSetInt_default, IntMapSetInt_store, and
IntMapSetInt_select are aliases that we implemented in Liquid
Haskell to call to the array operations. In the case of lookup, we
translate the Option type to Haskell’s Maybe.

The implementation of union, intersection, difference, and sub-
set checks for maps, however, need operations beyond the stan-
dard interface, and not all SMT solvers can support them. In our im-
plementation we used the map operation of the Z3 SMT solver. The
following snippet contains the implementation of intMapIsSubsetOf
in SMT-LIB, and we also feed these declarations to the SMT solver
in a preamble to the queries.

; Similar to do {a0 <- oa0; a1 <- oa1; guard (a0 /= a1); pure a0}

(define-fun difference_strict_p2p

((oa0 (Option (Set Int)))

(oa1 (Option (Set Int))))

(Option (Set Int))

(match oa0

((None None)

((Some a0) (match oa1

((None oa0)

((Some a1) (ite (= a0 a1) None oa0))))))))

; Similar to: empty == zipWith difference_strict_p2p xs ys

; where zipWith applies the function pointwise to the values in the

; arrays

(define-fun IntMapSetInt_isSubsetOf

((xs (Array Int (Option (Set Int))))

(ys (Array Int (Option (Set Int)))))

Bool

(= ((as const (Array Int (Option (Set Int)))) None)

((_ map IntMapSetInt_difference_strict_p2p) xs ys)))

Besides the limitation of the embed annotation, another barrier
for proper support is that old versions of SMT-LIB require user
defined functions to have monomorphic types. This means, for in-
stance, that the type of IntMapSetInt_isSubsetOf cannot be gener-
alized to work on any IntMap.

While newer versions of the standard allow for polymorphic
types, these still need to be implemented by SMT solvers. Until the
implementations catch up with the standard, feeding operations
with monomorphic types will require Liquid Haskell to be smart
about generating these operations with the appropriate types, in-
stead of putting them in a preamble once and for all queries.

4 Evaluation
The substitution case study of Section 2 allows for a direct compar-
ison between type methods and refinement type methods. We can
see that the trusted code base of the Liquid Haskell version of Sec-
tion 2.3 is quite small compared to that of the foil [12] (reviewed
in Section 2.1). This is in large part because refinement types can
enforce invariants without the need for abstract types, and such
an open interface can be extended by the user. Contrast with the
abstract-type approach where you have to design, upfront, a set of
invariant-preserving operations sufficient to express downstream
programs. None of these functions will benefit from the abstract
types invariant, hence will be part of the trusted code base. Even
when we mix refinement and abstract types as in Section 2.4, we
do not have quite as large a trusted code base to consider.

This is not tomean that refinement types are superior to type ab-
stractions. They are best at enforcing different types of invariants,
as discussed in Section 2.4.

When the invariants of a program naturally involve mathemat-
ical objects such as arithmetic or sets, refinement types are likely
to be more approachable, requiring less careful a design than com-
ing up with an encoding inside and ML-like type system. Propos-
ing refinement type signatures requires determining appropriate
invariants for a task, which is a requisite for any static checking
approach. But it doesn’t impose the burden of encoding the invari-
ants with lower-level constructs. On the other hand, when a pro-
gram needs a theory that Liquid Haskell, say, does not have sup-
port for, it may not be that clear and the program author may need
to mobilize comparable effort for refinement types as she would
have for an abstract-type encoding.

Error reporting. A type-checker approach, however, is likely to
produce error messages that are easier both to understand and to
fix, provided that the user goal is feasible. The user is guided into
correcting the errors by the types and the operations of the sup-
porting library. With SMT solvers, there is always the question of
whether a goal is provable or not in the theories at hand. Is there
some additional lemma that is necessary about the user defined
functions?The user has to figure it out on her own. How are the as-
sumptions insufficient to prove the goal? The user has to compute
it on her own too, although it is plausible that counterexamples or
better location information [22] can be offered when the tooling
matures.

But there are informative error messages too. Let us consider
the lemma lemmaConsistentScopesSubst discussed in Section 3.2. If
we drop this lemma from the definition of unifyEq, we get the fol-
lowing error message (heavily edited for presentation):
publications/ifl25-rtdd/examples/Unif2.hs:580:18: error:

Liquid Type Mismatch

The inferred type

ss' : {ss' : Subst {v : Term | consistentScopesTerm m v} |

Set_com Set.empty == domain ss'}

is not a subtype of the required type

VV : {VV : Subst Term | consistentScopesSubst m VV}

in the context

?g : {?g : Maybe (Subst Term) |

?g == Just ss'

&& ?g == inverseSubst s m

(narrowForInvertibility (freeVars t1) ss)}

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Facundo Domínguez and Arnaud Spiwack

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

t0 : {t0 : (Int, (Subst Term)) | t0 == SA (i, ss)

isSubsetOf (freeVars t0) s

&& consistentScopesTerm m t0}

t1 : {t1 : Term |

isSubsetOf (freeVars t1) s

&& consistentScopesTerm m t1}

i : Int

s : Set Int

m : IntMap (Set Int)

ss : Subst Term

Constraint id 168

|

578 | , let t' = substitute (freeVarsSubst ss') m ss' t1

| ^^^

We can get quickly that the predicate in the required type is one
of the conjuncts in the refinement type of a parameter of substitute.
That is ConsistentScopedSubst, a type alias we declared in the same
module, and in this case expands as follows.

{ss':Subst Term |

isSubsetOf (freeVarsSubst ss') (freeVarsSubst ss')

&& consistentScopesSubst m ss'

}

To get at the missing lemma, in this case we only need to con-
nect the predicates in the inferred and the required refinement
types. Let us prune the irrelevant bits from the error message first.

The inferred type

ss' : Subst {v : Term | consistentScopesTerm m v}

is not a subtype of the required type

VV : {VV : Subst Term | consistentScopesSubst m VV}

And then we can substitute VV by ss' in the goal, which gives
pretty much the lemma statement.

The inferred type

ss' : Subst {v : Term | consistentScopesTerm m v}

is not a subtype of the required type

ss' : {ss' : Subst Term | consistentScopesSubst m ss'}

When there are static check failures, insight is often necessary
to identify a missing lemma or a missing precondition. Recursive
functions like skolemize start with a core set of conjuncts that
sometimes needs to be grown as static checks reveal the need of
stronger postconditions for the result of the recursive calls.

Maturity. Maybe relatedly, thematurity of refinement type check-
ers in general, and Liquid Haskell in particular, is rather lacking
still. We have encountered a non-negligible number of bugs (18) in
the Liquid Haskell tooling and usability issues while conducting
our study. Our source code contains comments explaining the de-
fects where we were affected. The sources of most of these defects
seem to locate in the Liquid Haskell implementation rather than
the SMT solver, and there was an issue encountered in the SMT
solver10. Fortunately, none of them look very difficult to address,
but they do have a severe impact on user experience in aggregate.

Besides, Liquid Haskell lacks support for many standard fea-
tures of Haskell. In our code we have been using the simplest pos-
sible style of programming. There are no GADTs, no type families,
and minimal use of type classes (since Liquid Haskell has some
support for type classes [10]). At the moment, pushing for more

10We found a problem in the Z3 SMT solver, which sprung some follow up issues
further linked in the original issue: https://github.com/Z3Prover/z3/issues/7770

demanding programming patterns is likely to surface more incon-
veniences. Aiming for the simplest style is, therefore, a pragmatic
constraint of the current implementation. For further insight on
the challenges of using Liquid Haskell, Gamboa et al. [6] report on
a study that collects the voices of its users.

On the performance front, all of the SMT-LIB queries in the uni-
fication example run in 11 seconds, 0.04 seconds for Subst2.hs, and
0.03 seconds in Subst1.hs. That is sometimes faster than compil-
ing a module with the GHC compiler. Where things get slower
is when measuring Liquid Haskell end-to-end, which spends sev-
eral seconds checking the examples and interacting with the SMT
solver (3 minutes when checking unification, 4 seconds checking
Subst2.hs, 1.5 seconds checking Subst1.hs). The authors deem that
performance of Liquid Haskell can be improved to approach that
of the SMT solver queries, and probably further by reducing the
number of queries.

Composability. Perhaps one of the biggest compromises when
encoding properties in the type-checker is that one needs to nar-
row the expressible properties to a feasible set that allows to write
a supporting library. If we wanted to have static checks like those
of the unification example, we would need new type encodings. Or
in other words, new type indices need to be conceived to relate the
parameters of our functions.

skolemize :: Scope 𝑠1 . . . 𝑠𝑛
→ Formula 𝑓1 . . . 𝑓𝑗
→ State 𝑡1 . . . 𝑡𝑘 (Scope 𝑒1 . . . 𝑒𝑙) (Formula 𝑜1 . . . 𝑜𝑚)

Then there would be the effort of writing a library, and later
on there would be the effort of composing the encodings of dif-
ferent libraries when more than one such is needed. Suppose we
started with the static checks to avoid name captures as in Sec-
tion 2, and we wanted to add the scopes checks required to deal
with unification variables. With refinement types we need to add
the corresponding conjuncts to the refinement types, and perhaps
some phantom parameter like m here.
substituteFormula

:: s:Set Int

-> m:IntMap (Set Int)

-> ss:ConsistentScopedSubst s m

-> {f:ScopedFormula (domain ss) | consistentScopes m f}

-> {v:ScopedFormula s |

formulaSize f == formulaSize v

&& consistentScopes m v

&& existsCount v = existsCount f

}

Besides the usual scope checks, we are checking that the size of
the formula is preserved, that the amount of existential binders is
preserved, and that the unification scopes in the output are those
in the input formula and in the range of the substitution. We also
check that substitution preserves the consistency of the unification
scopes.

5 Comparable systems
Liquid Haskell is not the only tool reaching to SMT solvers for
static checks. The most similar tool is F* [18], which is based on

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Refinement-Types Driven Development: A study Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

a refinement type system as well. Another family of related sys-
tems are those with Hoare-style pre- and post-conditions to func-
tions such as Why3 [4] and Dafny [11] (impure functional pro-
gramming languages), or ESC/Java [5] and Frama-C [7] (impera-
tive languages).

All of the above systems could have served as a vehicule for our
case study, though the further we go down that list, the more dif-
ferent the language is too Liquid Haskell, and the more adaptation
that would require.The type systems also get weaker and the latest
the language is in the list, the more one has to lean on the SMT for
static checks.

6 Conclusions
The tooling is not ready for widespread use. Yet it is plausible that
in a decently close future, we have access to SMT solvers and refinement-
types to assist us in our programming.

Refinement types enable a more direct expression of properties,
particularly when the SMT solver supports the relevant theories.
Reasoning mechanisms are reused from the existing tooling, in-
stead of encoding them in the type checker.This makes easier both
to enforce our own invariants and to compose properties coming
from different sources.

The generality of the approach, and the simplicity with which
it enables composition of different properties, are unique features
that make it a strong candidate to impact programming practice in
the future.

Through our two case studies, we have tried to make a first step
in understanding how we will be best able to leverage future such
tools, even in situations where we can manage to use current type-
checkers today. As a closing note, let us reproduce the principles
that we have proposed throughout the article.

PRinciple 1. Typically, refinement types allow you to reduce the
trusted code base, but they also offer you a choice. When it is easier
to prove a result by hand than with the SMT solver, you can assume
the property and justify it informally.

PRinciple 2. Refinement types add a layer of subtyping on top of
your type system. When your program is best modeled with subtyp-
ing you should consider refinement types.

PRinciple 3. Refinement types and abstract types are best at en-
forcing different kind of properties. You should use the simpler solu-
tion for each property that you need, as refinement types and abstract
types mix well.

PRinciple 4. Functions with refined signature and without mix
well. You should first use refinement types on function with the best
power-to-weight ratio. You can incrementally add stronger types on
more functions as your program evolves.

PRinciple 5. It is easier to express properties and to use an SMT
solver when assumptions are explicit rather than reconstructing as-
sumptions that are implicit. Do not hesitate to pass assumptions as
arguments to functions, even if those arguments are not used by the
function.

References
[1] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-

tan M. Leino. 2005. Boogie: a modular reusable verifier for object-oriented pro-
grams. In Proceedings of the 4th International Conference on Formal Methods for
Components and Objects (Amsterdam, The Netherlands) (FMCO’05). Springer-
Verlag, Berlin, Heidelberg, 364–387. https://doi.org/10.1007/11804192_17

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2025. The SMT-LIB Standard:
Version 2.7. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[3] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[4] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—Where Programs
Meet Provers. In Programming Languages and Systems, Matthias Felleisen and
Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 125–
128.

[5] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. 2013. PLDI 2002: Extended static checking for Java. SIG-
PLAN Not. 48, 4S (July 2013), 22–33. https://doi.org/10.1145/2502508.2502520

[6] Catarina Gamboa, Abigail Elena Reese, Alcides Fonseca, and Jonathan Aldrich.
2025. Usability Barriers for Liquid Types. In Proceedings of the 46th ACM SIG-
PLAN International Conference on Programming Language Design and Implemen-
tation (Seoul, South Korea) (PLDI 2025). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3729327

[7] Nikolai Kosmatov, Virgile Prevosto, and Julien Signoles (Eds.). 2024. Guide to
Software Verification with Frama-C: Core Components, Usages, and Applications
(1 ed.). Springer Cham. XXIV, 697 pages. https://doi.org/10.1007/978-3-031-
55608-1

[8] Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. 2023. Flux: Liq-
uid Types for Rust. Proc. ACM Program. Lang. 7, PLDI, Article 169 (June 2023),
25 pages. https://doi.org/10.1145/3591283

[9] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Po-
likarpova, Deian Stefan, and Ranjit Jhala. 2021. STORM: Refinement Types
for Secure Web Applications. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, 441–459. https:
//www.usenix.org/conference/osdi21/presentation/lehmann

[10] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and
Niki Vazou. 2020. Verifying replicated data types with typeclass refinements in
Liquid Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 216 (Nov. 2020),
30 pages. https://doi.org/10.1145/3428284

[11] K. Rustan M. Leino. 2017. Accessible Software Verification with Dafny. IEEE
Software 34, 6 (2017), 94–97. https://doi.org/10.1109/MS.2017.4121212

[12] Dougal Maclaurin, Alexey Radul, and Adam Paszke. 2023. The Foil: Capture-
Avoiding Substitution With No Sharp Edges. In Proceedings of the 34th Sympo-
sium on Implementation and Application of Functional Languages (Copenhagen,
Denmark) (IFL ’22). Association for Computing Machinery, New York, NY, USA,
Article 8, 10 pages. https://doi.org/10.1145/3587216.3587224

[13] Dale Miller. 1991. A Logic Programming Language with Lambda-
Abstraction, Function Variables, and Simple Unification. Journal of Logic
and Computation 1, 4 (09 1991), 497–536. https://doi.org/10.1093/logcom/1.
4.497 arXiv:https://academic.oup.com/logcom/article-pdf/1/4/497/3817142/1-4-
497.pdf

[14] Dale Miller and Alexandre Viel. 2022. The undecidability of proof search when
equality is a logical connective. Annals of Mathematics and Artificial Intelligence
90, 5 (01 May 2022), 523–535. https://doi.org/10.1007/s10472-021-09764-0

[15] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell
Compiler inliner. Journal of Functional Programming 12 (July 2002), 393–
434. https://www.microsoft.com/en-us/research/publication/secrets-of-the-
glasgow-haskell-compiler-inliner/

[16] Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper. 2023. Verified
Causal Broadcast with Liquid Haskell. In Proceedings of the 34th Symposium
on Implementation and Application of Functional Languages (Copenhagen, Den-
mark) (IFL ’22). Association for Computing Machinery, New York, NY, USA,
Article 6, 13 pages. https://doi.org/10.1145/3587216.3587222

[17] Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, andDimitrios Vytiniotis.
2009. Complete and decidable type inference for GADTs. SIGPLAN Not. 44, 9
(Aug. 2009), 341–352. https://doi.org/10.1145/1631687.1596599

[18] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-
Béguelin. 2016. Dependent types and multi-monadic effects in F*. SIGPLAN
Not. 51, 1 (Jan. 2016), 256–270. https://doi.org/10.1145/2914770.2837655

[19] Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova,
Haobin Ni, Dmitry Malloy, Juan Vazquez, Michael Tang, Omar Cardona, and
Arti Gupta. 2022. Hardening attack surfaces with formally proven binary for-
mat parsers. In Proceedings of the 43rd ACM SIGPLAN International Conference

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Facundo Domínguez and Arnaud Spiwack

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

on Programming Language Design and Implementation (San Diego, CA, USA)
(PLDI 2022). Association for Computing Machinery, New York, NY, USA, 31–45.
https://doi.org/10.1145/3519939.3523708

[20] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: experience
with refinement types in the real world. SIGPLAN Not. 49, 12 (Sept. 2014), 39–
51. https://doi.org/10.1145/2775050.2633366

[21] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones. 2014. Refinement types for Haskell. SIGPLAN Not. 49, 9 (Aug. 2014),
269–282. https://doi.org/10.1145/2692915.2628161

[22] Robin Webbers, Klaus von Gleissenthall, and Ranjit Jhala. 2024. Refinement
Type Refutations. Proc. ACMProgram. Lang. 8, OOPSLA2, Article 305 (Oct. 2024),
26 pages. https://doi.org/10.1145/3689745

[23] Beta Ziliani and Matthieu Sozeau. 2015. A unification algorithm for Coq featur-
ing universe polymorphism and overloading. SIGPLAN Not. 50, 9 (Aug. 2015),
179–191. https://doi.org/10.1145/2858949.2784751

[24] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and
Benjamin Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library.
Cryptology ePrint Archive, Paper 2017/536. https://eprint.iacr.org/2017/536

12

Draft papers

Unrestricted Grammar Design and Visualization
A Design Recipe and Dynamic Visualization Tool

Marco T. Morazán
Seton Hall University
South Orange, NJ, USA
morazanm@shu.edu

Andrés M. Garced
Seton Hall University
South Orange, NJ, USA
maldona2@shu.edu

Tijana Minić
University of Washington

Seattle, WA, USA
tminic@uw.edu

Abstract
Unrestricted grammars are an integral part of many Formal Lan-
guages and Automata Theory courses. Typically, Computer Sci-
ence students struggle developing such grammars given that most
courses restrict design to pencil and paper. A new trend in Formal
Languages and Automata Theory education takes a programming-
based approach. Such an approach allows students to get immediate
feedback on their designs before submitting for grading or devel-
oping a correctness proof. Nonetheless, developing unrestricted
grammars remains a challenging and frustrating task for many
students. This article presents a novel design recipe and dynamic vi-
sualization tool to help students implement unrestricted grammars.
The design recipe provides scaffolding steps to guide students from
a problem statement to a verified implementation. Given a grammar
and a word in the grammar’s language, the dynamic visualization
tool displays a step-by-step creation of a history-preserving deriva-
tion graph. In addition, when provided with an invariant predicate
for the yield of the derivation graph, the dynamic visualization tool
uses node coloring to indicate if the invariant holds. The imple-
mentation of the visualization tool is discussed. Empirical results
suggest that the use of a heuristic search and the use of a boot-
strapped skew binomial heap to implement a priority queue have a
significant impact on performance. In addition, empirical results
from a formative human-factors study are presented. These results
suggest that students find the tool useful to understand and debug
unrestricted grammars. The broad implications and the limitations
of the human-factors study are also discussed.

CCS Concepts
• Software and its engineering → Domain specific languages;
Functional languages; • Theory of computation → Gram-
mars and context-free languages; • Applied computing →
Education; • Human-centered computing→ Visualization.

Keywords
Unrestricted Grammar, Derivation Visualization, Formal Languages
and Automata Theory Education, Functional Programming, Design
Recipes, Grammar validation and verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, Washington, DC, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Marco T. Morazán, Andrés M. Garced, and Tijana Minić. 2025. Unrestricted
Grammar Design and Visualization: A Design Recipe and Dynamic Visual-
ization Tool. In . ACM, New York, NY, USA, 13 pages. https://doi.org/10.114
5/nnnnnnn.nnnnnnn

1 Introduction
Formal Languages and Automata Theory (FLAT) textbooks (e.g., [25,
27, 28, 32, 39]) expose students to unrestricted grammars (urgs)1.
Such grammars are the counterparts of Turing Machines (tms).
Whereas Turing machines decide or semidecide a language, unre-
stricted grammars generate words in recursively enumerable lan-
guages. It is important for students to study such grammars because
they are used extensively, for example, in natural language pro-
cessing [22, 23, 42] and in visual programming languages [4]. More
recently, closely related grammars, called mildly context-sensitive
grammars, are used to improve the complexity of determining word
membership in a language [16, 24].

Most FLAT textbooks do not provide guidance for the system-
atic development of urgs. Instead, the unspoken assumption is that
students learn to develop them by studying a few examples. Further-
more, unlike for regular grammars (rgs) and context-free grammars
(cfgs), the visualization of word derivations is commonly not ad-
dressed. In fairness, this is likely due to the complexity involved in
visualizing derivations using urgs. For rgs and cfgs, it suffices to
present a derivation tree for a given word. Such a visualization pre-
serves the derivation history (i.e., the production rules used) to help
students understand how rules are nondeterministically applied.
For unrestricted grammars, word derivation visualization is more
complex given that a substitution context may involve mutating
several elements in the yield to become several different elements
or none at all. Thus, requiring using a derivation graph to visualize
a derivation in which nodes have multiple predecessors.

To address these problems, the domain-specific language FSM
(Functional State Machines)–embedded in Racket [13]–was devel-
oped for the FLAT classroom. In FSM, programmers may define urgs
and use them to derive words. Tightly-coupled with FSM is the text-
book Programming-Based Formal Languages and Automata Theory
(PBFLAT) [32]. It presents a design recipe for grammar development.
A design recipe is a series of steps, each with a specific outcome,
that guide the design and implementation of urgs. Design recipes
were first developed by Felleisen et al. to teach beginners how to
program [10] and later expanded by Morazán to a two-semester
curriculum for beginners. In PBFLAT, Morazán extends the use of
design recipes to the FLAT classroom. Recently, he extended the

1Such grammars are also referred to as Type-0 in the Chomsky hierarchy [7].

Conference’17, July 2017, Washington, DC, USA Morazán, Garced, and Minić

grammar design recipe found in PBFLAT with verification steps to
develop cfgs [34].

This article extends the design recipe work done for cfg verifica-
tion to urg verification. In addition, it presents a dynamic visualiza-
tion tool for word derivation using urgs. Given a urg and a word
in the grammar’s language, the tool presents a history-preserving
step-by-step construction of a derivation graph. To aid in gram-
mar validation and verification, the dynamic visualization tool also
accepts an optional user-defined invariant predicate as input. The
invariant predicate tests if the (current) yield satisfies properties
that must hold for the grammar to be correct. In this manner, stu-
dents can test their design and implementation before submitting
for grading or attempting a proof.

The article is organized as follows. Section 2 briefly presents
the syntax for urgs in FSM, the grammar design recipe, and the
new verification steps. Section 3 presents the dynamic visualization
tool for word derivation using urgs. Section 4 discusses the imple-
mentation of word derivation and presents empirical performance
measurements. Section 5 presents how the dynamic visualization
tool is used for debugging. Section 6 presents the results of a forma-
tive human-factors study conducted to test the effectiveness of the
tool and discusses its implications and limitations. Section 7 com-
pares and contrasts with related work. Finally, Section 8 presents
concluding remarks and directions for future work.

2 Unrestricted Grammars in FSM
2.1 Syntax
The 4-input urg constructor is make-grammar and its signature
is: N Σ R S→ urg. The arguments from left to right correspond
to the nonterminals, the input alphabet, the production rules, and
the starting nonterminal. Each production rule in R is of the form
𝛼 → 𝛽 , where 𝛼 is a nonempty arbitrary number of nonterminal
and terminal symbols containing at least one nonterminal and 𝛽
is an arbitrary number of nonterminal and terminal symbols. The
interface for urgs includes an observer for each component. For in-
stance, grammar-nts returns N and grammar-rules returns R. The
observer grammar-derive, given a grammar and a word, returns
a trace of the derivation rules used when the given word is in the
given grammar’s language. Given that determining word member-
ship in the language of an unrestricted grammar is undecidable
[25, 32], grammar-derive may not terminate when given a word
not in the grammar’s language.

An embedded domain-specific language is used to write FSM
unit tests. This embedded language includes check-derive? and
check-not-derive?. Each requires a grammar and an arbitrary
number of words. Both use grammar-derive to test each word. If
the correct result is achieved for all words the test passes. Otherwise,
a failed test is reported and the words that made the test fail are
highlighted in the code. Unit testsmust bewrittenwith care because,
as mentioned above, grammar-derive may not terminate when
given a word not in the grammar’s language.

2.2 Design Recipe for Grammars
To provide design scaffolding, students are presented with the de-
sign recipe for urgs displayed in Figure 1. The first six steps consti-
tute the design recipe for grammars defined in [32]. Step 1 asks for

Figure 1 The Design Recipe for urgs
(1) Pick grammar name and specify the input alphabet
(2) Define the needed nonterminals and specify the starting

nonterminal
(3) Develop the production rules
(4) Write unit tests
(5) Implement the grammar
(6) Run the tests and redesign if necessary
(7) Develop a loop invariant predicate for derivation
(8) For words in L(G), prove invariant predicate holds
(9) Prove that L = L(G)

a meaningful grammar name and the input alphabet. Step 2 asks
the student to define the meaning of needed nonterminals. In this
step, both a design idea for derivation and generation “promises"
are developed. At this point, these promises define, in informal lan-
guage, how terminal symbols are generated. Based on the results
of Steps 1 and 2, Step 3 asks for the development of the production
rules. Step 4 asks for unit tests. The tests must include words in
the grammar’s language. Tests for words not in the grammar’s lan-
guage may be written as comments. Step 5 asks for the grammar’s
implementation. Step 6 requires running the tests from Step 4. If
tests fail or there are construction errors, debugging is done by
revisiting the answers for the design recipe steps performed.

Steps 7–9 (highlighted in green) are the new grammar verifica-
tion steps for urgs. These steps are inspired by analogous verifica-
tion steps developed for rgs and cfgs [34]. To describe these steps
assume that the language is L and the grammar is G. For Step 7, stu-
dents are encouraged to think of the production rules as performing
mutations on the yield of a derivation graph. At a high-level of
abstraction, the derivation process is described as follows:

while (contains-nonterminals? yield)
apply-rule()

The apply-rule procedure mutates the yield by nondeterminis-
tically applying a rule in G that leads to a successful derivation.
At this point in the course, students feel comfortable enough with
nondeterminism to accept this abstraction. Step 7 asks for the im-
plementation of a loop-invariant predicate (akin to what is required
by program verification using Hoare logic [19, 21]). This predi-
cate takes as input a yield and tests conditions that must be true
to establish grammar correctness. Step 8 asks for a proof that for
w∈L(G) the loop invariant holds throughout the derivation process.
This proof is done by induction on the number of times the loop is
executed. Building on Step 8, Step 9 asks for a proof that L = L(G).

2.3 An Illustrative Example
To illustrate the design recipe in action, we develop a urg for

L={w|w=anbncn, n∈ N}. Figure 2 displays the developed urg. The
results for Step 1 are displayed on lines 8 (grammar name is anbncn)
and 10 (the input alphabet is (a, b, c)).

For Step 2, students outline a design idea for word generation:
(1) Generate an arbitrary number of ABC
(2) Rearrange As, Bs, and Cs to AnBnCn

(3) From As, Bs, and Cs, first generate cs, then bs, and finally
as

Unrestricted Grammar Design and Visualization Conference’17, July 2017, Washington, DC, USA

Figure 2 An FSM urg for anbncn

1 #lang fsm

2

3 ;; Nonterminal Documentation:

4 ;; S: Generates words in a
𝑛
b
𝑛
c
𝑛
, where n is a natural number

5 ;; A: A promise to generate an "a" in the context AI
6 ;; B: A promise to generate a "b" in the context BH
7 ;; C: A promise to generate a "c" in the context CG
8 (define anbncn

9 (make-grammar '(S A B C G H I)

10 '(a b c)

11 '((S → 𝜖) (S → ABCS) (S → G)

12 (BA → AB) (CA → AC) (CB → BC)

13 (CG → Gc) (BG → BH) (BH → Hb)

14 (AH → AI) (AI → Ia) (I → 𝜖))

15 'S))

16

17 (check-derive? anbncn '(a b c) '(a a b b c c) '())

18 ;; (check−not−derive? anbncn '(a) '(b) '(c) '(c b a) '(a a b b c c c))

The generation of terminal symbols must be done in the right
context. A c is only generated when everything to the right (in the
yield) is a c. A b is generated when everything to the right is an
arbitrary number of bs followed by cs. An a is generated when
everything to the right is an arbitrary number of as followed by
an arbitrary number of bs which are followed by cs. Throughout
the derivation process, |A|+|a|=|B|+|b|=|C|+|c|. To achieve the
correct generation of terminals, I is used to generate as, H is used
to generate bs, and G is used to generate cs. To satisfy Step 2, the
role of the nonterminals is documented on lines 3–7.

For Step 3, the production rules are displayed on lines 11–14.
The rules for S on line 11 generate an arbitrary number of ABC (sat-
isfying the first step of the design idea) ending with a G to start the
generation of cs. The rules on line 12 rearrange the nonterminals
to be in the right order (satisfying the second step of the design
idea). The rules on lines 13–14 generate the nonterminals in the
right context.

For Step 4, the unit tests are displayed on lines 17–18. The pro-
gram in Figure 2 satisfies Step 5. Running the program reveals that
there are no errors and all the tests for words that ought to be in
L(anbncn) pass.

For Step 7, students develop a predicate for the loop invariant.
The design from Step 2 suggests the following conditions need to
be invariant:
• Number of A/a = number of B/b = number of C/c
• The yield contains at most one of the following nontermi-
nals: S, G, H, I
• S∈yield⇒ yield ends with S
• G∈yield⇒ yield ends with Gc*

• H∈yield⇒ yield ends with Hb*c+

• I∈yield⇒ yield ends with Ia*b+c+

• yield∈Σ*⇒ yield∈L
The resulting predicate is displayed in Figure 3. In the interest of
brevity, the auxiliary predicates are not displayed.

Figure 3 Loop invariant for grammar displayed in Figure 2

1 ;; (listof (N ∪ Σ)) → Boolean
2 ;; Purpose: Determine if loop invariant holds for the given yield
3 (define (anbncn-inv yield)

4 (and (equal-num-abc? yield)

5 (one-of-S-G-H-I? yield)

6 (implies (member 'S yield) (S-INV yield))

7 (implies (member 'G yield) (G-INV yield))

8 (implies (member 'H yield) (H-INV yield))

9 (implies (member 'I yield) (I-INV yield))

10 (implies (no-nt? yield) (in-L? yield))))

For Step 8, students prove that the loop invariant holds by in-
duction on, n, the number of rules applied (or equivalently on the
number of times the loop is executed). The base case is established
for n=0 as follows:

The yield only contains S. Observe that the only
nonterminal is S and the yield ends with it. Thus,
the loop invariant holds.

The inductive step is established by assuming that the loop invariant
holds and showing that it holds after applying a rule. For instance,
consider the use of CG → Gc. The needed Hoare triple is:

;; yield∈XCGc∗, where X is everything before C
apply-rule()
;; yield=XGcc∗ ⇒ yield∈XGc∗ ⇒ anbncn-inv

The precondition holds because we assume anbncn-inv holds (i.e.,
by inductive hypothesis). The post condition holds because a G
remains in the yield, the C before G in the yield is removed, and a c
is added to the end of the yield. Such a triple is developed for all
rules and in the interest of brevity they are omitted.

For Step 9, a proof for L = L(anbncn) is required. This is estab-
lished as follows:

Assume w∈L
This means w=anbncn. Given that the loop invariant
always holds, there is a derivation starting with S
that yields w. Thus, w∈L(anbncn).

Assume w∈L(anbncn)
Given that the loop invariant always holds, any yield
generated starting with S must be of the form anbncn.
Thus, w∈L.

It is noteworthy that Steps 8 and 9 are not beyond any Computer
Science student that has taken an Introduction to Discrete Mathe-
matics course.

3 Dynamic Visualization Tool
Despite working with a design recipe, designing and implement-
ing urgs remains a difficult task for some students. To further aid
students in their efforts to understand urgs, a new dynamic visu-
alization walks students through the steps of a derivation. Given
as input a grammar, a word in the grammar’s language, and, op-
tionally, a loop invariant predicate, the tool visually traces rule
applications used in the word’s derivation. At each step, it displays
a derivation graph that preserves the history of rules applied. In

Conference’17, July 2017, Washington, DC, USA Morazán, Garced, and Minić

Figure 4 Snapshots of the dynamic visualization tool.

(a) After generating ABC twice.

(b) After swapping A and C.

addition, the yield nodes are filled in green or red, respectively, to
indicate whether the invariant holds or fails when the predicate is
provided.

To reduce the extraneous cognitive load associated with how
to use and understand the tool, development follows the Norman
principles of effective design [36]. These principles are applied
as done previously for other FSM visualizations [15]. Snapshots
of the dynamic visualization deriving '(a a b b c c) using
the grammar from Figure 2 are displayed in Figure 4. There are
3 vertically aligned parts: the derivation graph, the informative
messages, and the instructions. In the derivation graph, circular
nodes denote elements in the (current) yield, which are always
aligned at the bottom for reading ease. Hexagon nodes denote prior
yield elements that have been replaced. The informative messages
consist of three parts: the last production rule used, the word being
derived, and the current yield. In this manner, the user is provided
information to understand the current state of the visualization.
The instructions contain a graphic for each action available to the
user. The user may interact with the visualization via keystrokes
or by clicking the instruction graphics with the mouse. The first
four graphics, the arrow keys, allow the user to navigate through
the visualization. The cursor graphic informs the user they may
use their mouse to move the derivation graphic, and scroll the
yield or word being derived when they are too long to fit within
the visualization frame. The next four key icons are for zooming

Figure 5 urg for inbimbin+m.

1 #lang fsm

2

3 (define ADD-CSG

4 (make-urg

5 '(S A E I)

6 '(b i)

7 `((S → AbAbE)

8 (A → ,𝜖) (A → iIA)

9 (Ii → iI) (Ib → bI) (IE → Ei)

10 (E → ,𝜖))

11 'S))

actions. Finally, the last two graphics scroll to the beginning and
the end of the informative messages.

The informative message for the last production rule used and
the last nodes changed in the derivation graph are color coded to
correspond. For example, in Figure 4a the last rule used is: S→ ABCS.
The S is highlighted in light blue and ABCS is highlighted in pink.
The corresponding nodes in the derivation graph are highlighted
using the same colors. The S expanded is rendered as a hexagonal
node given that it has been substituted.

The history of the derivation is preserved by the paths in the
derivation graph. For instance, Figure 4b displays the state of the
visualization after one step forward from the state displayed in
Figure 4a. The rule used is: CA→ AC. Given that CA is expanded, it
is rendered as a hexagonal node. The predecessors of CA are the
two S nodes, which indicate that the elements in CAwere generated
by the two S nodes. In this case, the root S generated the C and the
other S generated the A.

If the loop invariant predicate is provided, the yield nodes are
color-filled to indicate if the invariant holds: green if it holds and
red if it does not hold. Figure 10 displays a dynamic visualization
snapshot when the loop invariant does not hold. Observe that the
coloring of the yield nodes clearly communicate this fact.

4 Implementation

4.1 Design
There are two primary sets of technical challenges that are faced
when developing a visualization tool for derivations using a urg.
The first is the generation and storing of images. These challenges
are addressed by the use of a restricted form of parallelism for im-
age generation and the use of thunks to store images in nonvolatile
memory as done for all FSM visualizations [15]. The second is the
generation of a derivation. The search for a derivation using a urg
is difficult, because the search space may grow exponentially. To
illustrate this, consider deriving '(i i b i b i i i) using the urg
for valid unary-addition words displayed in Figure 5. The language
of the grammar is L = inbimbin+m. This grammar nondeterministi-
cally generates the unary arguments using the nonterminal A. For
each terminal symbol, i, generated, a nonterminal symbol, I, is
generated for the generation of the result’s corresponding unary
number. The Is are migrated to the end of the yield where E is
used to generate the result’s corresponding, i, terminal symbol.

Unrestricted Grammar Design and Visualization Conference’17, July 2017, Washington, DC, USA

Figure 6 Depiction for the search space to derive '(i i b i b i i i).
1

5

...4

...6

...8

...1010

8

...1010

6

...8

...1010

8

...1010

7

...6

...8

...1010

8

...1010

9

...8

...1010

1111

9

...8

...1010

1111

7

...6

...8

...1010

8

...1010

9

8

...1010

1111

9

...8

...1010

1111

The derivation search space may be described as a tree, where each
tree path represents a (potential) derivation. Some paths may be
infinite given that a derivation may not terminate. Figure 6 dis-
plays a representation of the tree-like search space for '(i i b i
b i i i). In the graphic, each step in the derivation is denoted
by the length of its yield. At the root, there is a single derivation,
(S), containing the starting nonterminal. Thus, 1 is the root in the
search space’s rendering. There is a single rule that applies to S. As
a consequence, there continues to be a single derivation, (AbAbE
S), at the next level of the tree, whose yield has length 5. Briefly,
the next level of the tree captures that two rules apply to either A
and one rule applies to E resulting in 5 possible derivations (due
to space limitations 2 derivations are captured by ellipsis): two of
length 7 by applying (A -> iIA) to each A, two of length 4 by
applying (A -> 𝜖) to each A, and one of length 4 by applying (E
-> 𝜖).

Initially, a breadth-first traversal of the search was implemented.
Although this implementation strategy works well for short words,
it quickly became apparent that for words of modest length deriva-
tion became a bottleneck. This resulted in students becoming frus-
trated when using the tool. Simply stated, the performance of a
(standard) breadth-first traversal of the search space degrades too
quickly.

To improve performance, the well-known path-finding A∗ algo-
rithm [14] is used to perform a heuristic search for a derivation.
Heuristic development was led by two goals: favor finding the
shortest derivation and avoid exploring infinite derivations. To this
end, the heuristic converged on is: explore the derivation with the
shortest yield first. By exploring the shortest yield first, two expec-
tations are pursued: explore infinite derivations that always make
the yield longer less frequently and favor exploring derivations that
are likely obtained using fewer derivation steps. The heuristic, of
course, is not infallible. A programmer, for example, can write a
urg that artificially makes derivations longer. Thus, defeating the
purpose of the heuristic, which will not find a derivation faster by
exploring shorter yields. We are, therefore, betting on programmers
writing grammars to generate short derivations.

To make the heuristic search more efficient, derivations must be
accumulated in a manner that makes finding the derivation with

Figure 7Word derivation impleentation.

1 ;; word (queueof derivations) (setof yield)→ derivation
2 ;; Purpose: Return a derivation for the given word
3 (define (urg-derive word derivs generated-yields)

4 (if (heap-empty? derivs)

5 '()

6 (let* ([first-deriv (find-min derivs)]

7 [next-yields

8 (filter (𝜆 (yd) (same-len? word yd))

9 (apply-one-step

10 (car first-yield)

11 generated-yields))])

12 (if (member word next-yields)

13 (reverse (cons word first-deriv))

14 (let* ([new-derivs

15 (map (𝜆 (yd)

16 (insert-queue yd

17 first-yield))

18 next-yields)]

19 [new-generated-yields

20 (set-union next-yields

21 generated-yields)]

22 [new-derivs

23 (add-queue

24 new-derivs

25 (delete-min-queue tovist))])

26 (urg-derive word

27 new-derivs

28 new-generated-yields)))

the shortest yield fast. To this end, a priority queue that maintains
the derivations sorted by the length of their yield is used. The imple-
mentation of the derivation algorithm is outlined in Figure 7. The
function urg-derive returns, if it exists, a derivation for the given
word using a priority queue of derivations and a set of yields previ-
ously generated. Initially, the queue of derivations contains a single
derivation for the starting nonterminal and the set of generated

Conference’17, July 2017, Washington, DC, USA Morazán, Garced, and Minić

yields only contains a yield consisting of the starting nonterminal. If
the queue of derivations is empty, the empty derivation is returned
(line 5), given that the given word cannot be derived. Otherwise,
the first queue element (i.e., the derivation with the shortest yield)
is used to create new yields (lines 7–11). New yields are generated
by an auxiliary function, apply-one-step, that only returns yields
that have not been generated before, thus, avoiding repeated ex-
ploration and getting caught in some infinite derivations. The new
yields are filtered to remove any that only contain terminal symbols
that are not of the same length as the given word (this is done by
the auxiliary function same-len?). If the given word is a member of
the new yields generated, the found derivation is returned (line 13).
Otherwise, urg-derive is recursively called with the given word,
a new queue of derivations obtained by adding the new derivations,
and a new set of generated yields obtained by adding the newly
found yields (lines 14–25).

To briefly illustrate the derivation algorithm, consider how the
algorithm proceeds when the priority queue contains the deriva-
tions denoted by level 2 of the tree in Figure 6. Recall that there are
5 derivations: two of length 7 and three of length 4. The shortest
derivation is processed first (i.e., any of the 3 derivations of length
4). These derivations fail to derive '(i i b i b i i i) or pro-
duce yields that are no longer the shortest (e.g., the yields of length
longer than 7 depicted under the subtree rooted at 4). When this
occurs, the algorithm backtracks to explore the derivation with the
shortest yield accumulated in the queue (e.g., 4’s siblings of length
7).

4.2 Performance
Two criteria are used to measure performance. The first measures
the number of times a production rule is applied during the search
of a derivation. This aims to give an indication of how much work
is performed by the derivation algorithm. The second measures
execution time using different priority queue implementations. This
aims to determine the best data structure to use to implement a
priority queue.

Measurements are presented using two urgs: ANBNCN displayed
in Figure 2 and ADD-CSG displayed in Figure 5. These grammars
have different derivation characteristics. ANBNCN grows the length
of the yield linearly (i.e., by applying (S → ABCS) the yield’s length
is expanded by 4 along the same derivation). The yield for ADD-CSG
grows exponentially (i.e., for every A two (sub)derivations, using
(A− > 𝜖) and (A− > iIA), are generated). All execution times are
measured using a Lenovo X13 Yoga ThinkPad (the laptop issued to
students at our institution).

4.2.1 Derivation Steps. We first examine word derivation using
ANBNCN. When deriving '(a a b b c c)without using the heuristic,
the number of times a production rule is applied is 25. Deriving
the same word using the heuristic results in 59 production rule
applications. The gap in the number of rules applied increases
with word length. Deriving '(a a a a b b b b c c c c),
results in 76 production rule applications when the heuristic is not
used and 4954 production rule applications when the heuristic is
used. To understand this performance gap, the dynamic behavior of
urg-derive needs to be examined. Repeated use of (S → ABCS)
creates new longer derivations. The successful derivation must

use this rule 4 times for '(a a a a b b b b c c c c). The
heuristic favors exploring (partial) derivations with shorter yields.
This means that all derivations that use (S → ABCS) fewer that
4 times must first be determined unsuccessful before exploring
the derivation that uses this rule 4 times. In contrast, breadth-first
search does not delay the exploration of the derivation that uses
this rule 4 times. It simultaneously explores all derivations2. Thus,
discovering a successful derivation using (S → ABCS) 4 times
before fully exploring all derivations that use this rule fewer times.
In essence, ANBNCN is an urg instance that defeats the use of the
heuristic.

In contrast, the use of the heuristic search has a striking positive
impact on the number production rule applications when using
ADD-CSG. Deriving ’(i b i b i i) using breadth-first results
in 5962 production rule applications. Using the heuristic search,
results in 107 production rule applications. This is a 98.2% reduc-
tion. The performance of the heuristic search becomes even more
striking when longer words are derived. Deriving ’(i i b i b
i i i) using breadth-first search results in 251,299 production
rule applications. When using the heuristic search, the number of
production rule applications is 418. This represents a reduction
of over 99.8%. This significant performance gap is explained by
examining the exponentially growing number of derivations gener-
ated as depicted, for example, in Figure 6 illustrating the derivation
of a word of length 8. The number of yields that have a length
longer than 8 are the majority. Breadth-first simultaneously search
explores them all. The use of the heuristic, on the other hand, never
explores derivations longer than 8 by favoring the exploration of
shorter yields. Thus, performing fewer production rule applications.
In essence, ADD-CSG is an urg instance that favors the use of the
heuristic.

The impact of the number of production rules applied is reflected
in running times. Finding a derivation of a word of length 15 (a non-
trivial modest length classroom) using ANBNCNwithout the heuristic
takes 112 ms. Using the heuristic, on the other hand, takes 66040 ms.
Finding a derivation of a word of length 14 (also a nontrivial modest
length classroom example) using ADD-CSG without the heuristic is
unfeasible. Using the heuristic, on the other hand, takes 498 ms.

Based on the reported empirical evidence, it is clear that the use
of the heuristic can have a negative impact on performance. For
instance, we expect this to occur when the number of derivations
grows linearly. On the other hand, the use of the heuristic has a
significant positive impact on performance when the number of
derivations grows exponentially. This means that the use of the
heuristic allows students to effectively use the tool for a greater
variety of grammars. In addition, it is reasonable to expect that
the derivation search space for urgs grows exponentially for most
languages that require such a grammar to be defined. This is another
reason for concluding that the use of the heuristic is the best choice.

4.2.2 PriorityQueue Implementations. Finally, there is a plethora of
ways a priority queue may be implemented. For the development of
the described tool, 6 different implementations using different types
of heaps were explored: binomial, skew binomial, leftist, splay, pair-
ing, and bootstrapped skew binomial (see Okasaki for a description
of these [37]). Words of length 6, 8, 10, and 12 in L = inbimbin+m

2Including those that use the rule more than 4 times.

Unrestricted Grammar Design and Visualization Conference’17, July 2017, Washington, DC, USA

Figure 8 Data distribution for execution time for different heap implementations.

6 8 10 12

0

0.5

1

1.5

2
·104

7 57 694

11,967

5 58 617

6,349

10 66
1,586

17,740

6 76

1,992

14,577

6 50
768

13,909

0 2 11 65

Length of word derived

Ex
ec
ut
io
n
tim

e
in

m
ill
ise

co
nd

s

Binomial
Skew binomial

Leftist
Splay
Pairing

Bootstrapped Skew

(a) Distribution for L = inbimbin+m.

6 9 12

0

0.2

0.4

0.6

0.8

1

·104

2 87

9,781

3 74

6,972

1 33 1381 5 692 66

6,495

0 4 62

Length of word derived

Ex
ec
ut
io
n
tim

e
in

m
ill
ise

co
nd

s

Binomial
Skew binomial

Leftist
Splay
Pairing

Bootstrapped Skew

(b) Distribution for L = anbncn.

and words of length 6, 9, and 12 in L = anbncn are used to measure
execution time on a Lenovo X13 Yoga ThinkPad. For each of the 7
test words, derivation execution time (in ms) is measured 50 times,
for a total of 350 experiments.

Figure 8a and Figure 8b present the distribution of average ex-
ecition times for each word length using each of the 6 heap im-
plementations. The best results across all word lengths are seen
for the bootstrapped skew binomial heap. For words of length 12,
we observe that the performance using the bootstrapped skew
binomial heap is 2-3 orders of magnitude faster than the other im-
plementations. Given this large performance gap when compared
to other heap implementations, despite being harder to implement,
we recommend (and have adopted) the use of a bootstrapped skew
binomial heap. We attribute the observed performance to a boot-
strapped skew binomial heap having constant time operations for
finding the minimum and inserting an element, both of which are
operations used in urg-derive in Figure 7.

5 Visual Debugging
To illustrate the tool’s usefulness in debugging, consider the

student-designed buggy urg displayed in Figure 9. The student

Figure 9 Buggy student urg for anbncn.

1 #lang fsm

2

3 (define anbncn

4 (make-grammar '(S A B C)

5 '(a b c)

6 '((S → 𝜖) (S → ABCS)

7 (BA → AB) (CA → AC) (CB → BC)

8 (C → c) (B → b) (A → a))

9 'S))

10

11 (check-derive? anbncn '(a b c) '(a a b b c c) '())

12

13 (define (anbncn-inv yield)

14 (and (equal-num-abc? yield)

15 (terminals-in-order? yield)

16 (implies (member 'S yield) (S-INV yield))

17 (implies (no-nt? yield) (in-lang? yield)))

Conference’17, July 2017, Washington, DC, USA Morazán, Garced, and Minić

Figure 10 Snapshot displaying the invariant failing to hold for the
urg from Figure 9.

claims to have successfully implemented a simpler urg for anbncn
using a similar loop invariant to the one displayed in Figure 3. The
main difference between the two implementations is that the stu-
dent has removed the contexts for generating terminal symbols.
That is, the nonterminals G, H, and I as well as the associated pro-
duction rules have been removed from the grammar. In their place,
the student has added to the invariant predicate a condition for all
terminal symbols to be in relative correct order. To guarantee the
relative ordering of terminal symbols, the student has kept the pro-
duction rules for rearranging As, Bs, and Cs. This indicates a degree
of misunderstanding regarding nondeterminism. Apparently, the
student believes that the rearrangement production rules must be
used before using the rules to produce terminal symbols. Under
this light, it is suggested to add '(a b c a b c) to the unit tests
(i.e., to check-derive?). Much to the student’s surprise, the tests
pass.

Given that the word is derived, it is suggested to the student to
use the dynamic visualization to debug. Upon stepping through the
derivation, the student discovers the first step where the invariant
fails as displayed in Figure 10. From the derivation history displayed
in the derivation graph, the student can observe that the rearrange-
ment rules are never used. Therefore, the last rule used, B → b,
mutates the yield to contain a b that does not satisfy the condition
for all terminal symbols to be in relative order. This cements the
understanding that production rules may be nondeterministically
used in any order (or not at all) and that using production rules in
the right context matters.

6 Formative Human-Factors Study
To measure student perceptions about the described visualization
tool, a small anonymous survey-based formative study was per-
formed with the students enrolled in Seton Hall University’s un-
dergraduate Formal Languages and Automata Theory course. The
course enrolled 10 students: all Computer Science majors in their
3rd or 4th year of studies between the ages of 20 and 23. They self-
identified as: 30% female and 70% male. All 10 students volunteered
to participate in the study. None of them received any benefit or
compensation for their participation.

The survey presents students with a series of statements and
asks respondents to indicate how strongly they agree or disagree.
Responses are provided using a Likert scale [26]: 1 (Strongly dis-
agree) to 5 (Strongly agree), with 3 as a neutral response. The data
collected is presented around 4 themes: visualization quality, word
derivation visualization, informative messages, and invariant visu-
alization. In the presentation below, we denote responses 4 and 5
as tend to agree and responses 1 and 2 as tend to disagree.

6.1 Visualization Quality
To measure perceptions on the overall quality of the visualization
tool, students are presented with the following statements:
Q1.1 The visualization is clear.
Q1.2 The visualization is easy to use.
Q1.3 The visualization is visually appealing.
Q1.4 The visualization is useful.
The distribution of responses is displayed in Figure 11. For Q1.1,
we observe that an overwhelming majority of respondents, 90%,
tend to agree that the visualization is clear. None disagreed with
the statement. This is an important result because it suggests users
understand the graphics displayed. For Q1.2, we observe that half
of the respondents tend to agree that the visualization is easy to
use, 40% feel neutral about this statement, and 10% tend to disagree.
This suggests that the respondents tend to feel less strongly about
the visualization’s ease of use than its clarity. This result is not
entirely surprising for two reasons: how quickly the graph grows
in size and placing the yield of the derivation graph at the bottom.
As a result of fast graph growth, a user needs to either drag or
zoom out of the main visualization graphic to observe the deriva-
tion history and the changing yield at the same time. During our
design phase, we considered not placing the yield at the bottom and
discarded this idea given that it became hard to determine the yield
of the derivation graph. Nonetheless, the overwhelming majority
of respondents do not tend to disagree with the statement.

For Q1.3, we observe that a majority of respondents, 60%, tend to
agree that the visualization is visually appealing. We also observe
that 20% are neutral about this statement and 20% tend to disagree
(but not strongly). Thus, an overwhelming majority does not tend
to disagree. Nonetheless, a nontrivial proportion of the respondents
do not tend to agree. This lukewarm result is also expected given
that large derivation graphs are inherently difficult to read. That
is, they contain a large number of nodes and crisscrossing edges.
Unfortunately, this is unavoidable. Placing the yield at the bottom,
in our opinion, does appear to result in more readable graphs.

For Q1.4, we observe that an overwhelming majority of respon-
dents, 90%, tend to agree that the visualization is useful. In fact, an
overwhelming majority, 70%, strongly agree. This is the statement
that respondents tend to agree with the most in the entire survey.
This result is very encouraging, because it suggests that our goal to
help students understand urgs has been achieved. The remaining
questions in the survey shed light on why the respondents believe
the visualization is useful.

6.2 Word Derivation Visualization
To further explore, in part, why the visualization tool is useful, the
survey presents the following statements:

Unrestricted Grammar Design and Visualization Conference’17, July 2017, Washington, DC, USA

Figure 11 Data distribution for visualization quality.

1 2 3 4 5

0

0.2

0.4

0.6

0.8

0 0

0.1

0.5

0.4

0

0.1

0.4

0.3

0.2

0

0.2 0.2

0.3 0.3

0 0

0.1

0.2

0.7

Pr
op

or
tio

n
of

Re
sp
on

de
nt
s

Q1.1 Q1.2 Q1.3 Q1.4

Figure 12 Data distribution for word derivation visualization.

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0 0

0.1

0.4

0.5

0 0

0.3 0.3

0.4

0 0

0.2

0.5

0.3

0 0

0.1

0.4

0.5

Pr
op

or
tio

n
of

Re
sp
on

de
nt
s

Q2.1 Q2.2 Q2.3 Q2.4

Q2.1 The visualization helped me understand how words are de-
rived.

Q2.2 The visualization helpedme understand how production rules
may be nondeterministically applied.

Q2.3 The visualization clearly preserves the history of the deriva-
tion.

Q2.4 Word derivation visualization is useful for debugging gram-
mars.

The distribution of responses is displayed in Figure 12. For Q2.1,
we observe that an overwhelming majority of respondents, 90%,
tend to agree that the visualization helped them understand how
words are derived. None tended to disagree with the statement.
This result is encouraging, because it suggests that visualizing the
construction of a derivation graph has achieved our goal to help
students understand word derivation. For Q2.2, we observe that an
overwhelming majority of respondents, 70%, tend to agree that the
visualization helped them understand how production rules may
be nondeterministically applied. This is also a very encouraging
result, because it is challenging, even for some small urgs, to find
a sequence of production rule applications to derive a word. It is
expected for respondents to tend to agree less with this statement

than with Q2.1. The visualization clearly illustrates a word’s deriva-
tion, but is less useful in explaining why a rule is chosen for use.
For Q2.3, we observe that an overwhelming majority of respon-
dents, 80%, tend to agree that the visualization clearly preserves
the history of the derivation. This is an encouraging and surprising
result. Our expectation, was that understanding the history of the
derivation using a derivation graph would be significantly more dif-
ficult when compared to, for example, understanding the derivation
history using derivation trees for context-free and regular gram-
mars. Collectively, these results shed light on why respondents
find the visualization useful (i.e., Q1.4). They suggest that most
students, in part, find it useful, because it helps them understand
word derivation, nondeterministic production rule application, and
the derivation history.

For Q2.4, we observe that an overwhelming majority of respon-
dents, 90%, tend to agree that word derivation visualization is useful
for debugging grammars. None of the respondents disagree. This
result further sheds light on why respondents feel that visualiz-
ing word derivation is useful. It directly helps them to correctly
implement urgs.

Conference’17, July 2017, Washington, DC, USA Morazán, Garced, and Minić

Figure 13 Data distribution for informative messages.

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0

0.5

0.3

0

0.2

0.1

0.4

0.3

0

0.1 0.1

0.5

0.3

Pr
op

or
tio

n
of

Re
sp
on

de
nt
s

Q3.1 Q3.2 Q3.3

Figure 14 Data distribution for invariant visualization.

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0 0

0.2

0.5

0.3

0 0

0.2

0.4 0.4

0

0.1 0.1

0.3

0.5

0 0

0.3 0.3

0.4

Pr
op

or
tio

n
of

Re
sp
on

de
nt
s

Q4.1 Q4.2 Q4.3 Q4.4

6.3 Informative Messages
Tomeasure perceptions regarding informative messages, the survey
presents the following statements:
Q3.1 The informative messages are clear.
Q3.2 The informative messages are useful.
Q3.3 The informative messages help me understand the last step

performed in the visualization
The distribution of responses is displayed in Figure 13. For Q3.1, we
observe that an overwhelming majority of respondents, 80%, tend
to agree that the informative messages are clear. We also observe
that a minority, 20%, tends to disagree (but not strongly). This result
suggests that, overall, respondents understand the informative mes-
sages, but that more work needs to be done to make informative
messages clear for an even larger proportion of students. One de-
sign possibility we plan to explore is including a brief explanation
for why hexagon nodes are created.

For Q3.2, we observe that an overwhelming majority of respon-
dents, 70%, tend to agree that informative messages are useful. This
is an encouraging result, because it suggests that our goal to satisfy
the Norman principles related to discoverability and conceptual
model are met. This is further confirmed by the results obtained

from Q3.3, which indicate that an overwhelming majority of re-
spondents, 80%, tend to agree that the informative messages help
them understand the last step performed in the visualization.

6.4 Invariant Visualization
Invariant visualization perceptions are explored through the fol-
lowing survey statements:

Q4.1 Invariant visualization is clear.
Q4.2 Invariant visualization is useful.
Q4.3 Invariant visualization is useful for debugging grammars.
Q4.4 Invariant visualization is useful to develop correctness proofs.

The distribution of responses is displayed in Figure 14. For Q4.1, we
observe that an overwhelmingmajority of respondents, 80%, tend to
agree that invariant visualization is clear. None of the respondents
tend to disagree. This suggests that respondents understand when
and why invariants hold and fail. In part, we attribute this success
to always placing the yield of the derivation graph at the bottom
and to the informative messages. Thus, students can examine with
little search effort the yield and the last production rule applied to
determine why an invariant holds or fails.

Unrestricted Grammar Design and Visualization Conference’17, July 2017, Washington, DC, USA

For Q4.2, we observe that an overwhelming majority of respon-
dents, 80%, tend to agree that invariant visualization is useful. None
of the respondents tend to disagree. This result is very encourag-
ing, because it suggests that our goal to help students formally
design urgs has been achieved. The remaining questions about
invariant visualization shed light on why the respondents believe
such visualization is useful.

For Q4.3, we observe that an overwhelming majority of respon-
dents, 80%, tend to agree that invariant visualization is useful for
debugging grammars. For Q4.4, we observe that an overwhelming
majority of respondents, 70%, tend to agree that invariant visual-
ization is useful to develop correctness proofs. Collectively, these
results help us understand why respondents find invariant visualiza-
tion useful. They suggest that respondents appreciate the practical
value (i.e., useful in debugging) and the theoretical value (i.e., useful
in developing proofs).

6.5 Discussion and Limitations
This sections discusses some of the broad implications suggested by
our results that merit further study. In addition, it discusses some
of the limitations of the empirical study.

6.5.1 Implications. The unsystematic treatment of nondetermin-
ism in the Computer Science curriculum, in part, contributes to
students finding it difficult to understand [3]. This is unfortunate,
because nondeterminism plays a role in modern programming. For
example, it is relevant in probabilistic programming [1, 6, 30], quan-
tum programming [11, 43], and logic programming [5, 12]. Thework
presented in this article suggests a pedagogy for systematically
teaching Computer Science students about nondeterminism. That
is, the results obtained from Q2.1 and Q2.3 suggest that systematic
program development along with the use of dynamic visualizations
may be an effective way to teach students about nondeterminism.

The resistance to formal methods among Computer Science stu-
dents is well documented [17, 44]. In essence, many Computer Sci-
ence students are frustrated by proof development for two reasons.
First, they lack experience with proof development and, therefore,
commonly fail to understand how to proceed. Second, they usually
have no way of getting feedback on their assertions before, for
example, submitting for grading. The results obtained from Q4.1–
Q4.4 suggest that visualizations might offer a means to dismantle
the resistance to formal methods. The described visualization tool
offers immediate feedback on assertions (i.e., invariant predicates).
When these do not hold, students have an opportunity to revise
them. When they represent the weakest precondition [8] and they
hold, students can more confidently proceed to writing a proof.
The described approach is not limited to the derivation of words
using a urg. It can be used, for example, to teach program ver-
ification using Hoare Logic [20]. For instance, a domain-specific
imperative language may be developed for Hoare triples that allows
assertion/invariant visualization to help students.

Many modern dynamic visualization tools fail to provide infor-
mative messages to their users regarding the process visualized.
For instance, JFLAP provides for conversions between models of
computation (e.g., a nondeterministic finite-state automaton to a
deterministic finite-state automaton), but performs such operations
with no informative messages to help the user develop a sound

Figure 15 JFLAP derivation graph using the urg from Figure 2

mental model. We have evidence, from previous studies [31, 33, 35],
that visualizations with informative messages are well-received
by students. The results obtained from Q3.1–Q3.3 further confirm
that informative messages can play a pivotal role in developing
understanding among students.

6.5.2 Limitations. The presented empirical study suffers from sev-
eral limitations. Perhaps, the most salient is that the sample is
small and is drawn from a mostly homogeneous population where
most Computer Science students are European American men. It
is unclear, therefore, if the observed results would hold for larger
samples drawn from a diverse population. Although it is not unrea-
sonable to believe that they would, such a hypothesis does require
empirical validation. To address this shortcoming, empirical studies
shall be conducted over several iterations of the course and efforts
will be made to make such studies multi-university.

This study, as is common in Computer Science Education stud-
ies, did not compare a control group with an experimental group.
Therefore, the effect of the independent variable (i.e., the introduc-
tion of the described visualization tool) is difficult to isolate. It is
not a straightforward matter to address this shortcoming because
many university administrators would raise ethical concerns about
treating students differently solely for the benefit of a study.

The quantitative nature of our study is also a limitation. Although
the data collected is amenable to statistical analysis, it precludes
the nuances of individual student experiences. The presented study,
for instance, does not capture the moments when students found a
visualization feature extremely useful and when they wished for
a new feature. To address this concern, future studies will include
open-ended questions, interviews, and observational sessions.

Conference’17, July 2017, Washington, DC, USA Morazán, Garced, and Minić

7 Related Work
7.1 Visualizing Grammar Derivations
The best known tool for visualizing word derivation using a urg is
JFLAP [40, 41]. Similar to FSM, this tool allows users to input a urg
and a word to visualize the derivation and displays the stepwise con-
struction of the derivation graph. An example of such a derivation
graph is displayed in Figure 15. In this example, the word aabbcc is
being derived using the same urg for anbncn displayed in Figure 2.
We can observe several characteristics that make derivation graphs
in JFLAP hard to read. First, JFLAP groups nodes to mutate the yield
by connecting them with blue ovals without uniting them into a
single node. In contrast, FSM unites such nodes into a single hexag-
onal node. Second, JFLAP constrains the visualization to the size
of the visualization frame. This results in overlapping nodes being
rendered. In contrast, FSM does not constrain the visualization to the
size of the visualization frame. Users may zoom in and drag into the
visualization frame the parts of the derivation graph they wish to
inspect more closely. A third contrasting feature is that JFLAP does
not allow the user to step backwards in the derivation. The only
way a user may review previous steps is by restarting the visual-
ization. In contrast, FSM allows the user to step backwards through
the visualization to reexamine previous derivation steps without
restarting the visualization. Finally, a fourth contrasting feature is
that JFLAP does not provide support for invariant visualization.

Another popular visualization tool for the FLAT classroom is
Automata Tutor [9]. This popular tool, however, does not provide
support for urgs. To the best of our knowledge, in fact, besides
JFLAP there are no other popular tools for visualizing word deriva-
tion using urgs. Furthermore, the dynamic visualization tool de-
scribed in this article is the first to support the grammar verification
process by providing visual support for invariant validation.

The heuristics used for the derivation algorithm described in
this article are inspired by the heuristics used by Rekers and Schürr
to parse context sensitive graph grammars. They also used a prior-
ity queue as a heuristic to improve the runtime characteristics of
their algorithm, although in contrast to the algorithm described in
this article their algorithm is bottom-up and makes uses of a cost
function based on probabilities.

7.2 Derivation Search
Rekers and Schürr describe a parsing algorithm for a visual pro-
gramming language using a context-sensitive graph grammar [38].
As the work presented in this article, they suggest the use of heuris-
tics to reduce the search space and priority queues to improve
performance. In contrast, they discuss a mechanism for pruning
failed derivations attempts as early as possible, which is something
that forms part of our future work. In further contrast, it is unclear
what parts of their algorithm, if any, are implemented and they do
not provide any empirical performance measurements.

Harris describes extensions to SLR(1) and LALR(1) bottom-up
deterministic parsing [2] for unrestricted grammars [18]. The ap-
proach presents an optimized algorithm that builds a parse tree
from the leaves to the root. A disadvantage of the presented ap-
proach is that there is no algorithm which produces the SLR(1) or
LALR(1) parse tables for a given unrestricted grammar. Instead,
Harris presents a “computational procedure which can be carried

out by hand in many cases.” In contrast, the work presented in this
article takes a top-down approach that we believe is more intuitive
for students being exposed to unrestricted grammars for the first
time. Bottom-up optimizations such as the one described by Harris
are more appropriate for students that have prior experience with
urgs.

8 Concluding Remarks
A novel design recipe and a dynamic visualization tool for unre-
stricted grammars in FSM is presented. The design recipe includes
new steps to help students with grammar verification and serves
as a lingua franca for instructors and students to discuss grammar
design, validation, and verification. In addition, a novel dynamic
visualization tool for word derivation is presented. The tool was
developed using the Norman principles of effective design to reduce
the extraneous cognitive load on users. Given a grammar and a
word, it presents the user with a stepwise construction of a deriva-
tion graph. In addition, the tool supports the design process by
providing an invariant visualization feature designed to be used
before formally proving grammar correctness. The data gathered
from a small formative study suggests that the presented visual-
ization tool is well-received and considered useful by students to
understand word derivation, to debug grammars, and to develop
correctness arguments.

Future work involves three goals. The first is conducting an in-
depth human factors study in the classroom to measure student
perceptions of the tool. The focus will be to determine if the tool
helps students understand derivation using a urg, helps students
debug their designs, and helps students utilize their invariants
effectively for grammar verification. The second is the creation
of a dynamic visualization to help students better understand the
transformation of an unrestricted grammar to Kuroda normal form
[29]. The third is to explore techniques to reduce the exploration
of derivations that are likely to fail.

References
[1] Aguirre, A., Birkedal, L.: Step-Indexed Logical Relations for Countable Nondeter-

minism and Probabilistic Choice. Proc. ACM Program. Lang. 7(POPL) (Jan 2023).
https://doi.org/10.1145/3571195

[2] Aho, A.V., Ullman, J.D.: The theory of Parsing, Translation, and Compiling.
Prentice-Hall, Inc., USA (1972)

[3] Armoni, M., Ben-Ari, M.: The Concept of Nondeterminism: Its Develop-
ment and Implications for Teaching. SIGCSE Bull. 41(2), 141–160 (jun 2009).
https://doi.org/10.1145/1595453.1595495

[4] Ates, K.L.: Context-Sensitive Graph Grammar Induction. Ph.D. Thesis, The Uni-
versity of Texas at Dallas, Dallas, TX (December 2013)

[5] Ballantyne, M., Sanna, R., Hemann, J., Byrd,W.E., Amin, N.: Multi-stage Relational
Programming. Proc. ACM Program. Lang. (POPL) (Jan 2025), to appear

[6] Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karalet-
sos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman, N.D.: Pyro: Deep Universal
Probabilistic Programming. J. Mach. Learn. Res. 20(1), 973–978 (Jan 2019)

[7] Chomsky, N.: Three Models for the Description of Language. IRE Transactions on
Information Theory 2(3), 113–124 (1956). https://doi.org/10.1109/tit.1956.1056813

[8] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
[9] D’Antoni, L., Helfrich, M., Kretinsky, J., Ramneantu, E., Weininger, M.: Automata

Tutor v3. In: Computer Aided Verification: 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II. p. 3–14.
Springer-Verlag, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-030-
53291-8_1

[10] Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge, MA,
USA, Second edn. (2018)

[11] Feng, Y., Xu, Y.: Verification of Nondeterministic Quantum Programs. In: Pro-
ceedings of the 28th ACM International Conference on Architectural Support

Unrestricted Grammar Design and Visualization Conference’17, July 2017, Washington, DC, USA

for Programming Languages and Operating Systems, Volume 3. p. 789–805. AS-
PLOS 2023, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3582016.3582039

[12] Fischer, S., Kiselyov, O., Shan, C.c.: Purely Functional Lazy Non-
Deterministic Programming. SIGPLAN Not. 44(9), 11–22 (Aug 2009).
https://doi.org/10.1145/1631687.1596556

[13] Flatt, M., Findler, R.B., PLT: The Racket Guide. PLT (2024), https://docs.racket-
lang.org/guide/, last accessed: June 2025

[14] Foead, D., Ghifari, A., Kusuma, M.B., Hanafiah, N., Gunawan, E.: A Systematic
Literature Review of A* Pathfinding. Procedia Computer Science 179, 507–514
(2021). https://doi.org/10.1016/j.procs.2021.01.034, 5th International Conference
on Computer Science and Computational Intelligence 2020

[15] Garced, A.M., Minić, T., Morazán, M.T.: On the implementation of dynamic
visualizations: A case-study using fsm visualizations. In: Proceedings of the 36th
Symposium on Implementation and Application of Functional Languages. p.
51–64. IFL ’24, Association for Computing Machinery, New York, NY, USA (2025).
https://doi.org/10.1145/3723325.3723340

[16] Gómez-Rodríguez, C., Kuhlmann, M., Satta, G.: Efficient Parsing of Well-Nested
Linear Context-Free Rewriting Systems. In: Kaplan, R., Burstein, J., Harper, M.,
Penn, G. (eds.) Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics.
pp. 276–284. Association for Computational Linguistics, Los Angeles, CA (jun
2010), https://aclanthology.org/N10-1035/

[17] Gries, D.: The Science of Programming. Springer-Verlag, Berlin, Heidelberg, 1st
edn. (1987)

[18] Harris, L.A.: SLR(1) and LALR(1) Parsing for Unrestricted Grammars. Acta Infor-
matica 24, 191–209 (April 1987). https://doi.org/10.1007/BF00264364

[19] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Commun. ACM
12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259

[20] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Commun. ACM
12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259

[21] Hoare, C., Jifeng, H.: Unifying Theories of Programming. Prentice Hall series in
computer science, Prentice Hall (1998)

[22] Huybregts, R.: TheWeak Inadequacy of Context-Free Phrase Structure Grammars.
Van periferie naar kern pp. 81–99 (1984)

[23] Joshi, A.K.: Tree Adjoining Grammars: HowMuch Context-Sensitivity is Required
to Provide Reasonable Structural Descriptions?, p. 206–250. Studies in Natural
Language Processing, Cambridge University Press (1985)

[24] Kanazawa, M.: The Pumping Lemma for Well-Nested Multiple Context-Free
Languages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory.
pp. 312–325. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

[25] Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computa-
tion. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edn. (1997).
https://doi.org/10.1145/300307.1040360

[26] Likert, R.: A Technique for the Measurement of Attitudes. Archives of Psychology
140, 1–55 (1932)

[27] Linz, P.: An Introduction to Formal Languages and Automata. Jones and Bartlett
Publishers, Inc., USA, 5th edn. (2011)

[28] Martin, J.C.: Introduction to Languages and the Theory of Computation. McGraw-
Hill, Inc., USA, 3 edn. (2002)

[29] Meduna, A.: Automata and languages: theory and applications. Springer-Verlag,
Berlin, Heidelberg (2000)

[30] van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An Introduction to Probabilistic
Programming (2021), https://arxiv.org/abs/1809.10756

[31] Minić, T., Morazán, M.T.: Visualizing Construction Algorithms for Closure Prop-
erties of Regular Languages. In: ITiCSE 2025: Proceedings of the 2025 Conference
on Innovation and Technology in Computer Science Education V. 1. ITiCSE 2025,
Association for Computing Machinery, New York, NY, USA (2025)

[32] Morazán, M.T.: Programming-Based Formal Languages and Automata Theory
- Design, Implement, Validate, and Prove. Texts in Computer Science, Springer
(2024). https://doi.org/10.1007/978-3-031-43973-5

[33] Morazán, M.T., Minić, T.: Finite-State Automaton To/From Regular Expression
Visualization. Electronic Proceedings in Theoretical Computer Science 405, 36–55
(jul 2024). https://doi.org/10.4204/eptcs.405.3, in Proceedings TFPIE 2024

[34] Morazán, M.T.: Grammar Verification for Students: A Grammar Design Recipe
with Verification Steps. In: Proceedings of the 17th International Conference
on Computer Supported Education - Volume 2: CSEDU. pp. 662–669. INSTICC,
SciTePress (2025). https://doi.org/10.5220/0013216500003932

[35] Morazán, M.T., Minić, T.: Finite-State Automaton To/From Regular Expression
Visualization. Electronic Proceedings in Theoretical Computer Science 405, 36–55
(Jul 2024). https://doi.org/10.4204/eptcs.405.3

[36] Norman, D.A.: The Design of Everyday Things. Basic Books, Inc., USA (2002)
[37] Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, USA

(1999). https://doi.org/10.1017/CBO9780511530104
[38] Rekers, J., Schürr, A.: A ParsingAlgorithm for Context-Sensitive GraphGrammars.

Tech. Rep. 95-05, Leiden University (1995), https://liacs.leidenuniv.nl/assets/PDF
/TechRep/tr95-05.pdf

[39] Rich, E.: Automata, Computability and Complexity: Theory and Applications.
Pearson Prentice Hall (2019)

[40] Rodger, S.H.: JFLAP: An Interactive Formal Languages and Automata Package.
Jones and Bartlett Publishers, Inc., USA (2006)

[41] Rodger, S.H., Bressler, B., Finley, T., Reading, S.: Turning automata theory into
a hands-on course. In: Baldwin, D., Tymann, P.T., Haller, S.M., Russell, I. (eds.)
Proceedings of the 37th SIGCSE Technical Symposium on Computer Science
Education, SIGCSE 2006, Houston, Texas, USA, March 3-5, 2006. pp. 379–383.
ACM (2006). https://doi.org/10.1145/1121341.1121459

[42] Shieber, S.M.: Evidence Against the Context-Freeness of Natural Language. In:
The Formal complexity of natural language, pp. 320–334. Springer (1985)

[43] Zhou, L., Barthe, G., Strub, P.Y., Liu, J., Ying, M.: CoqQ: Foundational Verifi-
cation of Quantum Programs. Proc. ACM Program. Lang. 7(POPL) (Jan 2023).
https://doi.org/10.1145/3571222

[44] Zingaro, D.: Another Approach for Resisting Student Resis-
tance to Formal Methods. SIGCSE Bull. 40(4), 56–57 (nov 2008).
https://doi.org/10.1145/1473195.1473220

AI-Assisted Program Design Using Structural Recursion
Marco T. Morazán
Seton Hall University
South Orange, NJ, USA
morazanm@shu.edu

Abstract
The age of artificial intelligence is upon us and with it comes the
responsibility of using and teaching how to use coding assistants
ethically and effectively. All too often, students believe that using
a poorly designed prompt to generate code makes them success-
ful programmers. More often than not, nothing could be further
from the truth as all that they are doing is engaging in plagiarism–
attributing to themselves code used in the training set of a large
language model that was designed and implemented by someone
else. This article presents the first attempt to apply a successful pro-
gramming pedagogy based on design recipes to the use of coding
assistants. It presents the design and implementation of software
based on structural recursion using functional programming in a
mainstream programming language. The methodology put forth
recognizes that prompts are programs and, as such, must be de-
signed. Furthermore, it illustrates how prompt engineering ought
to be informed by program design steps that are performed when
programming without coding assistants. Finally, it also illustrates
how debugging, instead of being an ad hoc endeavor, ought to be
done by revisiting design steps.

CCS Concepts
• Applied computing→ Education; • Software and its engi-
neering→ Software design techniques; • Computing method-
ologies→ Artificial intelligence.

Keywords
AI-Assisted Programming, Prompt Engineering, Design Recipes,
Functional Programming
ACM Reference Format:
Marco T. Morazán. 2025. AI-Assisted Program Design Using Structural
Recursion. In Proceedings of the 37th Symposium on Implementation and
Application of Functional Languages (IFL 2025), October 1–3, 2025, Montevideo,
Uruguay. ACM, New York, NY, USA, 13 pages.

1 Introduction
The age of programming assisted by artificial intelligence (AI) is
here with promises to greatly enrich software development prowess
and perils to inhibit the education of future software developers.
The potential for coding assistants to be both helpful and harmful
means that their use must be carefully tempered in Computer Sci-
ence (CS) education. On the one hand, a coding assistant harnesses

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IFL 2025, Montevideo, Uruguay
© 2025 Copyright held by the owner/author(s).

the power of generative AI [15, 29] using large language models
[8, 25] to simplify daily programming tasks. For example, they make
code suggestions and provide answers to questions (such as the
meaning of a cryptic error message). On the other hand, a coding
assistant can become a crutch to programmers, especially students,
that become overly dependent on them [1]. They can lead program-
mers to engage in unethical conduct (e.g., attribute to themselves
programs they did not develop), develop poor programming habits
(e.g., accepting the use of features that they do not understand),
and overreliance (e.g., accepting code suggestions without carefully
checking them) [5]. All of these behaviors undermine, especially in
students, the ability to learn and to solve problems.

To understand how to teach productive use of coding assistants,
it is necessary for students to understand (at least at a very high
level of abstraction) that the quality of a code suggestion or the an-
swer to a question is linked to the quality of a prompt. A prompt is a
set of instructions crafted in a natural language to help a generative
AI model provide the desired result. It is important to realize that
when a programmer uses a coding assistant, at least two programs
need to be written: a prompt (i.e., a program for the generative
AI model) and the actual program that is desired (e.g., a solution
to a problem). The natural question that arises, of course, is why
write two programs when only one program is needed? The an-
swer is that often, but not always, to obtain a working program
it is easier to write a prompt than to directly write the program.
Much like programs written in the strict syntax of a programming
language are designed, given that they are programs, prompts must
also be designed. The science of writing prompts is coined prompt
engineering.

The question now becomes: How is a prompt designed? Popular
internet sources state that prompts need to be clear and precise
to obtain high-quality results from a coding assistant [12, 30]. Al-
though this is sound advice, it ignores that a prompt, as stated, must
be designed. That is, there are systematic steps that may be followed
that provide scaffolding for prompt development. Such scaffolding
is extensively used in CS pedagogy based on functional program-
ming and type-driven design [13, 22–24]. This article describes
an application of functional programming in the CS education do-
main. It puts forth a design-based approach for the development
of programs using prompts and coding assistants. The focus is on
the development of programs using structural recursion. Program
development is illustrated using GitHub Copilot and functional
programming in Python. The methodology put forth, however, is
programming language and coding assistant agnostic. The result
is a systematic approach to software development using a coding
assistant that squarely places programming and prompt engineer-
ing in the realm of science and not the realm of art as decribed by
some CS authors (e.g., [26]).

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán

The article is organized as follows. Section 2 briefly discusses the
advantages and perils of using coding assistants. Section 3 presents
design recipes for function development: one to design functions
and one to design prompts. Section 4 illustrates the use of the
outlined design recipes using a nontrivial example to compute 𝜋
using the Chudnovsky algorithm [10, 11]. Section 5 contrasts and
compares with related work. Finally, Section 6 presents concluding
remarks and directions for future work.

2 Advantages and Perils of Coding Assistants
The use of coding assistants to implement software presents both ad-
vantages and perils. The advantages need to be harnessed through-
out the software development process. The perils, on the other
hand, means that programmers, especially students, need to be
vigilant to not fall victim to them.

2.1 Advantages
After gaining some programming experience, there are many rea-
sons to use a coding assistant. Implied in this statement is not
advocating for the use of a coding assistant by newcomers to pro-
gramming. Using a coding assistant requires writing clear and suc-
cinct prompts. That is, writing well-designed programs in a natural
language is needed. Therefore, prompts require some experience
with program design (including iterative refinement and divide-
and-conquer). Furthermore, it is all too easy for beginning students,
that do not know any better, to be allured by the idea of having
a coding assistant generate programs for them with minimum or
no effort. This, of course, sets beginners on a path to failure by
hindering the development of design and communication skills.

For those with some software design experience, the use of cod-
ing assistants present the following advantages:

(1) Moving focus away from syntax to problem solving
(2) Ease to get started with problem solving
(3) Exposure to different ways to solve a problem
(4) Help with communicating solutions to problems clearly
(5) Help with refactoring code
(6) High-quality code explanations
(7) Circumventing cryptic error messages

Advantage (1) refers to producing syntactically correct programs
with ease. The strict syntax of a programming language no longer
needs to be an obstacle to learning a new programming language
and no longer needs to slow down the problem solving process.
Coding assistants have become very good at mundane syntax-based
tasks, but it is important to remember that they may suggest syn-
tactically incorrect code.

Advantage (2) refers to the ease provided for getting started with
a solution. Even a poorly designed prompt is likely to suggest an
answer. Through the process of iterative refinement, the prompt
may be improved to have the coding assistant produce a better
suggestion.

Advantage (3) refers to coding assistants having multiple sugges-
tions. A programmer can judge different ways to solve a problem
(even some the programmer has not considered) and select the one
they feel is best suited for the software project under development.
Multiple solutions, even when none is adopted, can provide ideas
for improving the pursued design.

1 def double(n):

2 """

3 Signature: number -> number

4 Purpose: Double the given number.

5 Design Idea: Multiply the input number by 2.

6 """

7 return n * 2

8

9 def quadruple(n):

10 """

11 Signature: number -> number

12 Purpose: Quadruple the given number

13 Design Idea: Double given number twice and add

14 """

15 return double(n) + double(n)

16

17 print(quadruple(None))

Figure 1: Code to illustrate AI error message explanation.

Advantage (4) refers to a skill that is developed as programmers
become better prompt engineers: the development of clear and
succinct prompts. This skill hones the programmer’s ability to com-
municate how a problem is solved and is important, because large
software projects are developed by teams that need to understand
the solution to a problem.

Advantage (5) refers to the help a coding assistant can provide
to improve the solution to a problem. This is closely related to
advantage 3. Ideas for code refactoring may present themselves by
seeing different solutions to a problem. A coding assistant, however,
may be able to analyze a program and directly suggest a different
approach. For example, it may suggest using a for-loop instead of
making recursive calls. In some cases, it may suggest the use of a
different data structure to improve performance.

Advantage (6) refers to code explanations a coding assistant
can provide. This is particularly useful when a programmer is not
familiar with the syntax or the library used to solve a problem. Al-
though coding assistants have become relatively good at explaining
the code they suggest, programmers must remain vigilant. Coding
assistants may explain a code suggestion that is buggy.

Advantage (7) refers to a coding assistant’s ability to explain
cryptic errors, which are known to be common [3, 4, 6, 7, 18, 19, 31].
Coding assistants often offer detailed descriptions for the source of
an error. As experienced programmers know, an error is thrown
where a bug is detected, which may or may not be where the error
must be fixed. For instance, consider running the Python program
displayed in Figure 1. It yields the following error:

File "quadruple.py", line 7, in double

return n * 2

~~^~~

TypeError: unsupported operand type(s) for *:

'NoneType' and 'int'

Observe that the bug is the call to quadruple on line 17 (i.e., not
where it is detected). Asking GitHub Copilot to explain the error
yields:

AI-Assisted Program Design Using Structural Recursion IFL 2025, October 1–3, 2025, Montevideo, Uruguay

Calling quadruple(None) will raise a TypeError
because double(None) attempts to multiply None
by an integer, which is not supported. Consider
adding input validation or handling None values
appropriately.

Observe that the coding assistant offers a much better explanation
for the reason behind the bug than the error message.

2.2 Perils
There are substantial disadvantages associated with the use of
coding assistants. Some of the more salient perils are anthropo-
morphism, attribution, development of questionable habits, and
overreliance. Anthropomorphism refers to characterizing coding
assistants and AI as having human traits [2, 14]. In part, this phe-
nomena is due to AI companies and researchers referring to their
software as having human capabilities. Commonly, this leads to
a fundamental misunderstanding of AI-based software. Perhaps,
the biggest problem on this front is overestimating what a coding
assistant can do. It is important to understand that coding assistants
do not have an understanding of the programming goals as the
members of a software development team. Coding assistants try
to predict the code requested based on a probabilistic distribution
of the importance assigned to elements found in the prompt. Con-
fusing the ability to predict the code expected with understanding
easily leads to trusting solutions proposed by a coding assistant
and failing to properly validate and review them.

Attribution refers to who deserves credit for the development
of software. This problem emerges, because coding assistants are
trained using a massive amount of coding examples. For example,
the large language model behind GitHub Copilot is trained using
public repositories hosted on GitHub [9]. Naturally, one can askwho
deserves credit for a program generated using a coding assistant.
The best way to illustrate the problem is by example. Consider the
following prompt presented to GitHub Copilot:

def factorial(n):

"""

Write a function to compute n!

"""

The function header written by the programmer provides the only
context/guidance for the evaluation of the prompt that is inside
triple quotes1. The suggested body is:

if n == 0 or n == 1:

return 1

else:

return n * factorial(n - 1)

Clearly, the author of the prompt can not claim that they have pro-
grammed a function to compute n!. This is not programming and
claiming ownership of the above code is plagiarism, which is an
act of academic dishonesty at all reputable universities. The prob-
lem arises because GitHub Copilot’s training set contains such
a function and GitHub Copilot simply returns it as a prediction
for what the prompt’s author needs. Clearly, whoever authored the
function in GitHub Copilot’s training set deserves the credit.

1In the Python world, triple quotes are called docstrings.

The use of coding assistants may also lead to the development
of bad programming habits. It is important to realize that publicly
available software is not scrutinized and is contributed by program-
mers with many different levels of experience. This means that
coding assistants are likely trained with poorly designed code. For
instance, many programmers lacking training in program design
become obsessed with solving every problem using a single func-
tion or a single line of code. Consider the following prompt to sort
a list of numbers:

def qs(lst):

"""

Write quicksort using a single line of code.

"""

The function body suggested by GitHub Copilot is:

return

lst if len(lst) <= 1 \

else qs([x for x in lst[1:] if x<lst[0]]) + \

[lst[0]] + \

qs([x for x in lst[1:] if x>=lst[0]])

The prompt is poorly designed and offers no guidance on how the
program ought to be, for example, modularized. It is an example of
an unsophisticated prompt that results in a poorly designed and un-
sophisticated function. It is important for programmers, especially
students, to remember that programming is about much more than
writing a program to solve a problem. An equally important goal
is to communicate the solution to a problem to others. The above
function does not clearly communicate how the problem is solved
despite the use of list comprehensions (i.e., the idea of partitioning
the numbers is not clearly communicated). In addition, the func-
tion above is very difficult to refine to make it more efficient (e.g.,
creating 3, not 2, partitions: numbers less than the pivot, numbers
equal to the pivot, and numbers greater than the pivot).

Finally, another major danger of using coding assistants is be-
coming overly reliant on them. This can easily lead to not thinking
about how a problem ought to be solved as is the case for factorial
and qs above. This is dangerous, because it can lead a program-
mer to forfeit carefully thinking about code suggested by a coding
assistant and integrating into a software project syntactically or
semantically incorrect code that does not fulfill its purpose. Further-
more, problems associated with overreliance may be compounded
to become even bigger problems. For instance, if a programmer
overly relies on a coding assistant and enough bugs need to be
fixed, then the programmer may mistakenly conclude that coding
assistants mostly produce buggy code and lose confidence in their
use. It is unfortunate if this occurs, because automatic feedback
provided by a coding assistant has proven useful and now program-
mers are expected to be able to design prompts for their every day
programming tasks.

3 Function and Prompt Engineering Using
Structural Recursion

Given that prompts are programs, they need to be systematically
designed and their suggestions need to be carefully checked. Other-
wise, there is a significant risk that incorrect or dangerous code is

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán

(1) Outline the representation of values and the computation.
(2) Write the function’s header.
(3) Design and implement a prompt for the function.
(4) Implement the function’s body
(5) Write the testing function’s header.
(6) Design and implement a prompt for the testing function
(7) Implement the testing function’s body.
(8) Run the tests and, if necessary, refine answers for previous

steps.
(9) Optionally, refactor and run the tests again.

Figure 2: The design recipe for using a coding assistant.

integrated into the software package being developed. It is impor-
tant to keep in mind that coding assistants are nondeterministic.
That is, given a prompt they may provide a different answer each
time the prompt is evaluated. For instance, a programmer may start
working on a problem today using a prompt to help generate a
function. The programmer may accept the suggestion made by the
coding assistant and then take a break from programming. A week
later the programmer may return to the program to discover that
they not understand the suggested function. Promptly, they delete
the function and let the prompt be evaluated again. This time a
different function may or may not be suggested. The suggestion
may change because a coding assistant is continually training itself
and adjusting the importance it gives to words in a prompt.

To mitigate nondeterminism, it is important for prompts to be
carefully and purposefully designed to provide the coding assistant
with enough context to make a prediction that is unlikely to change.
To do this systematically, design recipes are used to introduce stu-
dents to how to engage a coding assistant in software development.
A design recipe is a series of systematic steps, each with a concrete
result, to scaffold the development of a program given a problem
statement. Design recipes were pioneered by Felleisen et al. to in-
struct programming beginners [13] and later expanded by Morazán
to teach a two-semester sequence for first-year Computer Science
university students [22, 23] and to teach CS theory [24]. The work
presented in this article is the first step to extending the use of
design recipes in conjunction with coding assistants.

To teach students how to develop functions using a coding as-
sistant, they are presented with two design recipes. The first is a
modified design recipe from those found in the literature [13, 22, 23]
for function development. The second is a design recipe for prompt
development. These design recipes, naturally, are intertwined much
likemutually recursive functions are intertwined. That is, bothmust
be used in tandem during software development.

3.1 A Design Recipe for Functions Using a
Coding Assistant

A design recipe for functions has two primary goals: the implemen-
tation of a solution to a problem and the development of unit tests.
In Python, we may develop a function for each of these. Thus, every
solution consists of two functions. For each of these functions, a
prompt may be written to aid in its development. This means that
a design recipe for function development needs to include prompt
development steps.

(1) Write the signature.
(2) Write the purpose statement.
(3) Write the design idea.
(4) Analyze the suggestion and, if necessary, refine.

Figure 3: The design recipe for prompts.

Given that coding assistants make predictions based on elements
already in the input sequence, the order of the steps is slightly
changed from what appears in the literature [13, 22, 23]. The re-
fined design recipe asks for the development of the function that
solves the problem first. After this function is developed, the testing
function is developed. Intuitively, this is justified by observing that
a coding assistant may use the implementation of a function that
solves a problem as context to help developing a testing function.

The design recipe for using a coding assistant is displayed in
Figure 2. It has 9 steps and each step has a specific outcome that
advances the solution to a problem. Step 1 requires the development
of data definitions and function templates along with a signature,
a purpose statement, and design idea. The data definitions and
function templates are written at the top of the program’s file
inside triple double quotes. This places them as context for GitHub
Copilot to use.

Steps 2–4 target the development of a function to solve a prob-
lem. Step 2 asks for the function header. Step 3 is an optional step
that asks for the implementation of a prompt that describes to the
coding assistant how to solve the problem. The prompt is developed
using the design recipe for prompts discussed in Section 3.2. Step
4 asks for the development of the function’s body. When using a
prompt, this step requires examining the coding assistant’s pro-
posed body. If it conforms to the design idea outlined in Step 1 and if
it appears correct, the proposed body may be accepted. If not, then
the programmer may either correct the proposed body or refine the
prompt to get a better suggestion. The importance of the design
idea being consistent with the function’s body to communicate how
a problem is solved is emphasized to students.

Steps 5–7 target the development of the testing function. Step
5 asks for the header of the testing function. Step 6 asks for the
development of a prompt for the testing function. Like Step 3, this
step is optional. If performed, the prompt ought to provide guidance
on how the function that solves the problem ought to be tested. It
can, for example, outline the values used for testing. Step 7 asks
for the testing function’s body. If using a coding assistant, the
programmer needs to inspect the proposed body to make sure that
it is syntactically correct and that the tests are sensible.

Step 8 asks to run the tests and to redesign if any errors are
thrown or any tests fail. Debugging is performed by revisiting the
steps of the design recipe. Finally, Step 9, optionally, asks for code
refactoring. This may be done with or without the use of a coding
assistant.

3.2 A Design Recipe for Prompts
A prompt needs to guide the coding assistant to produce a solu-
tion using an outlined design idea. Naturally, the prompt needs to
communicate the design idea in a concise and succinct manner. To
accomplish this task, students are presented with the 4-step design

AI-Assisted Program Design Using Structural Recursion IFL 2025, October 1–3, 2025, Montevideo, Uruguay

recipe displayed in Figure 3. Steps 1–3 ask for a signature, a purpose
statement, and a design idea. The design idea can be elaborate and
include, for example, instructions to use specific auxiliary functions
to solve subproblems. In this manner, students are encouraged to
follow a top-down type-based design strategy. Problems may be
solved using a divide-and-conquer approach based on the type of
data being processed. For instance, the rest of a list and the subtrees
of a binary tree may be processed recursively.

As mentioned before, it is important for the programmer to
remember that a coding assistant may produce an incorrect solution
or a solution that is not well-designed. Therefore, Step 4 asks for
the suggestions made by the coding assistant to be analyzed. This
is the step where the design recipe for using a coding assistant and
the design recipe for prompts explicitly intersect. This intersection
exists in both design recipes, because using a prompt is optional. If
the examination reveals that the prompt needs to be refined, then
refinements are made by revisiting the previous steps of the design
recipe prompts. If the examination reveals that the prompt does not
need to be refined, then Step 4 of the design recipe for prompts and
Step 4 of the design recipe for using a coding assistant are satisfied.
It is highlighted to students that of the 3 steps in this design recipe,
the one that may be refined the most is the design idea. This is
where the most detail may be added to obtain a solution that is
correct, clear, and adheres to the design idea.

3.3 A Warm-Up Example: Composing Functions
To provide the first illustration of the design recipes in action,
we consider the development of a higher-order function for the
composition of two one-input functions. This is a topic that all
university students have studied in their previous (college or high
school) Mathematics courses. Given two functions, f(x) and g(x),
a function, f(g(x)), that applies f to the result of applying g to
an input x is needed. To be able to build such a function, g’s range
must be f’s domain2. The returned function needs a single input, x,
and its body composes f and g.

In tandem, the design recipes displayed in Figure 2 and in Figure 3
are used to implement the above design idea. The function header
and the prompt may be written as follows:

def compose(f, g):

"""

Signature: (A -> B) (C -> A) -> (C -> B)

Purpose: Compose the given functions

Design Idea: Return a function that applies f to the

result of g

"""

Observe that Steps 1–3 of the general design recipe for using a
coding assistant and Steps 1–3 of the design recipe for prompts have
been completed. The signature states that two one-input functions
are expected such that the range of g is the domain for f and that
the output is a function from the domain of g to the range of f.
The purpose statement is clear and the design idea specifies how
to apply the given functions. The suggestion returned by GitHub
Copilot is:

2Technically, g’s range must only be a subset of f’s domain. We shall not delve into
such nuances for the purpose of this example.

def test_compose():

"""

Signature: () -> None

Purpose: Test the compose function

Design Idea:

Define some simple functions and check their

composition with several inputs

"""

(a) Prompt

Define some simple functions

def add1(x):

return x + 1

def mul2(x):

return x * 2

Test the compose function

f = compose(mul2, add1)

assert f(3) == 8 # (3 + 1) * 2

g = compose(add1, mul2)

assert g(3) == 7 # (3 * 2) + 1

(b) Suggested body

Figure 4: An attempt to develop test_compose.

return lambda x: f(g(x))

The suggested body looks correct. It returns a one-input function
that applies g to said input and then applies f to the result of g.
Based on this analysis, the suggestion may be accepted and no
refinements are required. Thus, Step 4 of the design recipe for
prompts is satisfied as well as Step 4 of the design recipe for using
coding assistants.

With the completion of Step 4 of the design recipe for using
coding assistants, focus turns to completing Steps 5-7 to design and
implement the testing function. This function takes no input and
returns None. Its purpose is to test compose. This may be done by
locally defining some simple functions and checking the results
obtained by their composition using several inputs. The function
header and prompt may be written as displayed in Figure 4a and
the suggested body returned by GitHub Copilot is displayed in
Figure 4b. The suggested body defines two simple functions and
tests both of their possible compositions. The suggested tests are
correct, but the solution is unsatisfactory. First, the composed func-
tions are only tested with, 3, a single value. Second, only numeric
functions are given to compose.

Clearly, the coding assistant needs a better prompt to produce
a more thorough testing suite. An iterative refinement step is per-
formed by reexamining the answers for the steps of the design
recipe for prompts. The signature and purpose statement appear to
be fairly clear and succinct. The design idea, however, could offer
more guidance on how to test compose. It can specify that numeric
and string functions need to be defined and that the composition of
the numeric functions and the composition of the string functions
need be tested with, say, 4 different values as displayed in Figure 5a.
Observe that the prompt now offers a great deal more guidance
about how testing ought to be done. Using this prompt, GitHub

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán

def test_compose():

"""

Signature: () -> None

Purpose: Test the compose function

Design Idea:

Define some simple numeric and string functions.

Check the composition of the numeric functions

and of the string functions. Test the resulting

composed functions with 4 different inputs.

"""

(a) Prompt

Define some simple numeric functions

def add1(x):

return x + 1

def mul2(x):

return x * 2

Test the composition of numeric functions

f = compose(mul2, add1)

assert f(3) == 8 # (3 + 1) * 2

assert f(5) == 12 # (5 + 1) * 2

assert f(0) == 2 # (0 + 1) * 2

assert f(-1) == 0 # (-1 + 1) * 2

Define some simple string functions

def append_exclamation(s):

return s + "!"

def make_uppercase(s):

return s.upper()

Test the composition of string functions

g = compose(make_uppercase, append_exclamation)

assert g("hello") == "HELLO!"

assert g("world") == "WORLD!"

assert g("") == "!"

assert g("test") == "TEST!"

(b) Suggested body

Figure 5: First refinement for test_compose.

Copilot suggests the body displayed in Figure 5b. Clearly, a better
testing suite is generated. The same two numeric functions as before
are generated and, in addition, two string functions are generated.
The composition of the numeric functions and the composition of
the string functions are each tested with 4 values.

No doubt progress has been made, but some details are missing.
For instance, there are no failed test strings associated with any of
the assert-statements. The answer to Step 3 of the design recipe
for prompts is refined to guide GitHub Copilot to include failed
test strings as displayed in Figure 6a. The prompt is explicitly asking
for failed test strings and specifies the format for such strings. In
other words, the prompt is offering a lot of guidance. We expect,
therefore, a better implementation of the unit tests. Using this
prompt, the suggested function body for the testing function is
displayed in Figure 6b. The testing function is much improved and
may be accepted. There are, of course, further refinements possible
(e.g., testing both possible compositions of two given functions and

def test_compose():

"""

Signature: () -> None

Purpose: Test the compose function

Design Idea:

Define some simple numeric and string functions.

Check the composition of the numeric functions

and of the string functions. Test the resulting

composed functions with 4 different inputs. Add

a failed string for each test: Test n failed,

starting with n equal to 0.

"""

(a) Prompt

Define some simple numeric functions

def add1(x):

return x + 1

def mul2(x):

return x * 2

f = compose(mul2, add1)

assert f(3) == 8, "Test 0 failed"

assert f(5) == 12, "Test 1 failed"

assert f(0) == 2, "Test 2 failed"

assert f(-1) == 0, "Test 3 failed"

Define some simple string functions

def append_exclamation(s):

return s + "!"

def make_uppercase(s):

return s.upper()

g = compose(make_uppercase, append_exclamation)

assert g("hello") == "HELLO!", "Test 4 failed"

assert g("world") == "WORLD!", "Test 5 failed"

assert g("") == "!", "Test 6 failed"

assert g("test") == "TEST!", "Test 7 failed"

(b) Suggested body

Figure 6: Second refinement for test_compose.

testing numeric functions with both int and float values). In the
interest of brevity, further refinements are not presented.

4 The Design Recipe in Action: Computing 𝜋
The section illustrates applying the design recipes to a problem that
is not trivially solved. The chosen example is the computation of
𝜋 . This example is chosen, because it provides the opportunity to
drive home the importance of spending time on design and on how
Mathematics can help simplify the job a software developer needs
to do. In addition, all CS students are familiar with it and 𝜋 now has
a bit of a cult following in popular culture. Both of these characteris-
tics make it interesting for students. As is well known, 𝜋 represents
the ratio of a circle’s circumference to its diameter. Commonly, the
value of 𝜋 is stated to be 22

7 , 3.14, or 3.14159. It is important to
note in class, however, that these values are, albeit poor, approx-
imations for the value of an irrational number. To pique student
interest, the use of 𝜋 in different branches of human knowledge

AI-Assisted Program Design Using Structural Recursion IFL 2025, October 1–3, 2025, Montevideo, Uruguay

and popular culture is highlighted. In Physics, it is used to describe
electromagnetism, wave motion, and the operation of the universe.
In Engineering, it is used to calculate trajectories. In Geometry
and Mathematics, it is used to calculate the area and volume of
different geometric shapes. It intrigues computer scientists because
accurately computing its digits is a challenge. We also highlight
that 𝜋 has permeated popular culture with competitions for the
most digits of 𝜋 memorized. The current Guinness World Record
is 70,000 digits recited by Rajveer Meena in 2015 [20]. In 1988 the
physicist Larry Shaw founded Pi day [33]–an annual celebration
on, 3/14, Albert Einstein’s birthday.

After rallying the troops about 𝜋 , attention turns to accurately
computing an approximation. It is explained to students that this is
important especially in high-precision computations. Based on the
infinite series for 𝜋 developed by Srinivasa Ramanujan [28], David
Volfovich Chudnovsky (1947–) and Gregory Volfovich Chudnovsky
(1952–) developed a fast algorithm to approximate 𝜋 [11]. In April
of 2025, this algorithm was used to compute 300 trillion digits of
𝜋 [21]. Currently, this algorithm is used by modern mathematical
software [34], which gets students excited.

At the heart of the Chudnovsky algorithm is the following equa-
tion:

1
𝜋 = 12Σ∞

𝑘=0
−1𝑘 (6𝑘)!(13591409+545140134𝑘)

(3𝑘)!(𝑘!)36403203𝑘+ 32
The next class goal is to implement the Chudnovsky algorithm
and work through the steps of the design recipes using a coding
assistant.

4.1 Chudnovsky Algorithm Version 0
In the form stated above, the Chudnovsky series is not friendly
enough for implementation. For instance, students are explained
that there is a radical in the denominator of the terms of the series
which makes it difficult to perform accurate numeric calculations.
The first step, therefore, is to use the rules of high school algebra to
rationalize the fraction and eliminate the radical in the denominator
of the terms of the series to obtain3:

𝜋 = 1√
10005

4270934400 Σ
∞
𝑘=0

−1𝑘 (6𝑘) !(13591409+545140134𝑘)
(3𝑘) !(𝑘!)36403203𝑘

Without a radical in a denominator, the design continues by
introducing the following notation:

c =
√
10005

4270934400 f(k) = −1𝑘 (6𝑘)!(13591409+545140134𝑘)
(3𝑘)!(𝑘!)36403203𝑘

With these definitions in place, the equation above may be more
simply written as follows:

𝜋 = 1
𝑐∗Σ∞

𝑘=0 𝑓 (𝑘)
In this form, a design idea more easily emerges. We ought to define
the variables above, use an auxiliary function to compute the value
of the series, and return the approximation for 𝜋 . All numbers need
to be high-precision decimals. It is, of course, not possible to add an
infinite number of terms. To make the summation finite, the user
of the function will need to provide the number of terms to add.

4.1.1 The Function to Compute 𝜋 . Following the steps of the design
recipe for using a coding assistant, the above design idea enables
the writing of the function header and prompt:

3The series’ factor, 12, in the equation above is absorbed into the new factor.

def computePi(iterations):

"""

Signature: natnum -> decimal.Decimal

Purpose: Approximate the value of pi

Design Idea:

Represent numbers using decimal.Decimal for

high-precision

Use the following variables and function:

c = sqrt(10005)/4270934400

f = (-1**k * fact(6k) * (13591409+545140134k))/

(fact(3k) * fact(k)**3 * 640320**3k)

ChudnovskySum(f,iterations) to compute series

return 1/(c * series)

"""

The suggested body returned by GitHub Copilot is:

1 c=decimal.Decimal(math.sqrt(10005))/ \

2 decimal.Decimal(4270934400)

3 f=lambda k: \

4 (decimal.Decimal((-1)**k)*fact(6*k) * \

5 (decimal.Decimal(13591409)+ \

6 decimal.Decimal(545140134)*k)) \

7 / \

8 (fact(3*k)*(fact(k)**3)* \

9 (decimal.Decimal(640320)**(3*k)))

10 series=ChudnovskySum(f, iterations)

11 return 1/(c * series)

Although it may be a bit difficult to read, the suggested body im-
plements the design idea outlined in the prompt. The numerator
for the term computed by f is on lines 4–6 and the denominator
is on lines 8–9. Given that the proposed body is clear and appears
correct, we may cautiously accept it.

The next task is to develop a testing function for computePi.
Given that high precision decimals are tested, the prompt ought
to define a margin of error (or tolerance value). To keep the dis-
cussion simple, we arbitrarily choose 10-15. The absolute value of
the difference between the approximation computePi returns and
a known approximation of 𝜋 , say with 50 decimals, needs to be less
than the tolerance value4. Finally, the function may be tested using
multiples of 50 in [0..1000]. Using this design idea, the function
header and prompt may be written as follows:

def test_computePi():

"""

Signature: -> None

Purpose: Test computePi

Design Idea:

Define Pi as a Decimal('3.14159265358979323. . .')

define a tolerance equal to 10**-15

Use iterations = multiples of 50 in [0, 1000]

Include fail test strings "Test n failed"

starting with n=0,1,2,3,...

"""

The body suggested by GitHub Copilot is:

4Such a value is easily obtained through an internet search.

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán

Pi = decimal.Decimal('3.14159265358979323. . .')

tolerance = decimal.Decimal(10)**-15

for n in range(1,1000,50):

computed_pi = computePi(n)

assert abs(computed_pi - Pi)<tolerance,\

f"Test {n} failed"

The failed test strings are not numbered as outlined in the prompt.
Instead, they include the argument provided to computePi. This
different design is based on a good idea. When tests are executed
inside a loop, distinguish failing tests using the argument provided
to computed_pi. Therefore, it may be cautiously accepted as long
as the prompt is refined to reflect the accepted design.

A word of caution is issued at this time. The function is de-
signed without knowing how many iterations are needed to have
an approximation that is within the margin of error defined by
tolerance. They must be prepared, therefore, for testing to fail for
values that are not large enough to generate a good approximation.

4.1.2 The Function to Compute the Chudnovsky Series. The higher-
order function to compute the series takes as input a function
for the terms of the series and a natural number, iterations, for
the number of terms. The goal is to compute the series using the
natural numbers in [0..iterations]. This is done using structural
recursion on, iterations, a natural number. To guide the coding
assistant, the data definition and template for a function on a natural
number are written as global prompts (not shown). The function
header and the prompt are written as follows:

def ChudnovskySum(f, iterations):

"""

Signature: (natnum -> decimal.Decimal) natnum ->

decimal.Decimal

Purpose: Compute the Chudnovsky series from 0

to the given number of iterations

Design Idea:

Represent numbers using decimal.Decimal

Add the terms of the series produced by f

Use structural recursion on iterations

Structure the code using the template for a

function on a natnum

The suggested body generated by GitHub Copilot is:

if iterations == 0:

return(decimal.Decimal(0),decimal.Decimal(0))

else:

ak=f(iterations)

asum,bsum=ChudnovskySum(f,iterations-1)

return (asum+ak,bsum+(ak*iterations))

Clearly, the suggested code does not implement the specified design.
The suggestion is likely based on a function in GitHub Copilot’s
training set that it associates with one or more elements in the
prompt (perhaps, Chudnovsky or ChudnovskySum). Therefore,
Step 4 of the design recipe for prompts suggests a refinement is
needed.

To provide more guidance to GitHub Copilot, the design idea
can specify the value to return for the base case (i.e., iterations=0):
13591409. The refined design idea for the prompt is:

"""

Design Idea:

Represent numbers using decimal.Decimal

Add the terms of the series produced by f

for i from 1 to iterations

Use structural recursion on iterations

Structure the code using the template for a

function on a natnum

When iterations is 0, return 13591409

Otherwise, add the next term to the sum

of the rest of the terms

"""

The refined prompt suggests the following function body:

if iterations == 0:

return decimal.Decimal(13591409)

else:

k = decimal.Decimal(iterations)

return f(k)+ChudnovskySum(f,iterations-1)

The extra guidance provided has successfully led the coding as-
sistant to suggest a body that implements the design idea. Note
that iterations is converted to a high-precision decimal before
providing it as input to f. It is unclear why GitHub Copilot has
chosen to do this, but the suggested body is cautiously accepted
given that it appears to be correct. In the interest of brevity, the
design of the testing function and of the factorial function are not
presented.

4.1.3 Debugging the Initial Design. Upon running the tests, the
following failed test report is generated:
assert abs(computed_pi-Pi)<tolerance, f"Test n failed"

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError: Test 0 failed

This test failure informs the programmer that performing 0 itera-
tions of the Chudnovsky sum produces an approximation of 𝜋 that
is not within the defined margin of error. To resolve this issue, a
student may be tempted to simply delete 0 as low-end of the tested
range. A better approach is to determine through experimentation
the smallest number of iterations needed to produce a good approx-
imation. Luckily, the search is short given that 1 iteration suffices to
produce an good approximation. In the test range, 0 is substituted
with 1 and the prompt is refined to reflect this new design.

Upon running the tests again, the following error is thrown:
for k in range(1, n + 1):

^^^^^^^^^^^^^^^
TypeError: 'decimal.Decimal' object cannot be
interpreted as an integer

This bug is detected inside of fact, which does not need to be
shown to understand the error message. The error message indi-
cates that n is a high-precision decimal, which is invalid input to
construct a range. Students are typically tempted to immediately
edit the program where the bug is detected and this is an opportu-
nity to emphasize debugging by revisiting the steps of the design
recipe. The given input, n, violates fact’s signature: natnum ->
decimal.Decimal. A high-precision decimal is provided as input
instead of a natural number. This suggests that some call is made

AI-Assisted Program Design Using Structural Recursion IFL 2025, October 1–3, 2025, Montevideo, Uruguay

to fact with the wrong type of argument. This function is only
called from the body of the lambda-expression for f in computePi.
Observe that all calls to fact depend on the input, k, given to the
function obtained by evaluating the lambda-expression. The only
place where this function is used is in the body of ChudnovskySum.
This means the programmer ought to revisit Step 4 of the design
recipe for prompts and reanalyze the suggested body. Observe how
the function is used in the else clause:

k = decimal.Decimal(iterations)

return f(k) + ChudnovskySum(f,iterations-1)

The function, f, is given as input a high-precision decimal instead
of a natural number. Thus, Step 4 of the design recipe for using a
coding assistant has not been successfully completed. The body of
ChudnovskySum is not properly implemented. It is emphasized to
students that the bug is not located where the bug was detected.
The solution is this case appears to be fairly straightforward. Let
us not convert iterations to a high-precision decimal:

return f(iterations)+ChudnovskySum(f,iterations-1)

Upon making this change and running the tests again, no tests fail
and no errors are thrown. We have a program that produces an
approximation for 𝜋 .

4.2 Chudnovsky Algorithm Version 1
Experimenting with the implementation developed is encouraged.
Such experimentation, may lead some students to approximate 𝜋
using, say 950, iterations. Running this computation takes a notice-
able, albeit small, amount of time to compute. Students are advised
that such delays may become magnified with larger inputs and
become a problem. To avoid this potential problem, revisiting Step
1 of the design recipe for using a coding assistant (i.e., problem
analysis) is advised to determine if there are any optimizations that
may be performed.

4.2.1 Revisiting Step 1 of the Design Recipe for Using a Coding
Assistant. The only place where simplifications may be possible in
the equation for 𝜋 is in the computation of the series:

Σ∞
𝑘=0
−1𝑘 (6𝑘)!(13591409+545140134𝑘)

(3𝑘)!(𝑘!)36403203𝑘
Students are asked: Where can there be a time bottleneck? There
are two salient characteristics that ought to be explored. The first
is that an accumulator is not used to compute the sum. To compute
the next term of the series, k must be plugged into a fairly complex
equation. It is explained that it may be faster to implement a re-
currence relation. The second is that a factorial is computed three
different times. Therefore, reducing the number of times a factorial
is computed should also be explored.

A significant number of students immediately observe that:
(6k)! = 6k*(6k-1)*(6k-2)*. . .*(3k+1)*(3k)!

This means that the above series may be simplified to:

Σ∞
𝑘=0
−1𝑘 ∗6𝑘∗(6𝑘−1)∗(6𝑘−2)∗...∗(3𝑘+1)∗(13591409+545140134𝑘)

(𝑘!)36403203𝑘
This is progress. Instead of computing 3 different factorials, only a
single factorial needs to be computed for each term of the series.

Class discussion leads to the observation that every term of the
series is adding two subterms. Thus, the summation may be written
as follows:

13591409 ∗ Σ∞
𝑘=0
−1𝑘 ∗6𝑘∗(6𝑘−1)∗(6𝑘−2)∗...∗(3𝑘+1)

(𝑘!)36403203𝑘 +

545140134 ∗ Σ∞
𝑘=0
−1𝑘 ∗6𝑘∗(6𝑘−1)∗(6𝑘−2)∗...∗(3𝑘+1)∗𝑘

(𝑘!)36403203𝑘
Students immediately observe that this does not look like progress,
because this form suggests that two series need to be computed. In
addition, two factorials need to be computed (one for each series).
It is pointed out to them that each series is now simpler and may
lead to further optimizations.

Each of the series can be named to yield:

A = Σ∞
𝑘=0
−1𝑘 ∗6𝑘∗(6𝑘−1)∗(6𝑘−2)∗...∗(3𝑘+1)

(𝑘!)36403203𝑘

B = Σ∞
𝑘=0
−1𝑘 ∗6𝑘∗(6𝑘−1)∗(6𝑘−2)∗...∗(3𝑘+1)𝑘

(𝑘!)36403203𝑘

𝜋 = 1√
10005

4270934400 (13591409∗𝐴+545140134∗𝐵)
Removing the fraction from the denominator and simplifying yields:

𝜋 = 426880
√
10005

13591409∗𝐴+545140134∗𝐵

Students can observe that B’s kth term is the product of A’s kth term
and k. Thus, B may be rewritten as follows:

B = Σ∞
𝑘=0𝐴𝑘 ∗ 𝑘

It is explained to students that this means that terms of the B series
can be computed at the same time as the terms of the A series.

It remains to be seen if the computation for A can be simplified.
As mentioned, a recurrence relation for A desirable: compute the
next term of the A series, Ak, using previously computed values. To
do so, the following equation needs to be solved for x:

Ak−1 * x = Ak

This informs us that:
x = (−1𝑘)6𝑘 (6𝑘−1) (6𝑘−2) ...(3𝑘+1) ∗ ((𝑘−1)!)36403203(𝑘−1)

(𝑘!)36403203𝑘 (−1𝑘−1)6(𝑘−1) (6(𝑘−1)−1) (6(𝑘−1)−2) ...(3(𝑘−1)+1)
The formula for x is quite complex and would be tedious and error-
prone to program. It also requires the computation of several fac-
torial values and arbitrarily long products. This is an opportunity
for CS students to appreciate Mathematics as a powerful ally that
can help simplify their work. Using high school algebra to perform
simplifications yields:

x = - 24∗(6𝑘−1)∗(2𝑘−1)∗(6𝑘−5)
𝑘36403203

Thus, students have discovered a simpler way to compute the terms
of the A series:

Ak = − 24∗(6𝑘−1)∗(2𝑘−1)∗(6𝑘−5)
𝑘36403203 ∗𝐴k-1

It is highlighted to students that this is a remarkable result. They can
observe that in the recurrence relation there is no need to compute
factorials and the terms of the series are no longer complex as
in the original formulation. Such a result illustrates a powerful
reason for problem solvers and programmers to study Mathematics
that students can appreciate. It also highlights that time invested
developing a better design idea is time well invested.

4.2.2 Revisiting computePi. As before, this function takes as in-
put a natural number and returns a high precision decimal. The
purpose is to approximate the value of 𝜋 . According to the formula
developed, a constant needs to be divided by the sum of a multiple
of the approximation for A and a multiple of the approximation

IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán

def computePi(iterations):

"""

Signature: natnum -> decimal.Decimal

Purpose: Approximate the value of pi

Design Idea:

Represent numbers using decimal.Decimal

Use the following variables and function:

numerator = 426880*sqrt(10005)

afactor = 13591409

bfactor = 545140134

f=lambda k:(24*(6*k-5)*(2*k-1)*(6*k-1))/

(640320**3 * k**3)

AB = ChudnovskySeries(f,1,0,iterations) is the

tuple for the approximations of A and B of

the Chudnovsky series

return numerator/(afactor*AB[0]+bfactor*AB[1])

Do not locally define ChudnovskySeries

"""

(a) Prompt

numerator = decimal.Decimal(426880) * \

decimal.Decimal(math.sqrt(10005))

afactor = decimal.Decimal(13591409)

bfactor = decimal.Decimal(545140134)

f = lambda k: (24*(6*k-5)*(2*k-1)*(6*k-1)) \

(decimal.Decimal(640320**3)*\

decimal.Decimal(k**3))

AB = ChudnovskySeries(f, \

decimal.Decimal(0), \

decimal.Decimal(0), \

iterations)

return numerator/(afactor*AB[0]+bfactor*AB[1])

(b) Suggested body

Figure 7: Prompt and suggested body for computePi.

for B. In the prompt’s design idea, these factors may defined as
variables. In addition, a function, f, may defined to compute the
factor by which Ak-1 is multiplied to obtain the value of Ak. The A
and B series are computed simultaneously by, ChudnovskySeries,
an auxiliary function that returns a tuple containing the approxima-
tion for each series. This auxiliary function processes iterations
using structural recursion and needs as input f, the initial values
for the accumulated approximations of the two series (intuitively,
both initial values are 0), and iterations. Finally, the returned
value is obtained by dividing the numerator variable and the sum
of the multiples of the approximations for A and B.

Based on the above design idea, the prompt is written as dis-
played in Figure 7a. Observe that the prompt is written using the
results obtained by developing a design idea that simplifies the
computation of 𝜋 . It is more detailed and longer than the prompt
used for version 0 and the expectation is that it will produce the
desired program. The prompt also asks for the auxiliary function
to not be locally defined. This is simply an attempt to keep each

function short and make both easier to read. Once an implementa-
tion is developed, students are free to locally define the auxiliary
function. The body suggested by GitHub Copilot is displayed in
Figure 7b. The suggested body implements the outlined design idea
and, therefore, it is accepted.

4.2.3 Computing the A and B Series. The higher-order auxiliary
function to approximate the values of the A and B series takes as
input the function, f, to compute the factor for A’s kth term, a high
precision decimal accumulator for each series, asum and bsum, and a
natural number, k, for the number of iterations to perform. It returns
a tuple containing the approximation for both series. The terms for
both series are accumulated using structural recursion on the given
natural number. If k is 0 then the tuple (asum,bsum) is returned.
Otherwise, compute, f(k), A’s kth factor, recursively process k-1
to compute the tuple containing the approximations for the series
using k-1 terms, and, according to the derived formulas above,
return the tuple containing asum+f(k)*A𝑘−1 and bsum+B𝑘−1ak. The
accumulator invariant reflects that each tuple constructed contains
the approximations obtained for each series by summing up the
first k-1 terms: (asum, bsum)=(Σk−1

i=0Ai, Σ
k−1
i=0Bi).

Based on the above design idea, the prompt is written as dis-
played in Figure 8a and the body suggested by GitHub Copilot is
displayed in Figure 8b. Clearly, the proposed body is making the
recursive call with the wrong values5. The coding assistant needs
more guidance to generate the correct recursive call.

The design idea is refined as displayed in Figure 9a and the body
suggested by the coding assistant is displayed in Figure 9b. The pro-
posed body implements the design idea. However, the accumulator
invariant is not used to document the code. This is important to
communicate how the problem is solved and may be done by man-
ually inserting a comment containing the invariant after setting
prevtuple and, similarly, indicating the value of the accumulators
in the base case. There is further motivation for insisting on such
careful documentation. Students are being prepared to write Hoare
Logic [16, 17] assertions when they study imperative programming.

4.2.4 Debugging the New Design. Following the steps of the design
recipe for using a coding assistant, the next task is to develop a
testing function. Observe that the development is a refactoring
exercise for computePi. Therefore, the same testing function devel-
oped for version 0 is used. We include, however, 0 in the range used
for testing. It is explained to students that 0 iterations using this
improved implementation may yield a good approximation for 𝜋 .

Running the tests throws the following error:
return numerator/(afactor * AB[0] + bfactor * AB[1])

~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
decimal.DivisionByZero:

[<class 'decimal.DivisionByZero'>]

Alas! Despite all the design efforts, there is clearly a bug. The divi-
sion by 0 bugmeans that both results for the A and B approximations
are 0. As suggested by the design recipe, debugging is performed
by refining the answers to the previous steps of the design recipe.
The first step is to examine the design to compute A and B approxi-
mations.
5This is what many in the literature call a hallucination. This article purposely refrains
from using this term in order not to foster anthropomorphism.



AI-Assisted Program Design Using Structural Recursion IFL 2025, October 1–3, 2025, Montevideo, Uruguay

def ChudnovskySeries(f, asum, bsum, k):

"""

Signature: (natnum -> decimal.Decimal)

decimal.Decimal

decimal.Decimal

natnum

-> (decimal.Decimal, decimal.Decimal)

Purpose: Returns the approximations for the A

and B series of the Chudnovsky

algorithm to compute pi

Design Idea:

Represent numbers using decimal.Decimal

Add the terms of the series produced by f

Use structural recursion on k to compute sum

Structure the code using the template for a

function on a natnum

Accumulator Invariants:

(asum,bsum)=(Σk−1i=0 Ai, Σ
k−1
i=0 Bi)

if k is 0 return (asum, bsum)

else set ak=f(k)

set prevtuple=recursively process k-1

return (asum+(ak*prevtuple[0]),

bsum+(ak*prevtuple[1]))

"""

(a) Prompt

constant=decimal.Decimal(426880)*\

decimal.Decimal(math.sqrt(10005))

if k == 0:

return (asum, bsum)

else:

ak = f(k)

prevtuple=\

ChudnovskySeries(f,asum+ak,bsum+(ak*k),k-1)

return (prevtuple[0],prevtuple[1])

(b) Suggested body

Figure 8: ChudnovskySeries: first prompt and suggested body.

In the design idea for computePi (see Section 4.2.2), 0 is chosen
as the initial value for both approximations. Could this be the source
of the bug? Recall that:

Ak = f(k) ∗ Ak-1
We examine the computation performed by ChudnovskySeries
using a concrete value, 4, for iterations and 0 for the initial value
of both series:

ChudnovskySeries(f,0,0,4)
= f(4)*ChudnovskySeries(f,0,0,3)
= f(4)*f(3)*ChudnovskySeries(f,0,0,2)
= f(4)*f(3)*f(2)*ChudnovskySeries(f,0,0,1)
= f(4)*f(3)*f(2)*f(1)*ChudnovskySeries(f,0,0,0)
= f(4)*f(3)*f(2)*f(1)*0

Clearly, the design idea was too casual about the initial value for
asum. Given the computation trace above, the initial value for asum

"""

Design Idea:

Represent numbers using decimal.Decimal

Add the terms of the series produced by f

Use structural recursion on iterations to

compute the sum

Structure the code using the template for a

function on a natnum

Accumulator Invariants:

(asum,bsum)=(Σk−1i=0 Ai,Σ
k−1
i=0 Bi)

if k is 0 return (asum, bsum)

else

set ak to f(k)

set prevtuple to recursively processing f,

asum, bsum, and k-1

return (asum+(ak*prevtuple[0]),

bsum+(ak*prevtuple[1]))

"""

(a) Refined design idea for prompt

if k == 0:

return (asum, bsum)

else:

ak=f(k)

prevtuple = ChudnovskySeries(f,asum,bsum,k-1)

return (asum+(ak*prevtuple[0]), \

bsum+(prevtuple[1]*ak))

(b) Suggested body

Figure 9: Refinement for ChudnovskySeries.

is changed to 1. Uponmaking this change all tests pass and no errors
are thrown. Student notice that running the tests is significantly
faster now, thus, driving home the point that time invested in
developing a design idea is time well invested.

The final step of the design recipe for using a coding assistant
asks for the program to be optimized. For brevity, we do not illus-
trate this step, but it is not difficult. In essence, the coding assistant
refactors to use a for-loop instead of recursive calls to circumvent
the artificial limit Python imposes on the number of recursive calls.

In closing, the program developed to approximate 𝜋 still requires
further refinements to improve its accuracy. For example, the pro-
gram does not compute a high precision decimal for

√
10005. This

introduces an error into the performed calculation. Unfortunately,
Python’s math.sqrt does not accept high precision decimals as
input. Thus, refining the program to approximate 𝜋 requires writ-
ing a function to compute the square root of a number represented
using a high precision decimal. Designing such a function means
using, for example, Newton’s method, which is based on generative
recursion and beyond the scope of this article. In the classroom,
students are advised that the next refinement shall occur while
learning to design functions based on generative recursion.



IFL 2025, October 1–3, 2025, Montevideo, Uruguay Morazán

5 Related Work
At the time of writing, there are very few textbooks that introduce
students to AI-based programming. None focus on program design
using a coding assistant.

Porter’s and Zingaro’s textbook, Learn AI-Assisted Python Pro-
gramming, is an introduction to programming tailored for Python
using GitHub Copilot. It introduces its readers to the concept of
a prompt and the need to be precise. It presents what resembles
steps for developing functions, but these fall short of being a design
recipe by failing to be sufficiently systematic. For example, steps
such asWrite a prompt that describes the function as clearly as possi-
ble and If the code is incorrect edit the prompt provide no guidance
as to how to complete such tasks. In contrast, the work presented in
this article is specific about how to write prompts and how to per-
form debugging using the steps of the design recipe. The authors of
this textbook advise to keep functions short—-something like 12–20
lines—-to give us the best chance of getting good code from Copilot.
The natural question that arises is how does a student know how long
a function will be in advance? In contrast, the work presented de-
scribes systematic steps with concrete answers that do not require
the proverbial crystal ball to complete. The authors acknowledge
the value of top-down design, but fail to provide concrete guidance
of how to divide-and-conquer problems. Instead, they state that
knowing when to stop breaking a task into smaller subtasks is more
art than science. In contrast, the work presented uses a type-driven
methodology to guide the decomposition of problems. Finally, de-
bugging is focused on using a debugger and is also referred to as
an art more than a science. In contrast, the work presented reduces
the search space for resolving a bug by casting debugging in terms
of revisiting the steps of the design recipe.

The book Murach’s AI-Assisted Programming with Copilot walks
its readers through the interface offered by CoPilot, which services
a multitude of programming languages. The use of the interface is
described without any regard for program design. It describes how
to use features with vague advice about being specific, providing
context, and specifying the output. Much of the book reads like the
old programming books from yesteryears that defined program-
ming as being equivalent to learning the syntax of a programming
language. This book’s final chapter does introduce the topic of unit
testing. In this chapter’s Python section unit testing is introduced
in tandem with the pytest extension, which allows tests to be
generated in a different file. In contrast, the work presented in this
article outlines test development within the same file as the pro-
gram under development. This is done for pedagogic reasons. It
tightly-couples function and test development in the mind of stu-
dents. The development of tests is not treated as an after thought
once a problem is solved. It is an integral part of problem solving
using programming. This is not to say that tests should not be
placed in a separate file. There are valid and important reasons
to do so, like not hindering performance every time a program is
evaluated, but this is an optimization that should be pursued after
successfully implementing a design.

Taulli’s AI-Assisted Programming: Better Planning, Coding, Test-
ing, and Deployment discusses the advantages and the pitfalls of
using a coding assistant as done in this article. As the work pre-
sented, this book also discusses the implications of nondeterminism

when using a coding assistant and the need for prompts to be pre-
cise. It also discusses the need for prompts to be provided with
context, clear and succinct instructions, formatting requirements
(as done for prompts to generate unit tests in this article), and the
idea of how to divide and conquer a problem/prompt. In contrast to
the work presented in this article, it does not outline a systematic
methodology for AI-assisted software developing and claims that
prompt engineering is both a science and an art.

There have also been efforts describing the delivery of courses
using a coding assistant (for an extensive overview see [27]). For
example, using Porter’s and Zingaro’s textbook, Vadaparty et al.
describe how they integrate the use of a coding assistant into a
course for beginners [32]. Their course is aimed at a general stu-
dent population, not solely for CS majors. Among their goals is to
encourage students to use coding assistants and prepare them to
enter the workforce of the future. The course focuses on teaching
variables, functions, conditionals, loops, strings, lists, and dictionar-
ies in Python. As the work presented in this article, it recognizes
the importance of top-down design and problem decomposition. In
contrast, it does use a systematic type-driven design methodology.
Furthermore, there is no recognition that prompts are programs
that need to be systematically designed.

6 Concluding Remarks
This article presents a first effort to integrate systematic program
design with AI-assisted programming. The work presented focuses
on development using structural recursion and is only the first step
in teaching students to design programswith a coding assistant. The
presented approach uses the steps of the design recipe for functions
to develop precise and succinct prompts to guide a coding assistant.
The result is two-fold. On the one hand, it teaches students how
to systematically use coding assistants to design and implement
software. On the other hand, prompts also serve as documentation
for programs to make them easier for others to understand. The
development methodology using a coding assistant put forth clearly
illustrates that the process of software development benefits from
systematic design and squarely makes it a science and not an art as
described by other authors.

Future work includes defining a systematic approach (i.e., design
recipes) to develop functions using generative and accumulative
recursion using a coding assistant. Generative recursion requires
insights for problem decomposition beyond the structure of a type.
This needs to be reflected in the design of prompts. Accumulative
recursion requires the use of accumulators and accumulator invari-
ants to describe them, which also needs to be reflected in prompts.
Both of these forms of recursion, therefore, require new sets of skills
that students need to be taught. Future work also includes extend-
ing the presented prompt engineering methodology to imperative
and object-oriented programming. These programming approaches
present their own unique set of challenges. Prompts need to cap-
ture, for example, how to safely sequence mutations during in-place
operations. Finally, future work also includes human-factors study
to determine student impressions and the how effective students
are at using the proposed design recipes.



AI-Assisted Program Design Using Structural Recursion IFL 2025, October 1–3, 2025, Montevideo, Uruguay

References
[1] 2024. Computing Education in the Era of Generative AI. Commun. ACM 67, 2

(Jan. 2024), 56–67. doi:10.1145/3624720
[2] Amani Alabed, Ana Javornik, and Diana Gregory-Smith. 2022. AI Anthropo-

morphism and its Effect on Users’ Self-Congruence and Self–AI Integration: A
Theoretical Framework and Research Agenda. Technological Forecasting and
Social Change 182 (2022), 121786. doi:10.1016/j.techfore.2022.121786

[3] Sanaa M. Algaraibeh. 2022. Techniques for Enhancing Compiler Error Mes-
sages. In Proceedings of the 2022 ACM Conference on International Comput-
ing Education Research - Volume 2 (Lugano and Virtual Event, Switzerland)
(ICER ’22). Association for Computing Machinery, New York, NY, USA, 1–2.
doi:10.1145/3501709.3544292

[4] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler Error
Messages?. In Proceedings of the 39th International Conference on Software Engi-
neering (Buenos Aires, Argentina) (ICSE ’17). IEEE, New York City, USA, 575–585.
doi:10.1109/ICSE.2017.59

[5] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 500–506. doi:10.1145/3545945.3569759

[6] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
doi:10.1145/3344429.3372508

[7] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Effective Compiler Error Message Enhance-
ment for Novice Programming Students. Computer Science Education 26, 2-3
(2016), 148–175. doi:10.1080/08993408.2016.1225464

[8] Idan A. Blank. 2023. What are Large Language Models Supposed to Model?
Trends in Cognitive Sciences 27, 11 (2023), 987–989. doi:10.1016/j.tics.2023.08.006

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]
https://arxiv.org/abs/2107.03374

[10] D.V. Chudnovsky and G.V. Chudnovsky. 2000. Approximations and complex
multiplication according to Ramanujan. In Number Theory: Proceedings of the In-
ternational Conference on Number Theory in Memory of Serge Lang (2000). Springer
New York, 65–102. doi:10.1007/978-1-4757-3240-5_63

[11] David V. Chudnovsky and Gregory V. Chudnovsky. 1987. Approximations and
Complex Multiplication According to Ramanujan. IBM Thomas J. Watson Research
Division, Yorktown Heights, NY. Research report.

[12] Google Cloud. 2025. Prompt Engineering: Overview and Guide. https://
shorturl.at/ZX8ki. Last Accessed: 8/2025.

[13] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing (Second ed.). MIT Press, Cambridge, MA, USA.

[14] Ben Garside. 2023. How anthropomorphism hinders AI education. https://
www.raspberrypi.org/blog/ai-education-anthropomorphism/. Last Accessed:
8/2025.

[15] Ran He, Jie Cao, and Tieniu Tan. 2025. Generative Artificial Intelligence:
A Historical Perspective. National Science Review 12, 5 (02 2025), nwaf050.
doi:10.1093/nsr/nwaf050

[16] C.A.R. Hoare and H. Jifeng. 1998. Unifying Theories of Programming. Prentice
Hall.

[17] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (Oct. 1969), 576–580. doi:10.1145/363235.363259

[18] Matthew C. Jadud. 2006. An Exploration of Novice Compilation Behaviour in BlueJ.
Ph.D. Thesis. University of Kent at Canterbury, Cantebury, UK.

[19] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A. Becker. 2023. Using Large Language Models to En-
hance Programming Error Messages. In Proceedings of the 54th ACM Techni-
cal Symposium on Computer Science Education V. 1 (Toronto, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 563–569.
doi:10.1145/3545945.3569770

[20] Guinness World Records Limited. 2015. Most Decimal Places of Pi Memo-
rized. https://www.guinnessworldrecords.com/world-records/most-pi-places-
memorised. Last Accessed: 8/2025.

[21] Guinness World Records Limited. 2025. Most Accurate Value
of pi. https://web.archive.org/web/20250508155903/https://
www.guinnessworldrecords.com/world-records/66179-most-accurate-
value-of-pi. Last Accessed: 8/2025.

[22] Marco T. Morazán. 2022. Animated Problem Solving - An Introduction to Program
Design Using Video Game Development. Springer, Cham, Switzerland. doi:10.1007/
978-3-030-85091-3

[23] Marco T. Morazán. 2022. Animated Program Design - Intermediate Program Design
Using Video Game Development. Springer, Cham, Switzerland. doi:10.1007/978-
3-031-04317-8

[24] Marco T. Morazán. 2024. Programming-Based Formal Languages and Automata
Theory - Design, Implement, Validate, and Prove. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-43973-5

[25] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,
Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2025. A
Comprehensive Overview of Large Language Models. ACM Trans. Intell. Syst.
Technol. (June 2025). doi:10.1145/3744746

[26] Leo Porter and Daniel Zingaro. 2024. Learn AI-Assisted Python Programming
(second ed.). Manning Publications, Shelter Island, NY.

[27] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative AI
Revolution in Computing Education. In Proceedings of the 2023 Working Group
Reports on Innovation and Technology in Computer Science Education (Turku,
Finland) (ITiCSE-WGR ’23). Association for Computing Machinery, New York,
NY, USA, 108–159. doi:10.1145/3623762.3633499

[28] Srinivasa Ramanujan. 1914. Modular equations and approximations to 𝜋 . Quar-
terly Journal of Mathematics 45 (1914), 350–372.

[29] Sengar, Sandeep Singh and Hasan, Affan Bin and Sanjay Kumar and Fiona Carroll.
2024. Generative Artificial Intelligence: A Systematic Review and Applications.
Multimedia Tools and Applications 84, 21 (aug 2024), 23661–23700. doi:10.1007/
s11042-024-20016-1 Publisher Copyright: © Crown 2024..

[30] MIT Sloan Teaching & Learning Technologies. 2025. Effective Prompts for AI:
The Essentials. https://shorturl.at/RxM8S. Last Accessed: 8/2025.

[31] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and
What They Mean. Adv. in Hum.-Comp. Int. 2010, Article 3 (jan 2010), 26 pages.
doi:10.1155/2010/602570

[32] Annapurna Vadaparty, Daniel Zingaro, David H. Smith IV, Mounika Padala,
Christine Alvarado, Jamie Gorson Benario, and Leo Porter. 2024. CS1-LLM:
Integrating LLMs into CS1 Instruction. In Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 1 (Milan, Italy) (ITiCSE 2024).
Association for ComputingMachinery, New York, NY, USA, 297–303. doi:10.1145/
3649217.3653584

[33] Wikipedia. 2025. Pi Day. https://en.wikipedia.org/wiki/Pi_Day. Last Accessed:
8/2025.

[34] Alexander J. Yee. 2025. y-cruncher - A Multi-Threaded Pi-Program. https:
//www.numberworld.org/y-cruncher/. Last Accessed: 8/2025.



Heuristics-based Type Error Diagnosis for Haskell
The case of type families (draft paper)

Niels Kwadijk
Dept. of Information and Computing Sciences

Utrecht University
The Netherlands

niels.kwadijk@gmail.com

Jurriaan Hage
Dept. of Computer Science
Heriot-Watt University

United Kingdom
Dept. of Information and Computing Sciences

Utrecht University
The Netherlands
J.Hage@hw.ac.uk

Abstract
Helium is a Haskell compiler designed to provide program-
mer friendly type error messages. It employs specially de-
signed heuristics that work on a type graph representation
of the type inference process.
In order to support (all flavours of) type families in He-

lium, we extend the type graphs of Helium in order to design
and implement heuristics that can diagnose type errors that
might be caused by mistakes and misunderstandings involv-
ing type families. To increase programmer understanding,
we also include type family execution traces as part of the
type error diagnostics.

Keywords: type error diagnosis, generalized algebraic data
types, type graphs, Haskell

1 Introduction
Haskell is a pure, lazy, statically typed, functional program-
ming language that is designed to be suitable for teaching,
research, and applications [5]. Haskell is also an experimen-
tal testbed for type system level features and many of these
features have been adopted by Haskell programmer’s world
wide. One such feature is type families [9] and its cousins
and that exists in a number of flavours in Haskell’s main
implementation, Glasgow Haskell Compiler (GHC).

Helium [4] (Section ??) is a Haskell compiler that is special-
ized in type error diagnosis. It uses a number of techniques to
improve it. The compiler is not as extensive as GHC and only
covers a subset of the features that it offers. Recently, the type
error diagnosis techniques of Helium have been extended
to work with one of the more advanced features of Haskell:
GADTs [8]. A new type inference engine, Rhodium [2], has
been designed to make the type error diagnosis techniques
in Helium compatible with the more advanced features that
GHC implements. In this paper we document our work ex-
tending Helium with type families, and its many flavours.

Consider the following very simple example:

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

type family Foo a

type instance Foo Float = Int

wut :: Foo Float
wut = 6

Here the type instance dictates that in Haskell types, oc-
currences of Foo Float can be compile-time evaluated to
Int, and since that is the type of the body of wut, all is fine.
But what if we had mistakenly written:

type family Foo a

type instance Foo Int = Float

wut :: Foo Float
wut = 6

Notice that the type Foo Float is not reducible by the type
family. We thus expect that Foo Float cannot be matched
with the type Int from 6. GHC, on the other hand, provides
the following error message:

main.hs:179:7: error:
ě No instance for (Num (Foo Float)) arising from the literal '6'
ě In the expression: 6

In an equation for 'wut': wut = 6
|

179 | wut = 6
|

GHC expects an instance ofNumfor Foo Float, which obvi-
ously is not there.

Type families imply that certain computations are done at
compile time. Since we are in effect evaluating types at com-
pile time, diagnosing type errors that involve type families
will need to showwhich types resulted fromwhich type level
computation. Moreover, the design of type families is such
that they come with a number of not-so-obvious restrictions,
which easily lead to type error messages that are hard to
digest by proficient Haskell programmers as they take their
first steps in type level programming.

One such rule is the apartness rule (Section ??).
type family Loop a where

1



Conference’17, July 2017, Washington, DC, USA Niels Kwadijk and Jurriaan Hage

Loop [a] = Loop a

Loop a = a

loop :: Loop [c]

loop = 'X'

At first glance, a (novice) programmermay expect that Loop [c]
would reduce to c by first applying the first instance and
then applying the second. The second instance is, however,
never applied and GHC gives the following error message:

main.hs:206:8: error:
* Couldn't match type 'Loop c' with 'Char'

Expected type: Loop [c]
Actual type: Char

* In the expression: 'X'
In an equation for 'loop': loop = 'X'

* Relevant bindings include
loop :: Loop [c] (bound at main.hs:206:1)

|
206 | loop = 'X'

|

Loop c cannot be reduced because c can be instantiated so
that it would match with both instances. In other words: the
two instances are not apart. Note that the type error message
does not explain that subtlety, leaving the programmer to
guess what is going on.

This paper offers the following contributions:
• we have implemented all flavours of type families
(closed, open, injective, and associated datatypes) in
the front end of Helium1

• we have developed type family reduction traces to
become part of the type error message in case a subject
type of the type error report was a consequence of type
family applications
• we have devised a number of heuristics to diagnose
the cause of certain classes of type family errors.

We do so under the following basic premise: if we have
to choose between blaming a Haskell expression for a mis-
take, or a type family, then we will always choose to blame
the latter. This is not unreasonable: type families are often
added to existing code to make the types of the code more
precise. There will typically already be a reasonable amount
of confidence that the value level code is type correct. Note
that if we have to choose between blaming the definition of
a type family and the use of a type family (as part of some
explicit type), then we prefer to blame the latter, which is
not any different from how error diagnosis works for type
incorrect functions that employ algebraic data types.

1Details of the implemented static checks that we assume have been checked
before type inferencing are given in the master’s thesis of the first author [7].
The static checks are the same as the ones GHC implements.

2 Preliminaries
To be somewhat self-contained, we reiterate some of the
details of the various flavours of type families that exist
in Haskell and GHC. The feature is an improvement upon
functional dependencies [6], that arises when written as an
associated type synonym [3] for a given type class:

class Collects ce where
type Elem ce

empty :: ce

insert :: Elem ce -> ce -> ce

member :: Elem ce -> ce -> Bool

instance Collects [a] where
type Elem [a] = a

empty = []

insert x xs = (x:xs)

member = elem

When we decouple associated type synonyms from type
classes, we arrive at open type families [9]. A typical example
is:

type family Sum n m

type instance Sum Zero x = x

type instance Sum (Succ x) y = Succ (Sum x y)

which is similar to what one can write on value level, but
will now operate at the type level. We can use this in the
definition of vector append as follows:

vconcat :: Vector e n -> e Vector e m -> Vector e (Sum n m)

vconcat Nil l = l

vconcat (Cons x xs) ys = Cons x (vconcat xs ys)

A type family is open when instances can be added freely
at any time. In the case of a closed type family, all instances
are given directly at the definition. The main advantage is
that we can allow instances to overlap, and instances will be
tried from top to bottom to find the applicable case. Injective
type families [10] arise when a type family is marked as such
and the type family behavior is injective. In the following
example,

type family F a b = r | r -> b where
F Int Int = Bool
F Bool Bool = Int
F Int Bool = Int

we say that type family F is injective in its second argu-
ment b as specified by the annotation r -> b. This means
that the right-hand sides (rhs) of its instances determine only
the second arguments on the left-hand side (lhs). F is not
injective in its first argument as its rhs does not determine
it. Int as result can be the result of Int or Bool as the first
argument.

2



Heuristics-based Type Error Diagnosis for Haskell Conference’17, July 2017, Washington, DC, USA

data TFDeclInfo = TDI {

tfdName :: Name -- name of the type family

, argNames :: Names -- names of the arguments

, tfdType :: TFType

, injective :: Bool
, injNames :: Maybe Names -- names that are injective

, classIdx :: Maybe [(Int, Int)] -- indices of tf args linked to class args (ATS)

, classDName :: Maybe Name -- name of the accompanying class

} deriving (Show, Eq)

data TFInstanceInfo = TII {

tfiName :: Name

, argTypes :: Types

, defType :: Type

, tfiType :: TFType

, priority :: Maybe Int -- priority inside closed type family

, classTypes :: Maybe Types -- class types in case of ATS

, classIName :: Maybe Name -- class name of accompanying class

, preCompat :: [Int] -- compatible precomputations.

, tfiRange :: Range

, closedDeclName :: Maybe Name

, varNameMap :: Maybe (Map Int Name)

} deriving (Show, Eq, Ord)

data TFType

= Open -- open type family

| Closed -- closed type family

| ATS -- associated type synonym

| TypeSyn -- type synonym

deriving (Show, Eq, Ord)

Figure 1. Data structures for a Type Family declaration

3 Some implementation details
We store the family information in a convenient format so
that we may access that information during static checks
and type inferencing. We introduce two data structures. One
in which we store Type Family declarations and one in which
we store Type Family instances. The data structures are given
in code snippet 1.

The name of the type family, the names of their arguments
and the type of the type family are stored respectively in
tfdName, argNames and tfdType. The type of tfdType is
defined as visible in code snippet ?? and determines what
type of type family we are dealing with. The type family
may be open, closed, an associated type synonym (ATS), or
a type synonym. Furthermore, we store whether the type
family is injective and in which arguments. A type family
does not have to be injective. Therefore, this attribute is a
Maybe type. Last but not least, we store the potential name of

a type class and the indices of those variable names that are
linked to certain variable names of a class. This information
is only relevant when we are dealing with an Associated
Type Synonym and is empty otherwise. This information is
stored in classIdx and classDName.

In TFInstanceInfo, we store information obtained from
type instance’s. Again, we store the type family name
to which the instance belongs. Next, we store the argu-
ment types (lhs) in argTypes and the definition type (rhs) in
defType.We also store the type of type family. The priority
is only relevant for Closed Type Families and determines the
order in which the instances are placed under the declara-
tion. For associated type synonyms, we want to determine if
types match for those variables that are equal in the class and
ATS definition. We therefore save the types assigned to the
ATS instance. preCompat saves the indices of other instances
under the same closed type family declaration with which
the instance is compatible. This information is used during
the type inference process to determine if an instance may
be used to apply a certain type family. Last but not least, we
employ a varNameMap that contains the names used in the
Type Family declaration related to their index. We use this to
retrieve the names when we build the injectivity annotation
hint.

3.1 Extensions to the type inference system of
Helium

This section discusses how the X for its type inference mech-
anism, Rhodium, in Helium is implemented and why certain
decisions were made. Some parts of the implementation re-
mained unchanged with respect to the definitions given by
Burgers et al. [2]. This section first discusses the extension
of the constraint environment of X and then discusses the
implementation of X per simplification rule.

Constraint environment. The constraint environment, as
described by Vytiniotis et al. [11] and implemented by Burg-
ers et al. [2], is extended on two aspects: axioms and mono-
types. Because type families are defined at top level, we
extend the axiom definition Q with the following rule:

Q :: = ...
| ∀[ᾱ]. τ ∼ F ξ̄

where ᾱ denote the touchable type variables and τ denotes
the type that represents the type instance body. This type
is subject to the restrictions posed by the static checks. F ξ̄
represents the type family name and its arguments. ξ denotes
a type family free type. This agrees with the restrictions
imposed on type family instance arguments. This axiom is
spawned when the programmer defines a type instance in
the program.

3



Conference’17, July 2017, Washington, DC, USA Niels Kwadijk and Jurriaan Hage

Furthermore, monotypes are extended to incorporate type
family applications in types:

τ ::= ... | F τ̄

where F is the type family name and τ̄ represent the types
the F is applied to.

Canonicalization. For type families, the canonicalization
rule has the task to deal with type family applications that
contain type family applications in their arguments. In other
words, nested type families. Furthermore, the canonicaliza-
tion rule implements one of the simplifications that injective
type families allow. In figure 2, the canon rules for type fami-

canon(tv ∼ τ1τ2) Family in application
where unfamily(τi ) = (ᾱi , ξi ,Qi ) = (ᾱ1ᾱ2, {tv ∼ ξ1ξ2} ∪Q1 ∪Q2)
canon(F τ̄ ∼ τ ′) Nested type families
where unfamily(τi ) = (ᾱi , ξi ,Qi ) = (ᾱ1..ᾱn , {F ξ̄ ∼ τ ′} ∪ (⋃n

i Qi ))
canon(F τ̄ ∼ F σ̄ ) Injectivity
where injArgs(F τ̄ ) = (τ̄ ′)
where injArgs(F σ̄ ) = (σ̄ ′) = (ϵ, {τi ∼ σi | τi ← τ̄ ′,σi ← σ̄ ′})

Figure 2. Canonicalisation rules for type families (partly
taken from [1])

lies are given. The first two rules handle nested type families.
Nested type families are handled by the unfamily function.
Vytiniotis et al [11] call this procedure flattening and it is
similar to the flattening procedure described in section ??.
The rule is of the shape unfamily(τ ) = (α , ξ ,Q), where τ may
contain a type family application. Every type family applica-
tion in τ is replaced by a fresh type variable β , henceforth
known as a β-variable, while the shape of the constraints
remains the same. The constraintQ contains equalities of the
form β ∼ F τ̄ with a fresh β for every type family F τ̄ . Take
as an example unfamily(F Int → G Bool) = ({α , β},α →
β,α ∼ F Int ∧ β ∼ G Bool). The variables α and β are freshly
introduced and replace the occurrences of the type families
F and G.
The third rule handles injectivity. It first checks whether

the type family at hand is injective. This is determined before-
hand. The rule uses a function of the form injArgs(F τ̄ ) = (τ̄ ′)
which obtains the injective arguments τ̄ ′ from a type family
F τ̄ . The rule then creates new equality constraints for each
pair of injective arguments of the type family as per the
definition of injectivity (section ??).

Interaction. Figure 3 shows the interaction rules as given
by Burgers et al. [2]. Notice that all types on which the
interact rule works must be type family free, as denoted
by the use of ξ . The flattening of type families in equations
opens upmore possible interactions between those equations
and other constraints [11].

interact(τ1 ∼ τ2,τ1 ∼ τ2) = τ1 ∼ τ2
interact(tv ∼ ξ1, tv ∼ ξ2) = tv ∼ ξ1 ∧ ξ1 ∼ ξ2
interact(tv1 ∼ ξ1, tv2 ∼ ξ2)
where tv1 ∈ f v(ξ2) = tv1 ∼ ξ1 ∧ tv2 ∼ [tv1 7→ ξ1]ξ2
interact(tv ∼ ξ ,D ξ̄ )
where tv ∈ f v(ξ̄ ) = tv ∼ ξ ∧ D [tv 7→ ξ ]ξ̄
interact(D ξ̄ ,D ξ̄ ) = D ξ̄
interact(tv ∼ ξ1, F ξ̄ ∼ ξ2)
where tv ∈ f v(ξ̄ ) or tv ∈ f v(ξ2) = tv ∼ ξ1 ∧ F [tv 7→ ξ1]ξ̄ ∼ [tv 7→ ξ1]ξ2
interact(F ξ̄ ∼ ξ1, F ξ̄ ∼ ξ2) = (F ξ̄ ∼ ξ1) ∧ (ξ1 ∼ ξ2)

Figure 3. Interaction rules (taken from [1])

The interaction rules introduce two new rules that involve
(flattened) type families. The first interacts tv ∼ ξ1 and F ξ̄ ∼
ξ2. The rule allows the type variable tv to be substituted
inside the type family arguments and definitions ξ and ξ2.
The second new rule and the last rule in figure 3 allows the
interaction of two type family constraints that are applied
equally. This should result in the fact that their definitions
ξ1 and ξ2 should be equal, which is why the new constraint
(ξ1 ∼ ξ2) is created.

We introduce one additional rule for injective type families.
If the last rule in figure 3 fails, we may check if ξ1 and ξ2 are
equal. If this is the case, we may introduce evidence that the
injective arguments to F are equal. We may thus introduce
those new equalities. We formalize this new rule as follows:

interact(F ξ̄1 ∼ ξ3, F ξ̄2 ∼ ξ4) = (F ξ̄1 ∼ ξ3) ∧ {ξ1 ∼ ξ2 | ξ1 ← ξ̄1, ξ2 ← ξ̄2}
where equal(ξ3, ξ4)

(1)

Simplification. The simplification rules are very similar to
the interaction rules as explained in section ??. We therefore
shortly focus on the two rules that this simplification step
introduces. These are visible in figure 4.

simplify(F ξ̄ ∼ ξ1, F ξ̄ ∼ ξ2) = ξ1 ∼ ξ2
simplify(tv ∼ ξ1, F ξ̄ ∼ ξ2)
where tv ∈ f v(ξ̄ ) or tv ∈ f v(ξ2) = F [tv 7→ ξ1]ξ̄ ∼ [tv 7→ ξ1]ξ2

Figure 4. Simplify rules for type families (taken from [1])

The first rule simplifies two type family applications with
the exact same arguments. The only difference with the inter-
act version of this rule is that the given, left-most constraint
is not returned as it is not needed further in this phase of the
simplification process. The same goes for the second rule.

Top-level react. Next to the canonicalization rule, the top-
level react is the most interesting rule when introducing type

4



Heuristics-based Type Error Diagnosis for Haskell Conference’17, July 2017, Washington, DC, USA

families. As mentioned, type families introduce a new type
of axiom in the form ∀[ᾱ]. τQ ∼ FQ ξ̄Q which represents a
type instance. This rule is used to react with type family
applications in the constraint system. The top-level react
rule for type families performs the following steps, given a
constraint of the form F ξ̄ ∼ ξ . Note that all types must have
been made family free.

1. We loop over all axioms that are defined in the con-
straint system and check if, for axiom ∀[ᾱ]. τQ ∼
FQ ξ̄Q and type family application F σ̄ , F = FQ . If
not, we consider the next axiom.

2. If F = FQ , we will try to unify ξ̄Q ∼ ξ̄ , where the
variables ᾱ are considered touchable and may thus be
unified to another type. This allows us to apply a type
application on a more general type instance.

3. If step 2 is successful, the resulting substitution θ is
returned. The result of the top-level react call is then
θτQ ∼ ξ where we apply the substitution θ to the
definition of the type family axiom ξQ . We thus replace
F ξ̄ with its definition.

4. If step 2 is unsuccessful, we return to step 1 and loop
further over the known axioms. When no matching
axiom is found after all have been considered, the con-
straint is left residual.

The above steps work well for open type families, as there
is no order implied. For closed type families, we utilize the
Axiom Closed Group as explained in section ??. Because type
family names are unique, we can extend the axiom loop
function to also search for axiom groups. When such a group
is found, we only need to loop over the axioms inside it.
Furthermore, because we know it represents an ordered set
of axioms from a closed type family, we can check the axioms
in order. This also allows us to perform the compatibility
and apartness checks over the complete group as explained
in section ??. Compatibility is computed before the type
inference process.

Top-level improvement. When the type family that we
want to simplify is injective, and the above process fails,
we may attempt to perform a top-level improvement. When,
again, given an axiom of the form ∀[ᾱ]. τQ ∼ FQ ξ̄Q and
a contraint of the form F ξ̄ ∼ ξ , we perform the following
steps:

1. We attempt to pre-match ξ and τQ . Pre matching de-
scribes the combined process of matching and pre uni-
fication. In short, we use the pre unification algorithm
(figure ??) while only keeping the types in one order.
If pre matching fails, we return. Else, we obtain the
resulting substitution subst and advance to the next
step.

2. We apply subst on the axiom family FQ ξ̄Q and check if
it matches with its original version. This is important

because it ensures that injectivity is indeed correct
[10]. Again, if it fails, we return.

3. At this point, we may create new evidence based on
the injective properties of the type family. We apply
subst over the injective arguments in ξ̄Q to create ξ̄ ′Q .
We then build a set of new constraints as follows:

injConstr = {ξ ′Q ∼ ξ | ξ ′Q ← ξ̄ ′Q , ξ ← ξ̄ } (2)

4. We return the set of constraints injConstr and F ξ̄ ∼ ξ .
This constraint may be improved using the constraints
in injConstr but may also be left residual in some form
after type inference is complete. This, however, intro-
duces a subtlety. It may the case that F ξ̄ ∼ ξ may not
be able to be improved at all. In this case we do not
want to perform above steps on it again as this will not
provide new information. We, therefore, annotate the
constraint with the notion that top-level improvement
was already applied. This prevents the type inference
system from looping.

4 The Reduction Trace
Type family applications may introduce new type families.
Furthermore, type families may occur as arguments to other
type families in annotated types. It may therefore take several
type family applications before a base type is reached. During
these applications, several intermediate types are created
that are not present in the source code. This is intentional
but poses a problem if such an intermediate type may not be
reduced further. The resulting type error message will then
contain a type that is not present in the source code, which
may confuse the programmer. Furthermore, when a type
family is fully reduced and the resulting base type creates
an error, it may also be hard to find the original type as the
previous steps are lost after type inference terminates.
In this section, we discuss a new feature of Helium that

traces changes concerning to types that contain type families,
including changes to type family arguments as a result of
injective properties. In the design we aimed to achieve the
following requirements for this feature, a so-called Reduction
Trace:
• The Reduction Trace should be complete, that is from
start to finish, omitting no steps.
• The trace should be presented in a type error clearly.
The steps that are part of the trace should be presented
one by one with possibly extra information that ex-
plains why the step was taken. For example, what
instance was applied? How often was it applied and
why?
• The trace should be able to distinguish between differ-
ent kinds of reductions, e.g., left-to-right applications,
but also argument injections where argument infor-
mation is obtained because of the injective properties
of the type family.

5



Conference’17, July 2017, Washington, DC, USA Niels Kwadijk and Jurriaan Hage

• The trace should be able to compact. Sometimes a
particular instance is left-to-right applied many times
in succession, and it would be helpful to describe these
many steps in a single trace step
• The Reduction Trace should be an extension of the ex-
isting system. The trace should be gathered during the
steps of the type inference system. We impose this re-
quirement as we do not want to adapt the existing type
inference system, which would be risky undertaking.

Our starting point are monotypes, defined as follows:

Monotypes τ ::= α variables
| τ1τ2 type variable application
| A constants
| F τ̄ type families

Figure 5. The definition of monotypes in Helium

To build a trace of type family applications, we extend
the monotypes with a reduction step. The goal of this step
is to save a potential application and thus reduction, of a
type family. We add this step to monotypes, because every
monotype may potentially be the result of a type family
application. Furthermore, it allows us to quickly see if a type
is the result from a type family reduction. This has its use
when checking if a type family may be to blame for a type
inconsistency.
We define ReductionType (what kind of reduction is it,

the location where the applied instance can be found in the
source code), ReductionStep (basically the in and output type
of the reduction, and ReductionTrace, which is a step anno-
tated with the number of times the step was applied:

ReductionType rt ::= LeftToRight (τ , τ ′) location
| ArgInjection (τ , τ ′)

ReductionStep rs ::= Step τ τ ′ rt

ReductionTrace trace ::= [(rs, Int)]
Reduction steps can take place at two points during type

inference: during a top-level reaction of a type family and
at the interaction of a variable constraint with a type family
constraint. The first leads to a LeftToRight reduction step
and the second to an ArgInjection.
For a LeftToRight reduction step, given the constraint

F ξ̄ ∼ τ and axiom ∀[ᾱ]. τQ ∼ FQ ξ̄Q , we first check that
map unify {ξ ∼ ξQ | ξ ← ξ̄ , ξQ ← ξ̄Q} succeeds. If so, then
we create the new constraint τ ′Q ∼ τ where τ ′Q is the sub-
stituted version of τQ , and we extend τ ′Q with the following
step (note that we only save τ ′Q at this point as a matter of
convenience) :

Step τ ′Q (F ξ̄ ) (LeftToRight (FQ ξ̄Q ,τQ) loc(axiom)).

An ArgInjection reduction step is the result of applying
rule in figure 6: This rule inserts new information obtained
for arguments of a Type Family. As explained, this may be
due to the injective properties of the type family. Whether
this is the case or not does not matter as we always want
to show any changes to the type family to the programmer
when an error occurs. When we insert the reduction step,
however, is quite subtle. First of all, we only do so if tv ∈
f v(ξ̄ ) because wewill only substitute an argument of F when
this is the case. Furthermore, we do not add a reduction step
when tv is a β-variable. As explained in section 3.1, such
variables are only introduced during the flattening process
which allows the type inference process to consider nested
type family separately. When we encounter a β-variable in
this rule, we are only undoing a flattening step which is
introduced by the type inference system and should thus
not be shown to the programmer. To conclude, we introduce
the following reduction step to the type F [tv 7→ ξ1]ξ̄ when
tv ∈ f v(ξ̄ ) and tv , β :

Step (F [tv 7→ ξ1]ξ̄ ) (F ξ̄ ) (ArgInjection (tv, ξ1)).
The after type is the same type family as the before type
with its arguments substituted by the first constraint given
to the interact rule. The ArgInjection reduction type saves
this constraint to be able to show it in a possible error later
on.

4.1 Building a Reduction Trace
The above information is collected along with the type infer-
ence process. If we find a type inconsistency, and a type, say
τ , that will be reported on in the type error message was the
result of type family rules being applied, then we can use
that information to construct a trace. Our implementation
uses two phases.

Phase 1: following reduction steps. We apply the reduc-
tion steps, in reverse order, starting with τ and working our
way backwards. At some point, a type is reached without a
reduction step. In this case, we inspect the type and check
if it is a type application or a type family. If it does and
the type contains nested monotypes, we proceed to phase 2,
otherwise we are done.

Phase 2: diving deeper. It is important to note that the
reduction steps of recursive monotypes do not know that
they were part of another type family or type application.
This is due to the flattening that happens during type infer-
ence. For the nested monotypes, we first perform Phase 1, to
obtain all their reduction steps, and this may again lead to
recursing on these types. When we are done tracing back all
the type family steps, we need to insert the steps back into
the higher-level type of which the nested monotype was a
part. Let us show this situation with an example. Let us have
the following type families

6



Heuristics-based Type Error Diagnosis for Haskell Conference’17, July 2017, Washington, DC, USA

interact(tv ∼ ξ1, F ξ̄ ∼ ξ2)
where tv ∈ f v(ξ̄ ) or tv ∈ f v(ξ2) = tv ∼ ξ1 ∧ F [tv 7→ ξ1]ξ̄ ∼ [tv 7→ ξ1]ξ2

Figure 6. Interaction rule

type family H a b where
H Int Int = Float

type family J c where
J Int = Int

and the type haskellH (J Int) (J Int). During type infer-
ence, this type is flattened to haskellH beta1 beta2 with
constraints beta1 ~ J Int and beta2 ~ J Int. haskellJ
Int reduces to haskellInt but does not know that it was
initially part of H. Fortunately, inserting a trace back into a
higher level type is not difficult: we loop over every step in
the trace and encapsulate the after and before types in the
higher level type. To be able to do this, we need to know
what the argument was that the type belonged to. For type
families, we therefore keep track of which arguments were
already processed. We therefore also choose to present the
traces within these arguments from left to right.

As a last stepwe compactmultiple applications of the same
reduction rule to reduce the trace. Consider for example

type family Loop a where
Loop [a] = Loop a

Loop a = a

and the type haskellLoop [[[[Int]]]]. It is clear that the
result type after type inference is haskellInt. However, it
takes five top-level react phases to reach this conclusion of
which four use the exact same instance. Showing these four
steps separately is unnecessary so we squash these four steps
and instead mention in the error how often the instance was
used. The after and before types of the new Step become
the after step of the first step and the before step of the last
step in the sequence. In a later section, we shall show some
examples of Reduction Traces.

4.2 Difficulties with the current approach
There are cases in which our reduction traces currently fail
to build a trace from start to finish. In some cases, it even fails
to build a trace at all. It unveils a problem with the reduction
traces that arise from the fact that we construct our traces
during the standard type inference process, which of itself
is not necessarily a linear, predictable process.

Problem 1: the order of phases. The phases of building a
reduction trace as described in section 4.1 are executed in a
fixed order. Only when a type does not contain a reduction
step, do we consider the possible traces in its recursive argu-
ments. However, a type family instance may contain a type
family on its right-hand side. After application, we may thus

have a new type family inside a type which may be reduced
to another type. As a result, we have a type that has a reduc-
tion step and also contains a recursive type with a reduction
step. In this situation, the current implementation falls short.
The ordering of phases should become more subtle.

Problem 2: order of applications of a nested type fam-
ily. Consider

type family Const a b where
Const a b = b

type family Id c where
Id c = c

tfconst :: a -> b -> Const a (Id b)

tfconst x y = x

Here, the function tfconst contains a type error because
Const a (Id b) reduces to b and x has type a. So how do
the type family reductions take place:

1. Const a (Id b) is flattened, leading to Const a beta1
and the new constraint beta1 ~ Id b.

2. Id b is reduced to b and we obtain the constraint
beta1 ~ b.

3. Const a beta1 is reduced beta1.
4. beta1 is substitutedwith b in the constraint beta1 ~ a

to create the constraint a ~ b where we return an er-
ror.

Steps two and three violate the order in which most reduc-
tions take place. The top-level type family is reduced before
the reduced nested type family is reinserted. As a result, b
only contains the step that it was reduced from Id b. This
situation only happens in case we have very general type
families like Const and Id that may be applied to any type
and thus also with type variables. In situations like this, the
trace becomes incomplete as the reduction from Const will
be omitted from the trace.
We designed a fix by restricting top-level reaction that a

type family may only attempt a reaction if all its arguments
are beta free. In other words, all possible nested type families
inside a type family must be considered first before the top-
level family is reduced. In case a nested type family cannot
be reduced, the top-level family will also stay unreduced. We
argue that this does not change the type system: we do not
allow fewer type families to be type-checked, and if a type
family is fully reducible, the type inference system will still
do so, albeit in a different order. In case a type family is not

7



Conference’17, July 2017, Washington, DC, USA Niels Kwadijk and Jurriaan Hage

(fully) reducible, the type inference system will still return
an error.

We did find, however, that in some cases, the error is a bit
too general. Consider the following somewhat less general
example:

type family Const a b where
Const a b = b

type family Id c where
Id Int = Int

tfconst :: a -> b -> Const (Id a) b

tfconst x y = x

Id is now less generic and only allows Int as an argument.
As a result Id a in the type signature will not be reducible.
In case we still allowed β-variables to be in the type family
arguments during the top-level react phase, Const would
still be reducible, and we would get an error that tells us
that Id a is not reducible. In the new situation, Const will
not be reduced, as it will remain in the form Const beta1 b
after flattening. After substitution, the type inference system
will tell us that Const (Id a) b in total is not reducible.
We argue that this is not a problem as the situation is very
specific. Furthermore, as we will see when we discuss our
heuristics later in this paper: the type to blame is still part
of the type and can be blamed.

4.3 Problem 3: looping trace construction
During the creation of the trace, we try to substitute some
type variables to check if the result type has a trace that we
may potentially explore. This turned out to be dangerous
because it can cause looping. Especially when the substitu-
tion resulting from type inference is certainly not correct. If
the type variable we substitute is also present in the before
type, we end up in a loop because we eventually consider
the type variable again. In the current implementation, we
built in a safety measure that stops the creation of the trace
after a certain amount of going into recursion. This amount
is currently set to 50. See [7] for an example.

5 Heuristics for type families
Will be in the final version. And will be discussed in the
presentation

6 Related work
Will be in the final version. It will discuss more or less the
same work as does [2].

7 Conclusion
Will be in the final version.

Acknowledgments
We thank for Wouter Swierstra, Alejandro Serrano and Joris
Burgers for help and advice.

References
[1] Joris Burgers. 2019. Type error diagnosis for OutsideIn(X) in Helium.

Master’s thesis. Utrecht University.
[2] Joris Burgers, Jurriaan Hage, and Alejandro Serrano. 2020. Heuristics-

based Type Error Diagnosis for Haskell: The case of GADTs and local
reasoning. In IFL 2020: Proceedings of the 32nd Symposium on Imple-
mentation and Application of Functional Languages. 33–43.

[3] Manuel MT Chakravarty, Gabriele Keller, and Simon Peyton Jones.
2005. Associated type synonyms. ACM SIGPLAN Notices 40, 9 (2005),
241–253.

[4] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003. Helium,
for learning Haskell. In Proceedings of the 2003 ACM SIGPLANworkshop
on Haskell. 62–71.

[5] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairbairn, Joseph Fasel, María M Guzmán, Kevin Hammond, John
Hughes, Thomas Johnsson, et al. 1992. Report on the programming
language Haskell: a non-strict, purely functional language version 1.2.
ACM SigPlan notices 27, 5 (1992), 1–164.

[6] Mark P Jones. 2000. Type classes with functional dependencies. In
European Symposium on Programming. Springer, 230–244.

[7] N. Kwadijk. 2022. Implementing Type Families in Helium. A study on
improving Type Error Diagnosis for Type Families in Haskell. (2022).
TBA.

[8] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. 2006. Simple unification-based type inference for
GADTs. ACM SIGPLAN Notices 41, 9 (2006), 50–61.

[9] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. 2008. Type checking with open type functions. In Proceed-
ings of the 13th ACM SIGPLAN international conference on Functional
programming. 51–62.

[10] Jan Stolarek, Simon Peyton Jones, and Richard A Eisenberg. 2015.
Injective type families for Haskell. ACM SIGPLAN Notices 50, 12 (2015),
118–128.

[11] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin
Sulzmann. 2011. OutsideIn (X) Modular type inference with local
assumptions. Journal of functional programming 21, 4-5 (2011), 333–
412.

8



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Higher-ranked region inference for polymorphic, lazy languages
Ivo Gabe de Wolff
i.g.dewolff@uu.nl
Utrecht University
Utrecht, Netherlands

Jurriaan Hage
j.hage@hw.ac.uk

Heriot-Watt University
Edinburgh, Scotland

ABSTRACT
Region based memory management is a compile-time alternative to
garbage collection, where allocations are placed in lexically scoped
regions, either manually by the programmer or by a static program
analysis: region inference. The precision of such an analysis—that
is, determining in which region an object should be allocated, and
when regions can be deallocated—has a significant impact on the
run-time performance of the program. To increase the precision
of region inference for higher-order programs, we adapt higher-
ranked type and effect systems to region inference. In this work
we discuss the problems of extending prior work on higher-ranked
program analysis to polymorphic languages, and present our novel
region inference analysis for a lazy, polymorphic language with
higher-order types.

CCS CONCEPTS
• Software and its engineering→ Compilers.

KEYWORDS
memorymanagement, regions, type-based program analysis, higher-
ranked polymorphism, Haskell

ACM Reference Format:
Ivo Gabe de Wolff and Jurriaan Hage. 2025. Higher-ranked region inference
for polymorphic, lazy languages. In IFL ’22: 34th Symposium on Implemen-
tation and Application of Functional Languages. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Region based memory management is a compile-time alternative
to garbage collection, where the heap is split into lexically-scoped
regions. Each allocation is placed in a region, and at the end of the
lexical scope of a region, all objects in the region may be deallocated.
The programmer or the compiler has to decide where regions are
introduced, and for each allocation the region it is placed in.

We can support region basedmemorymanagement in the lambda
calculus by extending it with two constructs: letregion to intro-
duce a new region, and @ to link each allocation with a region.
Regions are referred to by region variables, denoted by 𝜌 .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

𝑒 ::= . . .

| letregion 𝜌 in 𝑒 Region introduction

| 𝑒 @ 𝜌 Allocation
(1)

The construct letregion 𝜌 in 𝑒 introduces a new region 𝜌 which
can be used in the body 𝑒 . This region may be used to store inter-
mediate values in the computation 𝑒 and all objects in that region
will be deallocated when the computation finishes. The result of
that computation should thus not be stored in region 𝜌 .

Region inference, introduced by [20], converts a program with-
out regions to a program that uses regions. This has been exten-
sively studied in the MLKit compiler [24, 25]. Vejlstrup [26] pre-
sented a static program analysis to find the memory requirements
of the regions (as they can in general be unbounded) to efficiently al-
locate many regions on the stack instead of the heap [4]. For some
programs region inference gives imprecise results, where many
allocations are placed in a region with a long lifetime; either the
program should then be rewritten to be more region-friendly, which
is often difficult to do for the programmer, or the compile-time re-
gion inference can be combined with run-time garbage collection
[9, 11]. Recently, regions have been popularized under the name
lifetimes in Rust, a programming language that enforces memory-
safety at compile time using regions [17]. Contrary to MLKit with
region inference, Rust requires the user to place regions in the
program.

1.1 Region inference
Regions can be inferred with a static program analysis [3, 24] via a
type and effect system [18]. In a type and effect system, the type
system of the source language is annotated with analysis-specific
annotations. For region inference, a function type is annotated with
a discription of how the function may use regions. The precision
of such an analysis will impact the run-time performance of the
program.

In this paper, we introduce a new region inference algorithm
for a polymorphic language with higher precision for higher order
functions. We illustrate the general ideas of the analysis with some
examples. First, consider the inc function, which increments its
integer argument by one:

inc x = x + 1

If we assume that integers are boxed, then the evaluation of this
function will lead to allocating a new integer object. Hence there is
no relation between the region of the argument x and the region
where the result is stored, and we can thus store them in different
regions. Now consider the identity function:

id x = x

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark Ivo Gabe de Wolff and Jurriaan Hage

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In this case there is a relation between the region of the argument
and the result, as we do not allocate a new integer object, but reuse
the existing object which is already placed in a region. Instead of
enforcing that the those regions are the same, as done in [24], we
only require that the region of the argument lives at least as long
as the region of the result. Then we can pretend that the result is
actually stored in the output region, as the input region cannot be
deallocated when the output region is still needed.

The components of a compound value may be stored in multiple
regions; for instance in case of a list, the list objects (the nil [] and
cons : objects forming the linked list structure) may be stored in a
different region than the elements in the list. For the function map,
the analysis must decide on the regions for both the list objects and
the elements.
map _ [] = []

map f (x:xs) = f x : map f xs

The list objects of the result are allocated in the function, similar
to the integer objects in inc, so no relation between the input region
and the output region is enforced (assuming strict evaluation). How
the regions for the elements should be handled depends on function
f, which is an argument to map. In our analysis, we let annotations
also be functions: the annotation of map is a function taking the
annotation of f as an argument and then returning the relation
between the regions of the input and the regions of the output.
The annotations of higher order functions are thus higher order
annotation functions. The analysis can now find that the input and
output regions of map inc are unrelated. In case of map id, we do
find that the region of the elements in the list of the input should
live at least as long as the region of the elements in the output.
By handling higher order functions this way (with higher-ranked
polyvariance, that is polymorphism on annotation variables), and
letting annotations be functions as well, we can get higher precision.

Lazy values are also treated as compound values: we assign them
one region for the thunk, the run-time representation of a lazy value,
and one region for the computed value. The free variables of a lazy
value must outlive the thunk as those values need to be available
when the thunk needs to be evaluated. This may give them a long
lifetime and cause high memory usage. Our analysis makes use
of strictness information, inferred by a strictness analysis [5, 13]
or given by the user. This may reduce the number of lazy values
or shorten their lifetime. To illustrate the latter, the region of the
thunk may be deallocated before the region of the values, which
for instance happens with the regions of the elements of an array
in the function head: this function takes a list of lazy values, and
returns a strict value. The region of the thunks could be deallocated
after calling head.

1.2 Contributions
We introduce a region inference algorithmwith higher-ranked poly-
variance for a polymorphic, lazy language. We extend on previous
work on analyses with higher-ranked polyvariance, as applied to
flow analysis [14] and dependency analysis [22], by using a lambda
calculus as annotation language, and adapt this to region inference.
Whereas previous work on higher-ranked polyvariance was ap-
plied to monomorphic languages, we extend this to polymorphic
languages and show that the precision of the type system is not

orthogonal to analysis precision: by the inclusion of polymorphism
in the source language, previous approaches of higher-ranked anal-
ysis do not work any more. We show that the main problem is that
fixed-point iteration isn’t guaranteed to terminate and that some
fixed-points are undecidable, and work towards possible solutions.

We have an implementation of the analysis in the Helium com-
piler as described in section 7.1.

1.3 Analysis overview
Our region analysis splits the heap in regions and links each alloca-
tion to a region. As the components of a compound value may be
stored in multiple regions, for instance a list whose elements are
stored in a different region than the list objects, we assign regions
to values by defining a mapping 𝑃Δ : 𝜏 → 𝑃 from types of the
source language 𝜏 to the shape of the region variables 𝑃 called the
region sort, which is a structure of tuples of region variables.

To represent the “lives at least as long as” relations between
those variables, we use annotations. The language of annotations is
based on the lambda calculus; annotations can be functions taking
annotations and regions as arguments. Such an approach for higher-
ranked analysis has been applied to other analyses [14, 23]. When
analysing a lambda function, the annotation function takes the
regions where the arguments and the returned value of a function
are stored and returns the constraints between these regions.

Besides taking the regions of arguments of the source function,
an annotation function also takes annotations of the arguments as
arguments in an annotation function. For instance, the annotation of
map takes the annotation of the function argument as an argument
in the lambda calculus. This annotation language is introduced in
section 3.

In the analysis we can use the region variables of arguments and
the return value and we can allocate regions local to a function. This
is not always sufficient; sometimes we need to introduce regions
not bound by an argument or return value of a function, and not
bound locally in the function. In such case we can add additional
region arguments to a function.

To generate those annotation terms, we introduce the escape
check in section 4, which figures out for each region whether it es-
capes the lifetime of the function and/or can be unified with another
region. If it does escape, and cannot be unified, then it becomes an
additional region argument. To handle (mutual) recursive declara-
tions, we use fixed-point iteration (section 5). Whereas previous
work has shown that fixed-points in a higher-ranked analysis are
guaranteed to exist and be reached with fixed-point iteration in a
language without polymorphism, we show that by the inclusion of
polymorphism, some functions do not have a fixed-point. Finally
we show the mapping from source terms to annotation terms in sec-
tion 6. At the end, we briefly mention how data types are supported
in the analysis in section 6.4.

1.4 Source language
We introduce the analysis on the source language based on System
F [10] with laziness [2] whose types and syntax are shown in figure
1. We write 𝜏1 → 𝜏2 to denote the type (→) 𝜏1 𝜏2, (𝜏1, 𝜏2) for a tuple
type (, ) 𝜏1 𝜏2 and similar for tuple types with more elements. A
strict type !𝜏 may only be used as the argument type of a function or

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Higher-ranked region inference for polymorphic, lazy languages IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Source language

Types
𝜏 ::= (→) | 𝐷 Function & Data type

| 𝜏 𝜏 | ∀𝛼. 𝜏 Application & quantification

| 𝛼 | !𝜏 Type variable, Strict type

| () | ( , ) | ( , , ) | . . . Unit, Tuples

Program

𝑝 ::=
{
𝑥 : 𝜏 = 𝑓

}
Toplevel bindings
𝑓 ::= \𝑥 : 𝜏 → 𝑓 | ∀𝛼. 𝑓 Lambda, Quantification

| 𝑒 Function body

Patterns
𝑝 ::= (𝑥 : 𝜏) | 𝐶 @𝜏 (𝑥 : 𝜏) Tuple, Constructor

Expressions
𝑒 ::= 𝑐 Call

| let! 𝑥 : 𝜏 = 𝑒 in 𝑒 Strict let

| let 𝑥 : 𝜏 = 𝑐 in 𝑒 Lazy let

| let rec 𝑥 : 𝜏 = 𝑐 in 𝑒 Recursive let

| match 𝑥 {
𝑝 → 𝑒

}
Pattern match

Call
𝑐 ::= 𝑥 | 𝐶 Variable, Constructor

| () | ( , ) | ( , , ) | . . . Unit, Tuple

| 𝑐 𝑥 | 𝑐 @𝜏 Value & type application

as the type in a variable binding. We write 𝜏 ′ [𝛼 := 𝜏] to denote the
instantiation of 𝛼 with 𝜏 in 𝜏 ′ and (∀𝛼. 𝜏 ′) 𝜏 reduces to 𝜏 ′ [𝛼 := 𝜏].
We treat !(∀𝛼. 𝜏) and ∀𝛼. !𝜏 as equal types.

A program 𝑝 consists of a list of bindings 𝑥 : 𝜏 = 𝑓 . We may
omit types in examples if they are trivial or redundant. Lambdas
and quantification may only occur at the root of a binding, which is
assured in the language by the separation between toplevel bindings
𝑓 and expressions 𝑒 . The bound value of a lazy and recursive bind
must be a call 𝑐 , which is a chain of type and value arguments
applied to a function, tuple or constructor. The reason for this
restrictions is that region analysis needs concrete information on
the runtime behaviour of closures and this representation makes
that explicit and corresponds to how a functional program can be
executed. A program in a language as Haskell [16] can be converted
into this format with lambda lifting, bymoving non-trivial subterms
to let bindings and/or new toplevel declarations with arguments
for the free variables [15]. Strictness can be inferred automatically
[5, 13].

Expressions are always strict: when an expression is executed,
then its value is evaluated to a value of a strict type. Constructor
calls must be saturated (all arguments must be given) and are also
strict. Hence a strict let and a let whose binding is a constructor
call must have a strict type.

We define the arity of a function as the number of lambdas in
the definition.

arity(\𝑥 : 𝜏 → 𝑓 ) = 1 + arity(𝑓 )
arity(∀𝛼. 𝑓 ) = arity(𝑓 )
arity(𝑒) = 0

(2)

The arity is thus not a property of the type; a definition 𝑥1 = \𝑥 → 𝑥
has arity 1 but 𝑥2 = 𝑥1 has arity 0, whereas they have the same type.
Calls to a function may provide more or fewer arguments than the
arity of the function. If a function returns a function, then it can be
called with more arguments than its arity (currying).

A thunk is the runtime representation of a lazy computation. It is
represented as a linked list of arguments and a function pointer. A
lazy computation is, by the syntax in figure 1, always a function call
and can thus be represented in this thunk form. A call providing too
few arguments results in a thunk where the remaining arguments
can be passed later on. Each item of the linked list corresponds with
one argument to the call and the last element of this list points at
the callee. After evaluating a thunk, we store the resulting value in
the thunk, to avoid recomputing the same expression.

We assume that all values are stored as pointers to objects. The
analysis could however be adapted to not infer regions for unboxed
values.

2 REGION VARIABLES
Region inference decides for each object, in which region it will
be allocated. We reference those regions using region variables,
which are denoted by 𝜌 , the Greek letter rho. A value in the source
language may need multiple region variables, as nested fields of an
object may be allocated in different regions. Instead of annotating
the types with those regions, for instance as !Integer𝜌1 , we store
the regions separately in a structure of tuples of region variables.
The reasons for this change are that this allows us to have a simpler
annotation language and makes the analysis more precise for some
polymorphic functions. This will become clear when we introduce
the annotation language in section 3. We write 𝜌 to denote a tuple
or tree-structure of region variables and use tuples of regions to
structure multiple region variables.

𝜌 ::= 𝜌 | (𝜌, 𝜌, . . . ) (3)

Note that the tuple may also be empty (a unit), which we use
for types that do not require additional region variables, such as
integers, and we also support tuples of one element. We have two
special regions, the global region 𝜌global and the bottom region 𝜌⊥.
The lifetime of the global region is the full execution of the program.
This region is used for global variables and for code that cannot
be analysed. The bottom region has no meaning at runtime. All
regions outlive the bottom region, but no other region is outlived
by the bottom region. It is used in the analysis for regions which do
not escape out of a function. We call the “type” of region variables
the region sort, denoted by 𝑃 (P is the Greek capital letter rho).

𝑃 ::= 𝑃 Monomorphic region sort

| 𝑃 ⟨ 𝛼 𝜏 ⟩ Polymorphic region sort

|
(
𝑃, 𝑃, . . .

)
Tuple

(4)

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark Ivo Gabe de Wolff and Jurriaan Hage

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

The tuples allow us to create a tree of region variables. A leaf of that
tree may be amonomorphic region sort, which is just a single region
variable, or a polymorphic region sort, which is used for values of
a polymorphic type. When instantiating such a polymorphic type,
the polymorphic region sorts will be replaced by the region sorts
of the instantiated type. Throughout this paper, we use the hat to
denote a tuple-structure.

We write 𝜌 : 𝑃 to denote that regions 𝜌 have region sort 𝑃 .
For clarity, we will sometimes interleave both structures and for
instance write (𝜌1 : 𝑃, 𝜌2 : 𝑃) instead of (𝜌1, 𝜌2) : (𝑃, 𝑃).

2.1 Region assignment
We define a mapping 𝑃Δ : 𝜏 → 𝑃 from types of kind ∗ to region
sorts. For strict values, we need one region to store the value and
for lazy values we need one region for the thunk and one for the
evaluated value. As the thunk and the evaluated value are stored
in different regions, the thunk may be deallocated earlier than the
evaluated value in some programs. Depending on the type, we may
also need regions for nested values, for instance the elements of a
list, which are found in 𝑃◦Δ. The subscript Δ (Delta) represents the
data type environment, which we briefly discuss in section 6.4.

𝑃Δ (!𝜏) = (𝑃, 𝑃◦Δ (𝜏))
𝑃Δ (𝜏) = (𝑃, 𝑃, 𝑃◦Δ (𝜏)) if 𝜏 is not strict

𝑃◦Δ (𝜏1 → 𝜏2) = ()
𝑃◦Δ (()) = ()

𝑃◦Δ ((𝜏1, 𝜏2)) = (𝑃, 𝑃, 𝑃◦Δ (𝜏1), 𝑃, 𝑃, 𝑃◦Δ (𝜏2))
𝑃◦Δ (𝛼 𝜏1 . . . 𝜏𝑛) = 𝑃 ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩

𝑃◦Δ (∀𝛼. 𝜏) = Substitute 𝑃 ⟨ 𝛼 𝜏 ⟩ with 𝑃 in 𝑃◦Δ (𝜏)

(5)

Function 𝑃◦Δ gives the region sort for the fields of a type. Func-
tions do not have additional region parameters, as the annotation
on the function is an annotation function taking the region argu-
ments of the input and output. For each element of a tuple, we
need a region to store the thunk for that element, a region for the
evaluated value and a region for fields of the element.

2.2 Polymorphism
To illustrate why we need polymorphic region variables, we will
consider the following example and explain why other approaches
have less precision.

ifThenElsePair :: Bool -> a -> a -> a -> (a, a)

ifThenElsePair True x y z = (x, y)

ifThenElsePair False x y z = (y, z)

In a classic type and effect system, we would, in the annotated
type system, leave the type variable 𝑎, to be instantiated later at
the uses of this function. This does mean that the types (including
their regions) of arguments x and z should be equal, which causes
poisoning. If the function was not polymorphic, but for instance
specialized to [Int], then the regions may be different. Now we
have two annotated types and neither of them is strictly better than
the other. In this type system we would not have principal types:

there is no guarantee that a most general type for a function exists,
from which all other types can be derived.

By storing the region variables of a polymorphic value separately,
we can avoid this form of poisoning. As the number of regions
needed for this type variable depends on the type it is instantiated
with (it could be a compound value as a list), we have special syntax
to denote the regions of a type variable, 𝑃 ⟨ 𝛼 𝜏 ⟩. Depending on
the kind of the type variable, the type variable may also be applied
with other types, which for instance happens with type variable
𝑚 in the type of return :: Monad m => a -> m a for monads
in Haskell. When a type variable is instantiated, we will substitute
this polymorphic region sort, which are the leaves in the tree of
region variables, with the region sort of that type, by substituting
it with the subtree of that region sort.

2.3 Instantiation
Region sorts may be instantiated, by substituting a type variable 𝛼
with a type 𝜏 denoted by 𝑃 [𝛼 := 𝜏]Δ. The substitution requires envi-
ronment Δ to instantiate the type variable of a polymorphic region
sort (𝑃 ⟨ 𝛼 𝜏 ⟩) and expand it to the region sort of the instantiated
type.

𝑃 [𝛼 := 𝜏]Δ = 𝑃

𝑃 ⟨𝛼 ′ 𝜏1 . . . 𝜏𝑛⟩[𝛼 := 𝜏]Δ =

{
𝑃◦Δ (𝜏 𝜏 ′1 . . . 𝜏 ′𝑛) if 𝛼 = 𝛼 ′

𝑃 ⟨𝛼 ′ 𝜏 ′1 . . . 𝜏 ′𝑛]⟩ otherwise
where 𝜏 ′𝑖 = 𝜏𝑖 [𝛼 := 𝜏](

𝑃1, . . . , 𝑃𝑛
)
[𝛼 := 𝜏]Δ =

(
𝑃1 [𝛼 := 𝜏]Δ, . . . , 𝑃𝑛 [𝛼 := 𝜏]Δ

)
(6)

2.4 Lifetime relation
The analysis computes a relation on the lifetimes of region variables
in a program. We express this relation using ≥, which means “lives
at least as long as”. For brevity we will however pronounce 𝜌1 ≥ 𝜌2
as “𝜌1 outlives 𝜌2” instead of “𝜌1 lives at least as long as 𝜌2”.

Given a relation R, we write 𝑥 ≤R 𝑦 for (𝑥,𝑦) ∈ R, 𝑥 ≥R 𝑦 for
(𝑦, 𝑥) ∈ R and 𝑥 ≡R 𝑦 for (𝑥,𝑦) ∈ R ∧ (𝑦, 𝑥) ∈ R.

Definition 2.1 (Lifetime relation). A relation R ⊂ 𝑃 ′ × 𝑃 ′ is a life-
time relation on set 𝑃 ′ with {𝜌⊥, 𝜌global} ⊂ 𝑃 ′ ⊂ 𝑃 if the following
holds:

• R is reflexive and transitive (i.e. a preorder [21])
• For all 𝜌 ∈ 𝑃 ′, 𝜌⊥ ≤R 𝜌 and 𝜌 ≤R 𝜌global

Definition 2.2 (⊒, partial order on lifetime relations). We say that
a lifetime relation R1 is at least as precise (or constrained) as R2 and
write R1 ⊒ R2 (and R2 ⊑ R1) if for all 𝜌1, 𝜌2, 𝜌1 ≥R2 𝜌2 implies
𝜌1 ≥R1 𝜌2.

We write J𝑎 ≥ 𝑏, 𝑐 ≥ 𝑑, . . . K∗ for the smallest lifetime relation
satisfying the given constraints, namely the transitive closure [21]
of these constraints with 𝜌global added as top element and 𝜌⊥ as
bottom. We write R1 ⊔ R2 for the smallest lifetime relation R such
that R ⊒ R1 and R ⊒ R2. This is the transitive closure of R1 ∪ R2.

2.5 Containment
Containment means intuitively that the fields of an object outlive
the object. For instance for a tuple, the elements should live at least

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Higher-ranked region inference for polymorphic, lazy languages IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

as long as the tuple. We formalize this with a containment function
CΔ : 𝜏×𝑃 → 𝑅, taking the type and regions of a value and returning
a lifetime relation on those regions. The type should be of kind ∗
and the region variables should have sort 𝑃Δ (𝜏).

CΔ (!𝜏, (𝜌2, 𝜌3)) = C◦Δ (𝜏, 𝜌2, 𝜌3)
CΔ (𝜏, (𝜌1, 𝜌2, 𝜌3)) = J𝜌2 ≥ 𝜌1K ⊔ C◦Δ (𝜏, 𝜌2, 𝜌3)

(7)

For non-strict values, we require that the region in which the
value is stored outlives the region containing the thunk. This pre-
vents that an evaluated thunk points at a deallocated value.

Note that 𝜌3 may not just be a single region, but may represent
an empty list (for types without additional region variables) or a
list of region variables. The constraints between these regions and
the region of the value (𝜌2) are specified in C◦Δ : 𝜏 × 𝑃 × 𝑃 → 𝑅.
First we consider tuples. A tuple has three region variables for each
field, namely a region to store the thunk, one for the value and
one for nested fields of the element. The last of these can itself
be a list of multiple region variables. We require that the region
containing the thunk outlives the region of the tuple itself and that
the region of the value outlives the thunk. Furthermore, the value
in the thunk may have more region variables in 𝜌3, which can give
more constraints.

C◦Δ ((𝜏1, 𝜏2), 𝜌, (𝜌1𝑡 , 𝜌1𝑣, 𝜌1, 𝜌2𝑡 , 𝜌2𝑣, 𝜌2))
= J𝜌1𝑣 ≥ 𝜌1𝑡 , 𝜌1𝑡 ≥ 𝜌, 𝜌2𝑣 ≥ 𝜌2𝑡 , 𝜌2𝑡 ≥ 𝜌K∗
⊔ C◦Δ (𝜏1, 𝜌1𝑣, 𝜌1) ⊔ C◦Δ (𝜏2, 𝜌2𝑣, 𝜌2)

(8)

C◦Δ (𝛼 𝜏1 . . . 𝜏2, 𝜌, 𝜌1) = J𝜌1 ≥ 𝜌K (9)

C◦Δ (𝜏, 𝜌, ()) = ⊥ (10)
Containment is needed to enforce that there are no pointers to

deallocated objects. When combining regions with garbage collec-
tion, this is required to allow the garbage collector to trace the heap
[11]. If one wouldn’t enforce containment, you could for instance
allow that the items of a list are deallocated if the list is only used
to compute its length.

3 ANNOTATIONS
Besides regions, we must now also assign annotations to variables.
The language of annotations is a functional language based on the
typed lambda calculus. An annotation of a function will take the
regions of the arguments and return value and give the relation
between those regions. In such an annotation, the region variables
of arguments and the returned value are all distinct and the relations
between those regions are stored in a lifetime relation (section 2.4).

As an example, consider the following functions, both of type
!Int→ Int:
id x = x

inc x = x + 1

Assume that the argument has region 𝜌1 and the result 𝜌2. Func-
tion id returns its argument and hence you may expect that regions
𝜌1 and 𝜌2 should be the same. We however only require that the
region of the argument 𝜌1 lives at least as long as the return region
𝜌2, resulting in the lifetime relation J𝜌1 ≥ 𝜌2K. In the second exam-
ple, inc, we return a new object and hence there are no constraints
between 𝜌1 and 𝜌2.

Similar to region variables of the argument, the annotation func-
tion also takes the annotations of the argument. Whereas region
arguments are concrete in the sense that they directly represent the
region in which a value is stored at runtime, annotation variables
are more abstract as they describe the relations between region
variables when a higher order argument is applied. To be more
precise, annotations describe relations between the regions of the
arguments and the return value of a function.

3.1 Sorts
As the annotation language is a typed functional language, we will
start by introducing those types. To avoid confusion with types in
the source language, we will call the types of annotations sorts.

𝑠 ::= 𝑅 | ( 𝑠 ) Relation, Tuple

| [
𝑠; 𝑃

]
𝑙 → 𝑠 Function

| ∀𝛼. 𝑠 | Ψ⟨ 𝛼 𝜏 ⟩ Quantification, Polymorphic sort

𝑙 ::= |→ | ∅

(11)

A relation, 𝑅, is a lifetime relation on regions. A tuple sort is
used for types with multiple annotations, similar to the tuple used
in region sorts.

The function sort is used to retrieve the regions and annotations
of an argument or return value of a function (in the source language).
We may limit how region arguments are used in a function. We
annotate region arguments with a lifetime context, denoted by
𝑙 . The lifetime context |→ , pronounced local bottom, denotes that
those argument may only be used on the right hand side of an
outlives constraint (≥) or in applications to functions with lifetime
context |→ . Thus, the function may not extend on the lifetime of
those region variables, but these region variable can be used to
extend the lifetimes of other region variables. When we do not
annotate the region argument, it may be used on both sides in the
lifetime relation. We write 𝑙 for the lifetime context, 𝑙 ::= |→ | ∅.
This lifetime context only applies to the region arguments of an
annotation function.

The quantification sort is used for polymorphic values. Note that
this quantifies over types instead of sorts. Similar to region sorts,
we also have a polymorphic sort here. This sort will be replaced
when its type variable is instantiated. We write 𝑠 𝜏 to denote the
instantiation of a quantification, which we will later formalize in
section 3.5.5, and 𝑠 .𝑛 to denote a one-based projection, where 𝑠 must
be a tuple sort of at least 𝑛 elements. A projection (𝑠1, 𝑠2, . . . , 𝑠𝑛) .𝑘
simplifies to 𝑠𝑘 .

3.2 Sort assignment
Similarly to region sorts, we define a mapping ΨΔ : 𝜏 → 𝑠 from
types to sorts. We annotate a function type 𝜏1 → 𝜏2 with a func-
tion taking the annotations and regions of 𝜏1 and returning a pair
containing the effect of a call to this function and the annotation of
the returned value. The first has sort [(), 𝑃] → [(), 𝑃Δ (!𝜏2)] |→ → 𝑅

and is a function taking the region of the previous thunk, used for
partial applications as described below, and the region variables
of the return value. The function returns the constraints on those
return regions in terms of the other regions.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark Ivo Gabe de Wolff and Jurriaan Hage

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

ΨΔ (𝜏1 → 𝜏2) = [ΨΔ (𝜏1); 𝑃Δ (𝜏1)] →
([(); 𝑃] → [(); 𝑃Δ (!𝜏2)] |→ → 𝑅, ΨΔ (𝜏2)) (12)

For other types, we propagate the annotations on nested func-
tions. For instance, for a tuple type, we create a tuple with the
annotations of the elements.

ΨΔ (()) = ()
ΨΔ (!𝜏) = ΨΔ (𝜏)

ΨΔ ((𝜏1, . . . , 𝜏𝑛)) = (ΨΔ (𝜏1), . . . ,ΨΔ (𝜏𝑛))
ΨΔ (𝛼 𝜏1 . . . 𝜏𝑛) = Ψ⟨ 𝛼 𝜏1 . . . 𝜏𝑛 ⟩

ΨΔ (∀𝛼. 𝜏) = ∀𝛼. ΨΔ (𝜏)
(13)

3.2.1 Partial applications. When partially applying a function, a
thunk object is constructed containing a pointer to the function
and its arguments. Thunks may form a linked list when applying
a variable containing a partially applied function. As an example,
consider the following code:

f x y z = x + y + z

a = f 1

b = a 2

Variable b contains a thunk object, pointing at a. We thus need a
containment constraint, saying that the region of thunk a outlives
the region of thunk b. The annotation function thus needs to get the
region of the previous thunk as an argument. We pass this region
variable in an additional lambda, with as argument [(), 𝑃], as seen
in the sort of a function in equation 12.

Note that the argument for the region of the previous thunk
is only used for partial applications. When partially applying a
function with the first argument, as we do in the definition of a, it
points at a global function.

3.3 Annotation language
The analysis works with annotations from a language based on the
typed lambda calculus. The syntax of the annotation language is
shown in figure 2. Bottom, ⊥, means that there are no constraints
on the argument and return regions of some function and⊤ implies
that everything is stored in the global region.

A lambda or an abstraction is written as 𝜆
[
𝜓 : 𝑠; 𝜌 : 𝑃

]
𝑙 ↦→ 𝑎. It

introduces both region variables (𝜌) and an annotation variable𝜓
in body 𝑎. The abstraction is annotated by a lifetime context, the
same as the lifetime context on a function sort. Lambdas can be
applied with an application, written as 𝑎 [𝑎; 𝜌]𝑙 .

A relation, written as a list of outlive constraints within brack-
ets, describes a relation on the lifetimes of region variables. The
constraints in the list must be unique and transitively closed. Reflex-
ivity and constraints of the form 𝜌global ≥ 𝜌 or 𝜌 ≥ 𝜌⊥ are implicit
and should not be listed. For brevity, we may also write 𝜌1 ≥ 𝜌2 to
denote a pairwise outlives relation, e.g. J(𝜌1, 𝜌2) ≥ (𝜌3, 𝜌4)K means
J𝜌1 ≥ 𝜌3, 𝜌2 ≥ 𝜌4K.

To accommodate polymorphism, we need quantification (∀𝛼. 𝑎)
and instantiation 𝑎 {𝜏}. Instantiating an annotation will cause that
polymorphic region sorts and polymorphic annotation sorts of the
instantiated type variable are instantiated with the given type.

The language has tuples, as some types need multiple annota-
tions. Tuples are represented as a comma-separated list of anno-
tations. To extract elements out of a tuple, we have (one-based)
projection, 𝑎.𝑛.

Furthermore, we have a join operator, which is the least annota-
tion (with respect to the partial order defined below) greater than
both of its arguments.

In section 2.4, we defined a partial order on lifetime relations,
e.g. annotations of sort 𝑅. We extend the definition to annotations
of arbitrary sorts with the usual extension [8, 22], written as 𝑎 ⊑ 𝑎′.
We write 𝑎 = 𝑎′ when 𝑎 ⊑ 𝑎′ and 𝑎′ ⊑ 𝑎.

3.4 Sorting rules
The sorting rules are the “typing rules” of the annotation language
and describe the sorts of annotations. We write Δ; Σ ⊢ 𝑎 : 𝑠 to
denote that annotation 𝑎 has sort 𝑠 in data type environment Δ and
sort environment Σ, which contains the sorts of the annotation and
region variables in scope. It is a set with elements of the form𝜓 : 𝑠 ,
𝜌 : 𝑃𝑙 or 𝜌 : 𝑃 ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩𝑙 , respectively bindings of annotation
variables, monomorphic region variables and polymorphic region
variables. The 𝑙 denotes the lifetime context of the lambda which
introduced those region variables. We can only introduce region
variables of a monomorphic sort or a polymorphic sort; region
variables of a tuple sort are not allowed; tuples should be bound
to a multiple region variables. We will however write {𝜌 : 𝑃𝑙 }
which should be read pairwise, e.g. {(𝜌1, 𝜌2) : (𝑃1, 𝑃2)} denotes
{𝜌1 : 𝑃, 𝜌2 : 𝑃}. We assume there is no shadowing of variables.

The sorting rules are given in figure 3. In the rule for quantifi-
cation, ftv(Σ) denotes the free type variables in Σ. Most rules are
as you would expect for a functional language, we highlight some
nonstandard rules here. For region variables, we have subeffecting.
It is allowed to use a variable with any lifetime context as having
lifetime context local bottom, and we may use a monomorphic re-
gion variable (𝜌 : 𝑃𝑙 ) as a polymorpic variable or as a tuple (𝜌 : 𝑃𝑙 ).
Note that in the notation that we use, 𝑃 is syntax (the monomorphic
region sort) and 𝑃 is variable (denoting any region sort).

A lifetime relation consists of outlive constraints of the form
𝜌 ≥ 𝜌′. For each outlive constraint we require that if both operands
are polymorphic, then they should be polymorphic on the same
type. Furthermore, the left hand side must have lifetime context
any and cannot be local bottom. The sorting rule for a lifetime
relation with multiple constraints says that all constraints on their
own should be valid, and it should be a lifetime relation according
to definition 2.1.

Figure 2: Language of annotations

𝑎 ::= ⊥ | ⊤ Bottom, Top

| 𝜆 [
𝜓 : 𝑠; 𝜌 : 𝑃

]
𝑙 ↦→ 𝑎 Abstraction

| 𝜓 | 𝑎 [𝑎; 𝜌]𝑙 Variable, Application

| 𝑎 ⊔ 𝑎 | q 𝜌 ≥ 𝜌 y
Join, Relation

| ∀𝛼. 𝑎 | 𝑎 {𝜏} Quantification, Instantiation

| ( 𝑎 ) | 𝑎.𝑛 Tuple, Projection

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Higher-ranked region inference for polymorphic, lazy languages IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 3: Sorting rules of annotations

𝜓 : 𝑠 ∈ Σ
Δ; Σ ⊢ 𝜓 : 𝑠

𝜌 : 𝑃𝑙 ∈ Σ
Δ; Σ ⊢ 𝜌 : 𝑃𝑙

Δ; Σ ⊢ 𝜌 : 𝑃

Δ; Σ ⊢ 𝜌 : 𝑃 |→

Δ; Σ ⊢ 𝜌 : 𝑃𝑙

Δ; Σ ⊢ 𝜌 : 𝑃𝑙 Δ; Σ ⊢ ⊥ : 𝑠 Δ; Σ ⊢ ⊤ : 𝑠
Δ; Σ ⊢ 𝑎 : 𝑠 𝛼 ∉ ftv(Σ)
Δ; Σ ⊢ ∀𝛼. 𝑎 : ∀𝛼. 𝑠

Δ; Σ ⊢ 𝜌1 : 𝑃1 . . . Δ; Σ ⊢ 𝜌𝑛 : 𝑃𝑛

Δ; Σ ⊢ (𝜌1, . . . , 𝜌𝑛) :
(
𝑃1, . . . , 𝑃𝑛

) Δ; Σ ∪ {𝜓 : 𝑠1} ∪ {𝜌 : 𝑃𝑙 } ⊢ 𝑎 : 𝑠2
Δ; Σ ⊢ 𝜆 [

𝜓 : 𝑠1; 𝜌 : 𝑃
]
𝑙 ↦→ 𝑎 :

[
𝑠1; 𝑃

] → 𝑠2

Δ; Σ ⊢ 𝑎1 :
[
𝑠1; 𝑃

]
𝑙 → 𝑠2 Δ; Σ ⊢ 𝑎2 : 𝑠1 Δ; Σ ⊢ 𝜌 : 𝑃𝑙

Δ; Σ ⊢ 𝑎1 [𝑎2; 𝜌]𝑙 : 𝑠2

Δ; Σ ⊢ 𝜌 : 𝑃 Δ; Σ ⊢ 𝜌′ : 𝑃𝑙
Δ; Σ ⊢ J𝜌 ≥ 𝜌′K : 𝑅

Δ; Σ ⊢ q
𝜌1 ≥ 𝜌′1

y
: 𝑅 . . . Δ; Σ ⊢ J𝜌𝑛 ≥ 𝜌′𝑛K : 𝑅 The relation is a lifetime relation

Δ; Σ ⊢ q
𝜌1 ≥ 𝜌′1, . . . , 𝜌𝑛 ≥ 𝜌′𝑛

y
: 𝑅

Δ; Σ ⊢ 𝜌 : 𝑃 ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩ Δ; Σ ⊢ 𝜌′ : 𝑃𝑙
Δ; Σ ⊢ J𝜌 ≥ 𝜌′K : 𝑅

Δ; Σ ⊢ 𝜌 : 𝑃 Δ; Σ ⊢ 𝜌′ : 𝑃 ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩𝑙
Δ; Σ ⊢ J𝜌 ≥ 𝜌′K : 𝑅

Δ; Σ ⊢ 𝜌 : 𝑃 ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩ Δ; Σ ⊢ 𝜌′ : 𝑃 ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩𝑙
Δ; Σ ⊢ J𝜌 ≥ 𝜌′K : 𝑅

Δ; Σ ⊢ 𝑎 : ∀𝛼. 𝑠
Δ; Σ ⊢ 𝑎 { 𝜏 } : 𝑠 [𝛼 := 𝜏]Δ

Δ; Σ ⊢ 𝑎1 : 𝑠1 Δ; Σ ⊢ 𝑎𝑛 : 𝑠𝑛
Δ; Σ ⊢ (𝑎1, . . . , 𝑎𝑛) : (𝑠1, . . . , 𝑠𝑛)

Δ; Σ ⊢ 𝑎 : (𝑠1, . . . , 𝑠𝑛) 1 ≤ 𝑘 ≤ 𝑛
Δ; Σ ⊢ 𝑎.𝑘 : 𝑠𝑘

Δ; Σ ⊢ 𝑎1 : 𝑠 Δ; Σ ⊢ 𝑎2 : 𝑠
Δ; Σ ⊢ 𝑎1 ⊔ 𝑎2 : 𝑠

3.5 Evaluation rules
We will introduce the evaluation rules of the annotation language
in this section, ignoring name collisions and alpha conversion. We
write 𝑎 −→ 𝑎′ to denote that a well sorted annotation 𝑎 evaluates
to 𝑎′. The “evaluates to” relation is reflexive and transitive.

𝑎 −→ 𝑎
𝑎1 −→ 𝑎2 𝑎2 −→ 𝑎3

𝑎1 −→ 𝑎3

3.5.1 Sub-annotations. The subterms of annotations may be eval-
uated.

𝑎 −→ 𝑎′

𝜆
[
𝜓 : 𝑠; 𝜌 : 𝑃

]
𝑙 ↦→ 𝑎 −→ 𝜆

[
𝜓 : 𝑠; 𝜌 : 𝑃

]
𝑙 ↦→ 𝑎′

𝑎1 −→ 𝑎′1 𝑎2 −→ 𝑎′2
𝑎1 [𝑎2; 𝜌]𝑙 −→ 𝑎′1

[
𝑎′2; 𝜌

]
𝑙

𝑎 −→ 𝑎′
∀𝛼. 𝑎 −→ ∀𝛼. 𝑎′

𝑎1 −→ 𝑎′1 𝑎𝑛 −→ 𝑎′𝑛
(𝑎1, . . . , 𝑎𝑛) −→ (𝑎′1, . . . , 𝑎′𝑛)

𝑎 −→ 𝑎′
𝑎 {𝜏} −→ 𝑎′ {𝜏}

𝑎 −→ 𝑎′
𝑎.𝑖 −→ 𝑎′ .𝑖

𝑎1 −→ 𝑎′1 𝑎2 −→ 𝑎′2
𝑎1 ⊔ 𝑎2 −→ 𝑎′1 ⊔ 𝑎′2

3.5.2 Tuples. A projection extracts an element from a tuple.

(𝑎1, . . . , 𝑎𝑛) .𝑖) −→ 𝑎𝑖

3.5.3 Join. A join of two lifetime relations evaluates to the smallest
lifetime relation containing both operands.

R =
q
𝜌1 ≥ 𝜌′1, . . . , 𝜌𝑛 ≥ 𝜌′𝑛, 𝜌𝑛+1 ≥ 𝜌′𝑛+1, . . . , 𝜌𝑚 ≥ 𝜌′𝑚

y∗
q
𝜌1 ≥ 𝜌′1, . . . , 𝜌𝑛 ≥ 𝜌′𝑛

y ⊔ q
𝜌𝑛+1 ≥ 𝜌′𝑛+1, . . . , 𝜌𝑚 ≥ 𝜌′𝑚

y −→ R
The join has bottom as identity and is associative, commutative

and idempotent.

⊥ ⊔ 𝑎 −→ 𝑎 (𝑎1 ⊔ 𝑎2) ⊔ 𝑎3 −→ 𝑎1 ⊔ (𝑎2 ⊔ 𝑎3)

⊤ ⊔ 𝑎 −→ ⊤ 𝑎1 ⊔ 𝑎2 −→ 𝑎2 ⊔ 𝑎1 𝑎 ⊔ 𝑎 −→ 𝑎

Furthermore, we have some rules on how joins and bottoms
distribute over other annotations. For quantifications and lambdas,
we move the join inward. With alpha conversion, we can assure
that the type variable, region variables and annotation variable
have the same name on both sides.

(∀𝛼. 𝑎1) ⊔ (∀𝛼. 𝑎2) −→ ∀𝛼. 𝑎1 ⊔ 𝑎2
(
𝜆 [𝜓 ; 𝜌]𝑙 ↦→ 𝑎1

) ⊔ (
𝜆 [𝜓 ; 𝜌]𝑙 ↦→ 𝑎2

) −→ 𝜆 [𝜓 ; 𝜌]𝑙 ↦→ 𝑎1 ⊔ 𝑎2

∀𝛼. ⊥ −→ ⊥ 𝜆
[
𝜓 : 𝑠; 𝜌 : 𝑃

]
𝑙 ↦→ ⊥ −→ ⊥

For applications and instantiations, we move the joins outward.

(𝑎1 ⊔ 𝑎2) [𝑎, 𝜌]𝑙 −→ 𝑎1 [𝑎, 𝜌]𝑙 ⊔ 𝑎2 [𝑎, 𝜌]𝑙 ⊥ [𝑎, 𝜌]𝑙 −→ ⊥

(𝑎1 ⊔ 𝑎2) {𝜏} −→ 𝑎1 {𝜏} ⊔ 𝑎2 {𝜏} ⊥ {𝜏} −→ ⊥
3.5.4 Application. An application can be evaluated if it targets an
abstraction, with a substitution.

(
𝜆

[
𝜓 : 𝑠; 𝜌1 : 𝑃

]
𝑙 ↦→ 𝑎1

)
[𝑎2; 𝜌2]𝑙 −→ 𝑎1 [𝜓 := 𝑎2] [𝜌1 := 𝜌2]

The substitution of the annotation argument𝜓 is a syntactic sub-
stitution (ignoring name collisions). The substitution of region
variables is slightly different as a lambda takes a tree of region
variables. As noted before, a single region 𝜌 may also be passed to a
tree of region variables. The constraints in a lifetime relation must
after substitution be converted to a lifetime relation again, as there
might be new transitively implied constraints after the substitution.

3.5.5 Instantiation. An instantiation of a quantification, (∀𝛼. 𝑎) {𝜏}
and its sort (∀𝛼. 𝑠) 𝜏 , can be evaluated by substituting type vari-
able 𝛼 with type 𝜏 in 𝑎 and 𝑠 . A polymorphic annotation sort
Ψ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩ is substitutedwithΨΔ (𝛼 𝜏1 . . . 𝜏𝑛) and 𝑃 ⟨𝛼 𝜏1 . . . 𝜏𝑛⟩
with 𝑃◦Δ (𝛼 𝜏1 . . . 𝜏𝑛). A polymorphic region variable, bound by a
lambda, may be replaced by a structure of region variables.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark Ivo Gabe de Wolff and Jurriaan Hage

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

3.5.6 Normal form. If an annotation cannot be evaluated further,
we say that it is in normal form. As the join is commutative and
associative, we enforce an arbitrary order on annotations and order
the annotations in a join accordingly. Furthermore variables must
be saturated, which we ensure by eta expansion.

4 BINDING REGIONS WITH ESCAPE CHECK
So far we have described how analysis values can be represented
in our setup, but we haven’t shown how those terms are computed.
To decide where regions are bound, we add the escape check, which
does the actual analysis-specific work by detecting which regions
can be allocated within the function and which regions may be
unified with others. After this section, we explain how the con-
structs in the source language are mapped to annotation terms in
the annotation language.

4.1 Additional region arguments
When analysing a toplevel definition, we get access to the regions
of arguments and the return value and the global region, and we
can allocate new local regions. In some higher order functions, this
is not sufficient. In these cases, we add additional region arguments
to the function. For example, in the (.) operator in Haskell for
function composition, we add an additional region argument for
the intermediate value (the result of one function, to be passed
to the second). In case of (inc . id) x, that additional region
argument may be instantiated with the same region as the input x,
and in case of (id . inc) x it can be instantiated with the same
region as the result of the entire expression.

The analysis starts by assigning region variables to the local
bindings of the function. The escape check will then decide for each
of those regions, whether it can be unified with another region or
can be allocated within the function. If neither of those options
happens, then that region becomes an additional region argument.

We must adapt the run-time representation of thunks to support
additional region arguments. A thunk is a linked list of arguments,
where the last item points at the function being called.We nowmust
change this to be an object containing both the function pointer
and the additional region arguments. For partial applications we
would already allocate an object for the thunk, but when using a
toplevel function with additional region arguments without passing
any arguments this change does have a larger impact: without re-
gion based memory management, using a toplevel function would
not result in any allocation, but now we must allocate an object
containing the function pointer and additional region arguments.
This is a tradeoff; using additional region arguments we can instan-
tiate the regions differently for the different uses of the function.
Instead we could also remove the additional region arguments and
replace them by the global region, which eliminates the need for
this additional allocation, but reduces the precision of the analysis.

4.2 Escape check
The analysis performs the escape check to decide which regions may
be allocated within a function or may be unified with others. It oper-
ates on an annotation, which we expect to be a function originating
from a source function of a certain arity 𝑛. We take the lifetime
relation of the subannotation corresponding with the effect after

being applied with 𝑛 arguments (i.e., we drop the subannotations
corresponding with applications of fewer than 𝑛 arguments) and
also check whether region variables occur elsewhere in the effect
or in the annotation of the returned value. If a region variable is
used elsewhere, except in an application with lifetime context local
bottom, we call it a higher order region variable as this is caused by
a usage of an function argument of a higher order function. Occur-
rences of region variables in applications with lifetime context local
bottom ( |→ ) may be ignored, as such applications cannot extend the
lifetime of those regions; those applications can only only extend
the lifetime of other regions in terms of those. We cannot default
higher order region variables, as we may get more constraints on
them if the annotation of the higher order function argument is
given.

Before we introduce the defaulting rules which we use in the
escape check, we must first introduce the term directly outlives.

Definition 4.1 (Outlive set). The outlive set𝑜𝑢𝑡𝑙𝑖𝑣𝑒 (𝜌𝑢 ) of a region
𝜌𝑢 in a lifetime relation R is the set of all regions 𝜌𝑣 ≠ 𝜌𝑢 such that
𝜌𝑢 ≥ 𝜌𝑣 .

Definition 4.2 (Directly outlives). We say that region 𝜌𝑢 directly
outlives region 𝜌𝑣 if 𝑜𝑢𝑡𝑙𝑖𝑣𝑒 (𝜌𝑢 ) = 𝑜𝑢𝑡𝑙𝑖𝑣𝑒 (𝜌𝑣) ∪ {𝑣}.

A region directly outlives at most one region. In first order func-
tions, we can find regions which directly outlive an other region
by looking at the relation specified in the normalized annotation.
For higher order functions, we do not yet know all constraints, as
some regions, the higher order region variables, may be influenced
by the annotations of the arguments. The escape check performs
the following rules:

• If an additional region argument 𝜌 does not occur in the
form 𝜌 ≥ 𝜌′ and is not a higher order region variable,
then no constraints require this region to be live outside of
this function. We allocate this region within the function,
substitute it with 𝜌⊥ in the remaining constraints and keep
applying this rule until no further regions can be allocated
within the function.
• If two regions 𝜌1 and 𝜌2 exist with the constraints 𝜌1 ≥ 𝜌2

and 𝜌2 ≥ 𝜌1, at least one of them is an additional region
argument and they have the same region sort, then we can
unify them.

• Finally we substitute a region 𝜌1 with 𝜌2 if 𝜌1 is an addi-
tional region argument, not a higher order region variable,
they have the same region sort and 𝜌1 directly outlives 𝜌2.
This rule is applied repeatedly.

Note that the second rule can be applied to higher order region
variables, as additional constraints cannot cause the constraints
𝜌1 ≥ 𝜌2 and 𝜌2 ≥ 𝜌1 to disappear. Also note that because we don’t
need to consider applications with lifetime context local bottom, we
can detect that the Maybe objects in mapMaybe :: (a -> Maybe b)
-> [a] -> [b] can be allocated within the function: even though
we do not know what the function does to construct those Maybe
values, we still know that they cannot escape mapMaybe.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Higher-ranked region inference for polymorphic, lazy languages IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

5 FIXED POINT ITERATION FOR (MUTUAL)
RECURSION

As the source language contains recursive definitions, we must
support them in the analysis. In type inference, also in inference
for type and effect systems, we would assign an type/annotation
variable to the recursively used declaration and refine that using
unifications. As our annotation language is richer, we cannot use
unifications. We use fixed-point iteration, where we initially assign
bottom (the lowest value in the lattice) as the annotation value to
the recursively used declaration. We iterate by using the result-
ing annotation as the annotation of that declaration for the next
iteration, until we reach a fixed-point.

The source language has two ways to introduce (mutual) recur-
sive declarations: recursive functions and recursive let-bindings.
Our implementation actually has a third form, as we apply the anal-
ysis in our implementation to an intermediate language with SSA
[1, 7], which may contain loops after the tail call optimization pass.
Those recursive bindings are handled the same as the recursive
let-bindings.

In our domain, region inference, we need to perform the escape
check which will bind and unify regions. Instead of introducing the
escape check as a separate construct in the annotation language, we
need to combine it with fixed-point iteration: The escape check is
not monotone, whereas fixed-point iteration requires a monotonic-
ity. Furthermore, the escape check may find that some regions do
not escape the lifetime of a function, and by performing the escape
check within the fixed-point iteration (as opposed to first finding a
fixed-point and then running the escape check) we allow the region
to be allocated within the function and not have any constraints
with the recursive calls. We extend the annotation language with
two fixed-point combinators:

𝑎 ::= . . . | fix 𝑠 . 𝑎 Fixed-point

| fix escape {
𝑃
}
:
(
[𝑛, 𝑠] : 𝑎

)
Fixed-point with escape check

The first fixed-point combinator, fix 𝑠 . 𝑎, evaluates to the least
annotation 𝑎′ of sort 𝑠 such that 𝑎 𝑎′ = 𝑎′, if we can reach that
fixed-point. We will later discuss how we can handle functions for
which we do not reach a fixed-point (or cannot detect that we are
in a fixed-point) in a certain number of iterations.

The second fixed-point combinator includes the escapes check.
In contrary to previous higher ranked analyses, we must now
couple the fixed-point iteration with the escape check to unify
and remove region variables, as the transformation in the escape
check is not monotone. A fixed-point with escape check, written
as fix 𝑒𝑠𝑐𝑎𝑝𝑒

{
𝑃
}
: ( [𝑛1, 𝑠1] : 𝑎1, . . . , [𝑛𝑘 , 𝑠𝑘 ] : 𝑎𝑘 ), has sort (𝑃 →

𝑠1, . . . , 𝑃 → 𝑠𝑛). Annotation 𝑎𝑖 should have sort [(𝑠1, . . . , 𝑠𝑛), ()] →
[(); 𝑃] → 𝑠𝑖 and should correspond with a function type of arity at
least 𝑛𝑖 . The fixed-point evaluates to a tuple (𝑎′1 .0, . . . , 𝑎′𝑘 .0) such
that for all 𝑖 ∈ {1, . . . , 𝑘}, 𝑎′𝑖 is equal to the result of the escape
check applied to 𝑎𝑖 (𝑎′𝑖 ), if we can find such a value.

We use this to analyse a group of 𝑘 functions where function 𝑖
has annotation 𝑎𝑖 , arity 𝑛𝑖 and sort 𝑠𝑖 . The annotation and sort are a
tuple: to handle recursive let bindings, we must store an annotation
per variable together with the actual annotation of the analysed
function in the tuple.

5.1 Evaluation
A fixed-point fix 𝑠 . 𝑎, where 𝑎 : [𝑠; ()] → 𝑠 . is evaluated by repeat-
edly applying 𝑎 starting with ⊥, until a fixed-point is reached. The
evaluation of a fixed-point with escape check is similar, but we will
try to remove additional region arguments there, as described in
section 4.2. A fixed-point with escape check can only be evaluated
if the body has no free variables, as free variables could cause the
escape check to be inconsistent.

A fixed-point can sometimes be detected by checking syntactic
equivalence after evaluating the terms. As shown previously in [22],
this is not sufficient as there exist pairs of normalized functions with
the same behaviour but a different notation. If the source language
is monomorphic, and we thus do not have a polymorphic sort, we
can detect equivalence of two functions by applying them with all
possible inputs of the correct sort. The set of possible inputs is finite;
it may be very large but it is at least possible. If this source language
does have polymorphism, then this set can become infinite: there
might be infinitely many types with which we can instantiate a
polymorphic annotation. The detection of a fixed-point is not the
only problem, some functions also do not have a fixed-point.

As an example, consider the function iterate :: (a -> a) ->
a -> [a] which repeatedly applies the function and returns the
values in an infinite list. If the function passed to iterate rotates
a tuple of size 𝑛, i.e. shifts all elements of a tuple one place and
places the last at the beginning, then we would need to perform
at least 𝑛 iterations in fixed-point iteration to make sure that the
annotation of the first element of the tuple is propagated to all
positions in the tuple. The function is however analysed before
we know how it is used and how type argument a is instantiated,
and we can choose an arbitrarily large 𝑛. This function does not
have a least fixed-point, and we have considered various options to
handle those functions. We could simply use ⊤ as annotation if a
function does not have a fixed-point or if the fixed-point cannot be
found. We could also perform fixed-point iteration starting at top:
the annotation after any iteration is admissible, and hence we can
stop iterating at any time. This does cause that the analysis loses a
lot of precision.

Another option would be to just keep the fixed-point combinator
in the annotation, to be evaluated later when more information
about the use of the function is known. When the function is used,
wemay know the type with which the type argument is instantiated
or the function passed to the higher order function, and be able to
evaluate the fixed-point. We experimented with this, but it becomes
difficult to make use of the information later on. Furthermore, we
do need to perform code generation on the higher order function,
before we know it’s used: we can keep the fixed-point combinator
in the annotation, but we still need to know which regions need to
be placed where. Hence we do need to evaluate a fixed-point with
escape check to a normal fixed-point combinator, which can be done
by basing the escape check on some steps of fixed-point iteration
starting at top. It is helpful to implement additional evaluation rules,
for instance detecting whether an argument is invariant (always
passed the same value in calls in the fixed-point) and removing the
invariant argument, to evaluate more fixed-points.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark Ivo Gabe de Wolff and Jurriaan Hage

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

6 INFERENCE
We write Δ, Γ, 𝜌 ⊢ 𝑒 : 𝑎effect, 𝑎result to denote that if expression 𝑒
in data type environment Δ and annotation environment Γ needs to
store its result in regions 𝜌 , then it causes effect 𝑎effect and returns
a value with annotation 𝑎result.

We introduce an environment Γ mapping variables to the anno-
tations and regions of their values. A top-level function (a toplevel
binding whose arity is at least one) 𝑥 : 𝜏 = 𝑓 is present as 𝑥 :
(𝑃, 𝑎)𝑇 , where 𝑃 is the sort of the additional region arguments and
𝑎 : [(); 𝑃] → ΨΔ (𝜏) is the annotation of the function. A top-level
constant or a local variable 𝑥 of type 𝜏 is present as 𝑥 : (𝑎, 𝜌) where
𝑎 : ΨΔ (𝜏) and 𝜌 : 𝑃Δ (𝜏) are its annotation and regions.

6.1 Top-level definitions
We write Δ, Γ ⊢ 𝑓 : 𝑎 to denote that a top-level declaration 𝑓 has
annotation 𝑎, in data type environment Δ and annotation environ-
ment Γ. Top-level definitions are always stored in the global region.
In the analysis we distinguish top-level functions and top-level
constants. Recall that lambdas only occur in top-level definitions,
not in expressions. This format isn’t restrictive, as a program can
for instance be converted into it with lambda lifting [15]. We call a
top-level definition with lambdas, i.e. arity(𝑓 ) ≥ 1, a function, and
one without a constant.

6.1.1 Functions. Rule Function annotates a toplevel function 𝑥 :
𝜏 = 𝑓 with an annotation 𝑎 : ΨΔ (𝜏), written as Δ, Γ ⊢function 𝑓 : 𝑎.
As defined in ΨΔ, the annotation on a function type contains the
effect of calling the lambda and the annotation on the result. We call
the rightmost lambda in a function the saturated lambda and the
others unsaturated. The effect and annotation of a saturated lambda
follow directly from the expression in the body (rule Saturated
Lambda). Rule Unsaturated Lambda places the containment of
the thunk object (or closure) that would be created for an unsatu-
rated call as the effect: the thunk refers to the previous thunk (the
applied function) and the arguments of the application. We show
the inference rules for functions in figure 4.

6.1.2 Constants. A top-level constant 𝑥 : 𝜏 = 𝑓 (where arity(𝑓 ) =
0) is annotated with both an effect 𝑎effect : 𝑅 and an annotation on
the value 𝑎result : ΨΔ (𝜏), written as Δ, Γ ⊢constant 𝑓 : 𝑎effect, 𝑎result.
The effect is not needed for usages of this toplevel definition, but it
is necessary to analyse and compile the code for the top-level as

well: Can local variables of the declaration for instance be allocated
locally or should they be placed in the global region? Later on, we
will strip the effect away in function N .

Δ, Γ ⊢constant 𝑓 : 𝑎effect, 𝑎result
Δ, Γ ⊢ 𝑓 : (𝑎effect, 𝑎result)

[Constant]

Δ, Γ ⊢constant 𝑓 : 𝑎effect, 𝑎result
Δ, Γ ⊢constant ∀𝛼. 𝑓 : 𝑎effect, ∀𝛼. 𝑎result)

[C. Quantification]

Δ, Γ, 𝜌global ⊢ 𝑒 : 𝑎effect, 𝑎result
Δ, Γ ⊢constant 𝑒 : 𝑎effect, 𝑎result

[Constant Body]

6.2 Binding groups
We introduce a judgement Δ, Γ ⊢ {𝑥1 : 𝜏1 = 𝑓1; . . . 𝑥𝑛 : 𝜏𝑛 = 𝑓𝑛} :
Γ′ to denote that if the program with bindings 𝑥1, . . . , 𝑥𝑛 with all
free variables present in Γ is analysed, then Γ′ ⊃ Γ adds the anno-
tations of 𝑥1, . . . , 𝑥𝑛 to Γ. Note contrary to other type (and effect)
systems, Γ does not contain bindings for the introduced indentifiers
𝑥1, . . . , 𝑥𝑛 . Instead, this judgement tells how those bindings extend
the environment Γ to Γ′. Rule Split can split a program in binding
groups, clusters of (mutually) recursive functions. Non-recursive
functions are alone in such a group. Splitting in binding groups
improves both the performance and precision of the analysis.

𝑘 +𝑚 = 𝑛 {𝑏1, . . . , 𝑏𝑘 } ∪ {𝑟1, . . . , 𝑟𝑚} = {1, . . . , 𝑛}
Δ, Γ ⊢ {𝑥𝑏1 : 𝜏𝑏1 = 𝑓𝑏1 ; . . . 𝑥𝑏𝑘 : 𝜏𝑏𝑘 = 𝑓𝑏𝑘 } : Γ′𝑏

Δ, Γ ∪ Γ′𝑏 ⊢ {𝑥𝑟1 : 𝜏𝑟1 = 𝑓𝑟1 ; . . . 𝑥𝑟𝑘 : 𝜏𝑟𝑘 = 𝑓𝑟𝑘 } : Γ′

Δ, Γ ⊢ {𝑥1 : 𝜏1 = 𝑓1; . . . 𝑥𝑛 : 𝜏𝑛 = 𝑓𝑛} : Γ′
[Split]

Rule Program analyses a a binding group by introducing a fixed-
point with escape check. All free region variables of the annotations
are bound as additional region arguments. The escape check will
detect whether those regions do not escape and can be allocated
locally. Free polymorphic region variables become monomorphic
additional region arguments, as they may need to be passed at call
sites before the type arguments are known. If the escape check
unifies such a variable with another region variable, then it may
become polymorphic again and we wouldn’t lose precision.

For recursive calls we use the same additional region arguments:
there is no polymorphic recursion on additional region arguments.
If the escape check would detect that a region doesn’t escape, then
all recursive calls will get their own local region.

Figure 4: Inference of toplevel functions

Δ, Γ ⊢function 𝑓 : 𝑎
Δ, Γ ⊢ 𝑓 : 𝑎 [Function]

Δ, Γ ⊢function 𝑓 : 𝑎
Δ, Γ ⊢function ∀𝛼. 𝑓 : ∀𝛼. 𝑎) [FunctionQuantification]

𝜓1,𝜓2,𝜓3, 𝜌previous, 𝜌 : 𝑃Δ (𝜏1), 𝜌result : 𝑃Δ (𝜏2) fresh Δ, Γ ∪ {𝑥 : (𝜓1, 𝜌)}, 𝜌result ⊢ 𝑒 : 𝑎′effect, 𝑎result
𝑎effect = 𝜆[𝜓2 : (), 𝜌previous : 𝑃] ↦→ 𝜆[𝜓3 : (), 𝜌result : 𝑃Δ (𝜏2)] |→ ↦→ CΔ (𝜏1, 𝜌) ⊔ 𝑎

′
effect

Δ, Γ ⊢function \𝑥 : 𝜏1 . 𝑒 : 𝜆[𝜓1 : ΨΔ (𝜏1), 𝜌 : 𝑃Δ (𝜏1)] ↦→ (𝑎effect, 𝑎result)
[Saturated Lambda]

𝜓1,𝜓2,𝜓3, 𝜌previous, 𝜌 : 𝑃Δ (𝜏1), 𝜌result : 𝑃Δ (!𝜏2) fresh Δ, Γ ∪ {𝑥 : (𝜓1, 𝜌)} ⊢function () : 𝑓 𝑎result
𝑎effect = 𝜆[𝜓2 : (), 𝜌previous : 𝑃] ↦→ 𝜆[𝜓3 : (), 𝜌result : 𝑃Δ (!𝜏2)] |→ ↦→ CΔ (𝜏1, 𝜌) ⊔

q
𝜌previous ≥ 𝜌result .0

y

Δ, Γ ⊢function \𝑥 : 𝜏1 . 𝑓 : 𝜆[𝜓1 : ΨΔ (𝜏1), 𝜌 : 𝑃Δ (𝜏1)] ↦→ (𝑎effect, 𝑎result)
[Unsaturated Lambda]

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Higher-ranked region inference for polymorphic, lazy languages IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

In case a binding is a toplevel constant, then we must convert
its annotation to an annotation without the effect and without
additional region arguments. This conversion happens in functions
N and 𝑛. The formalisation is shown in figure 5.

Nfix (𝑓 , 𝜌add., 𝑎) =
{
((𝑎 [(); 𝜌global]) .2, 𝜌global) if arity(𝑓 ) = 0
(𝑎 [(); 𝜌add.], 𝜌global) otherwise

N(𝑓 , 𝑃, 𝑎) =
{
((𝑎 [(); 𝜌global]).2, 𝜌global) if arity(𝑓 ) = 0
(𝑃, 𝑎)𝑇 otherwise

𝑛(𝑓 , 𝑠) =
{
(𝑅, 𝑠) if arity(𝑓 ) = 0
𝑠 otherwise

6.3 Expressions and calls
The rules for pattern matching on lists and non-recursive let bind-
ings bring the new variables in scope and propagate the effects of
the subterms. Together with the rule for recursive let bindings, they
are shown in figure 6. We use a similar notation as for expressions
for calls: Δ, Γ, 𝜌 ⊢call 𝑐 : 𝑎effect, 𝑎result, but 𝜌 may here correspond
to a lazy type instead of a strict type; in contrast to expressions,
calls may have a lazy type. When a call is used strictly, either in
an expression or when calling a constructor (including tuple), we
can forget about the thunk region with respectively Expr Call or
Strict Call.

Δ, Γ, (𝜌𝑡 , 𝜌𝑣, 𝜌) ⊢call 𝑐 : 𝑎effect, 𝑎result
Δ, Γ, (𝜌𝑣, 𝜌) ⊢ 𝑐 : 𝑎effect, 𝑎result

[Expr Call]

Δ, Γ, (𝜌𝑡 , 𝜌𝑣, 𝜌) ⊢call 𝑐 : 𝑎effect, 𝑎result
Δ, Γ, (𝜌𝑣, 𝜌) ⊢call 𝑐 : 𝑎effect, 𝑎result

[Strict Call]

The constraints in rule Var1 for local variables assure that the
regions of the variable outlive the destination regions. For a call
to a toplevel declaration (Var2), we don’t need to generate those
constraints, as it is already stored in the global region. We do have
to apply the annotation with additional region arguments there.

𝑥 : (𝑎, 𝜌2) ∈ Γ
Δ, Γ, 𝜌1 ⊢call 𝑥 : J𝜌2 ≥ 𝜌1K∗ , 𝑎

[Var1]

𝑥 : (𝑃, 𝑎)𝑇 ∈ Γ
Δ, Γ, (𝜌𝑡 , 𝜌𝑣, 𝜌) ⊢call 𝑥 : 𝜌add ≥ 𝜌𝑡 , 𝑎 [(); 𝜌add]

[Var2]

Rule Apply for applications passes the regions and annotation of the
annotation, the regions for the output of the call and the region of
the previous thunk to the annotation of the function. The resulting

effect (𝑎.1) is combined with the effect of the function expression,
containment of the value and containment of the thunk,

Δ, Γ, 𝜌function ⊢call 𝑐 : 𝑎functioneffect , 𝑎functionresult
𝑥 : (𝑎argument, 𝜌argument) ∈ Γ

𝑎 = 𝑎functionresult [𝑎argument; 𝜌argument]
𝑎thunk =

q(𝜌function .1, 𝜌argument) ≥ 𝜌𝑡
y

𝜏 is the type of 𝑐 and 𝜌function : 𝑃Γ (𝜏) fresh
Δ, Γ, (𝜌𝑡 , 𝜌𝑣, 𝜌) ⊢call 𝑐 𝑥 :

CΔ (𝜏, 𝜌function) ⊔ 𝑎functioneffect ⊔ 𝑎thunk
⊔ 𝑎.1 [(), 𝜌function .2] [(), (𝜌𝑣, 𝜌)] |→ , 𝑎.2

[Apply]

Rule Instantiate for type applications in calls uses the same
regions as the subexpression to store the value, as it is allowed to
use a monomorphic region variable 𝜌 : 𝑃 for any region sort 𝑃 .

Δ, Γ, 𝜌 ⊢call 𝑐 : 𝑎effect, 𝑎result
Δ, Γ, 𝜌 ⊢call 𝑐 @𝜏 : 𝑎effect, 𝑎result {𝜏}

[Instantiate]

Unit has no effect nor annotations. A tuple has an annotation
containing all the annotations of the fields. The effect of construct-
ing a tuple ensures that the region variables of the values stored in
the tuple outlive the corresponding regions of the tuple.

Δ, Γ, 𝜌 ⊢call () : ⊥, () [Unit]

Δ, Γ, 𝜌constructor ⊢call ( , ) : ⊥,
∀𝛼1 . ∀𝛼2 .
𝜆[𝜓1 : Ψ⟨𝛼1⟩, (𝜌𝑡1, 𝜌𝑣1 , 𝜌1) : (𝑃, 𝑃, 𝑃 ⟨𝛼1⟩)] ↦→
(⊥, 𝜆[𝜓2 : Ψ⟨𝛼2⟩, (𝜌𝑡2, 𝜌𝑣2 , 𝜌2) : (𝑃, 𝑃, 𝑃 ⟨𝛼2⟩)] ↦→
(𝜆[_ : (), _ : 𝑃] ↦→ 𝜆[_ : (), (_, 𝜌) : 𝑃Δ (!(𝛼1, 𝛼2))]
↦→ q(𝜌𝑡1, 𝜌𝑣1 , 𝜌1, 𝜌𝑡2, 𝜌𝑣2 , 𝜌2) ≥ 𝜌

y
,

(𝜓1,𝜓2)))

[Tuple-2]

6.4 Data types
To add support for data types in the analysis, we must handle data
types in the assignment of region variables (𝑃◦Δ), the assignment
of annotations (ΨΔ), containment (C) and the annotations and ef-
fects of constructing and pattern matching and store the required
information in data type environment Δ. We support algebraic data
types as seen in Haskell, where the type variables of recursive posi-
tions are invariant (we support no polymorphic recursion; finger
trees [12] for instance cannot be handled), and recursion does not
occur in contravariant positions. Unsupported data types should

Figure 5: Inference of a program

𝜓,𝜓 ′ fresh 𝜌 : 𝑃 is a list of (monomorphic) free region variables of 𝑎1, . . . , 𝑎𝑛
Γfix = Γ ∪ {𝑥1 : Nfix (𝑓1, 𝜌,𝜓 .1), . . . , 𝑥𝑛 : Nfix (𝑓𝑛, 𝜌,𝜓 .𝑛)} 𝑠 = (𝑛(𝑓1,ΨΔ (𝜏1)), . . . , 𝑛(𝑓𝑛,ΨΔ (𝜏𝑛)))

Δ, Γfix ⊢ 𝑓1 : 𝑎1 . . . Δ, Γfix ⊢ 𝑓𝑛 : 𝑎𝑛

fix escape
{
𝑃
}
: ©­«
[arity(𝑓1),ΨΔ (𝜏1)] : 𝜆[𝜓 : 𝑠, () : ()] ↦→ 𝜆[𝜓 ′ : (); 𝜌 : 𝑃] ↦→ 𝑎1,
. . .
[arity(𝑓𝑛),ΨΔ (𝜏𝑛)] : 𝜆[𝜓 : 𝑠, () : ()] ↦→ 𝜆[𝜓 ′ : (); 𝜌 : 𝑃] ↦→ 𝑎𝑛

ª®¬
−→ 𝑎′

Δ, Γ ⊢ {𝑥1 : 𝜏1 = 𝑓1; . . . 𝑥𝑛 : 𝜏𝑛 = 𝑓𝑛} : Γ ∪ {𝑥1 : N(𝑓1, 𝑃, 𝑎′ .1), . . . 𝑥𝑛 : N(𝑓𝑛, 𝑃, 𝑎′ .𝑛)}
[Program]

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark Ivo Gabe de Wolff and Jurriaan Hage

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 6: Inference of pattern matching and let bindings

𝑥 : ((𝑎1, . . . , 𝑎𝑛), (𝜌, (𝜌𝑡1, 𝜌𝑣1 , 𝜌1, . . . , 𝜌𝑡𝑛, 𝜌𝑣𝑛, 𝜌𝑛))) ∈ Γ Δ, Γ ∪ {𝑥𝑖 : ((𝜌𝑡𝑖 , 𝜌𝑣𝑖 , 𝜌𝑖 ), 𝑎𝑖 ) | 𝑖 ∈ {1 . . . 𝑛}}, 𝜌 ⊢ 𝑒 : 𝑎effect, 𝑎result
Δ, Γ, 𝜌 ⊢ match 𝑥 {(𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝑒} : 𝑎effect, 𝑎result

[Match]

𝜌bound : 𝑃Δ (𝜏) fresh Δ, Γ, 𝜌bound ⊢ 𝑒bound : 𝑎boundeffect , 𝑎
bound
result

Δ, Γ ∪ {𝑥 : (𝑎boundresult , 𝜌bound)}, 𝜌 ⊢ 𝑒body : 𝑎bodyeffect, 𝑎
body
result

Δ, Γ, 𝜌 ⊢ let! 𝑥 : 𝜏 = 𝑒bound in 𝑒body : CΔ (𝜏, 𝜌bound) ⊔ 𝑎boundeffect ⊔ 𝑎
body
effect, 𝑎

body
result

[Strict Let]

𝜌bound : 𝑃Δ (𝜏) fresh Δ, Γ, 𝜌bound ⊢call 𝑐bound : 𝑎boundeffect , 𝑎
bound
result

Δ, Γ ∪ {𝑥 : (𝑎boundresult , 𝜌bound), 𝜌 ⊢ 𝑒body : 𝑎bodyeffect, 𝑎
body
result

Δ, Γ, 𝜌 ⊢ let 𝑥 : 𝜏 = 𝑐bound in 𝑒body : CΔ (𝜏, 𝜌bound) ⊔ 𝑎boundeffect ⊔ 𝑎
body
effect, 𝑎

body
result

[Lazy Let]

𝜓 fresh 𝜌1 : 𝑃Δ (𝜏1), . . . , 𝜌𝑛 : 𝑃Δ (𝜏𝑛) fresh Γbound = Γ ∪ {𝑥1 : (𝜓 .2.1, 𝜌1), . . . , 𝑥𝑛 : (𝜓 .2.𝑛, 𝜌𝑛)}
Δ, Γbound, 𝜌1 ⊢call 𝑐1 : 𝑎1effect, 𝑎

1
result . . . Δ, Γbound, 𝜌𝑛 ⊢call 𝑐𝑛 : 𝑎𝑛effect, 𝑎

𝑛
result

𝑠 = (𝑅, (ΨΓ (𝜏1), . . . ,ΨΓ (𝜏𝑛))) 𝑎 = fix 𝑠 . 𝜆[𝜓 : 𝑠, () : ()] ↦→ (𝑎1effect ⊔ . . . 𝑎𝑛effect, (𝑎1result, . . . , 𝑎𝑛result))
Δ, Γ ∪ {𝑥1 : (𝑎.2.1, 𝜌1), . . . , 𝑥𝑛 : (𝑎.2.𝑛, 𝜌𝑛)}, 𝜌 ⊢ 𝑒body : 𝑎bodyeffect, 𝑎

body
result

Δ, Γ, 𝜌 ⊢ let rec 𝑥1 : 𝜏1 = 𝑐1, . . . , 𝑥𝑛 : 𝜏𝑛 = 𝑐𝑛 in 𝑒body : CΔ (𝜏1, 𝜌1) ⊔ . . . CΔ (𝜏𝑛, 𝜌𝑛) ⊔ 𝑎.1 ⊔ 𝑎bodyeffect, 𝑎
body
result

[Recursive Let]

use ⊤ as annotation. We assign regions and annotations per mutual
recursive group of data type, where we assign regions and annota-
tions per field, per constructor, per data type. Recursive positions
of the data type are given the same regions and annotations. When
constructing and pattern matching, we propagate the appropriate
regions and annotations. When assigning annotations, we group
data types in mutual recursive groups, by looking at all the types
it uses. For regions, we may ignore types in function types, as 𝑃◦Δ
doesn’t use them. We refer to section 3.4 of [8] for more details.

7 CONCLUSION
To improve the precision of automatic region based memory man-
agement, we presented a higher-ranked region inference algorithm.
The analysis gathers outlive-constraints as relations between re-
gion variables and binds the regions using the escape check. The
annotations of higher order functions are higher order annotation
functions: such an annotations is a function that takes the annota-
tion of the argument.

We extended previous work on higher-ranked analyses to region
inference and a polymorphic source language. The latter caused
problems with fixed-point iteration: it is more difficult to detect a
fixed-point, and some polymorphic higher-order functions do not
have a fixed-point. We have shown various directions for solutions
to this problem.

7.1 Implementation
We have an implementation of the analysis available online1. This
implementation is based on an experimental LLVM backend [7], so

1https://github.com/Helium4Haskell/helium/tree/regions/src/Helium/
CodeGeneration/Iridium/Region

there may be bugs unrelated to region inference. The implementa-
tion differs slightly to the formalisation in this paper. We use De
Bruijn indices [6] to avoid name collisions. We add containment on
the regions for the return value of a function. This conflicts with
the lifetime context |→ , but improves the results of the escape check.
The formalisation of |→ should be refined to allow this. The handling
of let-bindings is different in our implementation, as the analysis is
implemented on an SSA-based intermediate representation. Hence
we don’t create nested fixed-points, but instead create one large
fixed-point [8, 19].

7.2 Future work
To evaluate the full potential of higher-ranked region inference
in Haskell, the run-time part needs to be implemented. We have
experimented with a higher-ranked analysis to infer the memory
size of a region [19], as previously done in a non-higher-ranked
analysis [26]. This should be integrated with a run-time system
to allocate bounded regions on the stack and unbounded regions
on the heap [4], and to handle programs where region inference
behaves poorly, a runtime garbage collector could, selectively for
some regions, reduce memory usage [11].

The evaluation of fixed-points requires more attention. If the
analysis can easier detect that a fixed-point is reached, or does
not exist, then the analysis can become faster. Better strategies to
handle functions that do not have a fixed-point will improve the
precision of the analysis.

REFERENCES
[1] Andrew W Appel. Ssa is functional programming. ACM SIGPLAN Notices,

33(4):17–20, 1998.
[2] Zena M Ariola and Matthias Felleisen. The call-by-need lambda calculus. Journal

of functional programming, 7(3):265–301, 1997.
12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Higher-ranked region inference for polymorphic, lazy languages IFL ’22, August 31—September 2, 2022, Copenhagen, Denmark

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[3] Lars Birkedal and Mads Tofte. A constraint-based region inference algorithm.
Theoretical Computer Science, 258(1-2):299–392, 2001.

[4] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
neumann machines via region representation inference. In Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 171–183. ACM, 1996.

[5] Geoffrey L Burn, Chris Hankin, and Samson Abramsky. Strictness analysis for
higher-order functions. Science of computer programming, 7:249–278, 1986.

[6] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the church-rosser
theorem. In Indagationes Mathematicae (Proceedings), volume 75, pages 381–392.
Elsevier, 1972.

[7] Ivo Gabe de Wolff. The helium haskell compiler and its new llvm backend.
EuroLLVM 2019, available online https://youtu.be/x6CBks1paF8, 2019. Accessed:
2019-08-06.

[8] Ivo Gabe de Wolff. Higher ranked region inference for compile-time garbage
collection. Master’s thesis, 2019.

[9] Martin Elsman. Garbage collection safety for region-based memory management.
ACM SIGPLAN Notices, 38(3):123–134, 2003.

[10] Jean-Yves Girard. The system f of variable types, fifteen years later. Theoretical
computer science, 45:159–192, 1986.

[11] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference
and garbage collection. ACM SIGPLAN Notices, 37(5):141–152, 2002.

[12] Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data
structure. Journal of functional programming, 16(2):197–217, 2006.

[13] Stefan Holdermans and Jurriaan Hage. Making “stricterness” more relevant.
Higher-Order and Symbolic Computation, 23(3):315–335, 2010.

[14] Stefan Holdermans and Jurriaan Hage. Polyvariant flow analysis with higher-
ranked polymorphic types and higher-order effect operators. In ACM Sigplan

Notices, volume 45, pages 63–74. ACM, 2010.
[15] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations.

In Conference on Functional programming languages and computer architecture,
pages 190–203. Springer, 1985.

[16] Simon Marlow et al. Haskell 2010 language report. Available online https:
//www.haskell.org/definition/haskell2010.pdf , 2010.

[17] Nicholas D Matsakis and Felix S Klock II. The rust language. In ACM SIGAda
Ada Letters, volume 34, pages 103–104. ACM, 2014.

[18] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Type and effect
systems. In Principles of Program Analysis, pages 283–363. Springer, 1999.

[19] HP Ottens. Higher ranked region bound inference for region based memory
management in helium. Master’s thesis, 2021.

[20] Cristina Ruggieri and Thomas P Murtagh. Lifetime analysis of dynamically
allocated objects. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 285–293, 1988.

[21] Gunther Schmidt. Relational mathematics, volume 132. Cambridge University
Press, 2011.

[22] Fabian Thorand and Jurriaan Hage. Higher-ranked annotation polymorphic
dependency analysis. In ESOP, pages 656–683, 2020.

[23] Fabian K Thorand. Higher-ranked polymorphism in dependency analyses. Mas-
ter’s thesis, 2017. Available online, https:// studenttheses.uu.nl/bitstream/handle/
20.500.12932/26370/ thesis.pdf .

[24] Mads Tofte and Lars Birkedal. A region inference algorithm. ACM Transactions
on Programming Languages and Systems (TOPLAS), 20(4):724–767, 1998.

[25] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective
on region-based memory management. Higher-Order and Symbolic Computation,
17(3):245–265, 2004.

[26] Magnus Vejlstrup. Multiplicity inference. Master’s thesis, Dept. of Computer
Science, Univ. of Copenhagen, 1994.

13



Closures in a Higher-Order Polymorphic DSL
for GPU programming

André Rauber Du Bois, Henrique Gabriel Rodrigues, and Gerson Cavalheiro

Programa de Pós-Graduação em Computação
Universidade Federal de Pelotas - RS - Brazil

{dubois,henrique.grdr,gerson.cavalheiro}@inf.ufpel.edu.br

Abstract. This paper describes the design and implementation of the
support for closures, i.e., anonymous functions that can capture non-local
variables from surrounding scopes, in PolyHok, a higher-order polymor-
phic DSL for GPU computing embedded in the Elixir functional lan-
guage. The main abstraction of PolyHok are higher-order GPU kernels,
i.e., GPU kernels that can take device functions as arguments before be-
ing launched. There are many challenges in supporting closures in such a
language. CPU code must be able to reference GPU code, like functions
and closures, at host code, so that kernels can be configured at launch
time. Closures, in a dynamic language like Elixir, are functions gener-
ated at run time, and in the case of PolyHok, they must have their types
inferred in order to be JIT compiled into GPU code. Variable capturing
is also a challenge as device code is capturing variables that are located
in the CPU, and not in the device. The implementation of closures pre-
sented in this paper is completely based on Metaprogramming, without
modifying Elixir’s compiler.

Keywords: closures, DSL, GPU, Metaprogramming

1 The PolyHok DSL

The PolyHok DSL for writing GPU kernels embedded in the Elixir functional
language [1]. It is a higher-order, dynamically typed, imperative language sup-
porting loops, CUDA grid and block constants, and in-place update of arrays, as
can be seen in the example of Figure 1, where a kernel for a simple parallel map
is presented. In the Figure, we see the definition of a PolyHok module (line 3). A
PolyHok module is just like a regular Elixir module, but it also allows the defini-
tion of kernels, using the defk keyword (line 4), and device functions, using the
defd keyword (line 13). Kernels are implemented using the PolyHok DSL (lines
4 to 12). The map ker kernel showcases the main characteristics of the DSL: it is
imperative, providing loops (line 9) and in-place update (line 10), it gives access
to CUDA grid and block constants (lines 5-7), it is higher-order, i.e., function f

is an argument to the kernel (line 4) and is applied to all positions of the array
argument a1 (line 10), and it is dynamically typed, i.e., the programmer does
not type variables and types are inferred at runtime.



2 Lecture Notes in Computer Science: Authors’ Instructions

1 require PolyHok
2

3 PolyHok.defmodule PMap do
4 defk map_ker(a1,a2,size,f) do
5 ind = blockIdx.x * blockDim.x
6 + threadIdx.x
7 str = blockDim.x * gridDim.x
8

9 for i in range(ind,size,str) do
10 a2[i] = f(a1[i])
11 end
12 end
13 defd inc(x) do
14 x+1
15 end
16 end

A GPU kernel for a map skeleton

1 def map(input, f) do
2 shape = PolyHok.get_shape(input)
3 type = PolyHok.get_type(input)
4 result_gpu =PolyHok.new_gnx(shape,type)
5 size = Tuple.product(shape)
6 threadsPerBlock = 128;
7 numberOfBlocks = div(size +
8 threadsPerBlock - 1,
9 threadsPerBlock)

10

11 PolyHok.spawn(&PMap.map_ker/4,
12 {numberOfBlocks,1,1},
13 {threadsPerBlock,1,1},
14 [input,result_gpu,size, f])
15 result_gpu
16 end

Pure Elixir map skeleton

Fig. 1. GPU kernel and Elixir implementation for a map skeleton

The PolyHok DSL can be seen as a low-level language that programmers
can use to construct high-level Elixir abstractions. For example, the pure Elixir
function defined in Figure 1, implements a parallel map using the map ske kernel.
The map skeleton takes as an input a GNx array, i.e., an array that is located
in the GPU memory (input) and a device function (f). It first creates a GNx
array to hold the result of the map computation, with the same size and type
as the input array (line 4). Then, after computing the number of threads and
blocks to be used, the map ske kernel is launched with the spawn primitive (line
11). PolyHok’s spawn takes as arguments a kernel to be launched, two tuples
configuring the GPU’s grid, and a list of arguments to be passed to the kernel.
Finally, once the kernel has been executed, the map skeleton returns the GNx
array containing the map’s result (line 15).

The reader should notice that in-place updates are limited to PolyHok ker-
nels, and the purely functional part of Elixir cannot offload a GNx from the
GPU memory while it is being modified by kernels, since a call to get gnx is
blocked while the GNx is in use on the GPU. A PolyHok kernel can be seen as
an isolated Elixir process that does not communicate. However, a kernel can still
be executed by a regular Elixir process that communicates and runs PolyHok
kernels as needed.

We can use the map skeleton and the inc device function from Figure 1, on
different array types, as can be seen in the script of Figure 2. First, three host
arrays of different types (integer, float, and double) are created using the Nx

library (lines 3 to 4). In the example, we employ Elixir’s composition operator
(|>), which uses the expression on its left as the first argument of the expression
on its right. In the first two compositions (lines 6 to 9 and lines 11 to 14), both map
and inc are applied to arrays of different types (i.e., integer and float). On the
third composition (lines 16 to 19), we perform the same computation on an array
of doubles, but instead of using the inc function, a device anonymous function is
used. Device anonymous functions are defined using PolyHok.hok primitive that
does not allow variable capture. As with device functions, PolyHok anonymous



Lecture Notes in Computer Science: Authors’ Instructions 3

functions can be written using a subset of Elixir or PolyHok. Also, pure Elixir
functions can not be invoked on device anonymous functions, only PolyHok or
CUDA functions can be called.

1 n = 10000000

2 arr1 = Nx.tensor([Enum.to_list(1..n)],type: {:s, 32})

3 arr2 = Nx.tensor([Enum.to_list(1..n)],type: {:f, 32})

4 arr3 = Nx.tensor([Enum.to_list(1..n)],type: {:f, 64})

5

6 host_res1 = arr1

7 |> PolyHok.new_gnx

8 |> PMap.map(&PMap.inc/1)

9 |> PolyHok.get_gnx

10

11 host_res2 = arr2

12 |> PolyHok.new_gnx

13 |> PMap.map(&PMap.inc/1)

14 |> PolyHok.get_gnx

15

16 host_res3 = arr3

17 |> PolyHok.new_gnx

18 |> PMap.map(PolyHok.hok fn x -> x + 1 end)

19 |> PolyHok.get_gnx

Fig. 2. Using the map skeleton with arguments of different types

2 Closures in PolyHok

We extend PolyHok with the PolyHok.clo primitive, that allows the defini-
tion of an anonymous device function that can capture non-local variables from
surrounding scopes at run time, as in the following example:

1 dev_arr = PolyHok.new_gnx(Nx.tensor(Enum.to_list(1..1000), type: :s32))

2

3 x = 10

4

5 fun = PolyHok.clo fn y -> x + y end

6

7 host_arr = dev_arr

8 |> Ske.map(fun)

9 |> PolyHok.get_gnx

In the example, we define a closure (line 5) that captures the value of variable
x (defined in line 3). Then, the closure is applied to all elements of a device array



4 Lecture Notes in Computer Science: Authors’ Instructions

(previously defined in line 1), using a map skeleton (line 8). Hence, all elements
of the final host array are incremented by 10.

Closures in PolyHok can capture numerical values and also GNx arrays.
Numerical values are captured by value, i.e., converted into device values and
passed as extra arguments to the device function, and GNx arrays are captured
by reference, i.e., the anonymous function receives a pointer to the device array.

Providing closures in a higher-order language for GPU programming allows
two main advantages. First, it allows to simplify the interface of skeletons. For
example, the function argument of a map, usually relies on other values besides
the ones that come from the input array. For example, in the NBodies program
(see Section 5), that simulates how physical forces influence a dynamic system
of particles, for each body in the system we have to check all other bodies
to calculate the force impact. Hence, to implement it as a map, the function
argument needs not only the current body, but a reference to array of bodies
and its size. We could hard code values inside anonymous functions, but then
we would need different versions fo the program for different sizes. We could
also provide different implementations of a map that receive extra arguments to
be passed to the anonymous functions. Closures solve this problem as they can
capture the specific values for the computation being performed at run time.

Closures also allow the implementation of other high-level abstractions, as
for example, array comprehensions, as described in the next Section.

3 Array Comprehensions

List comprehension is another abstraction that can be implemented using higher-
order functions. Using List Comprehensions, programmers can use notation sim-
ilar to set theory to describe new lists based on existing ones. Using Elixir’s
macros, it is possible to implement simple array comprehensions, which are trans-
lated to calls to skeletons configured with closures. For example, the following
array comprehension:

1 host_array = Nx.tensor(...)

2 x = 10

3 host_resp = PolyHok.gpu_for n <- host_array, do: x * n

which multiplies the elements of an input array by 10, can be translated by the
macro on Figure 3, to the following code:

1 PolyHok.new_gnx(host_array)

2 |> PMap.map(PolyHok.phok(fn n -> x * n end))

3 |> PolyHok.get_gnx

Closures are crucial for the implementation of array comprehensions, since, oth-
erwise, the expressions allowed in the comprehensions would be very limited.
Since GNx arrays are captured by reference, they can also be used inside com-
prehensions as in this implementation of saxpy:

1 host_resp = PolyHok.gpu_for i <- 0..99999, do: 2 * a[i] + b[i]



Lecture Notes in Computer Science: Authors’ Instructions 5

1 defmacro gpu_for({:<-, _ ,[var,tensor]},do: b) do

2 quote do:

3 PolyHok.new_gnx(unquote(tensor))

4 |> PMap.map(PolyHok.phok(fn (unquote(var))->(unquote b) end))

5 |> PolyHok.get_gnx

6 end

Fig. 3. Macro for compiling a simple Array Comprehension

4 Implementation

The implementation of closures in PolyHok relies on compilation time support,
through macros, and execution time support, for the JIT compilation of closures.
These issues will be detailed in the extended version of the paper.

5 Experiments

In the extended version of this paper we plan to include experiments comparing
programs using PolyHok with closures with programs written in pure CUDA, in
order to understand the impact of using the high-level abstractions provided by
PolyHok.

6 Conclusions and Future Work

This paper described the support for closures implemented in the PolyHok DSL,
a higher-order polymorphic DSL for writing GPU kernels. In the extended ver-
sion of this paper we plan to discuss how the PolyHok system was modified to
support closures, compare our design with related works, and present experi-
ments comparing PolyHok with pure CUDA, with the object of understanding
the overhead imposed by the high-level of abstraction provided by PolyHok.

References

1. Du Bois, A.R., Cavalheiro, G.: Polymorphic Higher-Order GPU Kernels. In: Euro-
Par 2025: European Conference on Parallel and Distributed Processing (2025)



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Automatic Testing for Finite-State Machines
Marco T. Morazán
Seton Hall University
South Orange, NJ, USA
morazanm@shu.edu

Sophia G. Turano
Seton Hall University
South Orange, NJ, USA
turanoso@shu.edu

Andrés M. Garced
Seton Hall University
South Orange, NJ, USA
maldona2@shu.edu

David Anthony K. Fields
Seton Hall University
South Orange, NJ, USA

fieldsda@shu.edu

Abstract
A modern trend in Formal Languages and Automata Theory edu-
cation uses a design- and programming-based approach to teach
students about finite-state machines and regular languages. Follow-
ing the steps of a design recipe, students use FSM, a domain-specific
language embedded in Racket, to design, implement, validate, and
verify deterministic and nondeterministic finite-state machines. As
part of the design process, students implement state invariant pred-
icates to validate the role of machine states. Writing thorough unit
tests for state invariant predicates, however, is notoriously difficult
as test suites grow large very quickly. This article describes a tool
to automatically and thoroughly test all such predicates for a given
machine. The tool uses the given machine’s transition relation to
provide good test coverage by finding all paths to intermediate
states between the machine’s starting state and any of its final
states. The result is an elegant way to test state invariants using a
single expression. Despite operating in a search space that grows
exponentially, empirical measurements suggest that the use of the
tool is feasible for typical problems studied in a Formal Languages
and Automata Theory course.

CCS Concepts
• Theory of computation → Regular languages; • Applied
computing→ Education; • Software and its engineering;

Keywords
Finite-state machines, Machine design, Invariants, Testing

ACM Reference Format:
Marco T. Morazán, Sophia G. Turano, AndrésM. Garced, and David Anthony
K. Fields. 2025. Automatic Testing for Finite-State Machines. In . ACM, New
York, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, Washington, DC, USA
© 2025 ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
A modern approach in Formal Languages and Automata Theory
(FLAT) education introduces students to the systematic design of
finite-state machines [29]. Unlike most approaches to FLAT ed-
ucation, where students implement machines by pencil and pa-
per [14, 21, 24, 38, 41] or by using a GUI-based system like JFLAP
[22, 39, 40] or OpenFLAP [26], this new approach makes students’
interest and experience in programming an integral part of the
learning process. To this end, students are not expected to learn
how to implement finite-state machines solely by looking at exam-
ples. Instead, they are presented with a design recipe that provides
scaffolding for the development and implementation of machines
from a problem statement to a verified solution.

A design recipe is a series of steps, each with a concrete outcome,
that defines a systematic process to design and implement programs.
It is a teaching methodology first pioneered by Felleisen et al. for
a one-semester programming course for beginners [10] and later
expanded by Morazán into a 2-semester sequence for beginners
[27, 28]. In the FLAT context relevant to this article, design recipes
are used to implement deterministic (dfa) and nondeterministic
(ndfa) finite-state machines in FSM (Functional State Machines)–a
domain-specific language, embedded in Racket [11], for the FLAT
classroom [30]. By following the steps of the design recipe, a student
reasons about each component needed to build a machine. For
instance, students attach meaning to each state before developing
a transition relation. In turn, invariant predicates are written to
validate the role of states.

When a machine applies a transition rule, the input word may
be partitioned: the consumed input (ci) and the unconsumed input.
We can, therefore, speak of an invariant property the ci needs to
satisfy for the machine to be in a given state. Invariant proper-
ties may be tested by implementing a state invariant predicate. An
invariant predicate is given the ci and determines if a condition
holds. This condition defines the role of the state. For example,
the role of a state may be that the ci is empty or that the ci has
an even number of bs. Invariant predicates, of course, must be
thoroughly tested to validate that they work properly. This task
sounds deceptively simple, but is (for good reason) difficult to per-
form. The major stumbling block is that thorough testing does not
only depend on the invariant-predicate’s implementation. It also
depends on the machine’s transition relation. If there is at least one
sequence of transitions that take the machine from its starting state
through a state R to a final state (equivalently, there exists at least
one path from the starting state through R to a final state in the

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Morazán, Turano, Garced, and Fields

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1 Machine and invariant test failure highlighting.

(a) Machine test failure highlighting.

(b) Invariant test failure highlighting.

transition diagram), then the testing suite for R needs to include
words obtained by using all transition rules on paths that take the
machine from its starting state to R. To do so for all states in a
machine is tantamount to counting/finding all paths in a directed
graph, a problem that is known to be #P [45]. That is, there is no
known polynomial time algorithm to find a thorough testing suite
for a machine’s state invariant predicates. To intuitively understand
this, consider the number of possible paths without repeating a
state in a transition diagram that is as a complete graph with n
nodes. There are n*(n-1) paths of length 2, n*(n-1)*(n-2) paths
of length 3, and so on until n! paths of length n. Thus, the total
number of paths is Σn

i=2Π
n
j=n−i+1j. The complexity is worse for

invariant testing, because paths cannot be limited to those without
repeated nodes.

This article describes a tool integrated into FSM to automatically
test state invariant predicates for dfas and ndfas using a single
expression:

(sm-test-invs <machine> (list state <inv>)+)

Given a machine and a list of pairs containing a state and its in-
variant predicate, the tool performs a traversal of the transition
relation to identify the words that must be used to test each state
invariant predicate. If none of state predicate invariants fail, the
tool returns an empty list of failures. Otherwise, it returns a list of
pairs containing a state and a list of words for which the state’s in-
variant predicate failed. Given that the machine invariant testing is
NP, the goal for the tool is not to be efficient for arbitrary machines.
Instead, the goal is for the tool to be a useful and practical for typi-
cal problems studied in a FLAT classroom. The article is organized
as follows. Section 2 briefly describes the FSM interface for dfas
and ndfas. Section 3 presents an overview of the design recipe for
state machines and an illustrative example. Section 4 describes the
developed tool to automatically test state invariant predicates and
presents empirical data that suggests classroom use of the tool is
feasible for problems typically studied in a FLAT course. Section 5 il-
lustrates how the tool is used for debugging. Section 6 compares and
contrasts with related work. Finally, Section 7 presents concluding
remarks and directions for future work.

2 Finite-State Machines in FSM

2.1 Constructors and Observers
FSM provides support for both dfas and ndfas. The constructors
have the following signatures:

make-dfa: K Σ S F 𝛿 → dfa make-ndfa: K Σ S F Δ → ndfa

Each takes as input the machine’s states (K), input alphabet (Σ),
starting state (S∈K), final states (F⊆K), and a transition relation
represented as a list of transition rules. For a dfa, the transition
relation (𝛿) must be a function. For an ndfa, the transition relation
(Δ) does not have to be a function. Each transition in a relation has
the form: (state symbol state). Each state must be a member of
K. For a dfa transition rule, the symbol must be in Σ. For an ndfa
transition rule, the symbol must be in Σ∪ {𝜖}, where 𝜖 denotes that
no input is read. A dfa accepts an input word, w, if after reading all
of w’s elements it ends in a final state. Otherwise, w is rejected. An
ndfa accepts w if there is a computation that ends in a final state
after reading all of w’s elements. If no such computation exists, then
the ndfa rejects w.

The primitive sm-showtransitions returns a trace of a single
accepting computation. For example, the following is the trace of
an ndfa for the language L=a(ab)*aa+ applied to '(a a b a a a):

(((a a b a a a) S)
((a b a a a) A)
((b a a a) B)
((a a a) A)
((a a) C)
((a) D)
(() D)
accept)

A computation is a list of configurations. Each configuration is a
pair containing the unconsumed input and the machine’s current
state. In any given configuration, the part of the input word that is
missing, ci, is the consumed input.

2.2 Unit Testing
FSM provides a DSL to write unit tests, which is tightly-coupled
with the design recipe for state machines (discussed in Section 3.1).
It allows programmers to write succinct tests for machines and
invariant predicates.

Finite-state machines are designed to accept words in a given
language and to reject words not in the given language. To test a
machine, M, the following syntax is used:
(check-accept? M <word>+) (check-reject? M <word>+)

Each given word is tested by applying the machine to it. If all the
words are correctly accepted/rejected the tests pass. Consider the
following test suite for, M, a machine deciding L=a(ab)*aa+:

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Automatic Testing for Finite-State Machines Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2 The state invariant predicate for A.

(define (A-INV ci)

(and

(eq? (first ci) 'a)

(even? (length (rest ci)))

(andmap (𝜆 (p) (equal? p '(a b)))

(foldl

(𝜆 (s acc)

(if (or (empty? acc)

(= (length (first acc)) 2))

(cons (list s) acc)

(cons (list (first (first acc)) s)

(rest acc))))

'()

(rest ci)))))

(check-accept? M '() '(a a a) '(a a) '(a a b a a a))

(check-reject? M '(b) '(a b) '(a a a) '(a a b a a))

The generated fail test reports are recipe-based errors:
Step 6 of the design recipe has not been
successfully completed. The constructed machine,
M, does not accept the following words: () (a a)

Step 6 of the design recipe has not been
successfully completed. The constructed machine,
M, does not reject the following words: (a a a)
(a a b a a)

In addition, the program window highlights the words that cause
the test to fail. The words that cause check-reject? to fail, for
example, are displayed in Figure 1a.

As mentioned, students write an invariant predicate for each
state. For instance, the transition diagram for M is:

Observe that whenever the machine transitions into A, the con-
sumed input that led the machine to A must be in a(ab)*. A’s in-
variant predicate may be implemented as displayed in Figure 2. To
test A-INV, the following test suite may be proposed:
(check-inv-holds? A-INV '(a a a) '(a a b a a)

'(a b a a))

(check-inv-fails? A-INV '(b b) '(a a b) '(b a))

Upon running the tests, the generated fail test reports are:
Step 6 of the design recipe has not been
successfully completed. The following test cases
for the invariant, A-INV, fail when they should
hold: (a a a) (a b a a)
Step 6 of the design recipe has not been
successfully completed. The following test case

Figure 3 The State Machine Design Recipe
(1) Name the machine and specify the input alphabets
(2) Write unit tests
(3) Associate a state with tracked conditions, and identify the

start and final states.
(4) Formulate the transition relation
(5) Implement the machine
(6) Run the tests and, if necessary, redesign
(7) Design, implement, and test an invariant predicate for each

state
(8) Prove L = L(M)

for the invariant, A-INV, holds when it should
fail: (a a b)

Upon clicking on the first error, Figure 1b displays the highlight-
ing of the words that cause check-inv-holds? to fail. Clicking
on the second error causes the words that cause the second test
to fail to be highlighted (in this case, the second word given to
check-inv-fails?).

2.3 Visualizations
Finally, FSM integrates a suite of static and dynamic visualization
tools to help students understand FLAT concepts. The static visu-
alization tools include those to generate a transition diagram [36]
(e.g., used to generate the graphic for M) and to generate a compu-
tation graph given a machine and a word [32, 33]–a computation
graph summarizes all the paths in a computation tree to provide
visual proof that a word is accepted or rejected. In such static visu-
alizations, every node represents a state and every edge represents
a transition rule.

The dynamic visualization tools include machine execution [31]
and an array of transformation algorithms. During machine execu-
tion visualization, the value of the state invariant predicate may be
observed for the state transitioned into (i.e., green when it holds and
red when it fails). The transformation algorithm tools include, for
example, the ndfa to dfa transformation [35], the transformations
to and from finite-state machines and regular expressions [34], and
construction algorithms for closure properties of regular languages
[25].

3 Machine Design
At the heart of the finite-state machine design process is the mean-
ing of states. States represent conditions that need to be clearly
defined. A state’s condition is a property of the consumed input
that must hold when the machine transitions into said state in an
accepting computation. This section outlines the design recipe for
state machines and presents an illustrative example.

3.1 The State Machine Recipe
The 8-Step design recipe for state machines is displayed in Figure 3
[29], where L is the target language the machine is designed to
accept. Step 1 requires students to select a descriptive name for

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Morazán, Turano, Garced, and Fields

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the machine and, for finite-state machines, specify the input al-
phabet1. Step 2 requires students to write a thorough suite of unit
tests. For finite-state machines, this means writing tests for words
in the machine’s language and for words not in the machine lan-
guage. The check-accept? and check-reject? syntax described
in Section 2.2 is used.

Step 3 asks for informal descriptions of the conditions states
represent. Students are taught to start by specifying the conditions
the starting state and the final states represent. Following this, stu-
dents reason about how the machine transitions between states as
a word is consumed. Each time a new condition is encountered,
a new state is needed. Based on the result of Step 3, Step 4 asks
students to formulate the transition relation. Note that “guessing
work” is eliminated if Step 3 is successfully completed before for-
mulating an answer for Step 4. This is important, because it allows
for students and instructors to discuss finite-state machine design
using a common language.

Step 5 requires the collection of answers from Steps 1-4 to imple-
ment the machine using the constructors described in Section 2.1.
Step 6 has students run the tests. If any errors are thrown or if
any tests fail, students are taught to revisit the steps of the design
recipe to fix bugs. In addition to the instructors encouraging this
practice, the FSM error-messaging system [8] and the FSM fail test
reports encourage this practice by including the step of the design
recipe that has been unsuccessfully completed. This is important,
because the steps have meaning for students from lectures and the
textbook. Therefore, their inclusion encourages them to think in
terms of design and recall or look up how the step is satisfied in
the solutions of previous problems.

Step 7 asks students to formalize the answer to Step 3. This is the
step in which informal descriptions are turned into state invariant
predicates. This is a difficult step for two reasons. The first is that
informal descriptions may be too informal and, therefore, may re-
quire a revision step to clarify the condition a state represents. This
challenge is something that advanced Computer Science students
usually handle well. The second is that state invariant predicates
must be tested and the testing suite must be thorough. The latter
part poses a new challenge for students. Consider testing the invari-
ant predicate for a state N. To be thorough, words generated from
all possible transitions used in computations paths that may lead
the machine to accept and that take the machine from its starting
state to Nmust be tested. That is, thoroughness is dependent on the
machine’s transition relation and not just on the implementation
of the invariant predicate. In part, this challenge has motivated the
work presented in this article.

Finally, Step 8 asks for establishing the equivalence between,
L, the language the machine is designed to decide and, L(M), the
language of, M, the machine implemented. This is done in two
steps. First, students develop a proof by induction on the number
of steps taken by an accepting computation to prove that invariant
predicates always hold. To aid students in this step the dynamic vi-
sualization tool for machine execution accepts invariant predicates
as optional arguments to observe if they hold. Invariably, every

1The emphasis on finite-state machines follows from noting that the design recipe is
also used to develop pushdown automata, which require a stack alphabet to be defined.

Figure 4 The dfa for L={w|w contains aabab}.

1 ;; State Documentation
2 ;; S: ci suffix != prefix of aabab, aabab∉ci, starting state
3 ;; A: ci ends with a and no other aabab prefix, aabab∉ci
4 ;; B: ci ends with aa and no other aabab prefix, aabab∉ci
5 ;; C: ci ends with aab and no other aabab prefix, aabab∉ci
6 ;; D: ci ends with aaba and no other aabab prefix, aabab∉ci
7 ;; E: aabab∈ci, final state
8 (define CONTAINS-aabab

9 (make-dfa '(S A B C D E)

10 '(a b)

11 'S

12 '(E)

13 '((S a A) (S b S) (A a B) (A b S)

14 (B a B) (B b C) (C a D) (C b S)

15 (D a A) (D b E) (E a E) (E b E))))

16 (check-accept? CONTAINS-aabab

17 '(a a b a b) '(b b a a a b a b b))

18 (check-reject? CONTAINS-aabab

19 '() '(b b a a a b a) '(a a b a a))

(a) FSM implementation.

(b) Transition diagram.

semester, students realize that their invariant predicates do not al-
ways hold despite unit tests passing. That is, they realize that their
invariant predicate testing is not thorough enough. Second, based
on invariant predicates always holding, they prove the equivalence
of the stated languages.

3.2 Illustrative Example
To illustrate the design process, consider a classical application

of finite-state machines that is the foundation of the KMP algorithm
[19]: detecting a pattern. Our sample problem is to design a dfa
to decide L={w|w contains aabab}. The result of following the
first 6 Steps of the design recipe are displayed in Figure 4a and
the transition diagram for the implemented machine is displayed
in Figure 4b. The backbone of the machine from S to E detects
progressively larger consecutive portions of the pattern. When a
letter is read that does not match the next element in the pattern,
the machine transitions to the state whose role matches the largest
possible prefix of the pattern to the suffix of the consumed input.
For example, if the machine is in state D then the largest suffix of
ci that matches the pattern (i.e., aabab) is aaba. Upon reading an a
the largest suffix of ci that matches the pattern is aa and, therefore,
the machine transitions to, B, the state whose role is satisfied. The
role of each state is documented on lines 1–7 indicating the part of
the pattern detected.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Automatic Testing for Finite-State Machines Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 5 CONTAINS-aabab’s predicates and auxiliary functions.

1 ;; word→ Boolean
2 ;; Purpose: Determine if word contains aabab
3 (define (contains-aabab? w)

4 (and (>= (length w) 5)

5 (or (equal? (take w 5) '(a a b a b))

6 (contains-aabab? (rest w)))))

7 ;; word word→ Boolean
8 ;; Purpose: Determine if second word ends with first word
9 (define (end-with? suffix w)

10 (and

11 (>= (length w) (length suffix))

12 (equal? suffix (take-right w (length suffix)))))

13 ;; word→ Boolean
14 ;; Purpose: Determine that none of aabab is detected
15 (define (S-INV ci)

16 (and (not (end-with? '(a) ci))

17 (not (end-with? '(a a) ci))

18 (not (end-with? '(a a b) ci))

19 (not (end-with? '(a a b a) ci))

20 (not (contains-aabab? ci))))

21 ;; word→ Boolean
22 ;; Purpose: Determine that only a is detected
23 (define (A-INV ci)

24 (and (end-with? '(a) ci)

25 (not (end-with? '(a a) ci))

26 (not (end-with? '(a a b a) ci))

27 (not (contains-aabab? ci))))

28 ;; word→ Boolean
29 ;; Purpose: Determine that only aa is detected
30 (define (B-INV ci)

31 (and (end-with? '(a a) ci)

32 (not (contains-aabab? ci))))

33 ;; word→ Boolean
34 ;; Purpose: Determine that only aab is detected
35 (define (C-INV ci)

36 (and (end-with? '(a a b) ci)

37 (not (contains-aabab? ci))))

38 ;; word→ Boolean
39 ;; Purpose: Determine that only aaba is detected
40 (define (D-INV ci)

41 (and (end-with? '(a a b a) ci)

42 (not (contains-aabab? ci))))

43 ;; word→ Boolean
44 ;; Purpose: Determine that only aabab is detected
45 (define E-INV contains-aabab?)

The needed state invariant predicates to satisfy Step 7 of the
design recipe are displayed in Figure 52. Each predicate tests that
ci does not contain the pattern and that the largest suffix of ci
that matches any prefix of the pattern is the prefix represented by
the predicate’s state. For instance, consider A-INV. This predicate
tests that ci ends with an a, that no other prefixes of the pattern
2The predicates are not optimized to eliminate code duplication. Such an optimization
may be pursued after completing a machine’s design

that end with a match ci’s suffix, and that ci does not contain the
pattern.

Observe that unit tests for the state predicate invariants have not
been included. This done to drive home the point that writing such
tests is not straightforward. How do you determine a thorough set
of tests for each invariant predicate? For instance, consider writing
the following tests for A-INV:

(check-inv-holds? A-INV '(a) '(a a b b a))

(check-inv-fails? A-INV '(b) '(a b b) '())

Is this a thorough enough suite of tests? Even a cursory look at the
transition diagram in Figure 4b reveals that the testing is lacking.
At the very least, the set of words in the testing suite ought to
traverse every transition that may be used to reach A in an accepting
computation. This follows from observing that it does not matter
how A is reached in an accepting computation. The invariant must
hold, because once the machine is in A, the unconsumed input may
transition the machine to Ewhere the word is (eventually) accepted.
Under this light, the test suite for check-inv-holds? ought to
include, for example, (b a) and (a a b a a b b a). In fact, it
ought to cover all transitions used in accepting computations from
S to A. To guarantee such testing coverage, all paths from S to A
need to be computed. We note that for the machine in Figure 4, the
number of words in a thorough test suite for all invariant predicates
is 503. Clearly, it is not reasonable nor practical for any programmer
to write that many unit tests.

We also note that the test suite for check-inv-fails? is also
lacking. It ought to include words that end with an a that should
not take the machine to A such as (a a b a) (which ought to take
the machine to D) and (a a) (which ought to take the machine to
B).

4 Testing-Word Generation
Consider testing B-INV, the invariant predicate for a state B. Deter-
mining a thorough test suite requires traversing all paths to B, in-
cluding transitioning through any loops. This is hard, because a dfa
or ndfa may be arbitrarily complex and contain arbitrarily nested
transition loops. Even for a simple machine, like CONTAINS-aabab
displayed in Figure 4b, it is not immediately obvious to an FSM
programmer how to determine the set of words for each state that
provides the necessary coverage of transitions.

Despite machine and invariant validation making machine verifi-
cation easier, there are two problems with forcing FSM programmers
to determine on their own a thorough test suite. The first is that it
is a time-consuming and error-prone process. Untangling nested
loops, for example, is always a challenge. The second is that it
distracts attention away from machine verification. In fact, deter-
mining a thorough testing suite can be harder than verifying a
machine.

4.1 Implementation
Our solution, therefore, is two-fold. We encourage the writing of
unit tests given that it is important for students to reason about
their design. We also adopt the solution put forth by QuickCheck

3This number is obtained using the word generation software described in the next
section.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Morazán, Turano, Garced, and Fields

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

[2, 15]: generate tests [17]. It is now possible to automatically test a
machine’s state invariant predicates in FSM. A test suite of words for
each state, C, is generated that provides the necessary (minimum)
coverage to include every transition that any accepting computation
may use to reach C. The implemented solution operates in 3 steps:

(1) Machine refactoring
(2) Word generation
(3) Invariant testing

4.1.1 Machine Refactoring. The goal is to obtain a test suite for
each state that covers all possible transitions on accepting compu-
tations. It is possible, of course, for a machine to contain transition
rules that never lead to accept. For instance, consider the following
dfa:

This machine has, ds, a dead/trap state. Any computation that
reaches this state never leads to accept. Therefore, there is no need
to generate a test suite for ds. That is, a testing suite for the invariant
predicate for ds does not need to be generated nor does the testing
suite for any state invariant predicate need to provide coverage
for the transitions in and out of ds. We note that an arbitrary
finite-state machine may have an arbitrary number of dead/trap
states.

The first step, therefore, is to refactor the given machine by
removing all dead/trap states and the transitions into and out of
them, which does not change the language of the machine. This is
accomplished by determining the states reachable from the starting
state and then filtering out those states from which a final state is
not reachable. Both of these subtasks are performed using a breadth-
first traversal of the transition relation (or, equivalently, the graph
representing the machine’s transition diagram). The result of this
process for the machine above yields:

Test suites are only generated for S, A, and B.

4.1.2 Word Generation. To generate a test suite for each state in a
refactoredmachine, a breadth-first traversal of its transition relation

is performed. The traversal accumulates two values: a queue of
computations to explore (each computation represented as the list
of transition rules used) and a list of computations found. The
queue is used to search for longer computations by only applying
transition rules that have not been used in a given computation.
In this manner, the needed coverage of transitions is obtained. A
consequence of this search policy is that a loop is traversed at most
once, thus, reducing the amount of work done when, for example,
a loop contains a nested inner loop. The list of computations found
is used to generate test suites for each state invariant predicate. For
each state, K, in an accepting computation, the (sub)word that leads
to K is made part of K’s testing suite.

Initially, the list of found computations is empty and the queue
contains a number of computations equal to the number of transi-
tions out of the given machine’s starting state. Therefore, initially,
each computation contains a single rule. At each step, the first
computation in the queue is removed and extended by applying
all applicable rules not used in the computation to its current state.
The new computations are added to the queue and the computation
removed from the queue is added to the list of found computations.
When the queue becomes empty the accumulated list of found
computations is returned.

To illustrate the process, consider the search for computation
using the refactored machine above. The search starts with the
following values:

Queue: (((S b B))
((S a A)))

Computations: ()

There are two computations to explore: one for each transition
rule out of S. The first step removes the first computation from the
queue, adds a new computation to the queue, and adds the first
computation to the list of found computations. The resulting state
of the accumulators is:

Queue: (((S a A))
((S b B) (B a B)))

Computations: (((S b B)))

Note that the computation ((S b B)) will be used to generate (b)
as part of the test suite for B’s invariant. The process is repeated to
yield the following state for the accumulators:

Queue: (((S b B) (B a B))
((S a A) (A b A)))

Computations: (((S a A))
((S b B)))

Note that the computation ((S a A)) will be used to generate (a)
as part of the test suite for A’s invariant. The process is repeated
and there are no unused transitions that apply to B. Therefore, the
first computation is removed from the queue and and added to the
list of found computations. No new computations are added to the
queue:

Queue: (((S a A) (A b A)))
Computations: (((S b B) (B a B))

((S a A))
((S b B)))

Observe that (b a) shall be part of the testing suite for B’s invariant.
A similar step is taken again to yield:

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Automatic Testing for Finite-State Machines Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Queue: ()
Computations: (((S a A) (A b A))

((S b B) (B a B))
((S a A))
((S b B)))

Observe that (a b) shall be part of the testing suite for A’s invari-
ant. Given that the queue is empty, the process stops and the list
containing the 4 found computations is returned.

The returned list of computations is traversed to generate the
needed test suite for each state. For this example, the test suite for
each state is:

((S (()))
(A ((a) (a b)))
(B ((b) (b a))))

The empty word is always added to the test suite for the machine’s
starting state.

4.1.3 Invariant Testing. The function that tests state invariant pred-
icates takes as input a machine and a list of pairs. Each pair contains
a state and the state’s invariant predicate. The function returns a list
of pairs. Each pair contains a state and a word for which the state’s
invariant predicate does not hold. If the returned list is empty, then
the invariant predicates hold for every word in the test suite.

Testing is performed by traversing the returned list of test suites.
For each state, the words in the test suite for which the state’s
invariant predicate does not hold are accumulated and used to
construct the list of pairs returned by the testing function.

4.2 Empirical Measurements
Given that thorough invariant testing is in NP, the presented empir-
ical study does not measure performance on arbitrary finite-state
machines to determine if the algorithm is practical in general–we
know from the start that it is not and that arbitrarily large machines
will not be successfully processed. Instead, empirical measurements
are taken using machines that are typically studied in a FLAT course
to determine if the developed algorithm makes the tool’s use in a
FLAT classroom practical/feasible.

Empirical data is presented for 17 finite-state machines used
in an introduction to FLAT course at Seton Hall University in the
Spring 2025 semester. Table 1 outlines the characteristics of the 17
machines: number of states, number of transition rules, alphabet
size, number of final states, machine type, number of dead states,
and number of dead transitions (i.e., transitions in or out of a dead
state). The majority of the machines have 7 or more states. A ma-
jority of the machines also have over 10 edges. Thus, the majority
of the machines are nontrivial, when compared to typical examples
found in FLAT textbooks. We also note that machines M1, M14, M15,
and M17, each with over 30 transitions rules each, are more com-
plex that the average machine studied in a FLAT textbook. These
machines are the result of large course projects at our institution
(e.g., searching for a given long pattern in a DNA strand). Nonethe-
less, the data collected is presented in the spirit of thoroughness.
It is, indeed, good to know, as the data below suggests, that some
machines with large number of edges can be automatically tested
in a reasonable amount of time.

For each machine, the study includes four experiments:

Machine |K| |R| |Σ| |F| Type Dead K Dead R
M1 10 40 4 5 dfa 1 16
M2 7 14 2 6 dfa 1 3
M3 4 9 3 3 ndfa 0 0
M4 8 17 4 4 ndfa 0 0
M5 7 18 3 3 ndfa 0 0
M6 6 8 2 4 ndfa 0 0
M7 7 10 3 1 ndfa 0 0
M8 7 21 3 1 dfa 1 11
M9 6 10 3 1 ndfa 0 0
M10 4 8 2 3 dfa 1 3
M11 2 4 2 1 dfa 0 0
M12 3 4 2 2 ndfa 0 0
M13 4 6 3 1 ndfa 0 0
M14 9 35 5 3 ndfa 0 0
M15 10 40 4 5 dfa 0 0
M16 6 12 2 1 dfa 0 0
M17 7 35 5 1 ndfa 0 0

Table 1: Machine characteristics.

(1) Refactored using words generated by using any transition
at most once in a computation

(2) Unrefactored usingwords generated by using any transition
at most once in a computation

(3) Refactored using words generated by using any transition
at most once twice

(4) Unrefactored usingwords generated by using any transition
at most twice

Refactored and unrefactored machines are used to measure the ben-
efit/penalty of refactoring. The goal of permitting words generated
by using any transition at most once twice is to test words that
traverse nested loops in the transition relation. For each experiment,
automatic testing execution time (in ms) is collected 50 times for a
total of 3400 experiments. Data is collected using the laptop issued
to students at our institution (processor/OS).

For each machine, the number of test words generated allowing
the use of a rule at most once is displayed in Table 2. The median
value for the refactored machines is 45 and the median value for
the machines that are not refactored is 50, which clearly suggest
that it is not reasonable to expect anyone to write a test suite that
provides good coverage of the transitions used to reach each state.

The average runtime to test each machine using words generated
by using any transition at most once in a computation is displayed
in Figure 6. The most salient feature, regardless of whether ma-
chines are refactored or not, is that for most machines the running
time is under a fifth of a second (i.e., under 200ms), with most
machines having an execution time under a millisecond. The sole
exception is M15 for which we observe an average running time
of about 6 seconds when the machine is refactored and about 2
seconds when the machine is not refactored. This difference in per-
formance is explained by M15’s characteristics displayed in Table 1.
This machine has 40 edges and no dead states. Therefore, the time
penalty observed is attributed to an unsuccessful attempt to remove
dead states in a machine with a large transition relation that has no

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Morazán, Turano, Garced, and Fields

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Machine Refactored Not refactored Refactored Not refactored
Edge use once once twice twice

M1 325 51024 36834 unfeasible
M2 45 65 1607 3830
M3 15 15 57 57
M4 26 26 66 66
M5 66 66 351 351
M6 10 10 18 18
M7 17 17 43 43
M8 62 1598 363 165131
M9 62 62 363 363
M10 12 37 47 408
M11 11 11 125 125
M12 4 4 6 6
M13 50 50 3159 3159
M14 8 8 12 12
M15 1284774 1284774 unfeasible unfeasible
M16 51024 520124 unfeasible unfeasible
M17 27060 27060 unfeasible unfeasible

Table 2: Number of test words generated for each machine using rules at most once and twice using Windows.

Figure 6 Average testing times using words generated from computations that use a transition at most once.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17

0

1,000

2,000

3,000

4,000

5,000

6,000

57 0 0 0 0 0 0 2 0 0 0 0 0 0

6,052

198 11164 0 0 0 0 0 0 2 0 0 0 0 0 0

2,323

66 41

Machines

Ex
ec
ut
io
n
tim

e
in

m
ill
ise

co
nd

s

Refactored-Windows
Not Refactored-Windows

(a) Average execution time under Windows.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17

0

2,000

4,000

6,000

8,000

51 0 0 0 0 0 0 1 0 0 0 0 0 0

7,459

231 13566 0 0 0 0 0 0 1 0 0 0 0 0 0

3,234

66 34

Machines

Ex
ec
ut
io
n
tim

e
in

m
ill
ise

co
nd

s

Refactored-Linux
Not Refactored-Linux

(b) Average execution time under Linux.

dead states. Despite the performance gap, refactoring the machine
still yields an execution time that does not disrupt a smooth user ex-
perience. We conclude, therefore, that classroom usage of the tool is
feasible as part of a typical undergraduate FLAT course. In addition,
we note that the data also suggests that it is feasible for students to

use the tool to debug their designs for typical assignments found
in FLAT textbooks.

The average runtime to test each machine using words gen-
erated by using any transition at most twice in a computation is
displayed in Figure 7. This data paints a muchmore nuanced picture.
First, we observe that testing some machine becomes unfeasible

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Automatic Testing for Finite-State Machines Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 7 Average testing times using words generated from computations that use a transition at most twice.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17

0

100

200

300

196

10 1 0 5 0 0 8 1 0 0 0
31

0
−1 −1 −1−1

34

0 0 1 0 0

357

0 1 0 0
22

0
−1 −1 −1

Machines

Ex
ec
ut
io
n
tim

e
in

m
ill
ise

co
nd

s

Refactored-Windows
Not Refactored-Windows

(a) Average execution time under Windows.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17

0

50

100

150

200

117

4 0 0 0 0 0 1 1 0 0 0 6 0
−1 −1 −1

110

11
0 0 0 0 0

218

0 1 0 0 6 0
−1 −1 −1

Machines

Ex
ec
ut
io
n
tim

e
in

m
ill
ise

co
nd

s

Refactored-Linux
Not Refactored-Linux

(b) Average execution time under Linux.

(i.e., M15–M17), which is indicated by a height of -1 in Figure 7. We
note that testing M1, without refactoring, becomes unfeasible using
Windows. Although we cannot be absolutely certain, it is reasonable
to hypothesize that the Linux Out-Of-Memory (OOM) Killer kernel
function [20] prevents the DrRacket IDE from crashing by termi-
nating non-essential processes to make enough memory available
for testing to terminate normally. Second, we observe that signifi-
cant gains in performance are achieved for some machines (e.g., M8,
and M1 under Windows) and that the penalty for refactoring when
no gains are observed is extremely small. Thus, we conclude that
the machine refactoring step ought to remain an integral part of
the testing algorithm.

5 Machine Debugging
Two examples are presented to illustrate how the software to auto-
matically test state invariant predicates is used to debug machines.

5.1 Debugging CONTAINS-aabab
The first is a student-designed machine that served as the inspira-
tion for the machine displayed in Figure 4. The student has imple-
mented the following buggy dfa in FSM to decide if a given word
contains aabab:

She has also implemented the state predicate invariants displayed
in Figure 5 along with a testing suite for them. Her machine and

invariant tests all pass. A perceptive instructor is likely to imme-
diately notice that '(a a b a a b a b) is rejected. Clearly,
that is a bug given that the word ends with aabab and ought to
be accepted. Naturally, the student is upset because all her tests
pass. After some discussion, it becomes clear that simply trying to
analyze the transition diagram is leading the student nowhere.

At this point, the student is encouraged to use FSM’s tool to
automatically test state invariant predicates as follows:

(sm-test-invs CONTAINS-aabab

(list 'S S-INV)

(list 'A A-INV)

(list 'B B-INV)

(list 'C C-INV)

(list 'D D-INV)

(list 'E E-INV))

The tool yields the following results:
'(((a a b a a) A)

((a a a b a a) A)
((b a a b a a) A)
((b a a a b a a) A)
((a a b a a b) S)
((a a a b a a b) S)
((b a a b a a b) S)
((b a a a b a a b) S))

The invariant predicates for S and A do not always hold. The list
of failing words provides the student with a new starting point
for debugging. She can observe how the machine processes the
problematic words by launching the dynamic visualization tool.
Figure 8 displays the final state of the dynamic visualization tool
when CONTAINS-aabab is applied to '(a a b a a). The student

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Morazán, Turano, Garced, and Fields

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 8 Final dynamic visualization tool state.

Figure 9 The ndfa for L=(b(bb)* ∪ a*)(ccc)+.

can see why A-INV fails. The machines ends in A (indicated by the
violet edge), but should not given that the given word ends with '(a
a). This suggests to the student that there is a bug in the transition
function and they quickly realize that from D on an a the machine
ought to move to B, not A. Upon updating (D a A) to (D a B) all
tests pass and sm-test-invs returns the empty list. The student
also adds the following test:

(check-equal?
(sm-test-invs CONTAINS-aabab

(list 'S S-INV)
(list 'A A-INV)
(list 'B B-INV)
(list 'C C-INV)
(list 'D D-INV)
(list 'E E-INV))

'())

Observe that this is a succinct and elegant way of testing state
invariant predicates.

5.2 Debugging an ndfa
Consider implementing an ndfa to decide:

L = (b(bb)* ∪ a*)(ccc)+

Following the steps of the design recipe, a student has implemented
in FSM the ndfa displayed in Figure 9. A cursory look at the transi-
tion diagram suggests that the machine is correct. There are two
paths from S to D: one consumes a* and the other consumes b(bb)*.
This correctly implements the union of these two languages. Both
of these paths end by consuming a c. Thus, when the machine
transitions into D, ci∈(b(bb)* ∪ a*)c. Observe that the number of
cs is multiple of 3 minus 2. When the machine transitions into E
and F, respectively, the number of cs is multiple of 3 minus 1 and a
multiple of 3.

Based on this the student argues that the machine is correct, but
tests for the predicate invariants for D, E, and F are failing. The tests
are not shown in the interest of brevity. Given that the transition
relation appears correct, the predicate implementation needs to be
examined:

(define (D-INV ci)

(let* [(bcs (takef ci (𝜆 (s) (not (eq? s 'c)))))

(cs (drop ci (length bcs)))]

(and (or (B-INV bcs) (A-INV bcs))

(andmap (𝜆 (s) (eq? s 'c)) cs)

(= (remainder (length cs) 3) 1))))

(define (E-INV ci)

(let* [(bcs (takef ci (𝜆 (s) (not (eq? s 'c)))))

(cs (drop ci (length bcs)))]

(and (or (B-INV bcs) (A-INV bcs))

(andmap (𝜆 (s) (eq? s 'c)) cs)

(= (remainder (length cs) 3) 2))))

(define (F-INV ci)

(let* [(bcs (takef ci (𝜆 (s) (not (eq? s 'c)))))

(cs (drop ci (length bcs)))]

(and (or (B-INV bcs) (A-INV bcs))

(andmap (𝜆 (s) (eq? s 'c)) cs)

(= (remainder (length cs) 3) 0))))

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Automatic Testing for Finite-State Machines Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Upon using the described automatic invariant testing tool the
following result is obtained:

'(((b c) D)
((b c c) E)
((b c c c) F))

The words that are causing the invariant predicates to fail all have
the correct properties. That is, an odd number of bs followed by a
number of cs modulo 3 corresponding to 1, 2, and 0, respectively,
for D, E, and F. Further observe, that all the test words that fail
are for computations traversing D. This suggests that there is a
bug in at least D-INV. Upon inspecting its implementation, the
student realizes that they have used B-INV, instead of C-INV, in the
implementation of D-INV. They further acknowledge that the same
bug is present in E-INV and F-INV, because they copied, pasted,
and edited the second argument to remainder to implement E-INV
and F-INV.

6 Related Work
6.1 Validation in FLAT Education
Most FLAT textbooks do not address validation of dfas and ndfas
(e.g., [14, 21, 24, 38, 41]). This is expected for two reasons. First,
students are not expected to take their ideas beyond the pencil and
paper design and, therefore, there is no possibility of running tests.
Second, FLAT textbooks rarely, if ever, address the correctness of
state machines and focus much more on the correctness of transfor-
mation constructors (e.g., the transformation of an ndfa to a dfa).
A notable exception is Morazán’s textbook which is tightly-coupled
with FSM [29]. The work presented in this article builds on his work
by automating the testing of state invariant predicates. The result is
the use of a single function to validate all state invariant predicates
for a machine. Instead of writing individual tests for each predicate,
a single expression is used and when invariant predicates fail, the
failed words in the test suite are returned to the programmer to aid
in debugging.

GUI-based state machine simulators offer machine testing fa-
cilities. JFLAP [39, 40] and Automaton Simulator [7], for exam-
ple, allow users to build their own machines by manually draw-
ing a transition diagram (i.e., placing nodes and edges). Like FSM,
such machines may be tested by providing a list of words to deter-
mine which are accepted and which are rejected. Most simulators,
however, only allow for a single word to be tested at a time (e.g.,
[1, 3, 12, 13, 18, 43]). Automata Tutor [4, 9] is a popular tool to
provide students machine building exercises. Unlike FSM, users only
receive feedback based on the exercise they are trying to solve. That
is, it is not a platform for building arbitrary machines.

Before FSM, the only software system that addressed the need
to validate state invariants is ProofChecker [42]. This system is
restricted to dfas, but is notable given that it allows students to
specify state invariants and then performs automatic validation of
invariants. Unlike FSM, invariant validation is not linked to gen-
erating a test suite based on using the given machine’s transition
relation. Instead, all words of a predetermined length are gener-
ated and used to test invariants. As a consequence, thorough test
coverage is not guaranteed.

6.2 Test Generation
Arguably, the best-known test generation software is QuickCheck
[2, 16]. A programmer defines a predicate for a property that spec-
ifies how a piece of code ought to work. QuickCheck generates
random type-safe inputs and tests if the predicate holds. If the
predicate fails, a shrinking step is performed to reduce the input
to a minimal counterexample. To allow programmers to perform
better targeted testing, QuickCheck allows programmers to write
their own test generators. Like QuickCheck, the work presented
in this article automatically generates tests for the programmer. In
contrast, the work presented does not rely on random generation of
tests. Instead, finite-state machines provide a domain that allows the
generation of tests by traversing a transition relation. QuickCheck’s
shrinking step, to some degree, is built-in to the traversal of the
transition relation by not allowing the use of a transition relation
within a computation more than once.

Westphal and Voigtländer describe a specification and testing
domain-specific language to teach students how to write interac-
tive Haskell programs [44]. This framework provides support for
expressing read/write specifications, capturing the trace of an exe-
cuted program, writing a function to determine if a trace is valid
given the specification, and a testing procedure to check programs
against the specification. Testing is performed by repeatedly taking
a random sample of a generalized trace for a given specification,
extracting the inputs from said trace, and determining if the trace
of a program being tested when given said inputs is covered by the
generalized trace. In the work presented in this article, the notion
of a generalized trace is tantamount to a refactored machine after
removing states that do not lead to a final state. The extraction of
inputs is performed by the traversal of the transition relation. In
contrast, the work presented does not specify the notion of a trace.
Instead, validation is performed by testing properties specified by
the programmer as state invariant predicates.

There is a growing pool of software tools to perform automatic
testing. Hypothesis is a property-based testing library for Python
that is inspired by QuickCheck, which provides mechanisms for
targeted testing [23]. Proptest is a property testing framework for
Rust that is inspired by Hypothesis and QuickCheck [6]. Unlike
QuickCheck that only allows one generator and shrinker per type,
Proptest allows for multiple of these for a type using strategies–
each defines how to generate and shrink values. ScalaCheck [37]
and RapidCheck [5] are libraries for property-based testing used,
respectively, in Scala and C++ that are also inspired by QuickCheck.
Like cited work, these libraries substitute test writing with property
writing and randomly generate input values. In contrast to all of
the cited work, the work presented moves away from random
testing given that thorough testing may be achieved by traversing a
machine’s transition relation. In addition, FSM programmers do not
need to write properties–which simplifies testing for FLAT students.

7 Concluding Remarks
This article presents a novel tool to test state invariant properties
for deterministic and nondeterministic finite-state machines. The
tool is integrated into the FSM and generates a thorough testing
suite that covers all possible transitions on accepting computations.
The testing suite is generated by traversing the given machine’s

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Morazán, Turano, Garced, and Fields

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

transition relation (or, equivalently, the machine’s transition dia-
gram) and accumulating, for each state A, all words that transition
the machine into A. The process is guaranteed to terminate given
that any loop in the transition relation is traversed only once for
any computation. However, given that finding all paths in graph
is a #P problem, the tool is only proven useful for the typical FLAT
classroom. Nonetheless, the result is a testing function that allows
all state invariants to be elegantly tested using a single expression.
When invariants fail, the testing function returns the states and the
words for which invariants failed. This information is used by the
programmer to debug their design before attempting to verify their
machine.

Future work is three-fold. First, the described software will be
extended to serve as the basis for generating test cases for dfas and
ndfas using QuickCheck [2, 15]. This will require the generation of
regular expressions, not words, for all paths to a state in any com-
putation that may lead to accept. In essence, a regular language will
be defined for each state in a given machine. Second, the methodol-
ogy will be extended to pushdown automata. Third, human-factors
studies will be conducted to ascertain student perceptions about the
usefulness of the tool to debug machines and to assist in developing
correctness arguments.

References
[1] Carl Burch. 2008. Automaton Simulator. https://cburch.com/proj/autosim/

download.html. Last Accessed: June 2025.
[2] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, 268–279.
doi:10.1145/351240.351266

[3] Joshua J. Cogliati, Frances W. Goosey, Michael T. Grinder, Bradley A. Pascoe,
Rockford J. ROSS, and Cheston J. Williams. 2005. Realizing the Promise of
Visualization in the Theory of Computing. J. Educ. Resour. Comput. 5, 2 (June
2005), 5–es. doi:10.1145/1141904.1141909

[4] Loris D’antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan,
and Björn Hartmann. 2015. How Can Automatic Feedback Help Students Con-
struct Automata? ACM Trans. Comput.-Hum. Interact. 22, 2, Article 9 (mar 2015),
24 pages. doi:10.1145/2723163

[5] RapidCheck Developer. 2021. RapidCheck User Guide. https://github.com/emil-
e/rapidcheck/blob/master/doc/user_guide.md. Last Accessed: 08/2025.

[6] Proptest Developers. 2025. Proptest. https://proptest-rs.github.io/proptest/intro.
html. Last Accessed: 08.2025.

[7] Kyle Dickerson. 2022. Automaton Simulator. https://automatonsimulator.com/.
Last Accessed: May 2025.

[8] Shamil Dzhatdoyev, Josephine A. Des Rosiers, and Marco T. Morazán. 2024. Error
Messages for Students Taught Using a Systematic Program Design Curriculum.
In Trends in Functional Programming - 25th International Symposium, TFP 2024,
South Orange, NJ, USA, January 10-12, 2024, Revised Selected Papers (Lecture
Notes in Computer Science, Vol. 14843), Jason Hemann and Stephen Chang (Eds.).
Springer, 195–219. doi:10.1007/978-3-031-74558-4_9

[9] Loris D’Antoni, Martin Helfrich, Jan Kretinsky, Emanuel Ramneantu, and Max-
imilian Weininger. 2020. Automata Tutor v3. In Computer Aided Verification:
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020,
Proceedings, Part II (Los Angeles, CA, USA). Springer-Verlag, Berlin, Heidelberg,
3–14. doi:10.1007/978-3-030-53291-8_1

[10] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing (Second ed.). MIT Press, Cambridge, MA, USA.

[11] Matthew Flatt, Robert Bruce Findler, and PLT. 2024. The Racket Reference. PLT.
https://docs.racket-lang.org/reference/index.html Last accessed: June 2024.

[12] Michael T. Grinder. 2002. Animating Automata: A Cross-Platform Program for
Teaching Finite Automata. In Proceedings of the 33rd SIGCSE Technical Symposium
on Computer Science Education (Cincinnati, Kentucky) (SIGCSE ’02). Association
for ComputingMachinery, NewYork, NY, USA, 63–67. doi:10.1145/563340.563364

[13] Michael T. Grinder. 2003. A Preliminary Empirical Evaluation of the Effectiveness
of a Finite State Automaton Animator. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education (Reno, Navada, USA) (SIGCSE ’03).
Association for Computing Machinery, New York, NY, USA, 157–161. doi:10.

1145/611892.611958
[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to

Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., USA.

[15] John Hughes. 2010. Software Testing with QuickCheck. Springer Berlin Heidelberg,
Berlin, Heidelberg, 183–223. doi:10.1007/978-3-642-17685-2_6

[16] John Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stuff and
Staying Sane. In Proceedings of the Conference on Dependable Software Systems
and Experience-Based Models. 141–152. doi:10.1007/978-3-319-30936-1_9

[17] John Hughes. 2017. Don’t Write Tests! https://www.youtube.com/watch?v=
hXnS_Xjwk2Y. Last Accessed: May 2025.

[18] Romauld Jagielski. 1988. Visual Simulation of Finite State Machines. SIGCSE
Bull. 20, 4 (Dec. 1988), 38–40. doi:10.1145/54138.54145

[19] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. 1977. Fast Pattern
Matching in Strings. SIAM J. Comput. 6, 2 (1977), 323–350. doi:10.1137/0206024

[20] Joongjin Kook, Sukil Hong, Wooseung Lee, Eunkyeung Jae, and JungYeop Kim.
2011. Optimization of out of Memory Killer for Embedded Linux Environments.
In Proceedings of the 2011 ACM Symposium on Applied Computing (TaiChung,
Taiwan) (SAC ’11). Association for Computing Machinery, New York, NY, USA,
633–634. doi:10.1145/1982185.1982324

[21] Harry R. Lewis and Christos H. Papadimitriou. 1997. Elements of the Theory
of Computation (2nd ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
doi:10.1145/300307.1040360

[22] Peter Linz and Susan H. Rodger. 2023. An Introduction to Formal Languages and
Automata (seventh ed.). Jones & Bartlett Learning, Burlington, MA, USA.

[23] David R. MacIver. 2019. Hypothesis: A New Approach to Property-Based Testing.
Journal of Open Source Software 4, 43 (2019), 1891. doi:10.21105/joss.01891

[24] John C. Martin. 2003. Introduction to Languages and the Theory of Computation
(3 ed.). McGraw-Hill, Inc., New York, NY, USA.

[25] Tijana Minić, Marco T. Morazán, Andrés M. Garced, and David Anthony K. Fields.
2025. Visualizing Construction Algorithms for Closure Properties of Regular
Languages. In Proceedings of the 2025 on Innovation and Technology in Computer
Science Education V. 1 (Nijmegen, The Netherlands) (ITiCSE 2025). Association
for Computing Machinery, New York, NY, USA.

[26] Mostafa Kamel Osman Mohammed. 2020. Teaching Formal Languages through
Visualizations, Simulators, Auto-graded Exercises, and Programmed Instruction.
In Proceedings of the 51st ACM Technical Symposium on Computer Science Ed-
ucation, SIGCSE 2020, Portland, OR, USA, March 11-14, 2020, Jian Zhang, Mark
Sherriff, Sarah Heckman, Pamela A. Cutter, and Alvaro E. Monge (Eds.). ACM,
1429. doi:10.1145/3328778.3372711

[27] Marco T. Morazán. 2022. Animated Problem Solving - An Introduction to Program
Design Using Video Game Development. Springer, Cham, Switzerland. doi:10.
1007/978-3-030-85091-3

[28] Marco T. Morazán. 2022. Animated Program Design - Intermediate Program Design
Using Video Game Development. Springer, Cham, Switzerland. doi:10.1007/978-
3-031-04317-8

[29] Marco T. Morazán. 2024. Programming-Based Formal Languages and Automata
Theory - Design, Implement, Validate, and Prove. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-43973-5

[30] Marco T. Morazán and Rosario Antunez. 2014. Functional Automata - Formal
Languages for Computer Science Students. In Proceedings 3rd International Work-
shop on Trends in Functional Programming in Education, TFPIE 2014, Soesterberg,
The Netherlands, 25th May 2014 (EPTCS, Vol. 170), James L. Caldwell, Philip K. F.
Hölzenspies, and Peter Achten (Eds.). Open Publishing Association, Australia,
19–32. doi:10.4204/EPTCS.170.2

[31] Marco T. Morazán, David Anthony K. Fields, Andrés M. Garced, and Tijana
Minić. 2025. Visual Execution and Validation of Finite-State Machines and
Pushdown Automata. In Proceedings Fourteenth International Workshop on Trends
in Functional Programming in Education, TFPIE@TFP 2025, University of Oxford,
Oxford, United Kingdom, 13th January 2025 (EPTCS), Rose Bohrer (Ed.). Open
Publishing Association, Australia.

[32] Marco T. Morazán and Oliwia Kempinski. 2024. Using Computation Graphs to
Explain Nondeterminism to Students. In Proceedings of the 2024 ACM SIGPLAN
International Symposium on SPLASH-E (Pasadena, CA, USA) (SPLASH-E ’24).
Association for Computing Machinery, New York, NY, USA, 23–33. doi:10.1145/
3689493.3689978

[33] Marco T. Morazán, Oliwia Kempinski, and Andrés M. Garced. 2025. The Imple-
mentation of FSM Computation Graphs. In Proceedings of the 36th Symposium on
Implementation and Application of Functional Languages (Nijmegen, The Nether-
lands) (IFL ’24). Association for Computing Machinery, New York, NY, USA,
13–24. doi:10.1145/3723325.3723337

[34] Marco T. Morazán and Tijana Minić. 2024. Finite-State Automaton To/From
Regular Expression Visualization. Electronic Proceedings in Theoretical Computer
Science 405 (July 2024), 36–55. doi:10.4204/eptcs.405.3

[35] Marco T. Morazán and Tijana Minić. 2024. Nondeterministic to Deterministic
Finite-State Machine Visualization: Implementation and Evaluation. In Proceed-
ings of the 2024 on Innovation and Technology in Computer Science Education V. 1
(Milan, Italy) (ITiCSE 2024). Association for Computing Machinery, New York,

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Automatic Testing for Finite-State Machines Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

NY, USA, 262–268. doi:10.1145/3649217.3653641
[36] Marco T. Morazán, Joshua M. Schappel, and Sachin Mahashabde. 2020. Vi-

sual Designing and Debugging of Deterministic Finite-State Machines in FSM.
Electronic Proceedings in Theoretical Computer Science 321 (August 2020), 55–77.
doi:10.4204/eptcs.321.4

[37] Rickard Nilsson. 2021. ScalaCheck: Property-Based Testing for Scala. https:
//scalacheck.org/. Last Accessed: 08/2025.

[38] Elaine Rich. 2019. Automata, Computability and Complexity: Theory and Applica-
tions. Pearson Prentice Hall.

[39] Susan H. Rodger. 2006. JFLAP: An Interactive Formal Languages and Automata
Package. Jones and Bartlett Publishers, Inc., USA.

[40] Susan H. Rodger, Bart Bressler, Thomas Finley, and Stephen Reading. 2006. Turn-
ing automata theory into a hands-on course. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE 2006, Houston, Texas,
USA, March 3-5, 2006, Doug Baldwin, Paul T. Tymann, Susan M. Haller, and Ingrid
Russell (Eds.). ACM, 379–383. doi:10.1145/1121341.1121459

[41] Michael Sipser. 2013. Introduction to the Theory of Computation (3rd ed.). Cengage
Learning.

[42] Matthias F. Stallmann, Suzanne P. Balik, Robert D. Rodman, Sina Bahram,
Michael C. Grace, and Susan D. High. 2007. ProofChecker: An Accessible En-
vironment for Automata Theory Correctness Proofs. In Proceedings of the 12th
Annual SIGCSE Conference on Innovation and Technology in Computer Science Ed-
ucation (Dundee, Scotland) (ITiCSE ’07). Association for Computing Machinery,
New York, NY, USA, 48–52. doi:10.1145/1268784.1268801

[43] Luiz Filipe M. Vieira, Marcos Augusto M. Vieira, and Newton J. Vieira. 2004.
Language Emulator, a Helpful Toolkit in the Learning Process of Computer The-
ory. In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education (Norfolk, Virginia, USA) (SIGCSE ’04). Association for Computing
Machinery, New York, NY, USA, 135–139. doi:10.1145/971300.971348

[44] Oliver Westphal and Janis Voigtländer. 2020. Implementing, and Keeping in
Check, a DSLUsed in E-Learning. In Functional and Logic Programming: 15th Inter-
national Symposium, FLOPS 2020, Akita, Japan, September 14–16, 2020, Proceedings
(Akita, Japan). Springer-Verlag, Berlin, Heidelberg, 179–197. doi:10.1007/978-3-
030-59025-3_11

[45] Masaki Yamamoto. 2017. Approximately Counting Paths and Cycles in a Graph.
Discrete Applied Mathematics 217 (2017), 381–387. doi:10.1016/j.dam.2016.09.002

13



banner above paper title

Energy-aware Data-Parallel Functional Array Processing for
Heterogeneous Platforms

Clemens Grelck
Friedrich Schiller University Jena

Jena, Germany
Clemens.Grelck@uni-jena.de

Abstract
Functional array processing is a variant of functional programming
where not lists and trees are in the focus of attention but densely
stored, immutable arrays. This focus fosters data-parallel opera-
tions on functional arrays that by construction are free of side-
effects. On larger arrays this offers a wealth of concurrency that can
be exploited by compiler and runtime system for parallel execution
in a completely transparent way, i.e. without any traces of paral-
lelism and without any directions how to precisely exploit concur-
rency in the code. Single Assignment C (SAC) is one example of a
functional array language that supports fully implicit parallelization
for a variety of architectures, almost like a compiler optimization.

The ever changing landscape of hardware platforms in the mul-
ticore domain gives rise to new issues that we aim to address in
this work. One such issue pertains to the ever growing number of
cores that creates an ever growing design space regarding the effec-
tive number of cores to use for some data-parallel operation within
an application. Here, we extend our previous work on feedback-
directed runtime adaptation with a stronger focus on energy sav-
ings.

The other issue we address is the impact of heterogeneous plat-
forms on code generation. Functional array processing demands a
fully automatic solution to the scheduling and mapping of data-
parallel operations. We leverage our existing feedback-directed
compilation architecture for this purpose.

Categories and Subject Descriptors Software and its engineering
[Software notations and tools]: Dynamic compilers

Keywords Functional array programming, Single Assignment C,
heterogeneous multicore, loop scheduling, data parallelism

1. Introduction
Single Assignment C (SAC) is a purely functional, data-parallel ar-
ray language [Grelck and Scholz(2006b), Grelck(2012)] with a C-
like syntax (hence the name). SAC features homogeneous, multi-
dimensional, immutable arrays and supports both shape- and rank-
polymorphic programming: SAC functions may not only abstract
from the concrete shapes of argument and result arrays, but even
from their ranks (i.e. the number of dimensions). A key feature of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IFL 2025 October 1–3, 2025, Montevideo, Uruguay
Copyright c© 2025 ACM [to be supplied]. . . $5.00

SAC is fully compiler-directed parallelisation for a variety of archi-
tectures. From the very same source code the SAC compiler gen-
erate code for general-purpose multi-processor and multi-core sys-
tems [Grelck(2005)], CUDA-enabled GPGPUs [Guo et al.(2011)],
heterogeneous combinations thereof [Diogo and Grelck(2013)] as
well as clusters of workstations [Macht and Grelck(2019)].

One of the advantages of a fully compiler-directed approach to
parallel execution is that compiler and runtime system are techni-
cally free to choose any number of cores for execution, and by de-
sign the choice cannot interfere with the program logic. This prop-
erty is usually referred to as malleability. Malleability raises one of
the central questions of this paper: what would be the best number
of threads to choose for the execution of a data-parallel operation?
This choice depends on a number of factors, including but not lim-
ited to

• the number of array elements to compute,
• the computational complexity per array element and
• the compute platform.

For a large array of computationally challenging values mak-
ing use of all available cores is a rather trivial choice on al-
most any machine. However, smaller arrays, less computational
complexity or both inevitably lead to the observation illustrated
in Fig. 1. While for a small number of threads/cores we often
achieve almost linear speedup, the additional benefit of using
more cores increasingly diminishes until some (near-)plateau is
reached. Beyond this plateau using even more cores often shows
a detrimental effect on performance. This is an effect of dimin-
ishing performance returns per core in the presence of super-
linear cost for synchronisation and the organisation of parallel
execution in general [Nieplocha et al.(2007), Saini et al.(2006),
Suleman et al.(2008), Pusukuri et al.(2011)].

From a pure performance perspective we would aim at the
number of threads that yield the lowest execution time, i.e. the
highest speedup in relation to sequential execution. In the example
of Fig. 1 that would be 16 threads. However, we typically observe
a performance plateau around that optimal number. In the given
example we can observe that from 12 to 20 threads the performance
obtained only marginally changes.

Now, the landscape of computing has profoundly changed over
the last decade, and investing a disproportional amount of re-
sources, and hence energy, for a marginal gain in performance
is a bad choice in most, if not almost any, application domain and
scenario. The 8 additional cores in the example of Fig. 1 could
more productively be used for other tasks or powered down to save
energy.

Hence, we are looking at the gradient of the speedup curve. If
the additional performance benefit of using one more core drops



S
p

e
e

d
u

p

1 4 8 12 2016 24

1

4

12

8

16

top performance

performance equilibrium

Number of threads/cores

Figure 1. Typical speedup graph observed for multi-core execu-
tion, reproduced from [Grelck and Blom(2020)]

below a certain threshold, we constitute that we have reached the
optimal number of threads. Where exactly this threshold lies, is
highly application-, situation- and platform-dependent.

In classical, high performance oriented parallel computing our
issues have hardly been addressed because in this area users have
typically strived for solving the largest possible problem size that
still fits the constraints of the computing system used. In today’s
ubiquitous parallel computing world [Catanzaro et al.(2010)], how-
ever, the situation has completely changed, and problem sizes are
much more often determined by problem characteristics than ma-
chine constraints. However, even in high performance computing
domain some problem classes inevitably run into the described is-
sues: multi-scale methods. Here, the same function(s) is/are applied
to arrays of systematically varied shape and size [Grelck(2002)].

We illustrate multi-scale methods in Fig. 2 based on the exam-
ple of the NAS benchmark MG (multigrid) [Bailey et al.(1991),
Grelck(2002)]. In this so-called v-cycle algorithm (A glimpse at
Fig. 2 suffices to understand the motivation of the name.) we start
the computational process with a 3-dimensional array of large size
and then systematically reduce the size by half in each dimen-
sion. This process continues until some predefined minimum size
is reached, and then the process is sort of inverted and array sizes
now double in each dimension until the original size is reached
again. The whole process is repeated many times until some form
of convergence is reached.

With a given data-parallel operation and for some platform of
choice it is the size of the involved arrays that determines the num-
ber of cores that can efficiently be used. Hence, the best number
of cores to use is different on the various levels of the v-cycle. Re-
gardless of the initial problem size, we always reach problem sizes
where we better reduce the number of cores before we tend towards
purely sequential execution for the smalles problem sizes.

All the above examples and discussions lead to one insight:
in most non-trivial applications we cannot expect to find the one
number of cores that is best across all data-parallel operations
within an application. But even for a single operation on a given
platform the best number of cores to use appears impossible to
determine via some form of static analysis.

Therefore, we proposed a (mostly) transparent feedback-directed
compilation architecture [Grelck and Blom(2020)]. We follow a
two-phase approach that distinguishes between offline training runs
and online production runs of an application. In training mode com-
pilation we instrument the generated code to produce an individual

performance profile for each data-parallel operation. In production
mode compilation we associate each data-parallel operation with
an oracle that based on the performance profiles gathered offline
chooses the number of threads based on the array sizes encountered
at production runtime.

Even for a given platform, the overall design space in terms of
array operations, array sizes and potential core counts is huge and,
typically, too large to exhaustively explore via profiling. In our pre-
vious work [Grelck and Blom(2020)] we used fourth-order polyno-
mial interpolation of the measurement results. This has proven sub-
optimal, in particular on cc-NUMA architectures, where the perfor-
mance profile often does not expose the text book characteristics of
Fig. 1. In this work we revise the choice for more reliable results.

Orthogonal to rising numbers of cores on a chip, we can ob-
serve a trend towards heterogeneous compute platforms. Hetero-
geneity can have many facets, such as CPU/GPU, tensor cores,
crypto cores, etc, but in our current work we focus on binary com-
patible cores that expose different time/energy characteristics when
executing the very same code. We address (variations of) ARM’s
BIG.little architecture with some number of energy-hungry perfor-
mance cores and a number of energy-saving less-performant cores.
Our general assumption is a small number of classes of cores with
a certain number of identical cores per class.

Such architectures offer an even greater design space for
scheduling and mapping. In any data-parallel operation, not spe-
cific to functional array programming, we typically oberved a de-
gree of concurrency that excedes the number of cores available by
various to many orders of magnitude. Therefore, a scheduler is re-
quired that decides which core computes which elements of a data-
parallel operation. This is generally referred to as loop scheduling.
While functional array programming in SAC is characterised by
multi-dimensional array comprehension instead of nested loops
typical for imperative solutions, the resulting scheduling problems
are quite similar.

Like for instance OpenMP in the imperative parallel program-
ming world, SAC features both static and dynamic scheduling tech-
niques. With static scheduling the mapping between elements of the
multidimensional index space of an array comprehension is fixed
a-priori. This choice has the advantage of efficiency as neither syn-
chronisation nor communication between cores is needed during
the execution of a data-parallel operation. However, static schedul-
ing silently assumes that the time to compute one element of the
index space is about the same as for any other element.

This property indeed holds for many typical data-parallel oper-
ations, but not for all. If the time to compute one element of the
index space significantly varies from element to element, dynamic
scheduling techniques are recommended. Dynamic schedulers in-
crementally assign work to cores, and whenever a core has com-
pleted its assignment, it receives more work until completion of the
operation. Starting out from the basic concept of self-scheduling,
a plethora of dynamic scheduling techniques have been proposed.
They guarantees decent load balancing at the expense of higher
synchronisation overhead, in particular as core counts are on the
rise.

Even more silently static schedulers assume homogeneity of
compute units, silently because homogeneity used to be a given
until very recently. With multiple classes of cores the underlying
assumptions of static schedulers are no longer met. Now, we could
switch to dynamic schedulers to solve our problem, but we do not
favour the overhead introduced by dynamic scheduling. Moreover,
we can observe that the heterogeneity of platforms (as described
above) is much more regular than the potential performance het-
erogeneity of irregular array operations, where computational de-
mands could be randomly distributed over the index space of an
array comprehension.



k

P

0 1 V−cycles

Fine2Coarse

2 x
k

2
k

x2

Smooth

Fine2Coarse

Fine2Coarse

Resid

A

P

k = 2

k = 1

k = 3

k = 4

grid size

Coarse2Fine

Resid

A

Smooth

S

Q Coarse2Fine

A S A

ResidSmoothResid

Smooth

Coarse2Fine

Resid

A S

Q

S

QP

Figure 2. Algorithmic v-cycle structure of NAS benchmark MG as a representative of multi-scale methods, reproduced from [Grelck(2002)]

Therefore, we propose to leverage our feedback-directed com-
pilation archtecture instead and determine the relative performance
difference between the different kinds of cores available on the plat-
form. This can be done in a very fine-grained manner, not only spe-
cific to a certain application, but effectively specific to an individual
array comprehension kernel. In production mode we can, therefore,
apply efficient static scheduling and obtain excellent load balancing
capabilities on heterogeneous platforms at the same time.

The remainder of the paper is organised as follows. Section 2
provides some background information on SAC, and in Section 3
we sketch out its compilation for (homogeneous) multi-core archi-
tectures. In Section 4 we describe our feedback-directed compila-
tion approach. In Section 5 we revise some aspects of feedback-
directed compilation based on experience gained. We describe the
modifications for heterogeneous system architectures in Section 6.
Finally, we draw conclusions in Section 7.

2. Single Assignment C (SAC)
As the name “Single Assignment C” suggests, SAC combines a
purely functional semantics based on the context-free substitution
of expressions with a C-like syntax and overall look-and-feel. This
design is meant to facilitate adoption in compute-intensive appli-
cation domains, where imperative concepts prevail. We interpret
assignment sequences as nested let-expressions, branches as condi-
tional expressions and loops as syntactic sugar for tail recursion;
details can be found in [Grelck and Scholz(2006b)]. Despite the
fundamentally different semantics, all syntactic constructs adopted
from C show precisely the same operational behaviour as in C
proper.

SAC provides genuine support for truly multidimensional and
truly stateless/functional arrays using a shape-generic style of pro-
gramming: any SAC expression evaluates to an array, and arrays
are passed to and from functions call-by-value. Array types in-
clude arrays of fixed shape, e.g. int[3,7], arrays of fixed rank,
e.g. int[.,.], and arrays of any rank, e.g. int[*]. The latter in-
clude scalars, which we consider rank-0 arrays with an empty shape
vector.

SAC only features a very small set of built-in array operations,
among others to query for rank and shape or to select array ele-

ments. Aggregate array operations are specified in SAC itself using
WITH-loop array comprehensions:

with {
( lower bound <= idxvec < upper bound) : expr;

...
( lower bound <= idxvec < upper bound) : expr;

}: genarray( shape, default)

Here, the keyword genarray characterises the WITH-loop as an ar-
ray comprehension that defines an array of shape shape. The default
element value is default, but we may deviate from this default by
defining one or more index partitions between the keywords with
and genarray.

Here, lower bound and upper bound denote expressions that
must evaluate to integer vectors of equal length. They define a
rectangular (generally multidimensional) index set. The identifier
idxvec represents elements of this set, similar to induction variables
in FOR-loops. In contrast to FOR-loops, we deliberately do not
define any order on these index sets. We call the specification of
such an index set a generator and associate it with some potentially
complex SAC expression that is in the scope of idxvec and thus
may access the current index location. As an example, consider the
WITH-loop

A = with {
([1 ,1]<= iv < [ 4 , 5 ] ) : 10∗ i v [0 ]+ i v [ 1 ] ;
([4 ,0]<= iv < [ 5 , 5 ] ) : 42 ;
} : genar ray ( [ 5 , 5 ] , 1 0 ) ;

that defines the 5× 5 matrix




10 10 10 10 10
10 11 12 13 14
10 21 22 23 24
10 31 32 33 34
42 42 42 42 42




WITH-loops are extremely versatile. In addition to the dense
rectangular index partitions, as shown above, SAC supports also
strided generators. In addition to the genarray-variant, SAC
features further variants, among others for reduction operations.
Furthermore, a single WITH-loop may define multiple arrays



1 2 3 4 5 6 7

1 2 3 4 5 6 7

7654321

0

21 3 4 5 6 7

0Single−threaded startup

Thread creation 

Thread joining

Program termination

Thread creation

Stop barrier

Start barrier

Thread termination

Figure 3. Multithreaded execution models: conceptual fork-join
model (left) and start/stop barrier implementation (right)

or combine multiple array comprehensions with further reduc-
tion operations, etc. For a complete, tutorial-style introduction to
SAC as a programming language we refer the interested reader
to [Grelck(2012)].

3. Compiling SAC for multithreaded execution
Compiling SAC programs into efficiently executable code for a va-
riety of parallel architectures is a challenge, where WITH-loops play
a vital role. Many of our optimisations are geared towards the com-
position of multiple WITH-loops into one [Grelck and Scholz(2006a)].
These compiler transformations systematically improve the ra-
tio between productive computing and organisational overhead.
Consequently, when it comes to generating multithreaded code for
parallel execution on multi-core systems, we focus on individual
WITH-loops. WITH-loops are data-parallel by design: any WITH-
loop can be executed in parallel. The subject of our current work
is: should it?

Originally, the SAC compiler has generated two alternative
codes for each WITH-loop: a sequential and a multithreaded im-
plementation. The choice which route to take is made at runtime
based on two criteria:

• If the size of an index set is below a configurable threshold, we
evaluate the WITH-loop sequentially.
• If program execution is already in parallel mode, we evaluate

nested WITH-loops sequentially.

Multithreaded program execution follows an offload (or fork/join)
model, as illustrated in Fig. 3. Program execution always starts
in single-threaded mode. Only when execution reaches a WITH-
loop for which both above criteria for parallel execution are met,
worker threads are created. These worker threads join the master
thread in the data-parallel execution of the WITH-loop. A WITH-
loop-scheduler assigns index space indices to worker threads ac-
cording to one of several scheduling policies. At last, the master
thread resumes single-threaded execution following a barrier syn-
chronisation. We refer the interested reader to [Grelck(2005)] for
all details.

The total number of threads, eight in the illustration of Fig. 3, is
once determined at program startup and remains the same through-
out program execution. This number is typically motivated by the
hardware resources of the deployment system. Due to the mal-
leability property of the data-parallel applications concerned, ap-

plication characteristics are mostly irrelevant. While it would be
technically simple to determine the number of available cores at
application start, SAC for the time being expects this number to be
provided by the user, either through a command line parameter or
through an environment variable.

As illustrated on the right hand side of Fig. 3 SAC does not lit-
erally implement the fork/join-model. We rather spawn all worker
threads right at program start time and, thus, before the first WITH-
loop is encountered during program execution. Furthermore, all
worker threads are preserved until program termination. The con-
ceptual fork/join model is implemented through two dedicated bar-
riers: the start barrier and the stop barrier. At the start barrier
worker threads wait for activation by the master thread. At the stop
barrier the master thread waits for all worker threads to complete
the parallel section while the worker threads immediately pass on
to the following start barrier.We use highly efficient tailor-made im-
plementations that exploit properties of the cache coherence proto-
col, but are essentially based on spinning. All details about our bar-
rier implementations in particular and SAC’s multicore implemen-
tation in general can be found in [Grelck(2003), Grelck(2005)].

4. Feedback-directed compilation
As usual, feedback-directed compilation in SAC consists of two
modes: the training mode and the production mode. When compil-
ing for training mode, the SAC compiler instruments the generated
multithreaded code in such a way that

• for each WITH-loop and each problem size found in the code
we systematically explore the entire design space regarding the
number of threads;
• we repeat each experiment sufficiently many times to ensure a

meaningful timing granularity while avoiding excessive train-
ing times;
• profiling data is stored in a custom binary database.

Fig. 4 shows pseudo code that illustrates the structure of the gen-
erated code. To make the pseudo code as concrete as possible, we
pick up the example WITH-loop introduced in Section 2.

The core addition to our standard code generation scheme is a
do-while-loop plus a timing facility wrapped around the original
code generated from our WITH-loop. Let us briefly explain the latter
first. The pseudo function StartThreads is meant to lift the start
barrier for num threads-1 worker threads. They subsequently ex-
ecute the generated function spmd fun that contains most of the
code generated from the WITH-loop, among others the resulting
nesting of C for-loops, the WITH-loop-scheduler and the stop bar-
rier. The record spmd frame serves as a parameter passing mecha-
nism for spmd fun. In our concrete example, it merely contains the
memory address of the result array, but in general all values referred
to in the body of the WITH-loop are made available to all worker
threads via spmd frame. After lifting the start barrier, the mas-
ter thread temporarily turns itself into a worker thread by calling
spmd fun directly via a conventional function call. Note that the
first argument given to spmd fun denotes the thread ID. All worker
threads require the number of active threads (num threads) as in-
put for the WITH-loop-scheduler.

Coming back to the specific code for training mode, we immedi-
ately identify the timing facility, which profiles program execution,
but why do we wrap the whole code within another loop? Firstly,
the functional semantics of SAC and, thus, the guaranteed absence
of side-effects allow us to actually execute the compiled code mul-
tiple times without affecting semantics. In a non-functional context
this would immediately raise a plethora of concerns whether run-
ning some piece of code repeatedly may have an impact on appli-
cation logic.



1 s i z e = 5 ∗ 5 ;
2
3 A = a l l o ca t e memory ( s i z e ∗ s i z e o f ( i n t ) ) ;
4
5 spmd frame .A = A;
6 num threads = 1 ;
7 r e p e t i t i o n s = 1 ;
8
9 do {

10 s t a r t = g e t r e a l t i m e ( ) ;
11
12 f o r ( i n t i =0; i<r e p e t i t i o n s ; i++) {
13 S ta r tTh r ead s ( num threads ,
14 spmd fun ,
15 spmd frame ) ;
16 spmd fun ( 0 , num threads , spmd frame ) ;
17 }
18
19 s top = g e t r e a l t i m e ( ) ;
20
21 r e p e t i t i o n s , num threads
22 = Tra i n i n gO r a c l e ( un i qu e i d ,
23 s i z e ,
24 num threads ,
25 max threads ,
26 r e p e t i t i o n s ,
27 s t a r t ,
28 s top ) ;
29 }
30 wh i l e ( r e p e t i t i o n s > 0 ) ;

Figure 4. Compiled pseudo code of the example WITH-loop
from Section 2 in smart decision training mode. The vari-
able max threads denotes a user- or system-controlled up-
per limit for the number of threads used (reproduced from
[Grelck and Blom(2020)]).

However, the reason for actually running a single WITH-loop
multiple times is to obtain more reliable timing data. A-priori we
have no insight into how long the with-loop is going to run. Shorter
runtimes often result in greater relative variety of measurements.
To counter such effects, we first run the WITH-loop once to obtain
an estimate of its execution time. Following this initial execution a
training oracle decides about the number of repetitions to follow in
order to obtain meaningful timings while keeping overall execution
time at acceptable levels.

In addition to controlling the number of repetitions our training
oracle systematically varies the effective number of threads em-
ployed. More precisely, the training oracle implements a three step
process:

Step 1: Dynamically adjust the time spent on a single measure-
ment iteration to match a certain pre-configured time range.
During this step the WITH-loop is executed once by a single
thread, and the execution time is measured. Based on this time
the training oracle determines how often the WITH-loop could
be executed without exceeding a configurable time limit, by de-
fault 500ms.

Step 2: Measure the execution time of the WITH-loop while sys-
tematically varying the number of threads used. This step con-
sists of many cycles, each running the WITH-loop as many times
as determined in step 1. After each cycle the execution time of
the previous cycle is stored, and the number of threads used
during the next cycle is increased by one.

Step 3: Collect measurement data to create a performance profile
that is stored on disk. During this step all time measurements

collected in step 2 are packaged together with three characteris-
tic numbers of the profile: a unique identifier of the WITH-loop,
the size of the index set (problem size) and the number of repe-
titions in step 1. The packaged data is stored in the application-
specific binary smart decision database file on disk.

Let us have a closer look into the third step. In training mode
the SAC compiler determines the unique identifier of each WITH-
loop by simply counting all WITH-loops in a SAC module. The
resulting identifier is compiled into the generated code as one
argument of the training oracle. Here, it is important to under-
stand that we do not count the WITH-loops in the original source
code written by the user, but those in the intermediate represen-
tation after substantial program transformations by the compiler
[Grelck and Scholz(2006a)].

The index set size may be known at compile time, as in our
simple example, or may only be computed at runtime. In case of
a genarray or modarray WITH-loop the size of the index set
coincides with that of the array defined, and is already required for
the purpose of memory allocation independent of our current work.
However, in the case of a fold-WITH-loop we need to generate an
expression that symbolically describes the index set size based on
the generators’ lower and upper bound specifications (and possibly
their strides).

Possibly in contrast to readers’ expectations we do not systemat-
ically vary the problem size, although quite obviously the problem
size has a major impact on execution time as well as on the opti-
mal number of threads to be used. Our rationale is twofold: firstly,
it is quite possible (and hard to rule out for a compiler) that the
problem size does affect the program logic (not so in our simplis-
tic running example, of course). For example, the NAS benchmark
MG, that we referred to in Section 1, assumes 3-dimensional argu-
ment arrays whose extents along each of the three axes are pow-
ers of two. Silently running the code for problem sizes other than
the ones prescribed by the application, may lead to unexpected and
undesired behaviour, including runtime errors. Secondly, only the
user application knows the relevant problem sizes. Unlike the num-
ber of threads, whose alternative choices are reasonably restricted
by the hardware under test, the number of potential problem sizes is
theoretically unbounded and practically too large to systematically
explore.

We store all preprocessed and aggregated profiling data ob-
tained in training mode in a custom binary data base file for subse-
quent use in feedback-directed production mode. All details can be
found in [Grelck and Blom(2020)].

When compiling production mode binaries in feedback-directed
compilation mode the comoiler locates and reads the corresponding
database files created by training mode binaries. This way we
can move almost all overhead to production mode compile time
while keeping the actual production runtime overhead minimal. In
production mode the SAC compiler

1. reads the relevant database files;

2. merges information from several database files;

3. creates a recommendation table for each WITH-loop.

These recommendation tables are compiled into the SAC code.
They are used by the compiled code at runtime to determine the
number of threads to execute each individual array comprehension
kernel.

The combination of name and architecture must match with
at least one database file, but it is well possible that a specific
combination matches with several files, for example if the training
is first done with a maximum of two threads and later repeated with
a maximum of four threads. In such cases we read all matching



database files for any maximum number of threads and merge them.
The merge process is executed for each WITH-loop individually.

As in training mode we identify each WITH-loop by a unique
identifier. Since training and production mode compilation does not
lead to different intermediate code representations otherwise, we
are guaranteed to obtain the same unique identifier for each WITH-
loop in either mode. These unique identifiers are matched with the
identifiers in the database files to create subselections of database
rows.

Average execution times are turned into a performance graph
by taking the inverse of each measurement and normalising it to
the range zero to one. To diminish the effect of outliers we use
fourth-order polynomial interpolation of the measurement results
to improve curve fitting. With a fourth-order polynomial there can
be more than one point matching the user-defined gradient. We
use the point with the least number of threads as recommenda-
tion. Then, we determine the gradient between any two adjacent
numbers of threads in the performance graph and compare it with
a configurable threshold gradient (default: 10 degrees). The rec-
ommended number of threads is the highest number of threads for
which the gradient towards using one more thread is above the gra-
dient threshold. The gradient threshold is the crucial knob whether
to tune for performance alone or for performance/energy trade-offs.
At last, the entire recommendation table is compiled into the pro-
duction SAC code, just in front of the corresponding WITH-loop.

5. Revising feedback-directed compilation
In [Grelck and Blom(2020)] we evaluate our approach using two
different machines.The smaller one is equipped with two Intel
Xeon quad-core E5620 processors with hyperthreading enabled.
These eight hyperthreaded cores run at 2.4 GHz; the entire system
has 24GB of memory. Our larger machine features four AMD
Opteron 6168 12-core processors running at 1.9 GHz and has
128GB of memory. Both systems are operated in batch mode giving
us exclusive access for the duration of our experiments. We refer to
these systems as the Intel and as the AMD system, respectively,
from here on.

As microbenchmark, to start with, we use the element-wise
addition of two matrices. Since we are interested in stressing the
platform architecture as well as our multi-core runtime system, we
investigate two fairly small problem sizes of 400x400 elements
and 50x50 elements, respectively. The rationale here is that it is
typically much easier to obtain good performance with parallel
execution if the problem sizes are large. We show the results of
our experiments in the form of speedup graphs in Fig. 5 for the
16-core Intel system and in Fig. 6 for the 48-core AMD system.

What we can observe is that our original feedback-directed does
not necessarily find the sweet spot in parallelisation that we are
aiming for. We identify as the main culprit the interpolation of train-
ing data by a fourth-order polynomial. This choice was motivated to
smooth training data under the assumption that performance curves
behave (roughly) as shown in Fig. 1 and we mainly would need to
identify the characteristic parameters of said curve for each indi-
vidual array comprehension, data size and platform.

However, as Fig. 5 and in Fig. 6 reveal, this is not necessarily the
case. Furthermore, (relatively) small problem sizes, the ones we are
most interested in, are particularly prone to runtime performance
behaviour that does not follow the characteristics of Fig. 1.

The 16-core Intel machine effectively only has 8 cores that are
hyperthreaded and thus appear to the operating system as 16 cores.
As a consequence, we observe in Fig. 5 that speedups grow linearly
up to 8 cores, then drop sharply when using 9 cores and, again, rise
thereafter. Such behaviour significantly irritates our polynomial
interpolation, and the feedback mechanism recommends to use

35 
 

  

  

  
Figure 17: In the figures above is shown the relation between the number of threads and the speedup with different problem 
sizes. The relations were determined by carrying out time measurements using the program in Figure 16. The time 
measurements were been carried out on an Intel 2x 4 core hyper-threading Xeon processor (left) and repeated on an AMD 
4x 12 core Magny Cours machine (right). In the graphs the solid blue spheres are the speedups obtained without the use of 
the smart decision tool. The open orange spheres are the speedup with the use of the smart decision tool. The dotted red 
line indicates he median of the number of threads for maximum speedup calculated by the smart decision tool. The 
transparent zone indicates he area between the first and third quartile of the calculated maximum. 

The relations measured between the number of threads and the speedup follow the course of the 
model curves in Figure 1. The graphs also show clearly the effects that are the consequences of the 
design choices of the machines used. These effects result in some variation being shown in the 
graphs in comparison with the model curves. The 2x 4 core Intel Xeon processor has a reduction in 
performance if more than 8 threads are used. This is especially easy to see in Figure 17e, but it can 

0
0,2
0,4
0,6
0,8

1
1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

a) problem size: 10x10

0
0,2
0,4
0,6
0,8

1
1,2

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

b) problem size: 10x10

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

c) problem size: 50x50

0
0,5

1
1,5

2
2,5

3

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

d) problem size: 50x50

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

e) problem size: 400x400

0
2
4
6
8

10
12
14
16

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

f) problem size: 400x400

35 
 

  

  

  
Figure 17: In the figures above is shown the relation between the number of threads and the speedup with different problem 
sizes. The relations were determined by carrying out time measurements using the program in Figure 16. The time 
measurements were been carried out on an Intel 2x 4 core hyper-threading Xeon processor (left) and repeated on an AMD 
4x 12 core Magny Cours machine (right). In the graphs the solid blue spheres are the speedups obtained without the use of 
the smart decision tool. The open orange spheres are the speedup with the use of the smart decision tool. The dotted red 
line indicates he median of the number of threads for maximum speedup calculated by the smart decision tool. The 
transparent zone indicates he area between the first and third quartile of the calculated maximum. 

The relations measured between the number of threads and the speedup follow the course of the 
model curves in Figure 1. The graphs also show clearly the effects that are the consequences of the 
design choices of the machines used. These effects result in some variation being shown in the 
graphs in comparison with the model curves. The 2x 4 core Intel Xeon processor has a reduction in 
performance if more than 8 threads are used. This is especially easy to see in Figure 17e, but it can 

0
0,2
0,4
0,6
0,8

1
1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

a) problem size: 10x10

0
0,2
0,4
0,6
0,8

1
1,2

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

b) problem size: 10x10

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

c) problem size: 50x50

0
0,5

1
1,5

2
2,5

3

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

d) problem size: 50x50

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

e) problem size: 400x400

0
2
4
6
8

10
12
14
16

1 5 9 13 17 21 25 29 33 37 41 45
Sp

ee
du

p
Threads

f) problem size: 400x400Figure 5. Performance on Intel 8-core hyperthreaded system with
(red) and without (solid blue) feedback-directed compilation for
two different problem sizes; feedback-directed recommendations:
9 and 9.

9 cores, one off from the actual best-performing configuration of
8 cores.

The 48-core AMD machine has 4 processors with 12 cores each,
organised as a cc-NUMA architecture. This results in excellent
speedups when using one core per processor, but in a temporary
decline in performance when going beyond. This decline is quickly
amortised when increasing the number of cores uses, but the de-
cline suffices to, again, irritate our polynomial interpolation. As a
result, we observe for the larger problem size that our tooling rec-
ommends to only use 26 cores, although the vanilla speedup figures
scale all the way up to 48 cores. For the smaller problem size, the
recommendation of 24 cores is decent for absolute performance,
but suboptimal for energy concerns as 12 cores roughly deliver the
same performance.

In consequence of the empirical data we obtained with feedback-
directed compiation we give up on fourth-order polynomial inter-
polation and actually on interpolation at all. Instead, we interpret
the raw data and draw conclusions from those. This fairly minor
change to our implementation avoids the artifacts of interpolation
that we observe in Fig. 5 and in Fig. 6.

So far, we have always trained on all possible core counts. This
yields a complete performance overview, but with continuously
growing core counts, training time might become infeasible, or at
least undesirable. We propose to refine our training programme to
start with powers of two numbers of cores and then to run additional
experiments based on a feedback-directed oracle that strategically



35 
 

  

  

  
Figure 17: In the figures above is shown the relation between the number of threads and the speedup with different problem 
sizes. The relations were determined by carrying out time measurements using the program in Figure 16. The time 
measurements were been carried out on an Intel 2x 4 core hyper-threading Xeon processor (left) and repeated on an AMD 
4x 12 core Magny Cours machine (right). In the graphs the solid blue spheres are the speedups obtained without the use of 
the smart decision tool. The open orange spheres are the speedup with the use of the smart decision tool. The dotted red 
line indicates he median of the number of threads for maximum speedup calculated by the smart decision tool. The 
transparent zone indicates he area between the first and third quartile of the calculated maximum. 

The relations measured between the number of threads and the speedup follow the course of the 
model curves in Figure 1. The graphs also show clearly the effects that are the consequences of the 
design choices of the machines used. These effects result in some variation being shown in the 
graphs in comparison with the model curves. The 2x 4 core Intel Xeon processor has a reduction in 
performance if more than 8 threads are used. This is especially easy to see in Figure 17e, but it can 

0
0,2
0,4
0,6
0,8

1
1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

a) problem size: 10x10

0
0,2
0,4
0,6
0,8

1
1,2

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

b) problem size: 10x10

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

c) problem size: 50x50

0
0,5

1
1,5

2
2,5

3

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

d) problem size: 50x50

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

e) problem size: 400x400

0
2
4
6
8

10
12
14
16

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

f) problem size: 400x400

35 
 

  

  

  
Figure 17: In the figures above is shown the relation between the number of threads and the speedup with different problem 
sizes. The relations were determined by carrying out time measurements using the program in Figure 16. The time 
measurements were been carried out on an Intel 2x 4 core hyper-threading Xeon processor (left) and repeated on an AMD 
4x 12 core Magny Cours machine (right). In the graphs the solid blue spheres are the speedups obtained without the use of 
the smart decision tool. The open orange spheres are the speedup with the use of the smart decision tool. The dotted red 
line indicates he median of the number of threads for maximum speedup calculated by the smart decision tool. The 
transparent zone indicates he area between the first and third quartile of the calculated maximum. 

The relations measured between the number of threads and the speedup follow the course of the 
model curves in Figure 1. The graphs also show clearly the effects that are the consequences of the 
design choices of the machines used. These effects result in some variation being shown in the 
graphs in comparison with the model curves. The 2x 4 core Intel Xeon processor has a reduction in 
performance if more than 8 threads are used. This is especially easy to see in Figure 17e, but it can 

0
0,2
0,4
0,6
0,8

1
1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

a) problem size: 10x10

0
0,2
0,4
0,6
0,8

1
1,2

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

b) problem size: 10x10

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

c) problem size: 50x50

0
0,5

1
1,5

2
2,5

3

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

d) problem size: 50x50

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Threads

e) problem size: 400x400

0
2
4
6
8

10
12
14
16

1 5 9 13 17 21 25 29 33 37 41 45

Sp
ee

du
p

Threads

f) problem size: 400x400
Figure 6. Performance on AMD 48-core system with (red) and
without (solid blue) feedback-directed compilation for two differ-
ent problem sizes; feedback-directed recommendations: 26 and 24.

aims at identifying interesting turning points in performance char-
acteristics.

6. Feedback-directed compilation for
heterogeneous platforms

Despite their architectural peculiarities both our experimental sys-
tems are in principle uniform in the sense that all cores are of the
same kind and would deliver the very same performance when ex-
ecuted in isolation. In particular on mobile platforms and when-
ever energy consumption is of a particular concern, this is less
and less the case. While we see special-purpose compute hardware
on the rise that requires custom binary code, ARM has pioneered
the big.LITTLE architectural model. Here, binary-compatible cores
could exeute the very same code, but with very different perfor-
mance characteristics in both execution time and energy consump-
tion. Popular examples of these architectures are the Odroid family
of boards or NVidia’s Jetson product line.

Such platforms create particular challenges for implicit or auto-
matic support for parallelism. Here, compiler and runtime system
must not only decide about the best number of cores given the spe-
cific user preferences, but thay must decide about the best number
of cores in each category of cores, usually high performance cores
with high power draw vs low performance cores with low power
draw. The optimal choice could be in using only one category of
cores or some cores of either category or even all cores available.

Since this problem escapes any static analysis even more than
our original problem, we propose to leverage our existing feedback-
oriented compilation infrastructure to address this problem as well.

With thread pinning we have complete control over which cores
we use during the training phase. Hence, we can first apply our
existing solution to each kind of cores individually, and then expand
the training to combinations of core types. Previously, we have used
a very simple metric for energy consumption: using fewer cores
is better than using more cores. With heterogeneous architectures,
the problem becomes more tricky. However, we can leverage the
performance counters typically available on modern hardware to
create a multi-dimensional performance/energy map.

7. Conclusions and future work
Feedback-directed compilation is a one key to high performance in
high-level function array prgramming. In particular for automatic
parallelisation the design space for code generation significantly
grows. With today’s dozens or even hundreds of cores, the question
where to effectively exploit which level of cincurrency becomes a
relevant problem. Feedback-directed compilation in SAC addresses
this problem while mostly retaining the promise of functional pro-
gramming to program what to compute but not how.

Unfortunately, some design aspects of our initial solution,
namely interpolation by fourth-order polynomials, do not stand
the test of time. In this work we analyse the issues and revise this
design choice. Moreover, we propose an extension of our feedback-
directed compilation scheme to improve load balancing on hetero-
geneous platforms without incurring the overhead of dynamic load
balancing schemes.

Both the Odroid family of boards or NVidia’s Jetson product
line also feature an onboard GPU. However, for the time being we
ignore the GPU in our mapping decisions. In the future, we plan
to leverage our feedback-directed compilation scheme to include
GPUs. This would be very interesting beyond platforms such as
Odroid and Jetson and likewise apply to homogeneous CPU archi-
tectures accompanied by one or multiple GPUs for workload accel-
eration.

References
[Bailey et al.(1991)] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning,

R.L. Carter, L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A.
Lasinski, T.A. Schreiber, R.S. Simon, V. Venkatakrishnam, and S.K.
Weeratunga. 1991. The NAS Parallel Benchmarks. International
Journal of Supercomputer Applications 5, 3 (1991), 63–73.

[Catanzaro et al.(2010)] B. Catanzaro, A. Fox, K. Keutzer, D. Patterson,
B. Y. Su, M. Snir, K. Olukotun, P. Hanrahan, and H. Chafi. 2010.
Ubiquitous Parallel Computing from Berkeley, Illinois, and Stanford.
IEEE Micro 30, 2 (2010), 41–55.

[Diogo and Grelck(2013)] M. Diogo and C. Grelck. 2013. Towards
Heterogeneous Computing without Heterogeneous Programming.
In Trends in Functional Programming, 13th Symposium, TFP 2012,
St.Andrews, UK (Lecture Notes in Computer Science, Vol. 7829),
K. Hammond and H.W. Loidl (Eds.). Springer, 279–294.

[Grelck(2002)] Clemens Grelck. 2002. Implementing the NAS Bench-
mark MG in SAC. In 16th International Parallel and Distributed
Processing Symposium (IPDPS’02), Fort Lauderdale, USA, Viktor K.
Prasanna and George Westrom (Eds.). IEEE Computer Society Press.

[Grelck(2003)] Clemens Grelck. 2003. A Multithreaded Compiler
Backend for High-Level Array Programming. In 2nd International
Conference on Parallel and Distributed Computing and Networks
(PDCN’03), Innsbruck, Austria, Mohammed H. Hamza (Ed.). ACTA
Press, 478–484.

[Grelck(2005)] Clemens Grelck. 2005. Shared memory multiprocessor
support for functional array processing in SAC. Journal of Functional
Programming 15, 3 (2005), 353–401.



[Grelck(2012)] C. Grelck. 2012. Single Assignment C (SAC): High
Productivity meets High Performance. In 4th Central European
Functional Programming Summer School (CEFP’11), Budapest,
Hungary (Lecture Notes in Computer Science, Vol. 7241), V. Zsók,
Z. Horváth, and R. Plasmeijer (Eds.). Springer, 207–278.

[Grelck and Blom(2020)] C. Grelck and C. Blom. 2020. Resource-aware
Data Parallel Array Processing. International Journal of Parallel
Programming 48, 4 (2020), 652–674.

[Grelck and Scholz(2006a)] Clemens Grelck and Sven-Bodo Scholz.
2006a. Merging Compositions of Array Skeletons in SAC. Journal
of Parallel Computing 32, 7+8 (2006), 507–522.

[Grelck and Scholz(2006b)] Clemens Grelck and Sven-Bodo Scholz.
2006b. SAC: A Functional Array Language for Efficient Multi-
threaded Execution. International Journal of Parallel Programming
34, 4 (2006), 383–427.

[Guo et al.(2011)] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo
Scholz. 2011. Breaking the GPU programming barrier with the auto-
parallelising SAC compiler. In 6th Workshop on Declarative Aspects
of Multicore Programming (DAMP’11), Austin, USA. ACM Press,
15–24.

[Macht and Grelck(2019)] T. Macht and C. Grelck. 2019. SAC Goes
Cluster: Fully Implicit Distributed Computing. In 33rd International
Parallel and Distributed Processing Symposium (IPDPS’19), Rio de
Janeiro, Brazil. IEEE Computer Society Press.

[Nieplocha et al.(2007)] J. Nieplocha, A. M’arquez, J. Feo, D. Chavarria-
Miranda, G. Chin, C. Scherrer, and N. Beagley. 2007. Evaluating
the potential of multithreaded platforms for irregular scientific
computations. In 4th International Conference on Computing
Frontiers (CF’07). ACM, 47–58.

[Pusukuri et al.(2011)] K.K. Pusukuri, R. Gupta, and L.N. Bhuyan. 2011.
Thread Reinforcer: Dynamically determining number of threads via
OS level monitoring. In IEEE International Symposium on Workload
Characterization (IISWC’11), Austin, TX, USA. IEEE Computer
Society, 116–125.

[Saini et al.(2006)] S. Saini et al. 2006. A scalability study of Columbia
using the NAS parallel benchmarks. Journal of Computational
Methods in Science and Engineering SI, 1 (2006), 33–45.

[Suleman et al.(2008)] M.A. Suleman, M.K. Qureshi, and Y.N. Patt. 2008.
Feedback-driven threading: power-efficient and high-performance ex-
ecution of multi-threaded workloads on CMPs. In 13th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XIII), Seattle, WA, USA. ACM,
277–286.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AQuantum-Control Lambda-Calculus with Multiple
Measurement Bases∗

Alejandro Díaz-Caro
Université de Lorraine, CNRS, Inria, LORIA

Nancy, France
Dpto. de Ciencia y Tecnología. Universidad Nacional de

Quilmes.
Bernal, Buenos Aires, Argentina.
alejandro.diaz-caro@inria.fr

Nicolas A. Monzon
Universidad de la República, PEDECIBA-Informática

Montevideo, Uruguay
Universidad Argentina de la Empresa

Ciudad Autónoma de Buenos Aires, Argentina
nimonzon@uade.edu.ar

Abstract
We introduce Lambda-SX, a typed quantum lambda-calculus that
supports multiple measurement bases. By tracking duplicability
relative to arbitrary bases within the type system, Lambda-SX en-
ables more flexible control and compositional reasoning about mea-
surements. We formalise its syntax, typing rules, subtyping, and
operational semantics, and establish its key meta-theoretical prop-
erties. This proof-of-concept shows that support for multiple bases
can be coherently integrated into the type discipline of quantum
programming languages.

1 Introduction
Quantum computing is a computing paradigm to model quantum
mechanics. We can think quantum states and its evolution analo-
gous to a computation process. We can create a language model
then, and the study of it with language theory. In particular, we
can add type theory and correctness properties on it development.
Eventually, this create connections with the Curry–Howard iso-
morphism [19]. Recently, we observe a possible connection with
linear logic and may it lead a formal study of logic on quantum
mechanics.

Quantum algorithms are traditionally described using circuits,
but the need for higher-level abstractions led to the notion of clas-
sical control, where a classical computer drives quantum execution.
This idea, rooted in Knill’s qRAM model [15], was formalised by
Selinger [17] to enable classical control flow over quantum hard-
ware. This approach led to the development of the QuantumLambda
Calculus [18], where programs are expressed by a tuple of a lambda
term together with a quantum memory. This calculus has been the
basis of languages like Quipper [13] and QWIRE [16].

An alternative paradigm is quantum control, introduced by Al-
tenkirch and Grattage in the language QML [1]. Here, the goal is to
avoid relying on a classical machine to drive a quantum computer,
and instead allow quantum data to control computation directly. Fol-
lowing this paradigm, a quantum-control extension of the lambda
calculus—later called Lambda-S1—was proposed in 2019 [8], using
realizability techniques [14], and given a categorical model in [10].

Lambda-S1 was the result of a long line of research on quantum
control, started by Lineal [2]—the first extension of the lambda
calculus to embody quantum control. Lineal is an untyped lambda

∗This is an extended abstract of an accepted paper at APLAS 2025 [6].

IFL 2025, Montevideo, Uruguay
Draft submission for talk.

calculus extended with arbitrary linear superpositions. Its rewrite
rules ensure confluence and avoid cloning arbitrary terms—a for-
bidden operation in quantum computing [20]—and terms normalize
to canonical vector forms. To prevent cloning, it uses a call-by-base
strategy: applying a lambda abstraction 𝜆𝑥.𝑡 to a superposition
(𝛼.𝑣 + 𝛽.𝑤) yields 𝛼.(𝜆𝑥.𝑡)𝑣 + 𝛽.(𝜆𝑥.𝑡)𝑤 . This guarantees that all
abstractions are linear and supports expressing matrices, vectors,
and hence quantum programs. These include non-unitary maps
and unnormalised vectors.

However, call-by-base breaks down in the presence of mea-
surement. For instance, if 𝜆𝑥 .𝜋1𝑥 denotes a measurement on the
computational basis, then applying it to a superposition yields
𝛼.(𝜆𝑥 .𝜋1𝑥)𝑣 + 𝛽.(𝜆𝑥 .𝜋1𝑥)𝑤 , which fails to produce a probabilistic
collapse and instead behaves like the identity.

To solve this, Lambda-S [7] introduced a type-guided approach.
In Lambda-S, a superposed term of type 𝐴 is marked with 𝑆 (𝐴),
allowing beta-reduction to be guided by the argument’s type. If B is
the type of base qubits |0⟩ and |1⟩, then 𝑆 (B) is the type of arbitrary
qubits. Thus, in (𝜆𝑥B .𝑡) (𝛼. |0⟩+𝛽. |1⟩), call-by-base applies, whereas
in (𝜆𝑥𝑆 (B) .𝑡) (𝛼. |0⟩ + 𝛽. |1⟩), a call-by-name strategy is used. The
latter requires a linearity check on 𝑡 : the variable must not be
duplicated.

This modal distinction is dual to that of linear logic [12], where
types !𝐴 are duplicable. In Lambda-S, 𝑆 (𝐴) marks non-duplicable
types—and this duality is made explicit by its categorical models [9,
11].

Among various quantum lambda-calculus extensions, Lambda-S
stands out for its ability to distinguish between superposed states
and base states with respect to a given measurement basis.

Lambda-S1 can be seen as a restriction of Lambda-S in which
only unitary matrices and normalized vectors are considered. The
technique to enforce this restriction was introduced in [8], and a
full definition of the restricted language was given in [10], merging
Lambda-S with that technique.

These languages favour the use of the computational basis, which
is sufficient for quantum computation. Indeed, a measurement in an
arbitrary basis can always be simulated by a rotation, followed by a
measurement in the computational basis, and then a rotation back.
However, restricting to a single basis introduces two important
drawbacks.

First, duplicability is not unique to the computational basis: it
is allowed in any basis, as long as the basis is known. Therefore, if
we can determine that a quantum state is in a given basis, we can
treat it as classical information.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

IFL 2025, (draft submission for talk), Montevideo, Uruguay Alejandro Díaz-Caro and Nicolas A. Monzon

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝜈 := B | X Atomic types (A)
Ψ :=M | 𝑆 (Ψ) | Ψ × Ψ Qubit types (Q)
M := 𝜈 | M ×M Base types (B)
𝐴 := Ψ | Ψ⇒ 𝐴 | 𝑆 (𝐴) Types (T)

Figure 1: Type Grammar

Second, while Lambda-S and Intuitionistic Linear Logic (ILL) can
be seen as categorical duals—via an adjunction between a Carte-
sian closed category and a monoidal category, where Lambda-S is
interpreted in the Cartesian side and superpositions are captured
by a monad, while ILL is interpreted in the monoidal side with du-
plicable data captured by a comonad—this duality is not complete.
The asymmetry arises from Lambda-S being defined relative to a
fixed basis, while ILL does not favour any particular basis.

In this extended abstract, we take a first step toward addressing
this limitation by extending Lambda-S to track duplicability with
respect to multiple bases. We present a proof-of-concept system
that remains first-order for simplicity; the rationale and conse-
quences of this choice are discussed in Section 2.2. Furthermore,
we restrict attention to single-qubit bases, extended pointwise to
non-entangled multi-qubit systems. Supporting entangled measure-
ment bases would require additional complexity, and we leave such
extensions for future work. These and other simplifications are
intentional: our goal is not to provide a fully general system, but
to highlight a specific capability that has not been explored in the
literature so far—the ability to track duplicability with respect to
multiple bases.

For further details and a complete version of this work, see our
paper available on arXiv.

2 Lambda-SX
2.1 Types and terms
We consider two measurement bases: the computational basis, de-
noted by the typeB, and the Hadamard basis, denoted by the typeX.
The set B of base types is defined as {B,X}, closed under Cartesian
product, as shown in Figure 1.

Qubit types may be base types, their spans (denoted by the
modality 𝑆), or Cartesian products. The language is first-order:
function types are only allowed over qubit types. We work modulo
associativity of the product, and parentheses are therefore omitted.
We also use the notation

∏𝑛
𝑖=1 Ψ𝑖 to denote Ψ1 × . . . × Ψ𝑛 .

We define a subtyping relation, shown in Figure 2. The intuition
behind subtyping is that it corresponds to set inclusion. For exam-
ple, 𝐴 ⪯ 𝑆 (𝐴) holds because any set is included in its span, and
𝑆 (𝑆 (𝐴)) ⪯ 𝑆 (𝐴) reflects the fact that the span operation is idempo-
tent. If 𝐴 ⪯ 𝐵 and 𝐵 ⪯ 𝐴, then 𝐴 and 𝐵 are considered equivalent
types, and we write 𝐴 ≈ 𝐵. If 𝐴 and 𝐵 are syntactically identical,
we write 𝐴 = 𝐵.

The set of preterms is denoted by Λ and is defined by the gram-
mar shown in Figure 3. As usual in algebraic calculi [2, 3, 8], the
symbol + is treated as associative and commutative, so preterms are
considered modulo these equational laws. The grammar includes

𝐴 ⪯ 𝐴
𝐴 ⪯ 𝐵 𝐵 ⪯ 𝐶

𝐴 ⪯ 𝐶 𝐴 ⪯ 𝑆 (𝐴)
𝑆 (𝑆 (𝐴)) ⪯ 𝑆 (𝐴) ∏𝑛

𝑖=0 𝜈𝑖 ⪯ 𝑆 (
∏𝑛
𝑖=0 𝜈

′
𝑖 )

𝐴 ⪯ 𝐵
𝑆 (𝐴) ⪯ 𝑆 (𝐵)

𝐴 ⪯ 𝐵 Ψ1 ⪯ Ψ2
Ψ2 ⇒ 𝐴 ⪯ Ψ1 ⇒ 𝐵

Ψ1 ⪯ Ψ2 Ψ3 ⪯ Ψ4
Ψ1 × Ψ3 ⪯ Ψ2 × Ψ4

Figure 2: Subtyping relation

𝑡 :=𝑥 | 𝜆𝑥Ψ .𝑡 | 𝑡𝑡 (Lambda calculus)
| |0⟩ | |1⟩ | |+⟩ | |−⟩ | ?𝑡 ·𝑡 | ?X𝑡 ·𝑡 (Constants)

| ®0 | 𝑡 + 𝑡 | 𝛼.𝑡 | E | 𝜋𝑚𝑡 | 𝜋𝑚X 𝑡 (Linear combinations)
| 𝑡 ⊗ 𝑡 | hd 𝑡 | tl 𝑡 |⇑ℓ 𝑡 |⇑𝑟 𝑡 (Lists)

Figure 3: Preterms

first-order lambda calculus terms, constants (and their conditionals–
we write 𝑡?𝑟 ·𝑠 as a shorthand for (?𝑟 ·𝑠)𝑡 ), linear combinations (with
measurement as a destructor), and tensor product terms, written
using list notation since product types are considered associative.

The symbol E denotes an error and is used to handle measure-
ments of the zero vector when normalisation fails. The measure-
ment operations 𝜋𝑚 and 𝜋𝑚X are responsible for normalising their
input prior to measurement. The casting operations ⇑ℓ and ⇑𝑟 allow
converting between lists of superpositions and superpositions of
lists. Indeed, lists are used to represent tensor products. Conse-
quently, a tensor product of superpositions can be regarded as a
superposition of tensor products, which loses information about
separability. We may use ⇑ to denote either ⇑ℓ or ⇑𝑟 , depending on
the context.

Free variables are defined as usual, and the set of free variables
of a preterm 𝑡 is denoted by FV(𝑡). The sets of base terms (B) and
values (V) are defined by:

𝑏 := |0⟩ | |1⟩ | |+⟩ | |−⟩ | 𝑏 ⊗ 𝑏 Base terms (B)
𝑣 :=𝑥 | 𝜆𝑥Ψ .𝑡 | 𝑏 | ®0 | 𝑣 + 𝑣 | 𝛼.𝑣 | 𝑣 ⊗ 𝑣 Values (V)

The type system is presented in Figure 4. A term is a preterm 𝑡
for which there exists a context Γ and a type 𝐴 such that Γ ⊢ 𝑡 : 𝐴
is derivable.

2.2 Operational semantics
The operational semantics for terms is defined by the relation −→𝑝 ,
The parameter 𝑝 ∈ [0, 1] represents a probability and is primarily
used in the probabilistic reduction rule associated with measure-
ment. Rule (𝛽n) is the standard call-by-name beta-reduction rule,
which applies when the argument is not basis-typed. Rules (𝛽b),
(lin+r ), (lin𝛼r ), and (lin0r ) implement the call-by-base strategy [2], dis-
tributing the function over the argument when the bound variable
is basis-typed. For example (𝜆𝑥B . 𝑥 ⊗ 𝑥) (|0⟩ + |1⟩) reduces first
to (𝜆𝑥B . 𝑥 ⊗ 𝑥) |0⟩ + (𝜆𝑥B . 𝑥 ⊗ 𝑥) |1⟩ by rule (lin+r ), and then to
|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩ by rule (𝛽b). We have other rules for conditi-
ionals, vector space axioms, casting and measurement.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Quantum-Control Lambda-Calculus with Multiple Measurement Bases IFL 2025, (draft submission for talk), Montevideo, Uruguay

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑥Ψ ⊢ 𝑥 : Ψ
Ax

Γ, 𝑥Ψ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝜆𝑥Ψ .𝑡 : Ψ⇒ 𝐴

⇒𝐼

Γ ⊢ 𝑡 : Ψ⇒ 𝐴 Δ ⊢ 𝑟 : Ψ
Γ,Δ ⊢ 𝑡𝑟 : 𝐴 ⇒𝐸

Γ ⊢ 𝑡 : 𝑆 (Ψ⇒ 𝐴) Δ ⊢ 𝑟 : 𝑆 (Ψ)
Γ,Δ ⊢ 𝑡𝑟 : 𝑆 (𝐴) ⇒𝐸𝑆

⊢ |0⟩ : B |0⟩ ⊢ |1⟩ : B |1⟩

⊢ |+⟩ : X |+⟩ ⊢ |−⟩ : X |−⟩
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑟 : 𝐴
Γ ⊢ ?𝑡 ·𝑟 : B⇒ 𝐴

If Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑟 : 𝐴
Γ ⊢ ?X𝑡 ·𝑟 : X⇒ 𝐴

IfX

⊢ ®0 : 𝑆 (𝐴)
®0 Γ ⊢ 𝑡 : 𝐴 Δ ⊢ 𝑟 : 𝐴

Γ,Δ ⊢ 𝑡 + 𝑟 : 𝑆 (𝐴) 𝑆+𝐼
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝛼.𝑡 : 𝑆 (𝐴) 𝑆
𝛼
𝐼

Γ ⊢ E : Ψ e

Γ ⊢ 𝑡 : 𝑆 (∏𝑛
𝑖=1 𝜈𝑖

)
0 < 𝑚 ≤ 𝑛

Γ ⊢ 𝜋𝑚𝑡 : B𝑚 × 𝑆 (∏𝑛
𝑖=𝑚+1 𝜈𝑖

) 𝑆𝐸

Γ ⊢ 𝑡 : 𝑆 (∏𝑛
𝑖=1 𝜈𝑖

)
0 < 𝑚 ≤ 𝑛

Γ ⊢ 𝜋𝑚X 𝑡 : X𝑚 × 𝑆
(∏𝑛

𝑖=𝑚+1 𝜈𝑖
) 𝑆𝐸X

Γ ⊢ 𝑡 : Ψ Δ ⊢ 𝑟 : Φ
Γ,Δ ⊢ 𝑡 ⊗ 𝑟 : Ψ × Φ ×𝐼

Γ ⊢ 𝑡 : 𝜈 ×M
Γ ⊢ hd 𝑡 : 𝜈 ×𝐸𝑟

Γ ⊢ 𝑡 : 𝜈 ×M
Γ ⊢ tl 𝑡 : M ×𝐸𝑙

Γ ⊢ 𝑡 : 𝑆 (Ψ × 𝑆 (Φ)) Ψ ≠ 𝑆 (Ψ′)
Γ ⊢⇑ℓ 𝑡 : 𝑆 (Ψ × Φ) ⇑ℓ

Γ ⊢ 𝑡 : 𝑆 (𝑆 (Φ) × Ψ) Ψ ≠ 𝑆 (Ψ′)
Γ ⊢⇑𝑟 𝑡 : 𝑆 (Φ × Ψ) ⇑𝑟

Γ ⊢ 𝑡 : X
Γ ⊢⇑ 𝑡 : 𝑆 (B) ⇑X

Γ ⊢ 𝑡 : B
Γ ⊢⇑ 𝑡 : B ⇑B

Γ ⊢ 𝑡 : 𝐴 𝐴 ⪯ 𝐵
Γ ⊢ 𝑡 : 𝐵 ⪯ Γ ⊢ 𝑡 : 𝐴

Γ, 𝑥M ⊢ 𝑡 : 𝐴 𝑊

Γ, 𝑥M, 𝑦M ⊢ 𝑡 : 𝐴
Γ, 𝑥M ⊢ 𝑡 [𝑦/𝑥] : 𝐴 𝐶

Figure 4: Type system

We restrict the calculus to first-order terms for simplicity. In a
higher-order setting, one could consider the term 𝜆𝑥𝑆 (B) .𝜆𝑦B .𝑥 ,
which embed an unknown qubit within a perfectly duplicable
lambda abstraction. Several solutions are possible: restricting weak-
ening to non-arrow types, restricting the language to first-order, or
introducing annotations that prevent duplication of such terms. In
this work, we adopt the second option, as our goal is to provide a
proof-of-concept system for handling multiple measurement bases.

Figure 5 presents the reduction rules schemas for measurement:
each instantiation depends on the specific shape of the term being
measured.

The operation 𝜋𝑚 applies to a term of type 𝑆 (∏𝑛
𝑖=1 𝜈𝑖 ). Before

measurement, the term is implicitly converted to the computational
basis, yielding a sum of distinct basis vectors:

∑𝑓
𝑎=1 𝛽𝑎 |𝑐𝑎1⟩ ⊗ · · · ⊗

|𝑐𝑎𝑛⟩, with 𝑐𝑎𝑗 ∈ {0, 1}. Measurement is performed on the first𝑚
qubits, producing a collapse to |𝑘⟩ ⊗ |𝜙𝑘 ⟩ with probability 𝑝𝑘 =
1
𝑍

∑
𝑎∈𝐼𝑘 |𝛽𝑎 |2, where 𝐼𝑘 is the set of indices 𝑎 such that the prefix

|𝑐𝑎1 · · · 𝑐𝑎𝑚⟩ equals |𝑘⟩, and 𝑍 is the squared norm of the original
input.

𝜋𝑚

(
𝑒∑︁
𝑖=1
[𝛼𝑖 .]

𝑛⊗
ℎ=1
|𝑏ℎ𝑖⟩

)
−→𝑝𝑘 |𝑘⟩ ⊗ |𝜙𝑘 ⟩ (proy)

𝜋𝑚®0 −→1 E (proy0)

𝜋𝑚X

(
𝑒∑︁
𝑖=1
[𝛼𝑖 .]

𝑛⊗
ℎ=1
|𝑏ℎ𝑖⟩

)
−→𝑝𝑘 |𝑘⟩ ⊗ |𝜙𝑘 ⟩ (proyX)

𝜋𝑚X ®0 −→1 E (proy0X)

Figure 5: Measurement rules for the computational and
Hadamard bases

The state |𝜙𝑘 ⟩ is defined by normalising the suffixes of the terms
in 𝐼𝑘 :

|𝜙𝑘 ⟩ =
∑︁
𝑎∈𝐼𝑘

𝛽𝑎√
ℓ

��𝑐𝑎,𝑚+1〉 ⊗ · · · ⊗ |𝑐𝑎𝑛⟩ , where ℓ =
∑︁
𝑎∈𝐼𝑘
|𝛽𝑎 |2 .

The rule for measurement in the Hadamard basis, 𝜋𝑚X , behaves
analogously, with the input expressed in the Hadamard basis and
|𝑘⟩ ranging over {+,−}𝑚 .

If the input to 𝜋𝑚 or 𝜋𝑚X is or reduces to ®0, the result is E.
Example 2.1 (Measurement). To simplify notation, wewrite |𝑎𝑏𝑐𝑑⟩

instead of |𝑎⟩ ⊗ |𝑏⟩ ⊗ |𝑐⟩ ⊗ |𝑑⟩. Consider the following two semanti-
cally equivalent terms:𝜋2 (𝛼 |0 + 10⟩+𝛽 |10 − 0⟩) and𝜋2 ( 𝛼√2 |0010⟩+
𝛼√
2 |0110⟩ +

𝛽√
2 |1000⟩ −

𝛽√
2 |1010⟩). Both reduce, for instance, to

|10⟩ ⊗ ( 1√
2 |00⟩ +

1√
2 |01⟩) with probability |𝛼 |2√

|𝛼 |2+|𝛽 |2
.

2.3 Examples
This section illustrates how the type system supports quantum
states, operations, and measurements in a functional style, high-
lighting its flexibility across multiple measurement bases.

Example 2.2 (Hadamard gate). The Hadamard gate can be im-
plemented in multiple ways, depending on the desired type. For
example:

⊢ 𝜆𝑥B .𝑥?|−⟩·|+⟩ : B⇒ X

⊢ 𝜆𝑥X .𝑥?|0⟩·|1⟩ : X⇒ B

⊢ 𝜆𝑥B .𝑥?(⇑ |−⟩)·(⇑ |+⟩) : B⇒ 𝑆 (B)
All these implementations yield equivalent results on arbitrary
inputs (in either basis), but the first preserves duplicability on inputs
|0⟩ or |1⟩, and the second does so on |+⟩ or |−⟩.

As an instance, we could write 𝜆𝑥B .(𝜆𝑦X .𝑦 ⊗ 𝑦)𝐻𝑥 as soon as 𝐻
is the first implementation of the Hadamard gate. Notice that we
are cloning a qubit; however, since the basis is tracked since the
beginning, this is perfectly valid.

Example 2.3 (CNOT gate). In the same way, the CNOT gate can
be implemented in multiple ways, for example
⊢ 𝜆𝑥B×B .(hd 𝑥) ⊗ (hd 𝑥?NOT(tl 𝑥)·tl 𝑥) : B × B⇒ B × B
⊢ 𝜆𝑥X×B . |0⟩ ⊗ (tl 𝑥)

+ |1⟩ ⊗ ((hd 𝑥?XNOT·(−1) .NOT) (tl 𝑥)) : X × B⇒ 𝑆 (B × B)
where NOT is the NOT gate given by ⊢ 𝜆𝑥B .𝑥?|0⟩·|1⟩ : B⇒ B.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

IFL 2025, (draft submission for talk), Montevideo, Uruguay Alejandro Díaz-Caro and Nicolas A. Monzon

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Example 2.4 (Bell states). The entangled Bell states can be pro-
duced by the following term, applied to a pair of computational
basis qubits:

⊢ 𝜆𝑥B×B .CNOT(H(hd 𝑥) ⊗ tl 𝑥) : B × B⇒ 𝑆 (B × B)
However, there are more interesting implementations. For example,
the following term maps |+⟩ to the Bell state 𝛽00 and |−⟩ to 𝛽10:

⊢ 𝜆𝑥X .(𝜆𝑦B .𝑦 ⊗ 𝑦) (⇑ 𝑥) : X⇒ 𝑆 (B × B)
Example 2.5 (Applying gates to multi-qubit states). In general, we

can apply a gate to a qubit in a multi-qubit state, even if entangled,
with the same technique as used to apply Hadamard to the first
qubit in the Bell state. For example, applying CNOT to the first of
three qubits can be done as follows:

CNOT3
1,2 = 𝜆𝑥

B×B×B .CNOT((hd 𝑥) ⊗ (hd tl 𝑥)) ⊗ (tl tl 𝑥)
Example 2.6 (Teleportation). We can use the Bell state to imple-

ment teleportation, which allows the transmission of an arbitrary
qubit state from Alice to Bob using an entangled pair and classical
communication. The term implementing it would be

⊢ 𝜆𝑥𝑆 (B) .𝜋2 ⇑ℓ Bob(⇑ℓ (Alice(𝑥 ⊗ Bell(|0⟩ ⊗ |0⟩))))
: 𝑆 (B) ⇒ (B × B × 𝑆 (B))

where: Bell produces the Bell state, as defined earlier; Alice imple-
ments Alice’s part of the protocol, defined as: 𝜆𝑥𝑆 (B)×𝑆 (B×B) .𝜋2 (⇑𝑟
H3

1 (CNOT3
1,2 (⇑ℓ (⇑𝑟 𝑥)))), whereH3

1 is the Hadamard operator on
the first qubit: 𝜆𝑥B×B×B .H(hd 𝑥)⊗tl 𝑥 .Bob implements Bob’s part:
𝜆𝑥B×B×B .(hd 𝑥) ⊗ (hd tl 𝑥) ⊗ (C-Z(hd 𝑥) ⊗ (CNOT(hd tl 𝑥) ⊗
(tl tl 𝑥))), where C-Z is: 𝜆𝑥B×B .hd 𝑥?Z(tl 𝑥)·tl 𝑥 .

3 Correctness
In this section we establish the main meta-theoretical properties
of our calculus. These results show that the type system is well-
behaved with respect to the operational semantics, and they guar-
antee consistency.

We begin in Section 3.1 with the proof of subject reduction (The-
orem 3.4), showing that the type of a term is preserved under
reduction. We then prove progress (Theorem 3.5), ensuring that
well-typed terms are either values or can take a reduction step. The
linear casting property follows (Theorem 3.6), showing that terms
of type 𝑆 (B𝑛) can be rewritten—via explicit casting reductions—as
linear combinations of terms of type B𝑛 . This result provides a
semantic justification for viewing casting as a projection onto a
measurement basis.

Finally, we show that all well-typed terms are strongly normalis-
ing (Section 3.2); that is, all well-typed terms always terminate.

3.1 Type soundness
3.1.1 Subject reduction. The typing rules are not syntax-directed
due to application (which has two typing rules), subtyping, weak-
ening, and contraction. Therefore, a generation lemma—stating
the conditions under which a typing judgment Γ ⊢ 𝑡 : 𝐴 can be
derived—is needed.

The substitution lemma, which plays a central role in the proof
of subject reduction, is stated as follows.

Lemma 3.1 (Substitution). If Γ, 𝑥𝐴 ⊢ 𝑡 : 𝐶 and Δ ⊢ 𝑟 : 𝐴, then
Γ,Δ ⊢ 𝑡 [𝑟/𝑥] : 𝐶 . □

The type preservation property is strongly related to subtyping.
In its proof, several auxiliary properties of the subtyping relation
are repeatedly used. The following lemma states these properties.

Lemma 3.2 (Properties of the subtyping relation). The sub-
typing relation ⪯ satisfies the following properties:

(1) If 𝐴⇒ 𝐵 ⪯ 𝐶 ⇒ 𝐷 , then 𝐶 ⪯ 𝐴 and 𝐵 ⪯ 𝐷 .
(2) If 𝐴⇒ 𝐵 ⪯ 𝑆 (𝐶 ⇒ 𝐷), then 𝐶 ⪯ 𝐴 and 𝐵 ⪯ 𝐷 .
(3) If 𝑆 (𝐴) ⪯ 𝐵, then 𝐵 = 𝑆 (𝐶) and 𝐴 ⪯ 𝐶 , for some 𝐶 .
(4) If Ψ1 × Ψ2 ⪯ 𝐴, then 𝐴 ≈ 𝑆 (Ψ3 × Ψ4) or 𝐴 ≈ Ψ3 × Ψ4, for

some Ψ3, Ψ4.
(5) If 𝐴 ⪯ 𝐵, then 𝐴 and 𝐵 contain the same number of product

constructors.
(6) If 𝐴 ⪯ Ψ1 ⇒ 𝐶 then 𝐴 ≈ Ψ2 ⇒ 𝐷 for some Ψ2 and 𝐷 .
(7) If 𝑆 (𝐴) ⪯ 𝑆 (Ψ1 ⇒ 𝐶) then 𝑆 (𝐴) ≈ 𝑆 (Ψ2 ⇒ 𝐷), for some Ψ2

and 𝐷 .
(8) If 𝑆 (Ψ1 ⇒ 𝐴) ⪯ 𝑆 (Ψ2 ⇒ 𝐵), then Ψ2 ⪯ Ψ1 and 𝐵 ⪯ 𝐴.

Proof. The proof relies on several technical properties. Please,
refer to the paper arXiv version for the full proof. □

The following properties are crucial for analysing cast elimi-
nation, as they constrain the shape of product-type subtypes and
relate them to simpler forms.

Lemma 3.3 (Properties of the subtyping relation on prod-
ucts). The subtyping relation ⪯ satisfies the following properties on
product types:

(1) If 𝜑 ×M ⪯ 𝑆 (Ψ1 × 𝑆 (Ψ2)), then 𝜑 ×M ⪯ 𝑆 (Ψ1 × Ψ2).
(2) IfM × 𝜑 ⪯ 𝑆 (𝑆 (Ψ1) × Ψ2), thenM × 𝜑 ⪯ 𝑆 (Ψ1 × Ψ2).

Proof. The proof relies on several technical lemmas. Please,
refer to the paper arXiv version for the full proof. □

We are now ready to state the main result of this section: the
subject reduction property, which ensures that types are preserved
under reduction.

Theorem 3.4 (Subject reduction). Γ ⊢ 𝑡 : 𝐴 and 𝑡 −→𝑝 𝑟
imply Γ ⊢ 𝑟 : 𝐴.

Proof. By induction on the reduction 𝑡 −→𝑝 𝑟 . As an illustra-
tive case, consider rule (lin+l ), where 𝑡 = (𝑡1+𝑡2)𝑡3 and 𝑟 = 𝑡1𝑡3+𝑡2𝑡3,
with Γ ⊢ 𝑡 : 𝐴. By the generation lemma, we have Γ = Γ1, Γ2,Ξ,
T(Ξ) ⊆ B, Γ1,Ξ ⊢ 𝑡1 + 𝑡2 : 𝑆 (Ψ1 ⇒ 𝐶), Γ2,Ξ ⊢ 𝑡3 : 𝑆 (Ψ1),
and 𝑆 (𝐶) ⪯ 𝐴. By the generation lemma again, Γ1,Ξ = Γ′1 , Γ

′
2 ,Ξ
′

with Γ′1 ,Ξ
′ ⊢ 𝑡1 : 𝐷 , Γ′2 ,Ξ′ ⊢ 𝑡2 : 𝐷 , and 𝑆 (𝐷) ⪯ 𝑆 (Ψ1 ⇒ 𝐶).

Then Lemma 3.2.7 gives 𝑆 (𝐷) ≈ 𝑆 (Ψ2 ⇒ 𝐸) with 𝑆 (Ψ2 ⇒ 𝐸) ⪯
𝑆 (Ψ1 ⇒ 𝐶), and Lemma 3.2.8 yields Ψ1 ⪯ Ψ2 and 𝐸 ⪯ 𝐶 . Hence,
from Γ′1 ,Ξ

′ ⊢ 𝑡1 : 𝑆 (Ψ2 ⇒ 𝐸) and Γ2,Ξ ⊢ 𝑡3 : 𝑆 (Ψ2), we de-
rive Γ ⊢ 𝑡1𝑡3, 𝑡2𝑡3 : 𝑆 (𝐸), and thus Γ ⊢ 𝑡1𝑡3 + 𝑡2𝑡3 : 𝑆 (𝑆 (𝐸)).
Since 𝑆 (𝑆 (𝐸)) ⪯ 𝑆 (𝐸) ⪯ 𝑆 (𝐶) ⪯ 𝐴, by transitivity we conclude
Γ ⊢ 𝑟 : 𝐴. □

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

AQuantum-Control Lambda-Calculus with Multiple Measurement Bases IFL 2025, (draft submission for talk), Montevideo, Uruguay

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.1.2 Progress. The next result is the progress theorem, stating that
well-typed terms in normal form must be either values or the error
term.

Theorem 3.5 (Progress). If ⊢ 𝑡 : 𝐴 then 𝑡 reduces, is a value, or
is E. □

3.1.3 Linear casting. Our system also exhibits a property we call
linear casting, which expresses the idea that terms of type 𝑆 (B𝑛)
can be written using other terms of type B𝑛 , thanks to our linear
casting reduction rules. This is not trivial, as by subtyping we have
𝑆 (B𝑛) = 𝑆 (∏𝑛

𝑖=1 𝜈𝑖 ).
Theorem 3.6 (Linear casting theorem). ⊢⇑ 𝑡 : 𝑆 (B𝑛) implies

⇑ 𝑡 −→∗1
∑ [𝛼𝑖 .] 𝑏𝑖 with ⊢ 𝑏𝑖 : B𝑛 .

Proof. By Theorems 3.5 and 3.4, we know that ⇑ 𝑡 −→∗1 𝑣 with
⊢ 𝑣 : 𝑆 (B𝑛). By the generation lemma, we distinguish the following
cases:

• If 𝑣 = |0⟩ or 𝑣 = |1⟩, then ⊢ 𝑣 : B.
• Note that 𝑣 ≠ |+⟩, since ⇑ 𝑡 ̸−→ |+⟩: casting can only

be eliminated through rules (cast |+⟩ ), (cast |−⟩ ), (cast |0⟩ ), or
(cast |1⟩ ). Hence, this case cannot occur. Similarly, 𝑣 ≠ |−⟩
for the same reason.

• If 𝑣 has the form 𝑏1 ⊗ 𝑏2 ⊗ · · · ⊗ 𝑏𝑛 with 𝑛 ≥ 1, and each 𝑏𝑖
a value, then each 𝑏𝑖 must be either |0⟩ or |1⟩ by the same
argument.

• If 𝑣 has the form
∑ [𝛼𝑖 .] 𝑏𝑖 , with the𝑏𝑖 having distinct types,

then each 𝑏𝑖 has the form 𝑏1 ⊗ 𝑏2 ⊗ · · · ⊗ 𝑏𝑛 , where each
𝑏𝑖 ∈ {|0⟩ , |1⟩}.

Therefore, 𝑣 =
∑ [𝛼𝑖 .] 𝑏𝑖 , and ⇑ 𝑡 −→∗1 ∑ [𝛼𝑖 .] 𝑏𝑖 with ⊢ 𝑏𝑖 : B𝑛 . □

3.2 Strong normalization
We conclude the correctness properties by showing that terms
are strongly normalising, meaning that every reduction sequence
eventually terminates.

Let SN denote the set of strongly normalising terms, and |𝑡 |
the number of reduction steps in a reduction sequence starting
from 𝑡 . We also write Red(𝑡) for the set of one-step reducts of 𝑡 , i.e.
Red(𝑡) = {𝑟 | 𝑡 −→𝑝 𝑟 }.

We start our proof by observing that, excluding rules (𝛽n) and
(𝛽b), all other rules strictly decrease a well-defined measure. This
measure is invariant under commutativity and associativity of addi-
tion, meaning that terms like 𝑡+𝑟 and 𝑟+𝑡 , or (𝑡+𝑟 )+𝑠 and 𝑡+(𝑟+𝑠),
receive the same value. We define this measure in Definition 3.7
and prove these properties in Theorem 3.8.

Definition 3.7 (Measure). We define the following measure on
terms:

∥𝑥 ∥ = 0 ∥𝜆𝑥Ψ .𝑡 ∥ = ∥𝑡 ∥
∥®0∥ = 0 ∥𝑡𝑟 ∥ = (3∥𝑡 ∥ + 2) (3∥𝑟 ∥ + 2)
∥E∥ = 0 ∥𝑡 ⊗ 𝑟 ∥ = ∥𝑡 ∥ + ∥𝑟 ∥ + 1
∥ |0⟩ ∥ = 0 ∥ ⇑ 𝑡 ∥ = ∥𝑡 ∥ + 5
∥ |1⟩ ∥ = 0 ∥𝛼. ⇑ 𝑡 ∥ = ∥ ⇑ 𝑡 ∥
∥ |+⟩ ∥ = 0 ∥𝛼.𝑡 ∥ = 2∥𝑡 ∥ + 1
∥ |−⟩ ∥ = 0 ∥ ⇑ 𝑡+ ⇑ 𝑟 ∥ =max{∥𝑡 ∥, ∥𝑟 ∥}

∥hd 𝑡 ∥ = ∥𝑡 ∥ + 1 ∥𝑡 + 𝑟 ∥ = ∥𝑡 ∥ + ∥𝑟 ∥ + 2 (if not both are casts)
∥tl 𝑡 ∥ = ∥𝑡 ∥ + 1 ∥?𝑡 ·𝑟 ∥ = ∥𝑡 ∥ + ∥𝑟 ∥
∥𝜋𝑚𝑡 ∥ = ∥𝑡 ∥ +𝑚 ∥?X𝑡 ·𝑟 ∥ = ∥𝑡 ∥ + ∥𝑟 ∥
∥𝜋𝑚X 𝑡 ∥ = ∥𝑡 ∥ +𝑚

Theorem 3.8 (Measure decrease and invariance). The mea-
sure defined in Definition 3.7 satisfies the following properties:

• If 𝑡 = 𝑟 by the commutativity or associativity properties of +,
then ∥𝑡 ∥ = ∥𝑟 ∥.

• If 𝑡 −→𝑝 𝑟 using a rule other than (𝛽n) and (𝛽b), then ∥𝑡 ∥ >
∥𝑟 ∥.

Proof. We only provide an example here.
∥𝛼.(𝑡 + 𝑟 )∥ = 1 + 2∥𝑡 + 𝑟 ∥ = 5 + 2∥𝑡 ∥ + 2∥𝑟 ∥ = 3 + ∥𝛼.𝑡 ∥ + ∥𝛼.𝑟 ∥

= 1 + ∥𝛼.𝑡 + 𝛼.𝑟 ∥ > ∥𝛼.𝑡 + 𝛼.𝑟 ∥
□

The previous result shows that all reduction sequences that do
not involve 𝛽-redexes are strongly normalising. We now combine
this with a standard reducibility argument to obtain the general
strong normalisation theorem. As a first step, we show that linear
combinations of strongly normalising terms are themselves strongly
normalising.

Lemma 3.9 (Strong normalisation of linear combinations).
If 𝑟𝑖 ∈ SN for all 1 ≤ 𝑖 ≤ 𝑛, then ∑𝑛

𝑖=1 [𝛼𝑖 .] 𝑟𝑖 ∈ SN.
Proof. By induction on the lexicographic order of(∑𝑛
𝑖=1 |𝑟𝑖 | , ∥

∑𝑛
𝑖=1 [𝛼𝑖 .] 𝑟𝑖 ∥

)
. □

We now define the interpretation of types used in the strong
normalisation argument. From this point onwards, we write 𝑡 : 𝐴
to mean that the term 𝑡 has type 𝐴 in any context.

Definition 3.10 (Type interpretation). Given a type 𝐴, its interpre-
tation ⟦𝐴⟧ is defined inductively as follows:

⟦𝜈⟧ = {𝑡 : 𝑆 (𝜈) | 𝑡 ∈ SN}
⟦Ψ1 × Ψ2⟧ = {𝑡 : 𝑆 (Ψ1 × Ψ2) | 𝑡 ∈ SN}
⟦Ψ⇒ 𝐴⟧ = {𝑡 : 𝑆 (Ψ⇒ 𝐴) | for all 𝑟 ∈ ⟦Ψ⟧ , 𝑡𝑟 ∈ ⟦𝐴⟧}
⟦𝑆 (𝐴)⟧ = {𝑡 : 𝑆 (𝐴) | 𝑡 ∈ SN, ∃𝑝 s.t. 𝑡

−→∗𝑝
∑
𝑖 [𝛼𝑖 .]𝑟𝑖 , 𝑟𝑖 ∈ ⟦𝐴⟧ on all paths}

with the convention that
∑0
𝑖=1 [𝛼𝑖 .]𝑟𝑖 = ®0.

Since our language is first-order, this interpretation is sufficient.
Traditionally, type interpretations are defined either by introduc-
tion or elimination. In our case, however, this distinction is not
necessary for product types. This is because we define their inter-
pretation using a superposition type rather than a direct product.
This design choice is motivated by the interpretation of function
types, which requires certain linearity properties on the argument
type—properties that hold only when the type is a superposition.

A term 𝑡 ∈ ⟦𝐴⟧ is said to be reducible, and an application 𝑡𝑟 is said
to be neutral. We write N for the set of neutral terms. In particular,
expressions of the form 𝑡?𝑟 ·𝑠 are in N , since this is shorthand for
(?𝑟 ·𝑠)𝑡 .

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

IFL 2025, (draft submission for talk), Montevideo, Uruguay Alejandro Díaz-Caro and Nicolas A. Monzon

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

We now establish the main properties of reducibility. What we
refer to as LIN1 and LIN2 are in fact specific instances of the more
general adequacy property (Theorem 3.13).

Lemma 3.11 (Reducibility properties). For every type 𝐴, the
following hold:

(CR1) If 𝑡 ∈ ⟦𝐴⟧, then 𝑡 ∈ SN.
(CR2) If 𝑡 ∈ ⟦𝐴⟧, then Red(𝑡) ⊆ ⟦𝐴⟧.
(CR3) If 𝑡 : 𝑆 (𝐴), 𝑡 ∈ N , and Red(𝑡) ⊆ ⟦𝐴⟧, then 𝑡 ∈ ⟦𝐴⟧.
(LIN1) If 𝑡 ∈ ⟦𝐴⟧ and 𝑟 ∈ ⟦𝐴⟧, then 𝑡 + 𝑟 ∈ ⟦𝐴⟧.
(LIN2) If 𝑡 ∈ ⟦𝐴⟧, then 𝛼.𝑡 ∈ ⟦𝐴⟧.
(HAB) ®0 ∈ ⟦𝐴⟧, E ∈ ⟦𝐴⟧, and for every variable 𝑥 : 𝐴, we

have 𝑥 ∈ ⟦𝐴⟧.
Proof. All of these properties are proved simultaneously by

induction on the structure of the type. This unified presentation is
essential, as several cases rely on the inductive hypotheses applied
to their subcomponents. □

Lemma 3.12 (Compatibility with subtyping). If 𝐴 ⪯ 𝐵, then
⟦𝐴⟧ ⊆ ⟦𝐵⟧. □

Theorem 3.13 (Adeqacy). If Γ ⊢ 𝑡 : 𝐴 and 𝜃 ⊨ Γ, then 𝜃 (𝑡) ∈
⟦𝐴⟧.

Proof. By induction on the derivation of Γ ⊢ 𝑡 : 𝐴. □

Corollary 3.14 (Strong normalisation). If Γ ⊢ 𝑡 : 𝐴, then
𝑡 ∈ SN.

Proof. By Theorem 3.13, if 𝜃 ⊨ Γ, then 𝜃 (𝑡) ∈ ⟦𝐴⟧. By
Lemma 3.11.CR1, we have ⟦𝐴⟧ ⊆ SN. Moreover, by Lemma 3.11.HAB,
we know that Id ⊨ Γ. Therefore, Id(𝑡) = 𝑡 ∈ SN. □

4 An Arbitrary Number of Bases
4.1 Extending Lambda-SX with Multiple

Distinct Bases
Up to this point, we have introduced Lambda-SX with two measure-
ment bases: the computational basis B and an alternative basis X.
However, the design of the system do not need to be restricted to
this choice. In fact, the calculus naturally generalises to an arbitrary
collection of orthonormal bases.

Let B𝑖 for 𝑖 = 1, . . . , 𝑛 denote a set of alternative bases, where
each B𝑖 = {|↑𝑖⟩ , |↓𝑖⟩} is defined by a change of basis from the
computational basis: |↑𝑖⟩ = 𝛼𝑖1 |0⟩+𝛽𝑖1 |1⟩ and |↓𝑖⟩ = 𝛼𝑖2 |0⟩+𝛽𝑖2 |1⟩
for some 𝛼𝑖1, 𝛼𝑖2, 𝛽𝑖1, 𝛽𝑖2 ∈ C. We assume that allB𝑖 are distinct from
the computational basis B (which retains its special role), and that
one of them may coincide with X.

We extend the grammar of atomic types as follows:

𝜈 := B | B𝑖
and the grammar of terms with corresponding constants and oper-
ations:

𝑡 ::= · · · | |↑𝑖⟩ | |↓𝑖⟩ | ?B𝑖 𝑡 ·𝑡 | 𝜋𝑚B𝑖 𝑡
Typing rules are extended in the natural way:

⊢ |↑𝑖⟩ : B𝑖 |↑𝑖⟩ ⊢ |↓𝑖⟩ : B𝑖 |↓𝑖⟩

Γ ⊢ 𝑡 : 𝑆 (∏𝑛
𝑖=1 𝜈𝑖

)
0 < 𝑚 ≤ 𝑛

Γ ⊢ 𝜋𝑚B𝑖 𝑡 : B𝑚𝑖 × 𝑆
(∏𝑛

𝑖=𝑚+1 𝜈𝑖
) 𝑆𝐸B𝑖

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑟 : 𝐴
Γ ⊢ ?B𝑖 𝑡 ·𝑟 : B𝑖 ⇒ 𝐴

IfB𝑖
Γ ⊢ 𝑡 : B𝑖

Γ ⊢⇑ 𝑡 : 𝑆 (B) ⇑B𝑖
The operational semantics is similarly extended with the follow-

ing rules:
|↑𝑖⟩?B𝑖 𝑡 ·𝑟 −→1 𝑡 (if↑)
|↓𝑖⟩?B𝑖 𝑡 ·𝑟 −→1 𝑟 (if↓)
⇑ |↑𝑖⟩ −→1 𝛼𝑖1 · |0⟩ + 𝛽𝑖1 · |1⟩ (cast |↑⟩)
⇑ |↓𝑖⟩ −→1 𝛼𝑖2 · |0⟩ + 𝛽𝑖2 · |1⟩ (cast |↓⟩)

𝜋𝑚B𝑖

(
𝑒∑︁
𝑗=1

𝛼 𝑗 ·
𝑛⊗
ℎ=1

��𝑏ℎ𝑗 〉
)
−→𝑝𝑘 |𝑘⟩ ⊗ |𝜙𝑘 ⟩ (proyBi )

𝜋𝑚B𝑖 E −→1 E (E𝜋B𝑖 )
The definition of |𝑘⟩ and |𝜙𝑘 ⟩ is analogous to the 𝜋 and 𝜋X cases.

Such flexibility is crucial for modelling quantum procedures that
involve intermediate measurements in different bases—for example,
variants of phase estimation or error-correction protocols.

A subtle issue arises when a single quantum state belongs to
more than one basis. For instance, consider a basisB1 = {|0⟩ ,− |1⟩}.
In this case, the vector |0⟩ may be typed both as B and B1, but B
and B1 are not subtypes of each other. Therefore, it is not safe to
allow a term like |0⟩ to be freely assigned both types: one must
commit to a single basis when typing such terms.

To avoid ambiguity, in this first extension we assume that no
basis B𝑖 shares any element (or scalar multiple of an element) with
the computational basis B or with any other B𝑗 for 𝑗 ≠ 𝑖 . This
restriction simplifies reasoning and ensures disjointness at the type
level.

However, in the next section, we revisit this restriction and
propose an alternative typing discipline that allows overlapping
bases, by making explicit the relationship between different types
for the same state.

All the correctness properties from Section 3 generalise straight-
forwardly to this extended system, and thus, we omit their proofs.

4.2 Extending Subtyping Across Overlapping
Bases

Let us return to our earlier example, where B1 = {|0⟩ ,− |1⟩}. In
this case, we would like |0⟩ to be typable both as B and as B1. To
make this possible, we introduce a new type Q |0⟩ , representing the
one-dimensional subspace spanned by the vector |0⟩, and require
that Q |0⟩ ⪯ B and Q |0⟩ ⪯ B1. Such types Q |𝜓 ⟩ will not correspond
to measurement bases, but rather to generators of linear subspaces.

Recall that the type 𝑆 (𝐴) is interpreted as the linear span of
the set denoted by 𝐴. Consequently, 𝑆 (Q |0⟩) is a strict subspace of
𝑆 (B), meaning in particular that 𝑆 (B) ⪯̸ 𝑆 (Q |0⟩). This distinction is
crucial: throughout the work we rely on the fact that 𝑆 (B) ≈ 𝑆 (X),
a property that does not hold in general when introducing Q |𝜓 ⟩
types. To maintain soundness and consistency, we must refine the
subtyping relation accordingly.

Let L denote the class of linear space generators, indexed up to𝑚.
Since there are 𝑛 alternative bases besides the computational basis
B, and each base consists of two orthogonal qubit states, we allow

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

AQuantum-Control Lambda-Calculus with Multiple Measurement Bases IFL 2025, (draft submission for talk), Montevideo, Uruguay

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

𝑚 to range from 3 to 2𝑛 + 1 to accommodate all possible subspace
generators:

Q := Q0 | . . . | Q𝑚 Generators of linear spaces (L)
𝜈 := B | B1 | . . . | B𝑛 Atomic types (A)
M := 𝜈 | M ×M Measurement bases (B)
G := Q | 𝜈 Single-qubit types (G)
Ψ := G | 𝑆 (Ψ) | Ψ × Ψ Qubit types (Q)

As explained, the subtyping relation must be refined to reflect
that 𝑆 (Q |𝜓 ⟩) may be a strict subspace of 𝑆 (𝜈). For arbitrary atomic
bases 𝜈1 and 𝜈2, we still have 𝑆 (𝜈1) ≈ 𝑆 (𝜈2); however, this is not the
case for spaces generated by Q |𝜓 ⟩ and Q |𝜙 ⟩ in general. To accom-
modate these distinctions, we introduce the following subtyping
rules:

𝑎∏
𝑖=0

((
𝑏𝑖∏
𝑗=0
𝜈𝑖 𝑗

)
×

(
𝑐𝑖∏
𝑘=0

Q𝑖𝑘

))
⪯ 𝑆

(
𝑎∏
𝑖=0

((
𝑏𝑖∏
𝑗=0
𝜈 ′𝑖 𝑗

)
×

(
𝑐𝑖∏
𝑘=0

Q𝑖𝑘

)))

Q |0⟩ ⪯ B Q |1⟩ ⪯ B
|𝜓 ⟩ ∈ B𝑖
Q |𝜓 ⟩ ⪯ B𝑖

These rules allow each Q |𝜓 ⟩ to be used in any basis containing
|𝜓 ⟩, preserving semantic distinctions across bases. This enables pre-
cise typing of states that appear in multiple contexts and supports
richer quantum programs involving basis reuse. This extended
system preserves the core properties proved for Lambda-SX in
Section 3. The adaptation is straightforward.

Example 4.1 (Basis-sensitive choice). The type Q |0⟩ , introduced in
Section 4.2, allows a single quantum state to be treated as belonging
to multiple bases. For instance, |0⟩ belongs to both the computa-
tional basis B = {|0⟩ , |1⟩} and the alternative basis Z = {|0⟩ ,− |1⟩},
and we have Q |0⟩ ⪯ B and Q |0⟩ ⪯ Z.

This enables the same state to be interpreted differently in dif-
ferent contexts. Suppose we have: f : B⇒ 𝑆 (B) and g : Z⇒ 𝑆 (B).
Then both choiceB = 𝜆𝑥Q|0⟩ .f(𝑥) and choiceZ = 𝜆𝑥Q|0⟩ .g(𝑥) are
well-typed. We can also define a basis-sensitive choice controlled by
a qubit: choice = 𝜆𝑦B .𝜆𝑥Q|0⟩ .𝑦?f(𝑥)·g(𝑥). This term, of type B⇒
Q |0⟩ ⇒ 𝑆 (B), illustrates how Q |𝜓 ⟩ types enable basis-dependent
behaviour without unsafe coercions or ad hoc annotations. While
the example is simple, it demonstrates how the extended subtyping
system supports flexible quantum program structuring, paving the
way for optimisations based on contextual basis interpretation.

5 Conclusion and Future Work
We have introduced Lambda-SX, a quantum lambda-calculus that
supports control over multiple measurement bases and explicit typ-
ing for quantum states shared across them. Through a range of
small illustrative examples we have shown that tracking duplica-
bility relative to distinct bases enables concise and compositional
encodings of quantum procedures. This expressiveness enables fa-
cilitates modular descriptions of basis-sensitive constructs, such as
conditional control and Hadamard-based branching, while preserv-
ing key meta-theoretical properties like strong normalisation.

While Lambda-SX is presented as a proof-of-concept, it opens
avenues for exploring richer type disciplines that more closely mir-
ror quantum semantics. Compared to previous approaches that
rely on a single fixed basis, our calculus enables direct reasoning

about transformations and measurements involving incompatible
bases, without resorting to meta-level annotations. The fine-grained
typing system not only enforces safety properties like strong nor-
malisation but also provides a framework for understanding and
structuring quantum algorithms in a modular, basis-sensitive way.

As futurework, we aim to provide a categoricalmodel for Lambda-
SX. The foundational results for Lambda-S and Lambda-S1 [9–11]
already establish a connection between quantum control and ad-
junctions between Cartesian and monoidal categories. Lambda-SX
enriches this picture by integrating multiple measurement bases
as first-class citizens in the type system. A natural direction is to
explore categorical semantics where each measurement basis cor-
responds to a distinct comonadic modality, and cast operations are
interpreted as morphisms connecting these modalities or embed-
ding subspaces into larger measurement spaces, as formalised by
the extended subtyping relation.

This fits into a broader research programme toward a computa-
tional quantum logic, as outlined in [4], which aims to provide a
Curry-Howard-Lambek-style correspondence for quantum compu-
tation. In this programme, Lambda-S represents the computational
side of this correspondence, while a linear proof language—such as
LS [5]—captures the logical side. Preliminary results suggest that
quantum computation could be understood as a structural dual to
intuitionistic linear logic, with semantic models built on adjunc-
tions between symmetric monoidal categories and their Cartesian
or additive counterparts. Extending these models to accommodate
the richer structure of Lambda-SX, and even exploring connec-
tions to graphical calculi such as ZX, may yield new insights into
both the foundations and practical implementation of quantum
programming languages.

Lambda-SX opens up a new perspective on how the structure
of quantum computation can be captured within a typed lambda-
calculus, supporting fine control over duplication, measurement,
and basis transition—all of which are essential ingredients in the
development of expressive and robust quantum programming for-
malisms.

Acknowledgments
This work is supported by the European Union through the MSCA
SE project QCOMICAL (Grant Agreement ID: 101182520), by the
Plan France 2030 through the PEPR integrated project EPiQ (ANR-
22-PETQ-0007), and by the UruguayanCSIC grant 22520220100073UD.

References
[1] Thorsten Altenkirch and Jonathan Grattage. 2005. A Functional Quantum Pro-

gramming Language. In Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science (LICS 2005). 249–258.

[2] Pablo Arrighi and Gilles Dowek. 2017. Lineal: A linear-algebraic Lambda-calculus.
Logical Methods in Computer Science 13, 1:8 (2017).

[3] Ali Assaf, Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson, and Benoît
Valiron. 2014. Call-by-value, call-by-name and the vectorial behaviour of the
algebraic lambda-calculus. Logical Methods in Computer Science 10, 4:8 (2014).

[4] Alejandro Díaz-Caro. 2025. Towards a Computational Quantum Logic: An
Overview of an Ongoing Research Program. Invited talk at CiE 2025: Com-
putability in Europe. To appear at LNCS.

[5] Alejandro Díaz-Caro and Gilles Dowek. 2024. A linear linear lambda-calculus.
Mathematical Structures in Computer Science 34, 10 (2024), 1103–1137.

[6] Alejandro Díaz-Caro and Nicolas A. Monzon. 2025. A Quantum-Control Lambda-
Calculus with Multiple Measurement Bases. To appear at LNCS. Full version
at arXiv:2506.16244. In APLAS 2025: 23rd Asian Symposium on Programming
Languages and Systems.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

IFL 2025, (draft submission for talk), Montevideo, Uruguay Alejandro Díaz-Caro and Nicolas A. Monzon

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[7] Alejandro Díaz-Caro, Gilles Dowek, and Juan Pablo Rinaldi. 2019. Two linearities
for quantum computing in the lambda calculus. BioSystems 186 (2019), 104012.

[8] Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron.
2019. Realizability in the Unitary Sphere. In Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2019). 1–13.

[9] Alejandro Díaz-Caro and Octavio Malherbe. 2020. A Categorical Construction
for the Computational Definition of Vector Spaces. Applied Categorical Structures
28, 5 (2020), 807–844.

[10] Alejandro Díaz-Caro and Octavio Malherbe. 2022. Quantum Control in the Uni-
tary Sphere: Lambda-𝑆1 and its Categorical Model. Logical Methods in Computer
Science 18, 3:32 (2022).

[11] Alejandro Díaz-Caro and Octavio Malherbe. 2023. A concrete model for a typed
linear algebraic lambda calculus. Mathematical Structures in Computer Science
34, 1 (2023), 1–44.

[12] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987),
1–101.

[13] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benoît Valiron. 2013. Quipper: A Scalable Quantum Programming Language.

ACM SIGPLAN Notices 48, 6 (2013), 333–342.
[14] S. C. Kleene. 1945. On the interpretation of intuitionistic number theory. Journal

of Symbolic Logic 10, 4 (1945), 109–124.
[15] Emmanuel Knill. 1996. Conventions for Quantum Pseudocode. Technical Report

LAUR-96-2724. Los Alamos National Laboratory.
[16] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core lan-

guage for quantum circuits. ACM SIGPLAN Notices 52, 1 (2017), 846–858.
[17] Peter Selinger. 2004. Towards a quantum programming language. Mathematical

Structures in Computer Science 14, 4 (2004), 527–586.
[18] Peter Selinger and Benoît Valiron. 2006. A lambda calculus for quantum compu-

tation with classical control. Mathematical Structures in Computer Science 16, 3
(2006), 527–552.

[19] Morten Heine B. Sørensen and Pawel Urzyczyn. 2006. Lectures on the Curry-
Howard Isomorphism. Elsevier, Amsterdam; Oxford.

[20] William K. Wootters and Wojciech H. Zurek. 1982. A single quantum cannot be
cloned. Nature 299 (1982), 802–803.

8



List Fold Operators in Dafny
Juan Michelini Nora Szasz Álvaro Tasistro

Universidad ORT Uruguay
Montevideo, Uruguay

ABSTRACT
We provide explanations based on simple programming techniques
of formulations of the operators foldr and foldl for finite lists
in terms of each other that appear rather convolved at first sight,
and use the verification aware programming language Dafny to
formally prove their correctness.

ACM Reference Format:
Juan Michelini Nora Szasz Álvaro Tasistro, . 2025. List
Fold Operators in Dafny. In Proceedings of (IFL 2025 - Draft papers). ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The functions foldr and foldl for finite lists are defined as follows
(in Haskell [1] notation):

foldr:: (a -> b -> b) -> b -> [a] -> b
foldr h b [] = b
foldr h b (x:xs) = h x (foldr h b xs)

foldl:: (b -> a -> b) -> b -> [a] -> b
foldl h b [] = b
foldl h b (x:xs) = foldl h (h b x) xs

To begin with, we consider the discussion in the Haskell Wiki
concerning mutual definitions of these functions, which appear a
bit convolved and unmotivated, at least at first sight1:
foldl f a bs = foldr (\b g x -> g (f x b)) id bs a

foldr f a bs = foldl (\g b x -> g (f b x)) id bs a

As initial goal, we try to identify interesting simple techniques of
programming allowing for smooth derivations of these definitions.
The techniques involve the use of higher order functions for in-
troducing varying parameters in primitive recursive definitions, of
so-called accumulating functions, and of map over lists of functions.

1See (https://wiki.haskell.org/Foldl_as_foldr)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL 2025 - Draft papers, ,
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

On the other hand, we use the verification-aware programming
language Dafny [2] for checking the correctness of the above men-
tioned derivations. Dafny combines imperative and functional fea-
tures together with specifications, annotations and features for
writing lemmas that are verified or directly proven in automatic
manner. As far as we know, the literature on the use of higher-
order functions in this context is rather scarce, and so we expect
the present work to constitute a useful experience.

The structure of this paper is as follows: In the next section we
explain how to derive the equation for expressing foldl in terms of
foldr by accomodating the use of varying parameters in the latter.
In section 3 we derive foldr in terms of foldl by generalizing
the use of accumulating functions. In section 4 we employ lists of
functions and fusion to mutually derive the operators in question,
and in Section 5 we show and discuss the development in Dafny.
Section 6 mentions some conclusions and further work.

2 VARYING PARAMETERS IN FOLD
RECURSION

The function foldr is an abstraction of the following recursion
schema:
f:: [a] -> b
f [] = b
f (x:xs) = h x (f xs)

This is easy to adapt to the case in which additional parameters are
to be considered, unless the parameters may vary in the recursive
call, as in the following (1):
f:: p -> [a] -> b
f p [] = b p
f p (x:xs) = h p x (f (g x p) xs)

where we added an extra parameter p to b and h, and g is a function
that modifies the parameter in the recursive call:

b:: p -> b
h:: p -> a -> b -> b
g:: a -> p -> p

However, this schema with parameters can also be expressed as
a foldr, just by defining a function of type p -> b by simple
recursion. Indeed, consider
f':: [a] -> (p -> b)
f' [] = b
f' (x:xs) = \p-> h p x (f' xs (g x p))

Note that the arguments of f’ have been swapped, i.e. we get that,
for all l and for all p:
f p l = f' l p



IFL 2025 - Draft papers, ,
Juan Michelini Nora Szasz Álvaro Tasistro

Now, we directly express f’ as a foldr:
f' = foldr (\x r-> \p-> h p x (r (g x p))) b

and so, we get (2):
f p l = (foldr (\x r-> \p-> h p x (r (g x p))) b) l p

Let us observe foldl:
foldl h a [] = a
foldl h a (x:xs) = foldl h (h a x) xs

Note that foldl h is a case of recursion with varying parameters.
For realizing this, it is useful to rewrite the right-hand sides in order
to make it easier to match the schema in (1):
foldl h a [] = id a
foldl h a (x:xs) = (\p x r-> r) a x (foldl h (h a x) xs)

where id :: a -> a is the identity function defined as \x-> x.

Now, we can write foldl as a foldr by adapting (2) to the
present case, and after performing some beta reductions, we obtain:
foldl h a l = foldr (\x r-> \p-> (r (h p x))) id l a

which is the same as the equation in the Haskell Wiki, up to alpha
conversions.

3 ACCUMULATING FUNCTIONS
Now we want to express foldr in terms of foldl. Recall that,
informally:
foldr h b [x1,x2,..., xn] = h x1 (h x2 (... h xn b)...))

We can rewrite this using the composition operator
(.) :: (b -> c) -> (a -> b) -> a -> c, defined as
(f .ġ) x = f (g x),

which is associative and has id as identity value:
foldr h b [x1,x2,...,xn] = ((h x1) . (h x2) . ... (h xn)) b

= (...((h x1) . (h x2)) ... . (h xn)) b
= (...((id . (h x1)) . (h x2)) ... . (h xn)) b

On the other hand, we can express the result of foldl g d on
a list [x1,x2,...,xn] writing the function g as an infix operator
‘g‘ as:
foldl g d [x1,x2,...,xn] =

((((d `g` x1) `g` x2) `g` ... `g` xn)

It is now direct to match the two last equations, by using id as
initial value and \g x-> g .(h x) as the operator. We get:
foldr h b l = foldl (\g x-> g .(h x)) id l b

We can unfold the definition of composition by adding an explicit
parameter in order to get the Haskell Wiki version, up to alpha
conversion:
foldr h b l = foldl (\g x z-> g (h x z)) id l b

4 USING LISTS OF FUNCTIONS AND FUSION
In this section we make use of the function

map :: (a -> b) -> [a] -> [b]
to achieve yet other derivations.

4.1 foldl in terms of foldr
Recall the informal equation
foldl h d [x1,x2,...,xk] = (((d `h` x1) `h` x2)...`h` xk)

Using (;) :: (a -> b) -> (b -> c) -> a -> c defined as
(f ; g) x = g (f x), we can rewrite this as:

foldl h d [x1,x2,...,xk] =
((`h` x1);(`h` x2);...;(`h` xk)) d

where (‘h‘ x) is the partial aplication of h to its second argument,
i.e., \z -> h z x or flip h x.

Since id is the identity of (;), we can unfold the (;) introduc-
ing foldr:
foldl h d [x1,x2,...,xk] =

foldr (;) id [(`h` x1), (`h` x2), ..., (`h` xk)] d

Now, we can write the function list in terms of map, which gives:
foldl h d xs = foldr (;) id (map (flip h) xs) d

And this can be fused into a single pass:
foldl h d xs = foldr (\x r -> (;) ((flip h) x) r) id xs d

After some beta-reductions we get:
foldl h d xs = foldr (\x r u -> r (h u x)) id xs d

which after renaming gives us the same as the Haskell Wiki.

4.2 foldr in terms of foldl
We start with foldr and expand it:
foldr h d [x1,x2, ...,xk] = (x1 `h` (x2 `h`...(xk `h` d)))

Then we do the same as above with (.) and we can rewrite it as:
foldr h d [x1,x2, ...,xk] =

((h x1) . (h x2) . ... . (h xk)) d

Using that id is the identity (.), we can unfold this to
foldr h d [x1,x2, ...,xk] =

foldl (.) id [(h x1),(h x2), ... ,(h xk)] d

Now we can express the function list as a map:
foldr h d xs = foldl (.) id (map h xs) d

If we want to write map in terms of foldl, a simple attempt actually
gives us mapRev which is equivalent to mapping and reversing the
list:
mapRev:: (a -> b) -> [a] -> [b]
mapRev f xs = foldl (\ r x -> (f x):r) [] xs



List Fold Operators in Dafny IFL 2025 - Draft papers, ,

Informally,
mapRev f [x1,x2, ...,xk] = [f xk, ... ,f x2, f x1]

We can use mapRev by flipping (.) (which is (;)) instead:
foldr h d xs = foldl (;) id (mapRev h xs) d

which expanded gives us:
foldr h d xs = foldl (;) id (foldl (\r x -> (h x):r) [] xs) d

This can now be fused into:
foldr h d xs = foldl (\ r x -> (;) (h x) r) id xs d

And after some reductions we get:
foldr h d xs = foldl (\ r x u -> r ((h x) u)) id xs d

which up to alpha renamings gives us the Haskell Wiki equation.

5 DAFNY
In this section we show the main points of our development in
Dafny [2]. Dafny is a verification-aware programming language
that has native support for specifications and is equipped with a
static program verifier. It combines imperative and functional fea-
tures. We will concentrate on the functional part, where we can
define inductive types and perform proofs by induction. Its syntax
is very similar to other functional programming languages, so we
expect that the reader can grasp the code.

We start by defining lists, and the functions foldr and foldl.
datatype List<A> = Nil

| Cons (A, List<A>)

function foldr<A, B> (h: (A, B) -> B, b: B, l: List<A>): B
{match l

case Nil => b
case Cons (x, xs) => h (x, foldr (h, b, xs))

}
function foldl<A,B> (h: (B, A) -> B, b: B, l: List<A>): B
{match l

case Nil => b
case Cons (x, xs) => foldl(h, h(b, x), xs)

}

First we give proofs that the Haskell Wiki definitions are correct.
A lemma in Dafny is a method to deliver evidence of the proposition
in the ensures clause. Hypotheses are declared using requires.

Lemma foldl_as_foldr is proven by induction on the list l
using the match construct, which is the same as the one for defining
functions by pattern matching. We exhibit the code as necessary for
Dafny to compile, which implies the correctness of the lemma. For
instance, the Nil case in the proof below is empty because Dafny
is able to prove it by itself. In the Cons case, one can appreciate
the calculational format of the proofs. In general equalities are
annotated with hints to help their verification. The relevant case
in this case is the use of the recursive call (induction hypothesis).
Notice the notation x => e for lambda abstractions.

lemma foldl_as_foldr<A,B> (h:(B, A)->B, b: B, l: List<A>)
ensures foldl (h, b, l) == foldr<A, (B)-> B>

((x, r:(B)-> B) => a => r(h(a, x)),
(x=>x),
l) (b)

{match l
case Nil =>
case Cons (x, xs) =>

calc{
foldl (h, b, l) ;
== // foldl def.
foldl(h, h(b, x), xs) ;
== {foldl_as_foldr (h, h(b, x), xs);}
foldr ((x, r:(B) ->B) => a => r(h(a, x)),

(x=>x),
xs) (h(b, x)) ;

}
}

The lemma below proves a generalization of the formula in
Haskell Wiki, i.e., the latter is obtained by instantiating the param-
eter g with the identity function. It is proven directly by Dafny’s
verifier.
lemma foldr_as_foldl<A,B> (h: (A, B) -> B, b: B, l: List<A>,

g: (B) -> B)
ensures g (foldr(h,b,l)) == foldl<A,(B)->B> ((gg:(B)->B,x)

=> z => gg(h(x,z)),g,l)(b)
{}

The next lemma proves the correctness of the formulation of the
schema for recursion with varying parameters in terms of foldr
presented in Section 2.
lemma param_foldr<P, A, B> (f: (P) -> (List<A>) -> B,

h: (P) -> (A) -> (B) -> B,
b: (P) -> B,
g: (A, P) -> P,
l: List<A>,
p: P)

requires forall l: List<A>, p: P:: f (p) (l)
== match l
case Nil => b(p)

case Cons (x, xs) =>
h (p) (x) (f (g(x, p)) (xs))

ensures f (p) (l)
== foldr<A, (P) -> B> ((x: A, r: (P) -> B)

=> p=> h (p) (x) (r(g(x, p))), b, l) (p)
{match l

case Nil => {calc{
f (p) (l);
==
b(p);

}}
case Cons (x, xs) =>

{calc{
foldr<A,(P)->B> ((x:A,r:(P)->B)

=>p=>h(p)(x)(r(g(x, p))),b,l)(p);



IFL 2025 - Draft papers, ,
Juan Michelini Nora Szasz Álvaro Tasistro

==
h(p)(x)(foldr<A,(P)->B>((x:A,r:(P)->B)
=>p=> h(p)(x)(r(g(x,p))),b,xs)(g(x,p)));

== {param_foldr(f, h, b, g, xs, g(x, p));}
h (p) (x) (f (g(x, p)) (xs));

}}
}

Next we show the main results of section 4.1, firstly the proof
that foldl can be expressed as a foldr over a list of functions:

function l_map<A,B> (f: (A) -> B, l: List<A>): List<B>
{foldr ((x, r)=> Cons(f(x), r), Nil, l)}

function f_seq<A, B, C> (f: (A) -> B, g: (B) -> C): (A) -> C
{x=> g(f(x))}

function flip<A, B, C> (f: (A, B) -> C): (B, A) -> C
{(y, x)=> f(x, y)}

lemma foldl_as_foldr_fun_list<A, B> (h: (B, A) -> B,
b: B, l: List<A>)

ensures foldl(h, b, l) ==
foldr(f_seq, x=> x,

l_map (x=> y=> flip(h)(x, y),l))(b)
{match l

case Nil =>
case Cons (x, xs) =>
{calc{
foldr(f_seq, x=> x, l_map (x=> y=> flip(h)(x, y), l))(b);

==
foldr(f_seq,x=> x,
Cons(y=>flip(h)(x,y),l_map(x=>y=>flip(h)(x,y),xs)))

(b);
==
f_seq(y=>flip(h)(x,y),

foldr(f_seq,x=> x,l_map(x=>y=>flip(h)(x,y),xs)))
(b);

==
foldr(f_seq, x=> x, l_map (x=> y=> flip(h)(x, y), xs))

(flip(h)(x,b));
== {foldl_as_foldr_fun_list (h, flip(h)(x,b), xs);}
foldl(h, flip(h)(x,b), xs);

}}
}

Then we prove the fusion of foldr and map:

lemma foldr_map_fusion<A, B, C>
(g: (A,B) -> B,
b: B,
f: (C) -> A,
l: List<C>)

ensures foldr (g, b, l_map (f, l))
==
foldr ((x, r) => g (f(x), r), b, l)

{}

6 CONCLUSIONS AND FURTHERWORK
We have employed multiple simple programming techniques to
derive the mutual definitions of foldr and foldl for finite lists.
We believe these explanations serve to at least motivate the defini-
tions in question. We also have employed Dafny for verifying the
essential parts of the derivations, which we expect to constitute
a contribution to the literature in the application of this language
and its system, particularly because of the extensive treatment of
higher-order functions. The language and system have proven to
be extremely handy for the task at hand, allowing to get concise
proofs in short time. We consider this highly promising and are
currently trying the tool in applications concerning theory and
infrastructure of programming languages, among others.

REFERENCES
[1] G. Hutton (2007): Programming in Haskell. Cambridge University Press.
[2] K.R.M. Leino & K. Leino (2023): Program Proofs. MIT Press.



Formalizating System I with type Top in Agda
Agustín Séttimo

Dpto. de Ciencias de la Computación.
Universidad Nacional de Rosario.

Rosario, Argentina.
agustinsettimo.ips@gmail.com

Cristian Sottile
Dpto. de Ciencia y Tecnología.

Universidad Nacional de Quilmes.
Bernal, Buenos Aires, Argentina.

Instituto de Investigación en Ciencias
de la Computación (ICC). CONICET /

Universidad de Buenos Aires.
Buenos Aires, Argentina.

csottile@dc.uba.ar

Cecilia Manzino
Dpto. de Ciencias de la Computación.
Universidad Nacional de Rosario.

Rosario, Argentina.
ceciliam@fceia.unr.edu.ar

Abstract
System I is a recently introduced simply-typed lambda calcu-
lus with pairs where isomorphic types are considered equal.
In this work we propose an extension of System I with the
type Top, and present a complete formalization of this cal-
culus in Agda, which includes the proofs of progress and
strong normalization.

Keywords: Lambda calculus, Type isomorphisms, Agda, Strong
normalization

ACM Reference Format:
Agustín Séttimo, Cristian Sottile, and Cecilia Manzino. 2025. For-
malizating System I with type Top in Agda. In IFL 2025: Proceedings
of the 37th Symposium on Implementation and Application of Func-
tional Languages (IFL ’25), October 1–3, 2025, Montevideo, Uruguay.
ACM, New York, NY, USA, 10 pages.

1 Introduction
The study of type isomorphisms is a recent field of research
with multiple applications. From the perspective of program-
ming languages, if we identify isomorphic types, we can
identify programs of the same type with different syntax
but semantically equivalent. This allows a novel form of pro-
gramming, for example, a function could take its arguments
in any order, since the types 𝐴→ 𝐵 → 𝐶 and 𝐵 → 𝐴→ 𝐶
are isomorphic.

On the other hand, from the perspective of proof systems,
since types can be thought of as propositions and programs
correspond to proofs, considering different proofs of isomor-
phic propositions as the same proof means that we have a
form of proof-irrelevance.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only. Request permissions from owner/au-
thor(s).
IFL ’25, Montevideo, Uruguay
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

Systems that consider type isomorphisms as equalities are
called systems modulo isomorphism. Most of these systems
use simply typed lambda calculus as a framework, and extend
it so that isomorphic types are considered identical. The first
of these systems, which is also the most relevant for this
work, was System I [5]: a simply typed lambda calculus with
pairs modulo isomorphisms. An interpreter of a preliminary
version of this calculus has been implemented in Haskell [7],
and variants with 𝜂-expansion rules [6], fewer isomorphisms
with no type system [2], and polymorphism [12] have been
introduced.

The main contributions of this work are:

• The extension of System I with the type Top. Adding
new type constructors to a calculus modulo isomor-
phisms requires extending the equivalence relation
on types, considering the isomorphisms involving the
new constructor and also the equivalences between
terms of isomorphic types. The choice of these term
isomorphisms is also motivated by the goal of having
a normalizing calculus.
• The formalization in Agda of this calculus, defining
its syntax, semantics, and typing rules. The approach
we follow in the representation of typed terms and the
notation is similar to that used in [14].
• The proofs in Agda of progress and strong normaliza-
tion. In our setting, strong normalization means that
every reduction sequence starting from a typed term
is finite.

The complete Agda code is available in the GitHub repos-
itory https://github.com/AgusSett/thesis.
The paper is organized as follows. Section 2 presents an

overview of some calculi modulo isomorphisms. Section 3
extends System I with the type Top. Section 4 presents the
formalization in Agda of the extended calculus and proves
Progress. Section 5 proves the StrongNormalization property.
Section 6 concludes the paper.

2 STLC modulo isomorphisms
In this section we introduce System I [5], which is the base
system that we later extend and formalize. Two types 𝐴 and



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Séttimo, Sottile, and Manzino.

𝐵 are isomorphic (denoted by ≡) iff there exist two functions
𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴 such that 𝑓 ◦ 𝑔 = 𝑖𝑑𝐵 and
𝑔 ◦ 𝑓 = 𝑖𝑑𝐴.

All the type isomorphisms that occur in these systems
were characterized and grouped into axiomatic sets by Di
Cosmo [4]. For example, the set that corresponds to simply
typed lambda calculus is formed by the isomorphism called
swap (𝐴 → (𝐵 → 𝐶) ≡ 𝐵 → (𝐴 → 𝐶)). For the simply
typed lambda calculus extended with cartesian product (de-
noted as ×), all the isomorphisms are consequences of the
following four:

𝐴 × 𝐵 ≡ 𝐵 ∧𝐴 (1)
𝐴 × (𝐵 ×𝐶) ≡ (𝐴 × 𝐵) ∧𝐶 (2)
𝐴→ (𝐵 ×𝐶) ≡ (𝐴→ 𝐵) × (𝐴→ 𝐶) (3)
(𝐴 × 𝐵) → 𝐶 ≡ 𝐴→ 𝐵 → 𝐶 (4)

We note that the swap isomorphism is not included since
it can be constructed from (1) and (3).

The grammar of System I for types is the same as in tradi-
tional lambda calculus, while its grammar for terms differs
only in projection, which is parametrized by a type rather
than a position:

𝐴 := 𝜏 | 𝐴→ 𝐴 | 𝐴 ×𝐴
𝑟 := 𝑥 | 𝜆𝑥𝐴 .𝑟 | 𝑟𝑟 | ⟨𝑟, 𝑟 ⟩ | 𝜋𝐴 (𝑟 )

The type system of this calculus is extended, with respect
to typed lambda calculus, with a typing rule that asserts that
if a term 𝑡 has type 𝐴 and 𝐴 ≡ 𝐵, then 𝑡 also has type 𝐵:

Γ ⊢ 𝑟 : 𝐴 𝐴 ≡ 𝐵
Γ ⊢ 𝑟 : 𝐵 (≡)

This rule with the four isomorphisms that characterize
the calculus induces some equivalences between terms. For
example, since the types 𝐴 × 𝐵 and 𝐵 × 𝐴 are equivalent,
the terms ⟨𝑟, 𝑠⟩ and ⟨𝑠, 𝑟 ⟩ where 𝑟 : 𝐴 and 𝑠 : 𝐵, must rep-
resent the same term. Therefore, it is necessary to extend
the reduction relation with isomorphisms at the term level.
This relation, denoted as ⇄, is presented in Table 1. The
relation⇄∗ is its reflexive and transitive closure that forms
an equivalence relation.
We note that these rules were chosen with the aim of

obtaining a strongly normalizing and consistent calculus.
The operational semantics of System I was defined by two

relations: the equivalence relation between terms and a re-
duction relation which is similar to the classical 𝛽-reduction.
We will show here why 𝛽-reduction cannot be used directly
with the rules of Table 1.

The usual projection rules access a pair through the posi-
tion of the elements, but the (COMM) isomorphism allows the
order of a pair to be changed, thus allowing either of the two
elements to be projected:

⟨𝑟, 𝑠⟩ ⇄ ⟨𝑠, 𝑟 ⟩ (COMM)
⟨𝑟, ⟨𝑠, 𝑡⟩⟩ ⇄ ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ (ASSO)
𝜆𝑥𝐴 .⟨𝑟, 𝑠⟩ ⇄ ⟨𝜆𝑥𝐴 .𝑟 , 𝜆𝑥𝐴 .𝑠⟩ (DIST𝜆)
⟨𝑟, 𝑠⟩𝑡 ⇄ ⟨𝑟𝑡, 𝑠𝑡⟩ (DISTapp)
𝑟 ⟨𝑠, 𝑡⟩ ⇄ 𝑟𝑠𝑡 (CURRY)

𝑟 ⇄ 𝑠

𝜆𝑥𝐴 .𝑟 ⇄ 𝜆𝑥𝐴 .𝑠

𝑟 ⇄ 𝑠

𝑟𝑡 ⇄ 𝑠𝑡

𝑟 ⇄ 𝑠

𝑡𝑟 ⇄ 𝑡𝑠
𝑟 ⇄ 𝑠

⟨𝑡, 𝑟 ⟩ ⇄ ⟨𝑡, 𝑠⟩
𝑟 ⇄ 𝑠

⟨𝑟, 𝑡⟩ ⇄ ⟨𝑠, 𝑡⟩
𝑟 ⇄ 𝑠

𝜋𝐴 (𝑟 ) ⇄ 𝜋𝐴 (𝑠)
Table 1. Rules of equivalence between terms in System I

𝜋1⟨𝑟, 𝑠⟩ ↩→ 𝑟
𝜋1⟨𝑟, 𝑠⟩ ⇄ 𝜋1⟨𝑠, 𝑟 ⟩ ↩→ 𝑠

This poses a problem for type preservation and also in-
troduces non-determinism. The solution is to access the ele-
ment of a pair through its type, so a new rule was defined: if
Γ ⊢ 𝑟 : 𝐴, then 𝜋𝐴⟨𝑟, 𝑠⟩ ↩→ 𝑟 . This rule resolves the problem
of type preservation but maintains the non-determinism in
the calculus. However, it is possible to encode a deterministic
projection even when both terms are of the same type. Then,
non-determinism of System I is considered a feature and not
a problem.

Another conflict with classical 𝛽-reduction and the equal-
ity rules of terms occurs as a consequence of the isomor-
phism: 𝐴 → 𝐵 → 𝐶 ≡ 𝐵 → 𝐴 → 𝐶 , which can be proved
with (1) and (4). This means that we can pass any argument
to an abstraction first.
To solve the problem of type preservation in this case, 𝛽-

reduction is modified and a condition is added that requires
the term being applied to have the same type as the argument
of the abstraction: if Γ ⊢ 𝑠 : 𝐴, then (𝜆𝑥𝐴 .𝑟 )𝑠 ↩→ 𝑟 [𝑠/𝑥].

Finally, the reduction relation⇝ is defined as the relation
↩→modulo⇄ (i.e.⇝ :=⇄∗ ◦ ↩→ ◦⇄∗), and⇝∗ its reflexive
and transitive closure.

3 Adding the type Top
In this section we extend System I with the type Top. The
syntax of types and terms is as follows:

𝐴 := T | 𝐴→ 𝐴 | 𝐴 ×𝐴
𝑟 := ★ | 𝑥 | 𝜆𝑥𝐴 .𝑟 | 𝑟𝑟 | ⟨𝑟, 𝑟 ⟩ | 𝜋𝐴 (𝑟 )

The type system has one additional rule with respect to
System I that types the term ★with T. The typing rules of
this calculus are given in Figure 1.

The next step is to define the equivalence on types induced
by type isomorphisms. To do so, we take (1), (2), (3), (4) and
add the following three, which are those related to T:



Formalizating System I with type Top in Agda IFL ’25, October 1–3, 2025, Montevideo, Uruguay

𝐴 × T ≡ 𝐴 (5)
𝐴→ T ≡ T (6)
T→ 𝐴 ≡ 𝐴 (7)

In logic, the type T corresponds to the proposition True.
Isomorphism (5) corresponds to the neutrality of True w.r.t.
conjunction, while (6) and (7) correspond to the neutral and
absorbing nature of True w.r.t. implication.

(𝑎𝑥 )
Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

𝐴 ≡ 𝐵 Γ ⊢ 𝑟 : 𝐴 (≡)
Γ ⊢ 𝑟 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑟 : 𝐵 (→𝑖 )
Γ ⊢ 𝜆𝑥 .𝑟 : 𝐴→ 𝐵

Γ ⊢ 𝑟 : 𝐴→ 𝐵 Γ ⊢ 𝑠 : 𝐴 (→𝑒 )
Γ ⊢ 𝑟𝑠 : 𝐵

Γ ⊢ 𝑟 : 𝐴 Γ ⊢ 𝑠 : 𝐵 (×𝑖 )
Γ ⊢ ⟨𝑟, 𝑠⟩ : 𝐴 × 𝐵

Γ ⊢ 𝑟 : 𝐴 × 𝐵 (×𝑒 )
Γ ⊢ 𝜋𝐴 (𝑟 ) : 𝐴

(T𝑖 )
Γ ⊢ ★ : T

Figure 1. Typing rules

The next step is to define the equivalences on terms that
each of the new isomorphisms induces.

The isomorphism (5) induces the term equality: ⟨𝑟,★⟩ ⇄ 𝑟 .
The isomorphism (6) induces two term equivalences that
correspond to the introduction and elimination of→: if 𝑡 has
type T, then 𝑡 ⇄ 𝜆𝑥𝐴 .𝑡 and if 𝑟 has type 𝐴→ T, then 𝑟 ⇄ ★.
Finally, the isomorphism (7) induces two equivalences: if 𝑟
has type T→ 𝐴, then 𝑟 ★⇄ 𝑟 and 𝜆𝑥T .𝑟 ⇄ 𝑟 .
In Table 2 we present the term isomorphisms that we

consider for the formalization of this calculus, where the
congruence rules are omitted since they are the same as
those in Table 1.
The selection of isomorphisms between terms presented

here is the result of several design decisions based mainly on
two objectives. First, all necessary equivalences were added
so that no term can get stuck, and there are no eliminations
in normal forms. As a consequence, every closed term always
reduces to a value. This point will become clear when we
consider the progress proof below. The second objective is
to preserve the normalization property in this calculus and
make the proof of this property less complex.

For example,𝜂-expansion and the split rule (𝑟 ⇄ ⟨𝜋𝐴𝑟, 𝜋𝐵𝑟 ⟩
where 𝑟 : 𝐴 × 𝐵) are both necessary to avoid some terms
getting stuck. But if these rules are included directly, the nor-
malization property is lost since, for example, 𝜂-expansion
can be applied an infinite number of times. The solution
is to define new constructors that embed these rules, such
as ASSO-SPLIT.

The operational semantics of this calculus is defined simi-
larly to System I, but with the new rules for the equivalence
between terms: the reduction relation⇝ is defined as the

⟨𝑟, 𝑠⟩ ⇄ ⟨𝑠, 𝑟 ⟩ (COMM)
⟨𝑟, ⟨𝑠, 𝑡⟩⟩ ⇄ ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ (ASSO)
⟨𝑟, 𝑠⟩ ⇄ ⟨⟨𝑟, 𝜋𝐵 (𝑠)⟩, 𝜋𝐶 (𝑠)⟩

(ASSO-SPLIT)
𝜆𝑥𝐴 .⟨𝑟, 𝑠⟩ ⇄ ⟨𝜆𝑥𝐴 .𝑟 , 𝜆𝑥𝐴 .𝑠⟩ (DIST𝜆)

If Γ ⊢ 𝑟 : 𝐵 ×𝐶, 𝜆𝑥𝐴 .𝑟 ⇄ ⟨𝜆𝑥𝐴 .𝜋𝐵 (𝑟 ), 𝜆𝑥𝐴 .𝜋𝐶 (𝑟 )⟩
(DIST𝜆 -SPLIT)

If Γ ⊢ 𝑟 : 𝐴→ 𝐵, Γ ⊢ 𝑠 : 𝐴→ 𝐶,

⟨𝑟, 𝑠⟩ ⇄ 𝜆𝑥𝐴 .⟨𝑟 𝑥, 𝑠 𝑥⟩ (DIST𝜆𝜂)
𝜆𝑥𝐴 .𝜆𝑦𝐵 .𝑡 ⇄ 𝜆𝑧𝐴×𝐵 .𝑡 [𝜋𝐴 (𝑧)/𝑥, 𝜋𝐵 (𝑧)/𝑦]

(CURRY)
If Γ ⊢ 𝑡 : 𝐵 → 𝐶, 𝜆𝑥𝐴 .𝑡 ⇄ 𝜆𝑧𝐴×𝐵 .𝑡 [𝜋𝐴 (𝑧)/𝑥]𝜋𝐵 (𝑧)

(CURRY𝜂)
𝜆𝑥𝐴×𝐵 .𝑡 ⇄ 𝜆𝑦𝐴 .𝜆𝑧𝐵 .𝑡 [⟨𝑦, 𝑧⟩/𝑥]

(UNCURRY)
If Γ ⊢ 𝑡 : T, 𝑡 ⇄ 𝜆𝑥𝐴 .𝑡 (ABS𝑖 )

If Γ ⊢ 𝑟 : 𝐴→ T, 𝑟 ⇄ ★ (ABS𝑒 )
If Γ ⊢ 𝑟 : T→ 𝐴, 𝑟 ★⇄ 𝑟 (ID→𝑖 )

𝜆𝑥T .𝑟 ⇄ 𝑟 (ID→𝑒 )
Table 2. Rules of equivalence between terms in System I
with Top

relation ↩→ modulo⇄ (i.e.⇝ :=⇄∗ ◦ ↩→ ◦ ⇄∗), and⇝∗
its reflexive and transitive closure.

4 Formalization
In this section we present a formalization in Agda of a simply
typed lambda calculus with pairs and Top extended with type
isomorphisms.

Much of the code presented in this work is based on [14].
The adaptation consists mainly of the addition of type iso-
morphisms and the semantics of the calculus, which are now
defined by 𝛽-reduction modulo⇄.

There are two approaches to formalizing a typed 𝜆-calculus:
using extrinsically typed terms, where terms and types are
defined independently (so a term can be typed or not); or
using intrinsically typed terms, where types are defined first
and terms are formed with a given type. There are also two
ways of representing variable names: using named variables,
which are easier to read, or de Bruijn indices, which make
the formalization more compact. In this work we decided to
use an intrinsic formulation and de Bruijn indices.

4.1 Types, contexts and variables
The types consist of the type Top, function types, and pairs:

data Type : Set where

⊤ : Type



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Séttimo, Sottile, and Manzino.

_⇒_ : Type→ Type→ Type

_×_ : Type→ Type→ Type

Since we use natural numbers to represent variables, type
contexts are formalized as lists of types. Unlike classical lists,
contexts are read from right to left.
data Context : Set where

∅ : Context
_,_ : Context→ Type→ Context

Intrinsically typed variables are represented by de Bruijn
indices. Each variable is indexed by its type and a context in
which the variable is typed.
data _∋_ : Context→ Type→ Set where

Z : ∀ {𝛤 A}→ 𝛤 , A ∋ A
S_ : ∀ {𝛤 A B} → 𝛤 ∋ B → 𝛤 , A ∋ B
Then, 𝛤 ∋ A is the type of variables that have type A in the

context 𝛤 .
For example, the following variables with types ⊤ and ⊤
⇒⊤ are typable in the context ∅,⊤⇒⊤,⊤and also represent
proofs of this.
_ : ∅ , ⊤⇒ ⊤ , ⊤ ∋ ⊤
_ = Z

_ : ∅ , ⊤⇒ ⊤ , ⊤ ∋ ⊤⇒ ⊤
_ = S Z

As we can see in the examples, the proof that a variable
has a type in a context is a de Bruijn index.

4.2 Terms
Here we present the typing rules of the calculus. Each con-
structor of this data type, which encodes a typing rule since
we use an intrinsically typed representation of terms, rep-
resents a term of the calculus, with the exception of the
constructor [_]≡_.
Taking into account this exception, 𝛤 ⊢A is the type of

terms that have type A in the context 𝛤 , and each term of
this type is a proof of that, so terms are actually typing
derivations. The constructor [_]≡_ that does not represent
a term is used in the typing derivation of some terms.
data _⊢_ : Context→ Type→ Set where

‘_ : ∀ {𝛤 A} – (ax)

→ 𝛤 ∋ A
→ 𝛤 ⊢ A

★ : ∀ {𝛤}→ 𝛤 ⊢ ⊤ – (⊤𝑖)
[_]≡_ : ∀ {𝛤 A B} – (≡)
→ A ≡ B

→ 𝛤 ⊢ A
→ 𝛤 ⊢ B

o_ : ∀ {𝛤 A B} – (⇒𝑖)

→ 𝛤 , A ⊢ B
→ 𝛤 ⊢ A⇒ B

_·_ : ∀ {𝛤 A B} – (⇒𝑒)

→ 𝛤 ⊢ A⇒ B

→ 𝛤 ⊢ A
→ 𝛤 ⊢ B

〈_,_〉 : ∀ {𝛤 A B} – (×𝑖)

→ 𝛤 ⊢ A
→ 𝛤 ⊢ B
→ 𝛤 ⊢ A × B

𝜋 : ∀ {𝛤 A B} – (×𝑒)

→ (C : Type)

→ {proof : (C � A) ⊎ (C � B)}

→ 𝛤 ⊢ A × B

→ 𝛤 ⊢ C
We note that the constructor 𝜋 takes as an argument the

type C, which is the type that this function uses to carry out
the projection, and an implicit argument that serves as proof
that C is either equal to type A or type B. In the type of this
argument we use propositional equality denoted as � in this
work.

The following are some examples of terms. Each of them
is a proof that it types in the given context.

T1 : ∅ , ⊤ ⊢ ⊤⇒ ⊤
T1 = o ‘ Z

T2 : ∅ , ⊤ ⊢ (⊤⇒ ⊤) × ⊤
T2 = 〈 T1 , ★ 〉

T3 : ∅ , ⊤ ⊢ ⊤
T3 = (𝜋 fun {inj1 refl} T2) · ‘ Z

4.3 Substitutions and reduction
Using de Bruijn representation, substitutions are simply map-
pings of natural numbers to terms, so they can be interpreted
as infinite sequences of terms. These sequences can be con-
structed using some operators [1]:
• 𝑖𝑑 : the identity substitution: {𝑖 ↦→ 𝑖}
• ↑: the shift operator: {𝑖 ↦→ 𝑖 + 1}
• 𝑎 • 𝑠: the concatenation of the term 𝑎 with the substi-
tution 𝑠: {0 ↦→ 𝑎, 𝑖 + 1 ↦→ 𝑠 (𝑖)}
• ◦: the composition of substitutions

With these operations we can give an inductive definition
of the application of a substitution 𝑠 on a term 𝑡 , denoted as
⟨⟨𝑠⟩⟩𝑡 . Then, 𝛽-reduction can be defined as follows:

(𝜆𝑡)𝑟 ↩→𝛽 ⟨⟨𝑟 • 𝑖𝑑⟩⟩𝑡
To implement substitutions, we use an approach given by

Altenkirch and Reus [3] that was formalized by McBride



Formalizating System I with type Top in Agda IFL ’25, October 1–3, 2025, Montevideo, Uruguay

in [10]. Substitutions are implemented using renamings,
which are functions from variables in one context to variables
in another that preserve typing. The function that applies
a renaming of variables in a term is named rename in this
implementation:

rename : ∀ {𝛤 𝛥} ( ∀{ A}→ 𝛤 ∋ A→𝛥 ∋ A)→
(∀ {A}→ 𝛤 ⊢ A → 𝛥 ⊢ A)

While substitutions and simple substitutions are implemented
with the following functions:
⟨⟨_⟩⟩ : ∀ {𝛤 𝛥}→ ( ∀{ A}→ 𝛤 ∋ A→𝛥 ⊢ A)→
(∀ {C}→ 𝛤 ⊢ C→ 𝛥 ⊢ C)
_[_] : ∀ {𝛤 A B}→ 𝛤 , B ⊢ A→ 𝛤 ⊢ B→ 𝛤 ⊢ A.

Since the implementation of these functions is fairly stan-
dard, we omit their definitions here.

Then, we present the reduction relation which is defined
as the following data type:

data _↩→_ : (𝛤 ⊢ A)→ (𝛤 ⊢ A)→ Set where

𝛽-o : ∀ {t : 𝛤 , A ⊢ B} {s : 𝛤 ⊢ A}
→ (o t) · s ↩→ t [ s ]

𝛽-𝜋1 : ∀ {r : 𝛤 ⊢ A} {s : 𝛤 ⊢ B}
→ 𝜋 A {inj1 refl} 〈 r , s 〉 ↩→ r

𝛽-𝜋2 : ∀ {r : 𝛤 ⊢ A} {s : 𝛤 ⊢ B}
→ 𝜋 B {inj2 refl} 〈 r , s 〉 ↩→ s

In this definition we omit the constructors 𝜉-·1, 𝜉-·2,
𝜉-〈,〉1, 𝜉-〈,〉2, 𝜉-𝜋 , 𝜉-≡ and 𝜁 that represent the congru-
ence rules. The constructor 𝛽-𝜆 corresponds to beta reduc-
tion, and the constructors 𝛽-𝜋1 and 𝛽-𝜋2 correspond to the
applications of the projections.
Since the relation _↩→_ is indexed by two terms of the

same type, it is not necessary to prove that it preserves types.
This is one of the advantages of using intrinsically typed
terms.

4.4 Type isomorphisms
The type isomorphisms included in this formalization cor-
respond to the axiomatic set given in Section 2, the isomor-
phism that represents the symmetry of ≡, and some isomor-
phisms that represent congruence rules.

data _≡_ : Type→ Type→ Set where

comm : ∀ {A B}→ A × B ≡ B × A

asso : ∀ {A B C}→ A × (B × C) ≡ (A × B) × C

dist : ∀ {A B C}→ (A⇒ B) × (A⇒ C) ≡ A⇒ B × C

curry : ∀ {A B C}→ A⇒ B⇒ C ≡ (A × B)⇒ C

id-× : ∀ {A}→ A × ⊤ ≡ A

id-⇒ : ∀ {A}→⊤⇒ A ≡ A

abs : ∀ {A}→ A⇒⊤ ≡ ⊤
sym : ∀ {A B}→ A ≡ B→ B ≡ A

cong⇒1 : ∀ {A B C}→ A ≡ B→ A⇒ C ≡ B⇒ C

cong⇒2 : ∀ {A B C}→ A ≡ B→ C⇒ A ≡ C⇒ B

cong×1 : ∀ {A B C}→ A ≡ B→ A × C ≡ B × C

cong×2 : ∀ {A B C}→ A ≡ B→ C × A ≡ C × B

We do not include in the formalization the isomorphism
corresponding to the transitivity of ≡, since it can be ob-
tained using the constructor [_]≡_ that corresponds to the
typing rule (≡), and the reflexivity of ≡, since it does not
add expressiveness to the formalization.

4.5 Equivalence of terms
The formalization of the equivalence relation between terms,
corresponding to isomorphic types (⇄) is presented below:

data _⇄_ : (𝛤 ⊢ A)→ (𝛤 ⊢ A)→ Set where

comm : ∀ {r : 𝛤 ⊢ A}→ {s : 𝛤 ⊢ B}
→ [ comm ]≡ 〈 r , s 〉⇄ 〈 s , r 〉

asso : ∀ {r : 𝛤 ⊢ A}→ {s : 𝛤 ⊢ B}→ {t : 𝛤 ⊢ C}
→ [ asso ]≡ 〈 r , 〈 s , t 〉 〉⇄ 〈 〈 r , s 〉 , t 〉

asso-split : ∀ {r : 𝛤 ⊢ A}→ {s : 𝛤 ⊢ B × C}

→ [ asso ]≡ 〈 r , s 〉⇄
〈 〈 r , 𝜋 B {inj1 refl} s 〉 , 𝜋 C {inj2 refl} s 〉

dist-o : ∀ {r : 𝛤 , C ⊢ A}→ {s : 𝛤 , C ⊢ B}
→ [ dist ]≡ 〈 o r , o s 〉⇄ o 〈 r , s 〉

dist-o𝜂𝑙 𝑟 : ∀ {r : 𝛤 ⊢ C⇒ A}→ {s : 𝛤 ⊢ C⇒ B}

→ [ dist ]≡ 〈 r , s 〉⇄
o 〈 rename S_ r · ‘ Z , rename S_ s · ‘ Z 〉

dist-o𝜂𝑙 : ∀ {r : 𝛤 ⊢ C⇒ A}→ {s : 𝛤 , C ⊢ B}
→ [ dist ]≡ 〈 r , o s 〉⇄ o 〈 rename S_ r · ‘ Z , s 〉

dist-o𝜂𝑟 : ∀ {r : 𝛤 , C ⊢ A}→ {s : 𝛤 ⊢ C⇒ B}

→ [ dist ]≡ 〈 o r , s 〉⇄ o 〈 r , rename S_ s · ‘ Z 〉

curry : ∀ {r : 𝛤 , A , B ⊢ C}
→ [ curry ]≡ (o o r)⇄ o subst 𝜎-curry r

curry-𝜂 : ∀ {r : 𝛤 , A ⊢ B⇒ C}

→ [ curry ]≡ (o r)⇄
o subst 𝜎-curry (rename S_ r · ‘ Z)

uncurry : ∀ {r : 𝛤 , A × B ⊢ C}
→ [ sym curry ]≡ (o r)⇄ o o subst 𝜎-uncurry r

id-× : ∀ {r : 𝛤 ⊢ A}→ {t : 𝛤 ⊢ ⊤}
→ [ id-× ]≡ 〈 r , t 〉⇄ r

id-⇒ : ∀ {r : 𝛤 ⊢ ⊤ ⇒ A}→ [ id-⇒ ]≡ r⇄ r · ★

abs : ∀ {r : 𝛤 ⊢ A⇒⊤}→ [ abs ]≡ r⇄ ★



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Séttimo, Sottile, and Manzino.

where the functions 𝜎-curry and 𝜎-uncurry are substitu-
tions of types Subst (𝛤 , A , B) (𝛤 , A × B) and
Subst (𝛤 , A × B) (𝛤 , A , B) respectively.
In this definition we omit for simplicity the constructors

that corresponds to congruence rules, given in Table 2. We
also omit some constructors with the prefix sym, all of which
could be obtained from the base equivalences combined with
the sym constructor. However, they were included in the
formalization in order to demonstrate strong normalization.
We note that the equivalence relation between terms ⇄

and the reduction relation ↩→ can only relate terms of the
same type. The type preservation of these relations is a con-
sequence of the intrinsic representation of types.
Then, we can define the reduction relation ⇝ in Agda,

that is the relation ↩→ modulo ⇄ , as follows:
_⇝_ : ∀ {𝛤 A}→ (t t’ : 𝛤 ⊢ A)→ Set

t⇝ t’ = t ↩→ t’ ⊎ t⇄ t’

Furthermore, based on the above, we can assert that this
relationship satisfies type preservation.

4.6 Progress
In this section we prove progress for the calculus, which
establishes that any typed and closed term is a value or
reduces to some other term.

The first step is to define the notion of value, which in this
calculus are: the term ⊤, abstractions, and pairs of values.
data Value : ∀ {𝛤 A}→ 𝛤 ⊢ A→ Set where

V-o : ∀ {𝛤 A B} {t : 𝛤 , A ⊢ → Value (o t)
V-★ : ∀ {𝛤}→ Value (★ {𝛤})

V-〈_,_〉 : ∀ {𝛤 A B} {r : 𝛤 ⊢ A} {s : 𝛤 ⊢ B}
→ Value r → Value s → Value 〈 r , s 〉

In the definition of progress we present below, we use
the call-by-value reduction order as a reduction strategy.
When reducing under abstractions, it is possible to find free
variables. So the final states of reduction to be considered are
normal forms instead of values. Then we prove a version of
progress for open terms. To complete the proof of progress
for closed terms, we prove that every closed term in normal
form is a value.
We start by defining the syntax that characterizes terms

in normal form in this language:

norm := ⟨norm,norm⟩ | 𝜆𝑥.norm | ★ | neu
neu := 𝑣𝑎𝑟 | neu · norm | 𝜋 neu | [ 𝑖𝑠𝑜 ]≡ neu

where 𝑣𝑎𝑟 are variables and the syntactic category neu char-
acterizes neutral forms, which are terms that cannot be re-
duced and are not values. In the formalization, the symbols
⇓ are used for neutral forms and ⇑ for normal forms.
data ⇓ : ∀ {𝛤 A}→ 𝛤 ⊢ A→ Set

data ⇑ : ∀ {𝛤 A}→ 𝛤 ⊢ A→ Set

data ⇓ where
‘_ : ∀ {𝛤 A} (x : 𝛤 ∋ A)→ ⇓ (‘ x)
_·_ : ∀ {𝛤 A B} {r : 𝛤 ⊢ A⇒ B} {s : 𝛤 ⊢ A}
→ ⇓ r→ ⇑ s → ⇓ (r · s)

𝜋 : ∀ {𝛤 A B C p} {t : 𝛤 ⊢ A × B}

→ ⇓ t → ⇓ (𝜋 C {p} t)

[_]≡_ : ∀ {𝛤 A B} {t : 𝛤 ⊢ A}
→ (iso : A ≡ B) → ⇓ t → ⇓ ([ iso ]≡ t)

data ⇑ where
^_ : ∀ {𝛤 A} {t : 𝛤 ⊢ A} → ⇓ t → ⇑ t
N-o : ∀ {𝛤 A B} {t : 𝛤 , A ⊢ B} → ⇑ (o t)

N-〈_,_〉 : ∀ {𝛤 A B} {r : 𝛤 ⊢ A} {s : 𝛤 ⊢ B}
→ ⇑ r→ ⇑ s → ⇑ 〈 r , s 〉

N-★ : ∀ {𝛤} → ⇑ (★ {𝛤})

Now we define a relation that captures the cases in which
a term 𝑡 satisfies progress, namely: it can be transformed
into an equivalent one, it can take a reduction step, or it is
in normal form:
data Progress {𝛤 A} (t : 𝛤 ⊢ A) : Set where

step⇄ : ∀ {t’ : 𝛤 ⊢ A} → t⇄ t’ → Progress t

step↩→ : ∀ {t’ : 𝛤 ⊢ A} → t ↩→ t’ → Progress t

done :⇑ t → Progress t

We can now prove progress. The variable and unit cases
are very simple since both terms are in normal form:
progress : ∀ {𝛤 A}→ (t : 𝛤 ⊢ A)→ Progress t

progress (‘ x) = done (^ (‘ x))

progress ★ = done N-★

If the term is a lambda abstraction, thenwe call the progress
function under the binder; if this returns a reduction step,
the step is extended using 𝜁 (the congruence rule for abstrac-
tions). Otherwise, the abstraction is in normal form:
progress (o t) with progress t
... | step⇄ t⇄t’ = step⇄ (𝜁 t⇄t’)

... | step↩→ t↩→t’ = step↩→ (𝜁 t↩→t’)

... | done ⇑t = done N-o

For pairs the proof is similar. If the term is a projection
or an application, we recursively apply progress to each
subterm; if the result is a reduction or an equivalence case,
we use the congruence rule 𝜁 , and if it is the done case, then
we have a normal form or we can apply 𝛽-reduction.



Formalizating System I with type Top in Agda IFL ’25, October 1–3, 2025, Montevideo, Uruguay

The most interesting case for this work is when the term
is [ iso ]≡ t. In this case we recursively apply progress to
the subterm 𝑡 ; if the result is a reduction or an equivalence
case, we use the congruence rule 𝜉-≡, and if it is the done
case, we continue the proof by case analysis on each normal
form and all applicable isomorphisms that can be applied
in each case. We show here just a few cases; the remaining
cases are similar.

progress ([ iso ]≡ t) with progress t

... | step⇄ t⇄t’ = step⇄ (𝜉-≡ t⇄t’)

... | step↩→ t↩→t’ = step↩→ (𝜉-≡ t↩→t’)

progress ([ comm ]≡ _) | done N-〈 ⇑r , ⇑s 〉 =

step⇄ comm

progress ([ asso ]≡ _) | done N-〈 ⇑r , ⇑s 〉 =

step⇄ (asso-split)

progress ([ dist ]≡ _) | done N-〈 N-o , N-o 〉 =

step⇄ dist-o
progress ([ dist ]≡ _) | done N-〈 N-o , ⇑s 〉 =

step⇄ (dist-o𝜂𝑟)
progress ([ dist ]≡ _) | done N-〈 ⇑r , N-o 〉 =

step⇄ (dist-o𝜂𝑙)
progress ([ dist ]≡ _) | done N-〈 ⇑r , ⇑s 〉 =

step⇄ (dist-o𝜂𝑙 𝑟)

progress ([ curry ]≡ (o o _)) | done N-o =
step⇄ curry

progress ([ curry ]≡ _) | done N-o =
step⇄ (curry-𝜂)

progress ([ id-× ]≡ _) | done N-〈 ⇑r , ⇑s 〉 =

step⇄ id-×

progress ([ id-⇒ ]≡ _) | done ⇑t =

step⇄ id-⇒
progress ([ abs ]≡ _) | done ⇑t = step⇄ abs

progress ([ iso ]≡ _) | done (^ ⇓t) = done (^ [ iso ]≡ ⇓t)

The definition of progress shows how each term isomor-
phism corresponds to a case where it is necessary to elimi-
nate a rule (≡) in order to continue with the reduction.

Finally, we complete the proof of progress by proving that
any closed term in normal form is a value; we show just the
type of this function here:
closed⇑→Value : ∀ {A} {t : ∅ ⊢ A}→ ⇑ t → Value t

The cases where the term is the top value, an abstraction, or
a pair, the definition of this function is very simple; when
the term is a neutral form, we use the function ⊥-elim with
a proof that a closed term cannot be neutral. This last proof
can be constructed since a neutral term must contain a free

variable, because variables are the only constructor that is
not recursive in its definition.

5 Strong Normalization
In this section we prove the strong normalization of the
relation ⇝ , which states that every typed term cannot
reduce indefinitely, meaning that every reduction sequence
ends in a value.
The most commonly used technique for proving strong

normalization is that of reducibility, introduced by Tait [13]
andGirard [8, 9]. In this workwe follow Schäfer’s approach [11],
who introduces several changes to reducibility, achieving a
technique that is more suitable for formalization, which he
uses to prove strong normalization of System F in Coq. Our
formalization is based on the formalization given by András
Kovács1 in Agda for simply typed lambda calculus.
We begin by giving a constructive definition of strongly

normalizing terms, originally presented by Altenkirch.
The set of strongly normalizing terms with respect to a

reduction⇝ is inductively defined by the following rule:
∀𝑡 .𝑠 ⇝ 𝑡 =⇒ 𝑡 ∈ 𝑆𝑁

𝑠 ∈ 𝑆𝑁
This means that if for each term 𝑡 such that 𝑠 ⇝ 𝑡 , it

holds that 𝑡 is strongly normalizing, then 𝑠 is also strongly
normalizing.
In Agda, we can define the set SN using the following

inductive data type:
data SN {𝛤 A} (t : 𝛤 ⊢ A) : Set where
sn : (∀ {t’}→ t⇝ t’→ SN t’)→ SN t

Our goal is to define a function with this type:
strong-norm : ∀ {𝛤 A} (t : 𝛤 ⊢ A)→ SN t

We give a definition of this function that represents the
proof of normalization by generalizing the type SN with
the addition of a predicate about the term. In the proof, we
use this predicate to add information about the term when
constructing introductions, and then we use that information
in the cases of eliminations.
data SN* {𝛤 A} (P : 𝛤 ⊢ A→ Set) (t : 𝛤 ⊢ A) : Set where

sn* : P t→ (∀ {t’}→ t⇝ t’→ SN* P t’)→ SN* P t

It is easy to see that if a term satisfies SN*, then it also
satisfies SN.
To begin the proof, we need to provide some definitions.

First, we define the “interpretation of the term”, which will
be used for adding some extra hypotheses that allow us
to unblock the proof in the cases of eliminations. A pair
is interpreted as the product of the normalization of each
element of the pair, an abstraction (𝜆 t) is interpreted as the
normalization of the term 𝜌(t)[u], where u is any normalizing
term and 𝜌 is any rename function, and the other terms are
interpreted as the unit type of the module Data.Unit.
1https://github.com/AndrasKovacs/misc-stuff/blob/master/agda/STLCStrongNorm/StrongNorm2.agda



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Séttimo, Sottile, and Manzino.

[[_]] : ∀ {𝛤 A}→ 𝛤 ⊢ A→ Set

[[ (o t) ]] = ∀ {𝛥}{𝜌 : Rename _ 𝛥}{u} →
SN* [[_]] u→ SN* [[_]] (⟨⟨ u • (ids ◦ 𝜌) ⟩⟩ t)
[[ 〈 a , b 〉 ]] = SN* [[_]] a ⊗ SN* [[_]] b
[[ t ]] = Top

where ⊗ is the renaming of the operator × of the module
Data.Product, and Top the renaming of ⊤of Data.Unit. The
definition of interpretation of terms can be extended to sub-
stitutions by defining a predicate that states that a substitu-
tion 𝜎 is adequate in a context 𝛤 , written as 𝛤 ⊨ 𝜎 , when all
terms that result from the application of 𝜎 to any variable
are strongly normalizing.
_⊨_ : ∀{𝛥}→ (𝛤 : Context)→ (𝜎 : Subst 𝛤 𝛥)→ Set

𝛤 ⊨ 𝜎 = ∀{A} (v : 𝛤 ∋ A)→ SN* [[_]] (𝜎 {A} v)

In particular, the identity substitution ids is an adequate
substitution:
⊨ids : ∀{𝛤}→ 𝛤 ⊨ ids
⊨ids _ = SN*-rename S_ (𝜎 v)

The complexity of the normalization proof lies in the proof of
a fundamental theorem named adequacy, which states that
for any term t and adequate substitution𝜎 , SN* [[_]] (⟨⟨𝜎 ⟩⟩ t)
holds. The proof of this theorem is extensive and requires
proving some extra lemmas. In the next subsectionwe present
some of the most relevant cases of the proof; here we just
give the type of the theorem:
adequacy : ∀ {𝛤 𝛥 A} {𝜎 : Subst 𝛤 𝛥}→ (t : 𝛤 ⊢ A)→
𝛤 ⊨ 𝜎 → SN* [[_]] (⟨⟨ 𝜎 ⟩⟩ t)
Finally, the strong normalization property is proved by

instantiating adequacy with the identity substitution:
strong-norm : ∀ {𝛤 A} (t : 𝛤 ⊢ A)→ SN t

strong-norm t = transport SN sub-id (SN*-SN

(adequacy t ⊨ids))

where the lemma sub-id : ∀{𝛤 A} {t : 𝛤 ⊢ A}→ [ids :=
t] ()≡ t eliminates the application of the identity substitu-
tion to the term, and the function transport is a renaming of
subst, defined in themodule Relation.Binary.PropositionalEquality.

5.1 The adequacy function
We prove the adequacy theorem by induction on the term
t. In each case of the proof we use auxiliary lemmas. To
simplify the explanation, we present the proof by cases.

Case Variable
When the term t is a variable, we have to prove that the

substitution𝜎 applied to the variable satisfies SN* [[_]] . Since
we have as a hypothesis that 𝜎 is an adequate substitution,
it suffices to apply 𝜎 to the variable:
adequacy (‘ v) ⊨𝜎 = ⊨𝜎 v

Case Top

This is the simplest case, since there is no possible reduc-
tion step from ★:

adequacy ★ _ = sn* tt (𝜆 ())

Case Pair
When the term t is a pair, the following lemma is defined

to allow us to conclude SN* [[_]] t, if SN* [[_]] holds for the
subterms of the pair t.

lemma-〈,〉 : ∀ {𝛤 A B}→ {a : 𝛤 ⊢ A} {b : 𝛤 ⊢ B}→
SN* [[_]] a→ SN* [[_]] b→ SN* [[_]] (〈 a , b 〉)

The proof of this lemma is solved by case analysis on the
reduction step taken by SN* [[_]] t, which can be a left or
right congruence of the relations ↩→ and ⇄ ; in each case
we use the inductive hypotheses on the subterms.
Then, we complete the proof of adecuacy for this case as
follows:

adequacy 〈 a , b 〉 ⊨𝜎 =

lemma-〈,〉 (adequacy a ⊨𝜎) (adequacy b ⊨𝜎)

Case Application
A similar lemma is needed for the case in which t is an

application:

lemma-· : ∀ {𝛤 A B}→ {a : 𝛤 ⊢ A⇒ B} {b : 𝛤 ⊢ A}→
SN* [[_]] a→ SN* [[_]] b→ SN* [[_]] (a · b)

In this lemma we proceed similarly as in the previous lemma,
with the exception that now the step can also be a 𝛽-reduction.
This case is solved by applying the interpretation of the left
term of the application (which must be an abstraction) to the
inductive hypothesis of the right term.
The adequacy lemma for this case is solved as:

adequacy (a · b) ⊨𝜎 =

lemma-· (adequacy a ⊨𝜎) (adequacy b ⊨𝜎)

Case Projection
The case where t is a projection requires the following

lemma, which asserts that SN* [[_]] t holds if SN* [[_]] holds
for the term being projected:

lemma-𝜋 : ∀ {𝛤 A B C p}→ {a : 𝛤 ⊢ A × B} →
SN* [[_]] a→ SN* [[_]] (𝜋 C {p} a)

The proof of this lemma is similar to the proof of lemma-· in
the sense that when the step is a reduction (𝛽-𝜋1 or 𝛽-𝜋2),
the lemma is solved using the interpretation of the subterm,
which in this case is the interpretation of a pair 〈 a, b 〉 that
has the form SN* [[_]] a ⊗ SN* [[_]] b.
The adequacy lemma for this case is solved as:

adequacy (𝜋 _ x) ⊨𝜎 = lemma-𝜋 (adequacy x ⊨𝜎)

Case Abstraction



Formalizating System I with type Top in Agda IFL ’25, October 1–3, 2025, Montevideo, Uruguay

The casewhere t is an abstraction is more difficult than the
previous ones. As in these cases, we need to prove SN* [[_]] (o
t) from SN* [[_]] t, given the interpretation of (o t):
lemma-o : ∀ {𝛤 A B}→ {t : 𝛤 , B ⊢ A}→
[[ o t ]] → SN* [[_]] t→ SN* [[_]] (o t)

This proof required several lemmas, for example it was nec-
essary to prove that for any terms u and v, and substitution
𝜎 :

1. if u ↩→ v then, ⟨⟨ 𝜎 ⟩⟩ u ↩→ ⟨⟨ 𝜎 ⟩⟩ v
2. if u ⇄ v then, ⟨⟨ 𝜎 ⟩⟩ u ⇄ ⟨⟨ 𝜎 ⟩⟩ v
3. if u is normalizing and 𝜎 is adequate, then u • 𝜎 is

adequate.
4. if u ↩→ v then SN* [[_]] u ↩→ SN* [[_]] v
5. if u ⇄ v then SN* [[_]] u ⇄ SN* [[_]] v

In addition, we need to prove that an adequate substitution
composed with a rename is also an adequate substitution:
⊨rename : ∀{𝛤 𝛥 𝛥1} {𝜎 : Subst 𝛤 𝛥}→
𝛤 ⊨ 𝜎 → (𝜌 : Rename 𝛥 𝛥1)→ 𝛤 ⊨ (⟨⟨ ids ◦ 𝜌 ⟩⟩ ◦ 𝜎)

and that an extension of an adequate substitution is also
adequate:
⊨exts : ∀{𝛤 𝛥 A} {𝜎 : Subst 𝛤 𝛥}→
𝛤 ⊨ 𝜎 → (𝛤 , A) ⊨ (exts 𝜎)

Now, it is possible to define the case of adequacy for abstrac-
tion as follows:
adequacy {𝜎 = 𝜎} (o t) ⊨𝜎 =

lemma-o
(𝜆 { {𝜌 = 𝜌}{u = u} SNu→
transport (SN* [[_]])
(subst-split {t = t})

(adequacy t (⊨ SNu • (⊨rename ⊨𝜎 𝜌)))})
(adequacy t (⊨exts ⊨𝜎))

The function subst-split is used to combine the substitu-
tions 𝜎 and u • (ids ◦ 𝜌) into a single substitution.

Case Iso
Finally, the case where t is the constructor of isomorphism

is the most difficult case, because we must resolve the cases
for each equivalence of terms. As in the other cases, we have
a principal lemma:
lemma-≡ : ∀ {𝛤 A B iso}→ {t : 𝛤 ⊢ A}→
SN* [[_]] t→ SN* {A = B} [[_]] ([ iso ]≡ t)

This function is defined in terms of this auxiliary lemma:
aux : ∀ {𝛤 A iso t’}→ {t : 𝛤 ⊢ A}→
SN* [[_]] t→ ([ iso ]≡ t)⇝ t’→ SN* [[_]] t’

which is defined by case analysis on the second argument
(the reduction step). The goal of this lemma is to derive
SN* [[_]] t’ from SN* [[_]] t, where t and t’ are the terms
related by the corresponding isomorphism. In this proof we

use the lemmas defined above for the different term con-
structors.
We will not present the proof of this theorem here due

to its length and complexity, we just mention some of the
critical points of the proof and the techniques used:
• The case inwhich the isomorphism is ⟨𝜆𝑥𝐴 .𝑟 , 𝜆𝑥𝐴 .𝑠⟩ ⇄
𝜆𝑥𝐴 .⟨𝑟, 𝑠⟩, presents the difficulty of instantiating the
interpretations of the left abstractions for constructing
the interpretation of the right abstraction. To resolve
this, we use a lemma that concludes SN* [[_]] t from
SN* [[_]] (o t). The idea behind the lemma is to re-
place the first variable of the term with index zero,
thus obtaining exactly the same term.
• In cases involving the curry isomorphism, multiple
substitutions must be combined into a single one that
can be obtained through the interpretation of the ab-
straction.

As a conclusion, we note that the interpretations of the
terms allow us to resolve the cases of elimination (projec-
tion and application), but, on the other hand, the cases of
introduction (product and abstraction) become more com-
plex, since it is in these cases that such interpretations are
constructed.

6 Evaluation
Once the strong normalization property has been proven,
the evaluation function can be defined in Agda since we have
proof that it terminates.
First, we define the relation _⇝∗_ as the transitive and

reflexive closure of _⇝_:

data _⇝*_ {𝛤 A} : (𝛤 ⊢ A)→ (𝛤 ⊢ A)→ Set where

_ : (t : 𝛤 ⊢ A) → t⇝* t

_⇄〈_〉_ : (t : 𝛤 ⊢ A) {r t’ : 𝛤 ⊢ A} →
t⇄ r→ r⇝* t’ → t⇝* t’

_↩→〈_〉_ : (t : 𝛤 ⊢ A) {r t’ : 𝛤 ⊢ A} →
t ↩→ r → r⇝* t’ → t⇝* t’

Given a closed typed term t, the return type of the eval-
uation function will be the reduction sequence from t to a
value t’, defined as the following data type:

data Steps {A} : ∅ ⊢ A→ Set where

steps : {t t’ : ∅ ⊢ A} →
t⇝* t’ → Value t’→ Steps t

Then, the evaluation function is defined in terms of this
function:

eval´ : ∀ {A}→ (t : ∅ ⊢ A)→ SN t→ Steps t

eval´ t _ with progress t

eval´ t _ | done ⇑t = steps (t ) (closed⇑→Value ⇑t)

eval´ t (sn f)

| step⇄ {r} t⇄r with eval´ r (f (inj2 t⇄r))



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Séttimo, Sottile, and Manzino.

...| steps r⇝t’ fin=steps (t⇄〈 t⇄r 〉 r⇝t’) fin

eval´ t (sn f)

| step↩→ {r} t↩→r with eval´ r (f (inj1 t↩→r))

...| steps r⇝t’ fin=steps (t ↩→〈 t↩→r 〉 r⇝t’) fin

This function apply progress to the typed term. There are
three possibilities:
• If the term t is in normal form, the reduction sequence
is trivial: t⇝* t and t is also a value.
• If t ⇄ r, we recursively call eval with the proof that
r is strong normalizing. The result is the reduction
sequence obtained by adding the step t ⇄ r to the
result of the recursion.
• If t ↩→ r, we proceed similarly.

We note that the argument that provide the evidence that t
is strong normalizing is necessary to pass Agda’s termination
checker. In each recursive step, a constructor sn is removed
from this argument, making it structurally smaller.
Finally, we define eval using the strong normalization

theorem:

eval : ∀ {A}→ (t : ∅ ⊢ A)→ Steps t

eval t = eval´ t (strong-norm t)

7 Conclusions
In this work, we formalized System I with the addition of
the type Top in Agda, proving the strong normalization and
progress theorems.
The strong normalization theorem is important for two

main reasons. From a formalization perspective, the con-
structive proof allows us to define a total evaluation function
for the calculus, by induction on the strong normalization
evidence. From the Curry–Howard perspective, considering
the language as a logic, it ensures its consistency.

The formalization given in this work has some interesting
features. One of them is the representation of intrinsically
typed terms, where each term of the calculus is a direct im-
plementation of a typing rule. As a result of this encoding,
the implementation of functions over these typed terms pre-
serves types, and the application of term isomorphisms is
syntax directed. As a consequence, the relation ⇄ elimi-
nates the type isomorphisms of a term, in the same way
that the relation ↩→ eliminates applications and projections.
This point is essential for making reduction sequences finite,
since it prevents some term isomorphisms, such as ⟨𝑟, 𝑠⟩ ⇄
⟨𝑠, 𝑟 ⟩, from being applied an indefinite number of times.
Another interesting feature is that the proof given for

strong normalization follows Schäfer’s technique, which,
while framed within Tait and Girard’s reducibility, presents
several changes aimed at a smoother formalization process.
Within that approach, we chose Kovács’ variant, more appro-
priate for the constructive setting of Agda. It is important to

note that this is the first version we know of for a formaliza-
tion of the normalization proof of a lambda calculus modulo
isomorphisms.
In this kind of calculus, the number of reduction cases

that must be considered in the normalization proof is very
large due to the equivalence relation on terms, so working
in a rigorous setting such as that provided by Agda was very
helpful.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. 1991. Explicit sub-

stitutions. Journal of Functional Programming 1, 4 (1991), 375–416.
https://doi.org/10.1017/S0956796800000186

[2] Beniamino Accattoli and Alejandro Díaz-Caro. 2020. Functional Pearl:
The Distributive 𝜆-Calculus. In Functional and Logic Programming -
15th International Symposium, FLOPS 2020, Akita, Japan, September
14-16, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12073),
Keisuke Nakano and Konstantinos Sagonas (Eds.). Springer, 33–49.
https://doi.org/10.1007/978-3-030-59025-3_3

[3] T. Altenkirch and B. Reus. 1999. Monadic Presentations of Lambda
Terms Using Generalized Inductive Types. In Proceedings of the 13th
International Workshop and 8th Annual Conference of the EACSL on
Computer Science Logic (CSL ’99). Springer-Verlag, Berlin, Heidelberg,
453–468.

[4] Roberto Di Cosmo. 1995. Isomorphisms of types: from 𝜆-calculus to
information retrieval and language design. Birkhauser, Switzerland.

[5] Alejandro Díaz-Caro and Gilles Dowek. 2019. Proof Normalization
in a Logic Identifying Isomorphic Propositions. LIPIcs (FSCD’19) 131
(2019), 14:1–14:23.

[6] Alejandro Díaz-Caro and Gilles Dowek. 2023. Extensional proofs in
a propositional logic modulo isomorphisms. Theor. Comput. Sci. 977
(2023), 114172. https://doi.org/10.1016/J.TCS.2023.114172

[7] Alejandro Díaz-Caro and Pablo E. Martínez López. 2015. Isomorphisms
considered as equalities: Projecting functions and enhancing partial
application through an implementation of 𝜆+. ACM IFL 2015, 9 (2015),
1–11.

[8] Jean-Yves Girard. 1971. Une Extension De ĽInterpretation De Gödel a
ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans
ĽAnalyse Et La Theorie Des Types. In Proceedings of the Second
Scandinavian Logic Symposium, J.E. Fenstad (Ed.). Studies in Logic
and the Foundations of Mathematics, Vol. 63. Elsevier, 63–92. https:
//doi.org/10.1016/S0049-237X(08)70843-7

[9] Jean-Yves Girard. 1972. Interpretation fonctionelle et elimination
des coupures dans l’aritmetique d’ordre superieur. https://api.
semanticscholar.org/CorpusID:117631778

[10] Conor McBride. 2005. Type-Preserving Renaming and Substitution.
(2005).

[11] Steven Schäfer. 2019. Engineering formal systems in constructive
type theory. Ph. D. Dissertation. Saarland University, Saarbrücken,
Germany. https://publikationen.sulb.uni-saarland.de/handle/20.500.
11880/28298

[12] Cristian Sottile, Alejandro Díaz-Caro, and Pablo E. Martínez López.
2020. Polymorphic System I. In IFL 2020: 32nd Symposium on Imple-
mentation and Application of Functional Languages, Virtual Event /
Canterbury, UK, September 2-4, 2020, Olaf Chitil (Ed.). ACM, 127–137.
https://doi.org/10.1145/3462172.3462198

[13] William W. Tait. 1967. Intensional Interpretations of Functionals of
Finite Type I. J. Symb. Log. 32, 2 (1967), 198–212. https://doi.org/10.
2307/2271658

[14] Philip Wadler, Wen Kokke, and Jeremy G. Siek. 2022. Programming
Language Foundations in Agda. https://plfa.inf.ed.ac.uk/22.08/



Reducibility candidates modulo isomorphisms
Cristian Sottile∗

Dpto. de Ciencia y Tecnología.
Universidad Nacional de Quilmes.
Bernal, Buenos Aires, Argentina.

Instituto de Investigación en Ciencias de la Computación
(ICC). CONICET / Universidad de Buenos Aires.

Buenos Aires, Argentina.
csottile@dc.uba.ar

Alejandro Díaz-Caro∗
Université de Lorraine, CNRS, Inria, LORIA

Nancy, France.
Dpto. de Ciencia y Tecnología.

Universidad Nacional de Quilmes.
Bernal, Buenos Aires, Argentina.
alejandro.diaz-caro@inria.fr

Abstract
In this work in progress, we adapt the technique of reducibil-
ity candidates to a polymorphic system where types and
terms are equated by isomorphisms, i.e., if a term has type 𝐴
and 𝐴 is isomorphic to 𝐵, then the term also has type 𝐵. We
follow Parigot’s reducibility style, since neutrality of terms is
not preserved by isomorphism.We define a way to relate sets
in the family of candidates, following the type equivalence,
so that a term not only satisfies the conditions syntactically
posed by its type, but also those that the isomorphic types
impose. We characterize the equivalence classes of all terms
and analyze the new set of possible one–step reducts.

CCS Concepts: • Theory of computation→ Lambda cal-
culus; Type theory; Proof theory.

Keywords: Lambda calculus, Polymorphic type system, Type
isomorphisms
ACM Reference Format:
Cristian Sottile and Alejandro Díaz-Caro. 2025. Reducibility can-
didates modulo isomorphisms. In IFL 2025: Proceedings of the 37th
Symposium on Implementation and Application of Functional Lan-
guages (IFL ’25), October 1–3, 2025, Montevideo, Uruguay. ACM, New
York, NY, USA, 9 pages.

1 Introduction
Two types 𝐴 and 𝐵 are considered isomorphic (≡) if there
exist functions 𝑓 and 𝑔 of types 𝐴 ⇒ 𝐵 and 𝐵 ⇒ 𝐴, such
that composing 𝑔 with 𝑓 and 𝑓 with 𝑔 is equivalent (from
a meta-theoretical perspective, i.e. not necessarily 𝑓 and 𝑔
must be writable in the calculus) to the identity in𝐴 and 𝐵. Di
∗Funded by the European Union through the MSCA SE project QCOMICAL
(Grant Agreement ID: 101182520).

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only. Request permissions from owner/au-
thor(s).
IFL ’25, Montevideo, Uruguay
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

Cosmo et al. [2] characterized isomorphic types in different
systems, finding axiomatic sets of isomorphisms that serve as
the building blocks for all the existing ones. Typed 𝜆–calculi
modulo isomorphisms are built upon these characterizations,
which covered several calculi among which we can find sim-
ply typed 𝜆–calculus with pairs and System F. Díaz–Caro
and Dowek first defined System I [3], which accounts for the
simply typed 𝜆–calculus (with pairs) modulo isomorphisms.
Follow–up work implemented it in Haskell [5], adding num-
bers and recursion; introduced expansion rules [4], such
as 𝜂, obtaining new properties; restricted isomorphisms to
only distributivity in both typed and untyped 𝜆–calculus [1],
proving progress for the latter; and added polymorphism,
including the usual constructions plus the isomorphisms
related to the ∀ type constructor.
In the setting of typed 𝜆–calculi modulo isomorphisms,

where equivalence relations at the level of both types and
terms are introduced, the strong normalization property car-
ries several challenges. Mainly, these are: extend the defi-
nition of reducibility/interpretation to reflect the newly al-
lowed term combinations, replicate the equivalence relation
on types in the candidates, and properly characterize the
possible one–step reducts of all terms. An adaptation of
Tait [11] and Girard’s [6, 7] reducibility technique, following
Parigot’s presentation [9], was introduced by Díaz–Caro and
Dowek [3] to prove it for the simply typed version. Just like
the original technique, the adaptation must undergo many
changes when shifting to System F. In this work we pro-
pose a technique that deals with polymorphism following
the same direction, while relying more heavily on Parigot’s
inductive definition of candidates, which is the place where
we replicate the isomorphisms equivalence.

2 Classic reducibility
Reducibility sets were introduced to determine which re-
strictions each set of types should satisfy in order to comply
with termination. To put it shortly, an induction on terms is
not enough to prove SN: let 𝑡𝑠 with 𝑡 and 𝑠 both SN; since
𝑡𝑠 might itself form a redex, we need more information to
conclude SN for it. Reducibility sets are the result of looking
for something that could provide us with that information.
Concretely, it proposes asking not only that terms are SN,



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Díaz-Caro and Sottile.

but also to follow their type constructors asking to remain
SN while these are eliminated. This property must hold until
reaching atomic types, so we can define the interpretation
of a type as simply SN for atomic types, and as remaining
reducible when applied with reducible terms.

J𝜏K = SN𝜏
J𝐴→ 𝐵K = {𝑡 : 𝐴→ 𝐵 | ∀𝑠 ∈ J𝐴K.𝑡𝑠 ∈ J𝐵K}

Resuming the 𝑡𝑠 example, inductive hypothesis now tells us
that 𝑡 and 𝑠 are both reducible, which means we can apply
them and stay reducible, so the redex formed in 𝑡𝑠 is not a
problem anymore. Essentially, asking for terms of types to
be reducible is enough to guarantee termination.
Previous explanation works for simply typed 𝜆–calculus,

since atomic types cannot be eliminated in any way, so they
can be safely interpreted as SN. In the case of System F,
atomic types are type variables; these cannot be eliminated
either, but they can be replaced with other types. We could
then define reducibility for variables simply by replacing the
variable with its type argument, but the inductive definition
would fail if we substitute the variable with a larger term
than the onewe started with. Let us show the naive definition
and then an example.

J𝑋 K = SN𝑋

J𝐴→ 𝐵K = {𝑡 : 𝐴 | ∀𝑠 ∈ J𝐴K.𝑡𝑠 ∈ J𝐵K}
J∀𝑋 .𝐴K = {𝑡 : ∀𝑋 .𝐴 | ∀𝐵 ∈ 𝐾.𝑡𝐵 ∈ J𝐴[𝐵/𝑋 ]K}

Then consider J∀𝑋 .𝑋 → 𝑋 K = {𝑡 : ∀𝑋 .𝑋 → 𝑋 | ∀𝐵 ∈
𝐾.𝑡𝐵 ∈ J𝐵 → 𝐵K}. If we take 𝐵 = ∀𝑋 .𝑋 → 𝑋 , we get
J(∀𝑋 .𝑋 → 𝑋 ) → (∀𝑋 .𝑋 → 𝑋 )K = {𝑡 : (∀𝑋 .𝑋 → 𝑋 ) →
(∀𝑋 .𝑋 → 𝑋 ) | ∀𝑠 ∈ J∀𝑋 .𝑋 → 𝑋 K.𝑡𝑠 ∈ J∀𝑋 .𝑋 → 𝑋 K}.
The dynamism of types prevents us from simultaneously
following types syntax and term’s type application, since
the latter changes the former. Girard then introduced two
changes to the definition of reducibility. Although they are
meant to be one change, since they do not work separately,
we will introduce them separately for clarity.

1. Candidates: Reducibility sets are clearly defined for
simply typed 𝜆–calculus: we just follow type structure
and collect restrictions. In the case of System F, since
we cannot define the notion of reducibility together
with that of interpretation, we must take a distinct
approach. Recall that, intuitively, reducibility sets are
built by the restrictions that the terms of a type must
satisfy to ensure termination. The reducibility set of
a given type cannot be provided until knowing the
reducibility sets corresponding to its free variables. In-
stead of expecting reducibility sets to match free vari-
able restrictions, we will accept reducibility candidates,
which is any set satisfying some specific conditions,
and we will build the exact reducibility set throughout
the Adequacy proof. One of the necessary restrictions
of any reducibility set is to be a subset of SN, so that

will be the starting candidate. At any given point of
the proof, the restrictions posed by the “growing” can-
didate will be enough to proceed.

2. Parametricity: To keep types structure from growing
along with the definition of reducibility, we add an-
other parameter 𝜌 consisting of a map from type vari-
ables to reducibility candidates. Then, instead of ask-
ing for 𝑡𝐵 to be in J𝐴[𝐵/𝑋 ]K, we ask for it to be in
J𝐴K{𝑋 ↦→𝐹 } , where 𝐹 stands for any valid candidate of
𝐵.

J𝑋 K𝜌 = 𝜌 (𝑋 )
J𝐴→ 𝐵K𝜌 = {𝑡 : 𝐴 | ∀𝑠 ∈ J𝐴K𝜌 .𝑡𝑠 ∈ J𝐵K𝜌 }
J∀𝑋 .𝐴K𝜌 = {𝑡 : ∀𝑋 .𝐴 | ∀𝐵 ∈ 𝐾.𝑡𝐵 ∈ J𝐴K𝜌 · {𝑋 ↦→𝐹 }}

3 Reducibility candidates à la Parigot
Parigot introduced in 1997 [9] an alternative reducibility can-
didates technique, in order to prove SN in the 𝜆𝜇-calculus,
which is a calculus for classical logic. The main difference
with Girard’s is that reducibility candidates are presented
as an inductive membership relation, instead of being any
set satisfying some properties. This allows us to reason in-
ductively over candidates, since we have a derivation tree
as a proof for all candidates that belong to the family, so we
have structure to work with when dealing with one. Given
a candidate, we can follow its structure to determine which
are the possible ways to apply its terms, obtaining the set
of eliminators that a term must withstand (i.e. be SN1 when
applied with) to be a part of the candidate.

In this section we provide a presentation of the pure tech-
nique, i.e. restricting it to the framework of System F by
ignoring the classical logic constructions of 𝜆𝜇.

Let T𝐴 be the set of typed terms of type 𝐴, T∗ the set of all
typed terms, 𝐾 the set of all types, SN𝐴 the set of strongly
normalisable typed terms of type 𝐴, and SN𝐴 the set of all
strongly normalisable typed terms.
We define the sets that will consist of the building blocks

of reducibility candidates. The candidate constructors are
defined according to the ways the system allows eliminations
for each type. In System F, this means that, for instance,
the constructor for the arrow type can be eliminated via
application over an argument.

Definition 3.1 (Constructors of potential candidates).
𝐹→̃𝐺 = {𝑡 ∈ T𝐴→𝐵 | ∀𝑢 ∈ 𝐹 . 𝑡𝑠 ∈ 𝐺}

with 𝐹 ⊆ T𝐴 and 𝐺 ⊆ T𝐵

∀̃𝐵.𝑈𝐵 = {𝑡 ∈ T∀𝑋 .𝐴 | ∀𝐵 ∈ 𝐾. 𝑡𝐵 ∈ 𝑈𝐵}
with (𝑈𝐵)𝐵∈𝐾 family s.t.
and 𝑈𝐵 ⊆ T𝐴[𝐵/𝑋 ] for all 𝐵 ∈ 𝐾

𝑆⇒̃𝐴𝐺 = {𝑡 ∈ T𝐴 | ∀®𝑢 ∈ 𝑆. 𝑡 ®𝑢 ∈ 𝐺}
with 𝑆 ⊆ (T∗ ∪ 𝐾)<𝜔
and 𝐺 ⊆ T

1Actually, terms must remain reducible through elimination, not only SN.
This is explained later.



Reducibility candidates modulo isomorphisms IFL ’25, October 1–3, 2025, Montevideo, Uruguay

Definition 3.2 (Family (R𝐴)𝐴∈𝐾 of sets of reducibility can-
didates of type 𝐴).

SN𝐴 ∈ R𝐴

𝑈 ∈ R𝐴 𝑉 ∈ R𝐵

𝑈 →̃𝑉 ∈ R𝐴→𝐵

𝑋 ⊆ R𝐴⋂
𝑋 ∈ R𝐴

𝑈𝐵 ∈ R𝐴[𝐵/𝑋 ] (for all 𝐵 ∈ 𝐾)
∀̃𝐵.𝑈𝐵 ∈ R∀𝑋 .𝐴

Lemma 3.3 (Candidates termination and inhabitation). If
𝐹 ∈ R𝐴, then 𝐹 ⊆ SN𝐴 and 𝑥𝐴 ∈ 𝐹 .
Proof. We prove a slightly more general lemma: if 𝐹 ∈ R𝐴,
then 𝐹 ⊆ SN𝐴 and 𝑥𝐶 ®𝑢 ∈ SN𝐴 implies 𝑥𝐶 ®𝑢 ∈ 𝐹 . By taking
𝐶 = 𝐴 and ®𝑢 = 𝜀 we get 𝑥𝐴 ∈ 𝐹 . We proceed by induction on
𝐹 ∈ R𝐴.

1. SN𝐴: trivially SN𝐴 ⊆ SN𝐴 and 𝑥𝐶 ®𝑢 ∈ SN𝐴 implies
𝑥𝐶 ®𝑢 ∈ SN𝐴.

2.
𝑈 ∈ R𝐴 𝑉 ∈ R𝐵

𝑈 →̃𝑉 ∈ R𝐴→𝐵 : we recall that 𝑈 →̃𝑉 is the set of
terms 𝑡 that, when applied to a 𝑈 , belong to 𝑉 . By
IH, 𝑉 ⊆ SN𝐵 and 𝑥𝐴 ∈ 𝑈 . Since 𝑡𝑥𝐴 ∈ 𝑉 for any
𝑡 ∈ 𝑈 →̃𝑉 , we have 𝑡𝑥𝐴 ∈ SN𝐵 . A loop in 𝑡 would
also produce a loop in 𝑡𝑥𝐴, therefore 𝑡 ∈ SN𝐴→𝐵 . Let
𝑥𝐶 ®𝑢 ∈ SN𝐴→𝐵 , then 𝑥𝐶 ®𝑢𝑠 has type 𝐵 for all 𝑠 ∈ 𝑈 ,
since, by IH, 𝑈 ⊆ SN𝐴. Furthermore, since redexes
in 𝑥𝐶 ®𝑢 and 𝑠 cannot interact and both terms are SN∗,
we can conclude 𝑥𝐶 ®𝑢𝑠 ∈ SN𝐵 . We have then, by IH,
that 𝑥𝐶 ®𝑢𝑠 ∈ 𝑉 ; this satisfies the definition of →̃, so we
conclude 𝑥𝐶 ®𝑢 ∈ 𝑈 →̃𝑉 .

3.
{𝐹𝑖 | 𝑖 ∈ 𝐼 } ⊆ R𝐴⋂{𝐹𝑖 | 𝑖 ∈ 𝐼 } ∈ R𝐴: we must check that given any sub-
set of candidates in R𝐴, their intersection is also ∈
SN𝐴; this follows from IH 𝐹𝑖 ∈ SN𝐴. Same goes for
𝑥𝐶 ®𝑢 ∈ SN𝐴, since by IH 𝑥𝐶 ®𝑢 ∈ SN𝐴 implies 𝑥𝐶 ®𝑢 ∈ 𝐹𝑖
for all 𝑖 ∈ 𝐼 .

4.
𝑈𝐵 ∈ R𝐴[𝐵/𝑋 ] (for all 𝐵 ∈ 𝐾)

∀̃𝐵.𝑈𝐵 ∈ R∀𝑋 .𝐴 : we recall that ∀̃𝐵.𝑈𝐵 is
the set of terms 𝑡 of type ∀𝑋 .𝐴 such that for all 𝐵, 𝑡𝐵 ∈
𝑈𝐵 ; i.e. type application puts them in the associated
member of the family𝑈 . To prove that any 𝑡 there is
SN∀𝑋 .𝐴, we observe that 𝑡𝐵 ∈ SN𝐴[𝐵/𝑋 ] by IH, and
conclude since redexes are the same in both terms.
The variable result is even more direct than that of→.
Let 𝑥𝐶 ®𝑢 ∈ ∀𝑋 .𝐴 ∈ SN∀𝑋 .𝐴; then for all 𝐵, we have
𝑥𝐶 ®𝑢𝐵 ∈ SN𝐴[𝐵/𝑋 ] , and, by IH, 𝑥𝐶 ®𝑢𝐵 ∈ 𝑈𝐵 . Hence,
since 𝐵 is any, we conclude 𝑥𝐶 ®𝑢 ∈ ∀̃𝐵.𝑈𝐵 .

□

As noted previously, the main distinction of Parigot’s tech-
nique is that candidates have structure we can work with.
Candidate constructors (Definition 3.1) pose specific restric-
tions over its terms, so each candidate of a same type have
different restrictions. We are interested in being able to prove
belonging of a term to a candidate without relying on neutral-
ity (since we do not have reliable neutral terms). So instead

of building the reducibility tree for neutral terms, we ask
for more information from the candidate. That information
is the set of all its possible eliminations, in a way such that
proving the term is SN∗applied with any of these is the
same as proving the term belongs to the candidate. This is,
we want to be able to characterize any candidate as a set of
eliminators. The following definitions go in that direction.
Definition 3.4 (Orthogonal of a candidate). We define the
notion of orthogonals of a candidate 𝐹 as the sets 𝑋 ⊆
(SN∗ ∪ 𝐾)<𝜔 such that 𝐹 = 𝑋⇒̃𝐴SN∗. We define the func-
tion ·⊥ that produces the greatest orthogonal of a candidate,
by induction on its belonging derivation.(

SN𝐴

)⊥
= 𝜀

(
𝑈 ∈ R𝐴 𝑉 ∈ R𝐵

𝑈 →̃𝑉 ∈ R𝐴→𝐵

)⊥
= 𝑈 ×𝑉⊥

( {𝐹𝑖 | 𝑖 ∈ 𝐼 } ⊆ R𝐴⋂{𝐹𝑖 | 𝑖 ∈ 𝐼 } ∈ R𝐴

)⊥
=

⋃{𝐹⊥𝑖 | 𝑖 ∈ 𝐼 }
(
𝑈𝐵 ∈ R𝐴[𝐵/𝑋 ] (for all 𝐵 ∈ 𝐾)

∀̃𝐵.𝑈𝐵 ∈ R∀𝑋 .𝐴

)⊥
=

⋃
𝐵∈𝐾 ({𝐵} × (𝑈𝐵)⊥)

Note: we will write 𝐹⊥ instead of 𝐹 ∈ R⊥𝐴 , since when we
deal with specific candidates we are actually dealing with
their belonging derivation.
Lemma 3.5 (Orthogonality characterizes candidates). Let
𝐹 ∈ R𝐴. Then 𝐹 = 𝐹⊥⇒̃𝐴SN∗.

Proof. By induction on 𝐹 ∈ R𝐴.
1. SN𝐴: trivial since SN𝐴 = 𝜀→̃SN𝐴.

2.
𝑈 ∈ R𝐴 𝑉 ∈ R𝐵

𝑈 →̃𝑉 ∈ R𝐴→𝐵 : by IH 𝑉 = 𝑉⊥⇒̃𝐵SN∗. Since 𝑈 ⊆
SN∗, we have𝑈 ×𝑉⊥ ⊆ (SN∗ ∪ 𝐾)<𝜔 . Finally:

𝑈 →̃𝑉 = {𝑡 ∈ T𝐴→𝐵 | ∀𝑠 ∈ 𝑈 . 𝑡𝑠 ∈ 𝑉 }
= {𝑡 ∈ T𝐴→𝐵 | ∀𝑠 ∈ 𝑈 . 𝑡𝑠 ∈ 𝑉⊥⇒̃𝐵SN∗}
= {𝑡 ∈ T𝐴→𝐵 | ∀𝑠 ∈ 𝑈 . ∀®𝑢 ∈ 𝑉⊥ . 𝑡𝑠 ®𝑢 ∈ SN∗}
= {𝑡 ∈ T𝐴→𝐵 | ∀(𝑠, ®𝑢) ∈ 𝑈 ×𝑉⊥. 𝑡 (𝑠, ®𝑢) ∈ SN∗}
= {𝑡 ∈ T𝐴→𝐵 | ∀®𝑣 ∈ 𝑈 ×𝑉⊥ . 𝑡®𝑣 ∈ SN∗}
=𝑈 ×𝑉⊥⇒̃𝐴→𝐵SN∗

3.
{𝐹𝑖 | 𝑖 ∈ 𝐼 } ⊆ R𝐴⋂{𝐹𝑖 | 𝑖 ∈ 𝐼 } ∈ R𝐴: by IH 𝐹𝑖 = 𝐹⊥𝑖 ⇒̃𝐴SN∗. Then⋂
{𝐹𝑖 | 𝑖 ∈ 𝐼 } =

⋂
{𝐹⊥𝑖 ⇒̃𝐴SN∗ | 𝑖 ∈ 𝐼 }

=
(⋃
{𝐹⊥𝑖 | 𝑖 ∈ 𝐼 }

)
⇒̃𝐴SN∗

4.
𝑈𝐵 ∈ R𝐴[𝐵/𝑋 ] (for all 𝐵 ∈ 𝐾)

∀̃𝐵.𝑈𝐵 ∈ R∀𝑋 .𝐴 : by IH we have 𝑈𝐵 =
(𝑈𝐵)⊥⇒̃𝐴[𝐵/𝑋 ]SN∗. Then:

∀̃𝐵.𝑈𝐵 = {𝑡 ∈ T∀𝑋 .𝐴 | ∀𝐵. 𝑡𝐵 ∈ 𝑈𝐵}



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Díaz-Caro and Sottile.

= {𝑡 ∈ T∀𝑋 .𝐴 | ∀𝐵. 𝑡𝐵 ∈ (𝑈𝐵)⊥⇒̃𝐴[𝐵/𝑋 ]SN∗}
= {𝑡 ∈ T∀𝑋 .𝐴 | ∀𝐵. ∀®𝑢 ∈ (𝑈𝐵)⊥ . 𝑡𝐵®𝑢 ∈ SN∗}
= {𝑡 ∈ T∀𝑋 .𝐴 | ∀(𝐵, ®𝑢) ∈ {𝐵} × (𝑈𝐵)⊥. 𝑡 (𝐵, ®𝑢) ∈ SN∗}
= {𝑡 ∈ T∀𝑋 .𝐴 | ∀®𝑣 ∈

⋃
𝐵∈𝐾
({𝐵} × (𝑈𝐵)⊥). 𝑡®𝑣 ∈ SN∗}

=
⋃
𝐵∈𝐾
({𝐵} × (𝑈𝐵)⊥)⇒̃∀𝑋 .𝐴SN∗ □

As stated before, the interpretation of a type is the function
that tells us which are the restrictions that its terms must
satisfy in order to later prove termination. In Parigot style,
we use the candidate constructors to build the set, and then
we prove that the set built is indeed a candidate for the type.

Definition 3.6 (Interpretation of types). We define the set
J𝐴K𝜌 by induction on 𝐴.

J𝑋 K𝜌 = 𝜌 (𝑋 )
J𝐴→ 𝐵K𝜌 = J𝐴K𝜌→̃J𝐵K𝜌
J∀𝑋 .𝐴K𝜌 = ∀̃𝐵.⋂{J𝐴K𝜌 · [𝐹/𝑋 ] |𝐹 ∈ R𝐵}

Intuitively, we follow the type constructors and include re-
strictions accordingly:
• for variables, we simply provide the candidate in the
context;
• for arrows, we ask to remain reducible when applied
to a reducible term;
• for universal quantifiers, we ask to remain reducible
when applied to an arbitrary type, under all the re-
ducibility candidates for the given type.

Definition 3.7 (Terms, Types, and Candidates mappings).
Let 𝜃 : 𝑉𝑎𝑟 → T∗, 𝜎 : 𝑇𝑉𝑎𝑟 → 𝐾 , and 𝜌 : 𝑇𝑉𝑎𝑟 → R∗. We
define the following notions of validity, noted ⊨:

1. 𝜎, 𝜌 ⊨ 𝐴 iff for all free type variable 𝑋 in 𝐴, it holds
that 𝜌 (𝑋 ) ∈ R𝜎 (𝑋 ) .

2. 𝜃, 𝜎, 𝜌 ⊨ Γ iff for all 𝑥𝐴 in Γ, it holds that 𝜃 (𝑥𝜎 (𝐴) ) ∈
J𝐴K𝜌 .

Lemma 3.8 (Interpretation is a candidate). Let 𝜎 and 𝜌 such
that 𝜎, 𝜌 ⊨ 𝐴. Then J𝐴K𝜌 ∈ R𝜎 (𝐴) .

Proof. By induction on 𝐴:
1. 𝑋 : J𝑋 K𝜌 equals 𝜌 (𝑋 ), which belongs to R𝜎 (𝑋 ) by hy-

pothesis.
2. 𝐴 → 𝐵: by IH, J𝐴K𝜌 ∈ R𝜎 (𝐴) and J𝐵K𝜌 ∈ R𝜎 (𝐵) .

Then, by Definition 3.2, J𝐴K𝜌→̃J𝐵K𝜌 = J𝐴 → 𝐵K𝜌 ∈
R𝜎𝐴→𝜎𝐵 = R𝜎 (𝐴→𝐵) .

3. ∀𝑋 .𝐴: let𝐵 and 𝐹 ∈ R𝐵 . By IH, J𝐴K𝜌 · [𝐹/𝑋 ] ∈ R𝜎 · [𝐵/𝑋 ]𝐴 =
R (𝜎𝐴) [𝐵/𝑋 ] .We have then that {J𝐴K𝜌 · [𝐹/𝑋 ] | 𝐹 ∈ R𝐵} ⊆
R (𝜎𝐴) [𝐵/𝑋 ] , so, by Definition 3.2,

⋂{J𝐴K𝜌 · [𝐹/𝑋 ] | 𝐹 ∈
R𝐵} ⊆ R (𝜎𝐴) [𝐵/𝑋 ] . Then, again by Definition 3.2,
since previous statement holds for any type 𝐵, we have
Π𝐵.

⋂{J𝐴K𝜌 · [𝐹/𝑋 ] | 𝐹 ∈ R𝐵} = J∀𝑋 .𝐴K𝜌 ∈ R∀𝑋 .𝜎𝐴 =
R𝜎 (∀𝑋 .𝐴) . □

Lemma 3.9 (Substitution). J𝐴[𝐵/𝑋 ]K𝜌 = J𝐴K𝜌 · [J𝐵K𝜌/𝑋 ]

Proof. By induction on 𝐴. □

Lemma 3.10 (SN –closure under head expansion).
1. If 𝑠 ∈ SN∗ and 𝑡 [𝑠/𝑥𝐴] ®𝑢 ∈ SN∗ then ((𝜆𝑥𝐴 .𝑡)𝑠) ®𝑢 ∈

SN∗
2. If 𝐵 ∈ 𝐾 and 𝑡 [𝐵/𝑋 ] ®𝑢 ∈ SN∗ then ((Λ𝑋 .𝑡)𝐵) ®𝑢 ∈ SN∗

Proof. By induction on |𝑠 | + |𝑡 | + | ®𝑢 |, with | · | the longest
reduction chain from a given term. □

Lemma 3.11 (Adequacy). If Γ ⊢ 𝑡 : 𝐴 and 𝜃, 𝜎, 𝜌 ⊨ Γ, then
𝜃 (𝜎 (𝑡)) ∈ J𝐴K𝜌 .
Proof. By induction on the typing derivation.

1. 𝑥 : 𝐴 ∈ Γ: by hypothesis, 𝜃𝜎𝑥 ∈ J𝐴K𝜌 .

2.
Γ ⊢ 𝑡 : 𝐴→ 𝐵 Γ ⊢ 𝑠 : 𝐴

Γ ⊢ 𝑡𝑠 : 𝐵 : by IH we have 𝜃𝜎𝑡 ∈ J𝐴→
𝐵K𝜌 = J𝐴K𝜌→̃J𝐵K𝜌 and 𝜃𝜎𝑠 ∈ J𝐴K𝜌 , so (𝜃𝜎𝑡) (𝜃𝜎𝑠) ∈
J𝐵K𝜌 . By substitution definition, 𝜃𝜎 (𝑡𝑠) ∈ J𝐵K𝜌 .

3.
Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ 𝜆𝑥𝐴 .𝑡 : 𝐴→ 𝐵: to prove that𝜃𝜎 (𝜆𝑥𝐴 .𝑡) = 𝜆𝑥𝜎𝐴 .𝜃𝜎𝑡 ∈
J𝐴 → 𝐵K𝜌 = J𝐴K𝜌→̃J𝐵K𝜌 , we must check that for
all 𝑠 ∈ J𝐴K𝜌 , we have (𝜆𝑥𝜎𝐴 .𝜃𝜎𝑡)𝑠 ∈ J𝐵K𝜌 . By IH,
𝜃𝜎 (𝑡) [𝑠/𝑥𝜎𝐴] ∈ J𝐵K𝜌 . By Lemma 6.9, we have J𝐵K𝜌 ∈
R𝜎𝐵 . Thus, by Lemma 6.5, J𝐵K𝜌 = J𝐵K⊥𝜌 ⇒̃𝜎𝐵SN∗. By
definition of ⇒̃𝜎𝐵 we have that, for all ®𝑢 ∈ J𝐵K⊥𝜌 , it
holds that 𝜃𝜎𝑡 [𝑠/𝑥𝜎𝐴] ®𝑢 ∈ SN∗. By Lemma 3.10, we
have (𝜆𝑥𝜎𝐴 .𝜃𝜎 (𝑡))𝑠 ®𝑢 ∈ SN∗. Hence, (𝜆𝑥𝜎𝐴 .𝜃𝜎𝑡)𝑠 sat-
isfies the belonging conditions of J𝐵K⊥𝜌 ⇒̃𝐵SN∗ = J𝐵K𝜌 ,
and we conclude 𝜆𝑥𝜎𝐴 .𝜃𝜎𝑡 ∈ J𝐴→ 𝐵K𝜌 .

4.
Γ ⊢ 𝑡 : ∀𝑋 .𝐴

Γ ⊢ 𝑡𝐵 : 𝐴[𝐵/𝑋 ]: by IH 𝜃𝜎𝑡 ∈ J∀𝑋 .𝐴K𝜌 , so for all 𝐶
and 𝐹 ∈ R𝐶 , we have (𝜃𝜎𝑡)𝐶 ∈ J𝐴K𝜌 · [𝐹/𝑋 ] . To prove
that 𝜃𝜎 (𝑡𝐵) = 𝜃𝜎𝑡𝜎𝐵 ∈ J𝐴[𝐵/𝑋 ]K𝜌 , we consider two
cases depending on 𝑋 occurring free in 𝐴:
a. 𝑋 ∈ 𝐹𝑉𝐴: since 𝜎, 𝜌 ⊨ 𝐴[𝐵/𝑋 ], it also holds that
𝜎, 𝜌 ⊨ 𝐵. By Lemma 6.9, we have J𝐵K𝜌 ∈ R𝜎𝐵 . By IH,
(𝜃𝜎𝑡)𝜎𝐵 ∈ J𝐴K𝜌 · [J𝐵K𝜌/𝑋 ] . Since J𝐴K𝜌 · [J𝐵K𝜌/𝑋 ] equals
J𝐴[𝐵/𝑋 ]K𝜌 by Lemma 6.10, we conclude.

b. 𝑋 ∉ 𝐹𝑉𝐴: then 𝐴[𝐵/𝑋 ] = 𝐴, so we must prove that
𝜃𝜎𝑡𝜎𝐵 ∈ J𝐴K𝜌 . Let 𝐹 be any ofR𝜎𝐵 , e.g.SN𝜎𝐵 . Then,
by IH, (𝜃𝜎𝑡) (𝜎𝐵) ∈ J𝐴K𝜌 · [𝐹/𝑋 ] . Note that, for all 𝐴′
such that 𝑌 ∉ 𝐹𝑉𝐴′, it holds that J𝐴′K𝜌 ′ · [𝐺/𝑌 ] =
J𝐴′K𝜌 ′ . Then J𝐴K𝜌 · [𝐹/𝑋 ] = J𝐴K𝜌 , so we conclude.

5.
Γ ⊢ 𝑡 : 𝐴 𝑋 ∉ 𝐹𝑉 (Γ)

Γ ⊢ Λ𝑋 .𝑡 : ∀𝑋 .𝐴 : wemust prove that𝜃𝜎 (Λ𝑋 .𝑡) ∈
J∀𝑋 .𝐴K𝜌 , i.e. (Λ𝑋 .𝜃𝜎𝑡)𝐵 ∈ J𝐴K𝜌 · [𝐹/𝑋 ] for all 𝐵 and
𝐹 ∈ R𝐵 . Since 𝜃 remains unaffected by [𝐵/𝑋 ] due
to 𝑋 ∉ 𝐹𝑉 (𝐴), we have (𝜃𝜎𝑡) [𝐵/𝑋 ] = 𝜃 (𝜎 · [𝐵/𝑋 ])𝑡 .
Furthermore, 𝜃, (𝜎 · [𝐵/𝑋 ]), (𝜌 · [𝐹/𝑋 ]) ⊨ Γ, so, by IH,
𝜃 (𝜎 · [𝐵/𝑋 ])𝑡 ∈ J𝐴K𝜌 · [𝐹/𝑋 ] . By Lemma 6.5, it holds that
(𝜃 (𝜎 · [𝐵/𝑋 ])𝑡) ®𝑢 = (𝜃𝜎𝑡) [𝐵/𝑋 ] ®𝑢 ∈ SN∗ for all ®𝑢 ∈
J𝐴K⊥

𝜌 · [𝐹/𝑋 ] . By Lemma 3.10, we have (Λ𝑋 .𝜃𝜎𝑡)𝐵®𝑢 ∈



Reducibility candidates modulo isomorphisms IFL ’25, October 1–3, 2025, Montevideo, Uruguay

SN∗. Hence, (Λ𝑋 .𝜃𝜎𝑡)𝐵 satisfies the belonging con-
ditions of J𝐴K⊥

𝜌 · [𝐹/𝑋 ]⇒̃𝜎𝐴SN∗ = J𝐴K𝜌 · [𝐹/𝑋 ] , and we
conclude 𝜃𝜎 (Λ𝑋 .𝑡) ∈ J∀𝑋 .𝐴K𝜌 .

□

4 System F modulo isomorphisms
Polymorphic System I (PSI) [10] is an extension of System
I [3] to polymorphic types. In this section we present the
system.
The syntax of types coincides with that of System F [8,

Chapter 11] with pairs:
𝐴 ::= 𝑋 | 𝐴→ 𝐴 | 𝐴 ×𝐴 | ∀𝑋 .𝐴

where 𝑋 ∈ TVar, a set of type variables.
In System I, variables can only have so-called prime types,

which are those that are not equivalent to a product. In
order to properly maintain this limitation in a System F
based calculus, we must restrict type application: each type
appearing at the level of terms must be prime. We denote
prime types with A,B,C, . . ., and the set of prime types with
K.

Terms are then:
𝑡 ::= 𝑥A | 𝜆𝑥A.𝑡 | 𝑡𝑡 | ⟨𝑡, 𝑡⟩ | 𝜋𝐴𝑡 | Λ𝑋 .𝑡 | 𝑡A

Usual projection 𝜋1𝑡 does not make sense in these systems.
Consider 𝜋1⟨𝑥A, 𝑦B⟩; since the pair has type A × B which is
equivalent to B ×A, first element can be both 𝑥 and 𝑦. Com-
mutativity and associativity make pairs positions indistin-
guishable. The projection that makes sense here is over types:
𝜋A⟨𝑥A, 𝑦B⟩ is indeed 𝑥 . When both elements of the pair are
of the same type, the system behaves non–deterministically.
Determinism can be easily recovered by adding type con-
stants ⊮ and ⊭, inhabited by 1 and 2 respectively, and defining
𝜋1⟨𝑡, 𝑠⟩ as (𝜋⊮→𝐴⟨𝜆𝑥⊮ .𝑡, 𝜆𝑥⊭ .𝑠⟩)1.

The typing rules are:

Γ, 𝑥 : A ⊢ 𝑥 : A
Γ ⊢ 𝑡 : 𝐴 𝐴 ≡ 𝐵

Γ ⊢ 𝑡 : 𝐵
Γ, 𝑥 : A ⊢ 𝑡 : 𝐵

Γ ⊢ 𝜆𝑥A.𝑡 : A→ 𝐵
Γ ⊢ 𝑡 : 𝐴→ 𝐵 Γ ⊢ 𝑠 : 𝐴

Γ ⊢ 𝑡𝑠 : 𝐵
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑠 : 𝐵

Γ ⊢ ⟨𝑡, 𝑠⟩ : 𝐴 × 𝐵
Γ ⊢ 𝑡 : 𝐴 ∧ 𝐵
Γ ⊢ 𝜋𝐴 (𝑡) : 𝐴

Γ ⊢ 𝑡 : 𝐴 𝑋 ∉ 𝐹𝑇𝑉 (Γ)
Γ ⊢ Λ𝑋 .𝑡 : ∀𝑋 .𝐴

Γ ⊢ 𝑡 : ∀𝑋 .𝐴
Γ ⊢ 𝑡B : 𝐴[B/𝑋 ]

Note that the arrow introduction rule puts a prime type
to the left, but the elimination rule allows any type to the
left. This happens because the type of the function can be
obtained by rule ≡.

The type and term equivalences are:

𝐴 ∧ 𝐵 ≡ 𝐵 ∧𝐴 (1)
𝐴 ∧ (𝐵 ∧𝐶) ≡ (𝐴 ∧ 𝐵) ∧𝐶 (2)
𝐴⇒ (𝐵 ∧𝐶) ≡ (𝐴⇒ 𝐵) ∧ (𝐴⇒ 𝐶) (3)

(𝐴 ∧ 𝐵) ⇒ 𝐶 ≡ 𝐴⇒ 𝐵 ⇒ 𝐶 (4)
If 𝑋 ∉ 𝐹𝑇𝑉 (𝐴) , ∀𝑋 .(𝐴⇒ 𝐵) ≡ 𝐴⇒ ∀𝑋 .𝐵 (5)

∀𝑋 .(𝐴 ∧ 𝐵) ≡ ∀𝑋 .𝐴 ∧ ∀𝑋 .𝐵 (6)

⟨𝑟, 𝑠⟩ ⇄ ⟨𝑠, 𝑟 ⟩ (COMM)
⟨𝑟, ⟨𝑠, 𝑡⟩⟩ ⇄ ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ (ASSO)
𝜆𝑥𝐴 . ⟨𝑟, 𝑠⟩ ⇄ ⟨𝜆𝑥𝐴 . 𝑟 , 𝜆𝑥𝐴 . 𝑠⟩ (DIST𝜆)
⟨𝑟, 𝑠⟩𝑡 ⇄ ⟨𝑟𝑡, 𝑠𝑡⟩ (DISTapp)
𝑟 ⟨𝑠, 𝑡⟩ ⇄ 𝑟𝑠𝑡 (CURRY)

If 𝑋 ∉ 𝐹𝑇𝑉𝐴 (𝐴), Λ𝑋 .𝜆𝑥𝐴 .𝑟 ⇄ 𝜆𝑥𝐴 .Λ𝑋 .𝑟 (P-COMM∀𝑖⇒𝑖
)

(𝜆𝑥𝐴 . 𝑟 ) [𝐵] ⇄ 𝜆𝑥𝐴 . 𝑟 [𝐵] (P-COMM∀𝑒⇒𝑖
)

Λ𝑋 .⟨𝑟, 𝑠⟩ ⇄ ⟨Λ𝑋 .𝑟,Λ𝑋 .𝑠⟩ (P-DIST∀𝑖∧𝑖 )
⟨𝑟, 𝑠⟩[𝐴] ⇄ ⟨𝑟𝐴, 𝑠𝐴⟩ (P-DIST∀𝑒∧𝑖 )

𝜋∀𝑋 .𝐴 (Λ𝑋 .𝑟 ) ⇄ Λ𝑋 .𝜋𝐴 (𝑟 ) (P-DIST∀𝑖∧𝑒 )
If 𝑟 : ∀𝑋 .(𝐵 ∧𝐶 ), (𝜋∀𝑋 .𝐵𝑟 ) [𝐴] ⇄ 𝜋 [𝑋 :=𝐴]𝐵 (𝑟 [𝐴]) (P-DIST∀𝑒∧𝑒 )

Reduction is given by the rules corresponding to each
elimination, preceeded by arbitrary term equivalences.

If Γ ⊢ 𝑠 : 𝐴, (𝜆𝑥𝐴 . 𝑟 )𝑠 → [𝑥 := 𝑠]𝑟 (𝛽𝜆)
(Λ𝑋 .𝑟 ) [𝐴] → [𝑋 := 𝐴]𝑟 (𝛽Λ)

If Γ ⊢ 𝑟 : 𝐴, 𝜋𝐴 (⟨𝑟, 𝑠⟩) → 𝑟 (𝜋)

⇝ ::=⇄∗ ◦ →

𝜆𝑥𝐴 .𝑟 ⇄ 𝜆𝑥𝐴 .𝑠
𝑟 ⇄ 𝑠

𝑟𝑡 ⇄ 𝑠𝑡
𝑟 ⇄ 𝑠

𝑡𝑟 ⇄ 𝑡𝑠
𝑟 ⇄ 𝑠

⟨𝑡, 𝑟 ⟩ ⇄ ⟨𝑡, 𝑠⟩
𝑟 ⇄ 𝑠

𝜋𝐴 (𝑟 ) ⇄ 𝜋𝐴 (𝑠)
𝑟 ⇄ 𝑠

⟨𝑟, 𝑡⟩ ⇄ ⟨𝑠, 𝑡⟩
𝑟 ⇄ 𝑠

Λ𝑋 .𝑟 ⇄ Λ𝑋 .𝑠
𝑟 ⇄ 𝑠

𝑟𝐴 ⇄ 𝑠𝐴
𝑟 ⇄ 𝑠

𝜆𝑥𝐴 .𝑟 ⇝ 𝜆𝑥𝐴 .𝑠
𝑟 ⇝ 𝑠

𝑟𝑡 ⇝ 𝑠𝑡
𝑟 ⇝ 𝑠

𝑡𝑟 ⇝ 𝑡𝑠
𝑟 ⇝ 𝑠

⟨𝑡, 𝑟 ⟩⇝ ⟨𝑡, 𝑠⟩
𝑟 ⇝ 𝑠

𝜋𝐴 (𝑟 ) ⇝ 𝜋𝐴 (𝑠)
𝑟 ⇝ 𝑠

⟨𝑟, 𝑡⟩⇝ ⟨𝑠, 𝑡⟩
𝑟 ⇝ 𝑠

Λ𝑋 .𝑟 ⇝ Λ𝑋 .𝑠
𝑟 ⇝ 𝑠

𝑟𝐴⇝ 𝑠𝐴
𝑟 ⇝ 𝑠

Definition 4.1 (Measure on types). Let m(𝐴) be a measure
stable by isomorphisms, i.e. such that if 𝐴 ≡ 𝐵 then m(𝐴) =
m(𝐵).



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Díaz-Caro and Sottile.

5 Issues with isomorphisms and classical
reducibility

The core idea of reducibility is, as we described earlier, to de-
termine what are the circumstances that the terms of a given
type must resist with “good” behaviour, and what “good” be-
haviour means. The way to determine these is to follow the
structure of types when we have them, and to parameterize
and find out in a stepwise manner when we do not have a
structure to follow.
The first challenge is that the structure of types is not

stable through isomorphisms. For instance, in System F a pair
⟨Λ𝑋 .𝑡,Λ𝑋 .𝑠⟩ can only be projected, so the circumstance to
resist is simply projection; in Polymorphic System I, the same
term can also be applied to a type D, so the circumstances
to resist now depend not only on its type structure, but on
the structure of all its isomorphic types. We must define
reducibility and interpretation in such a way that all these
circumstances are properly considered.

The second challenge is that one of the main properties of
reducibility candidates from Girard’s approach, the so-called
CR3, requires neutrality of terms to be stable, which does
not hold for terms equated by isomorphisms. A neutral term
is one that is not an introduction, e.g.variables and elimi-
nations. Polymorphic System I equates ⟨(Λ𝑋 .𝑡)D, (Λ𝑋 .𝑠)D⟩,
an introduction, to ⟨Λ𝑋 .𝑡,Λ𝑋 .𝑠⟩D, an elimination. CR3 is
used when testing that an introduction term behaves well
under its immediate restrictions, by showing that if it is
neutral and all its reducts are well-behaved, then it is also
well-behaved, where well-behaved means recursively (on
the type) reducible. Since we cannot rely on this property,
we take Parigot’s approach, which considers all the possible
ways to apply the term and shows SN for all of them. To do
so, Parigot gives candidates an inductive structure, in order
to be able to determine what are all the ways that the term
can be applied. We come across the first challenge again:
the equivalence on types that required us to make terms
resist not only their type eliminations, but also those of their
isomorphic ones, also requires us to relate the candidates of
isomorphic types in the family of candidates.
A third challenge, which is more general and not partic-

ularly tied to reducibility, is that terms have more one-step
reducts in Polymorphic System I than in System F. Consider
(Λ𝑋 .⟨𝑡, 𝑠⟩)D. In System F, it has three kinds of reducts: those
in 𝑡 , 𝑠 , and the type application. In Polymorphic System I, it
is equivalent to ⟨(Λ𝑋 .𝑡)D, (Λ𝑋 .𝑠)D⟩, which has four kinds
of reducts: those in 𝑡 , 𝑠 , and now two type applications in-
stead of one. The proof requires us to know which are all the
one-step reducts of a term, so we must understand all the
possible ways in which the term equivalence makes redexes
arise.

6 Reducibility candidates modulo
isomorphisms

In this section we sketch the structure of the reducibility
proof adapted to the equivalences induced by isomorphisms,
explaining what changes must be done to each part and
presenting some finished and in progress lemmas and proofs.
We recall that candidate constructors are the building

blocks of reducibility candidates, and that they are defined
according to the ways the system allows eliminations for
each type. Although Polymorphic System I allows unusual
eliminations for each type, this will modify how the family of
candidates is populated, not the constructors, which remain
the same. The only change we introduce here is the candidate
constructor corresponding to our type-based pair projection.

Definition 6.1 (Constructors of potential candidates).∏𝑛
𝑖=1 𝐹𝑖 = {𝑡 ∈ T𝐴1×...×𝐴𝑛 | ∀𝑖 ∈ 1..𝑛. 𝜋𝐴𝑖 𝑡 ∈ 𝐹𝑖 }

with 𝐹𝑖 ⊆ T𝐴𝑖

𝐹→̃𝐺 = {𝑡 ∈ T𝐴→𝐵 | ∀𝑢 ∈ 𝐹 . 𝑡𝑠 ∈ 𝐺}
with 𝐹 ⊆ T𝐴 and 𝐺 ⊆ T𝐵

∀̃B.𝑈B = {𝑡 ∈ T∀𝑋 .𝐴 | ∀B ∈ K. 𝑡B ∈ 𝑈B}
with (𝑈B)B∈K family s.t.
𝑈B ⊆ T𝐴[B/𝑋 ] for all B ∈ K

𝑆⇒̃𝐴𝐺 = {𝑡 ∈ T𝐴 | ∀®𝑢 ∈ 𝑆. 𝑡 ®𝑢 ∈ 𝐺}
with 𝑆 ⊆ (T∗ ∪ 𝐾 ∪ {𝜋𝐵})<𝜔 and 𝐺 ⊆ T

We write 𝐹1×̃𝐹2 for
∏2
𝑖=1 𝐹𝑖 . We use 𝜋𝐴 to refer to the

projection as a postfix operator.

We stated that the intuition for candidates is to deter-
mine which restrictions should be satisfied by the terms of a
given type, where the restrictions come from the interactions
under which the term should remain reducible. In regular
systems, these interactions are mainly the eliminations of
the principal constructor of the type. In systems modulo
isomorphisms, each type allows the eliminations of all its
isomorphic types, for instance when a pair of functions is
directly applied without a prior projection. The family of
reducibility candidates must reflect the new restrictions. To
do so, we introduce a new belonging rule: if we have two
candidates 𝐹 and 𝐺 of two isomorphic types 𝐴 and 𝐵, then
the intersection of the candidates is a candidate that belongs
to the set of candidates of both types. This way we are asking
the terms in the new candidate to resist more interactions,
thus satisfying more restrictions: those of 𝐹 inR𝐴 and those
of 𝐺 in R𝐵 .

Definition 6.2 (Family (R𝐴)𝐴∈𝐾 of sets of reducibility can-
didates of type 𝐴).

SN𝐴 ∈ R𝐴

𝑈 ∈ R𝐴 𝑉 ∈ R𝐵

𝑈 →̃𝑉 ∈ R𝐴→𝐵

𝑋 ⊆ R𝐴⋂
𝑋 ∈ R𝐴

𝑈𝐵 ∈ R𝐴[𝐵/𝑋 ] (for all 𝐵 ∈ 𝐾)
∀̃𝐵.𝑈𝐵 ∈ R∀𝑋 .𝐴



Reducibility candidates modulo isomorphisms IFL ’25, October 1–3, 2025, Montevideo, Uruguay

𝐹 ∈ R𝐴 𝐺 ∈ R𝐵

𝐹 ×̃𝐺 ∈ R𝐴×𝐵
𝐹 ∈ R𝐴 𝐺 ∈ R𝐵 𝐴 ≡ 𝐵

𝐹 ∩𝐺 ∈ R𝐴

Lemma 6.3 (Candidates termination and inhabitation). If
𝐹 ∈ R𝐴, then 𝐹 ⊆ SN𝐴 and 𝑥𝐴 ∈ 𝐹 .
Proof. By induction on the derivation of 𝐹 ∈ R𝐴. We extend
the proof of Lemma 3.3 by adding the two new cases:

1.
𝐹 ∈ R𝐴 𝐺 ∈ R𝐵

𝐹 ×̃𝐺 ∈ R𝐴×𝐵 : We recall that 𝐹 ×̃𝐺 is the set of
terms 𝑡 of type 𝐴 × 𝐵 that, when projected to 𝐴 (resp.
𝐵), belong to 𝐹 (resp. 𝐺). By IH 𝜋𝐴𝑡 ∈ 𝐹 ⊆ SN𝐴 and
𝜋𝐵𝑡 ∈ 𝐺 ⊆ SN𝐵 . Since both projections are SN, then
𝑡 is also SN. Let 𝑥𝐶 ®𝑢 ∈ SN𝐴×𝐵 . By IH 𝜋𝐴 (𝑥𝐶 ®𝑢) ∈ 𝐹
and 𝜋𝐵 (𝑥𝐶 ®𝑢) ∈ 𝐺 , so by Definition 6.2 𝑥𝐶 ®𝑢 ∈ 𝐹 ×̃𝐺 .

2.
𝐹 ∈ R𝐴 𝐺 ∈ R𝐵 𝐴 ≡ 𝐵

𝐹 ∩𝐺 ∈ R𝐴 : Let 𝑡 ∈ 𝐹 ∩𝐺 . Then 𝑡 ∈ 𝐹
so, by IH, 𝑡 ∈ SN𝐴. Let 𝑥𝐶 ®𝑢 ∈ SN𝐴. By IH 𝑥𝐶 ®𝑢 ∈ 𝐹 .
Since 𝐴 ≡ 𝐵, it holds that 𝑥𝐶 ®𝑢 ∈ SN𝐵 , and by IH
𝑥𝐶 ®𝑢 ∈ 𝐺 . Therefore 𝑥𝐶 ®𝑢 ∈ 𝐹 ∩𝐺 .

□

Definition 6.4 (Orthogonal of a candidate). We define the
notion of orthogonals of a candidate 𝐹 as the sets 𝑋 ⊆
(SN∗ ∪ 𝐾 ∪ {𝜋𝐴})<𝜔 such that 𝐹 = 𝑋⇒̃𝐴SN∗. We define
the function ·⊥ that produces the greatest orthogonal of a
candidate, by induction on its belonging derivation. The dif-
ferences with Definition 3.4 are only the newly added cases.(

SN𝐴

)⊥
= 𝜀

(
𝑈 ∈ R𝐴 𝑉 ∈ R𝐵

𝑈 →̃𝑉 ∈ R𝐴→𝐵

)⊥
= 𝑈 ×𝑉⊥

( {𝐹𝑖 | 𝑖 ∈ 𝐼 } ⊆ R𝐴⋂{𝐹𝑖 | 𝑖 ∈ 𝐼 } ∈ R𝐴

)⊥
=

⋃{𝐹⊥𝑖 | 𝑖 ∈ 𝐼 }
(
𝑈𝐵 ∈ R𝐴[𝐵/𝑋 ] (for all 𝐵 ∈ 𝐾)

∀̃𝐵.𝑈𝐵 ∈ R∀𝑋 .𝐴

)⊥
=

⋃
𝐵∈𝐾 ({𝐵} × (𝑈𝐵)⊥)

(
𝐹 ∈ R𝐴 𝐺 ∈ R𝐵

𝐹 ×̃𝐺 ∈ R𝐴×𝐵

)⊥
= (𝜋𝐴 × 𝐹⊥) ∪ (𝜋𝐵 ×𝐺⊥)

(
𝐹 ∈ R𝐴 𝐺 ∈ R𝐵 𝐴 ≡ 𝐵

𝐹 ∩𝐺 ∈ R𝐴

)⊥
= 𝐹⊥ ∪𝐺⊥

Note: we will write 𝐹⊥ instead of 𝐹 ∈ R⊥𝐴 , since when we
deal with specific candidates we are actually dealing with
their belonging derivation.

Lemma 6.5 (Orthogonality characterizes candidates). Let
𝐹 ∈ R𝐴. Then 𝐹 = 𝐹⊥⇒̃𝐴SN∗.

Proof. By induction on 𝐹 ∈ R𝐴. We extend the proof from
Lemma 3.5 with the new cases.

1.
𝐹 ∈ R𝐴 𝐺 ∈ R𝐵

𝐹 ×̃𝐺 ∈ R𝐴×𝐵 : by IH 𝐹 = 𝐹⊥⇒̃𝐴SN∗ and 𝐺 =
𝐺⊥⇒̃𝐵SN∗.

𝐹 ×̃𝐺 = {𝑡 ∈ T𝐴×𝐵 | 𝜋𝐴𝑡 ∈ 𝐹, 𝜋𝐵𝑡 ∈ 𝐺}
= {𝑡 ∈ T𝐴×𝐵 | 𝜋𝐴𝑡 ∈ 𝐹⊥⇒̃𝐴SN∗, 𝜋𝐵𝑡 ∈ 𝐺⊥⇒̃𝐵SN∗}
= {𝑡 ∈ T𝐴×𝐵 | ∀®𝑢𝐴 ∈ 𝐹⊥ .𝜋𝐴𝑡 ®𝑢𝐴 ∈ SN∗,∀®𝑢𝐵 ∈ 𝐺⊥ .𝜋𝐵𝑡 ®𝑢𝐵 ∈ SN∗}
= {𝑡 ∈ T𝐴×𝐵 | ∀(𝜋𝐶 , ®𝑢𝐶 ) ∈ (𝜋𝐴 × 𝐹⊥) ∪ (𝜋𝐵 ×𝐺⊥). 𝑡𝜋𝐶 ®𝑢𝐶 ∈ SN∗}
= {𝑡 ∈ T𝐴×𝐵 | ∀®𝑣 ∈ (𝜋𝐴 × 𝐹⊥) ∪ (𝜋𝐵 ×𝐺⊥). 𝑡®𝑣 ∈ SN∗}
= (𝜋𝐴 × 𝐹⊥) ∪ (𝜋𝐵 ×𝐺⊥)⇒̃𝐴×𝐵SN∗

2.
𝐹 ∈ R𝐴 𝐺 ∈ R𝐵 𝐴 ≡ 𝐵

𝐹 ∩𝐺 ∈ R𝐴 : by IH 𝐹 = 𝐹⊥⇒̃𝐴SN∗ and
𝐺 = 𝐺⊥⇒̃𝐵SN∗.

𝐹 ∩𝐺 = 𝐹⊥⇒̃𝐴SN∗ ∩𝐺⊥⇒̃𝐵SN∗
= (𝐹⊥ ∪𝐺⊥)⇒̃𝐴SN∗

Note that the set of terms of type 𝐴 coincides with the
set of terms of type 𝐵 due to 𝐴 ≡ 𝐵.

□

In System F, we followed the type constructors to define
the interpretation of a type. In Polymorphic System I, we
need to follow the type constructors of all the types isomor-
phic to 𝐴. Definition 6.1 states what is the direct restriction
that terms of a given type should satisfy. We will consider the
equivalence class of 𝐴, and ask the terms in J𝐴K𝜌 to satisfy,
for all the types 𝐵 isomorphic to 𝐴, the direct restriction of
the principal type constructor of 𝐵 together with those of
the interpretation of its inner types. For instance, to define
J𝑋 ×𝑌 K𝜌 , we will ask terms in𝑋 ×𝑌 to satisfy the restrictions
posed by 𝜌 (𝑋 )×̃𝜌 (𝑌 ), and also those posed by 𝜌 (𝑌 )×̃𝜌 (𝑋 ),
since 𝑌 × 𝑋 is the only type isomorphic to 𝑋 × 𝑌 .
Definition 6.6 (Interpretation of types). We define the set
J𝐴K𝜌 by induction on m(𝐴).

1. In the base case we have 𝐴 = 𝑋 . We define J𝑋 K𝜌 =
𝜌 (𝑋 ).

2. In the inductive case we J𝐴K𝜌 as the set of terms 𝑡 such
that:
• for all 𝐵,𝐶 with 𝐴 ≡ 𝐵 ×𝐶 , we have 𝑡 ∈ J𝐵K𝜌 ×̃J𝐶K𝜌 ;
• for all𝐵,𝐶 with𝐴 ≡ 𝐵 → 𝐶 , we have 𝑡 ∈ J𝐵K𝜌→̃J𝐶K𝜌 ;
• for all𝐵with𝐴 ≡ ∀𝑋 .𝐵, we have 𝑡 ∈ ∀̃D.⋂{J𝐵K𝜌 · [𝐹/𝑋 ] |𝐹 ∈
RD} for all D.

Remark 6.7 (Stability of interpretation through isomorphisms).
𝐴 ≡ 𝐵 implies J𝐴K𝜌 = J𝐵K𝜌 .
Definition 6.8 (Terms, Types, and Candidates mappings).
Let 𝜃 : 𝑉𝑎𝑟 → T∗, 𝜎 : 𝑇𝑉𝑎𝑟 → 𝐾 , and 𝜌 : 𝑇𝑉𝑎𝑟 → R∗. We
define the following notions of validity, noted ⊨:

1. 𝜎, 𝜌 ⊨ 𝐴 iff for all free type variable 𝑋 in 𝐴, it holds
that 𝜌 (𝑋 ) ∈ R𝜎 (𝑋 ) .



IFL ’25, October 1–3, 2025, Montevideo, Uruguay Díaz-Caro and Sottile.

2. 𝜃, 𝜎, 𝜌 ⊨ Γ iff for all 𝑥𝐴 in Γ, it holds that 𝜃 (𝑥𝜎 (𝐴) ) ∈
J𝐴K𝜌 .

Lemma 6.9 (Interpretation is a candidate). Let 𝜎 and 𝜌 such
that 𝜎, 𝜌 ⊨ 𝐴. Then J𝐴K𝜌 ∈ R𝜎 (𝐴) .

Proof. By induction on m(𝐴).
1. In the base case we have 𝐴 = 𝑋 , so by hypothesis
𝜌 (𝑋 ) ∈ R𝜎𝑋 .

2. In the inductive case we consider all the possible equiv-
alences:
• if 𝐴 ≡ 𝐵 ×𝐶 , then, by IH, J𝐵K𝜌 ∈ R𝜎 (𝐵) and J𝐶K𝜌 ∈
R𝜎 (𝐶 ) . Then, byDefinition 6.2, J𝐵K𝜌 ×̃J𝐶K𝜌 ∈ R𝜎𝐵×𝜎𝐶 =
R𝜎 (𝐵×𝐶 ) .
• if𝐴 ≡ 𝐵 → 𝐶 , then, by IH, J𝐵K𝜌 ∈ R𝜎 (𝐵) and J𝐶K𝜌 ∈
R𝜎 (𝐶 ) . Then, byDefinition 6.2, J𝐵K𝜌→̃J𝐶K𝜌 ∈ R𝜎𝐵→𝜎𝐶 =
R𝜎 (𝐵→𝐶 ) .
• if𝐴 ≡ ∀𝑋 .𝐵, then let𝐶 and 𝐹 ∈ R𝐶 . By IH, J𝐵K𝜌 · [𝐹/𝑋 ] ∈
R𝜎 · [𝐶/𝑋 ]𝐵 = R (𝜎𝐵) [𝐶/𝑋 ] .We have then that {J𝐵K𝜌 · [𝐹/𝑋 ] | 𝐹 ∈
R𝐶 } ⊆ R (𝜎𝐵) [𝐶/𝑋 ] , so, byDefinition 6.2,

⋂{J𝐵K𝜌 · [𝐹/𝑋 ] | 𝐹 ∈
R𝐶 } ⊆ R (𝜎𝐵) [𝐶/𝑋 ] . Then, again by Definition 6.2,
since previous statement holds for any type 𝐶 , we
have ∀̃𝐶.⋂{J𝐵K𝜌 · [𝐹/𝑋 ] | 𝐹 ∈ R𝐶 } ∈ R∀𝑋 .𝜎𝐵 =
R𝜎 (∀𝑋 .𝐵) . □

We proved, for all types 𝐵 isomorphic to𝐴, that the set
formed by IH (e.g.J𝐵1K𝜌 , J𝐵2K𝜌 ) and the candidate con-
structor (e.g.→̃) of its main type constructor (e.g.→), is
a candidate ofR𝜎𝐵 . Let us call that setB. To show that
J𝐴K𝜌 is indeed a candidate of R𝜎𝐴, we can apply the
previous reasoning to𝐴, since ≡ is reflexive, obtaining
the candidate A of R𝜎𝐴. If we take A ∩ B, we get a
candidate ofR𝜎𝐴 by the isomorphic candidates rule. If
we repeatedly apply the rule for all C corresponding
to each 𝐶 isomorphic to 𝐴, we get A ∩ C1 ∩ ... ∩ Cn .
That set is precisely J𝐴K𝜌 , so we conclude.

Lemma 6.10 (Substitution). J𝐴[𝐵/𝑋 ]K𝜌 = J𝐴K𝜌 · [J𝐵K𝜌/𝑋 ]

Proof. By induction on m(𝐴). For the base case, we have 𝐴
equal to a type variable, and we consider two possibilities,
whether it coincides with 𝑋 or not.
• If𝐴 ≡ 𝑋 , then J𝑋 [𝐵/𝑋 ]K𝜌 = J𝐵K𝜌 = 𝜌 ·[J𝐵K𝜌/𝑋 ] (𝑋 ) =

J𝑋 K𝜌 · [J𝐵K𝜌/𝑋 ] .
• If𝐴 ≡ 𝑌 , then J𝑌 [𝐵/𝑋 ]K𝜌 = J𝑌 K𝜌 = 𝜌𝑌 = 𝜌 ·[J𝐵K𝜌/𝑋 ]𝑌 =

J𝑌 K𝜌 · [J𝐵K𝜌/𝑋 ] .

For the inductive case, J𝐴K𝜌 is built considering all possible
types equivalent to 𝐴. So we check back and forth that, in
all these cases, the equality holds. Let 𝑡 ∈ J𝐴[𝐵/𝑋 ]K𝜌 .
• If 𝐴 ≡ 𝐶 ×𝐷 , then 𝑡 ∈ J𝐶 [𝐵/𝑋 ]K𝜌 ×̃J𝐷 [𝐵/𝑋 ]K𝜌 . By IH,
𝑡 ∈ J𝐶K𝜌 · [J𝐵K𝜌/𝑋 ]×̃J𝐷K𝜌 · [J𝐵K𝜌/𝑋 ] .
• If 𝐴 ≡ 𝐶 → 𝐷 , then 𝑡 ∈ J𝐶 [𝐵/𝑋 ]K𝜌→̃J𝐷 [𝐵/𝑋 ]K𝜌 . By
IH, 𝑡 ∈ J𝐶K𝜌 · [J𝐵K𝜌/𝑋 ]→̃J𝐷K𝜌 · [J𝐵K𝜌/𝑋 ] .

• if 𝐴 ≡ ∀𝑌 .𝐶 , then 𝑡 ∈ ∀̃𝐷.⋂{J𝐶 [𝐵/𝑋 ]K𝜌 · [𝐹/𝑌 ] |𝐹 ∈
R𝐷 }. By IH, 𝑡 ∈ ∀̃𝐷.⋂{J𝐶K𝜌 · [𝐹/𝑌 ] · [J𝐵K𝜌 · [𝐹 /𝑌 ]/𝑋 ] |𝐹 ∈
R𝐷 }

Then, by Definition 6.6, 𝑡 ∈ J𝐴K𝜌 · [J𝐵K𝜌/𝑋 ] , so J𝐴[𝐵/𝑋 ]K𝜌 ⊆
J𝐴K𝜌 · [J𝐵K𝜌/𝑋 ] . The symmetric inclusion is proven similarly.

□

A key part of the Adequacy lemma is the recursive anal-
ysis of one–step reducts of terms, proving that all of them
are SN∗, in order to prove that the common anti–reduct is
also SN∗. Although this is not a particularly complex part,
the amount of equivalences that arise on terms produces
several new one–step reducts for each term constructor, so
the analysis has a small combinatorial explosion. The most
essential task here is to understand what are all the possible
one–step reducts of all term constructors. To do so, we first
characterize the class of equivalence of term constructors.
For instance, to which other terms can a type abstraction be
equivalent.

Lemma 6.11 (The class of type abstractions). If Λ𝑋 .𝑡 ′ ⇄𝑛 𝑠 ,
then 𝑠 is equal to:

1. Λ𝑋 .𝑠′ with 𝑡 ′ ⇄𝑚 𝑠′ and𝑚 ≤ 𝑛
2. 𝜆𝑥𝐴 .𝑠′ with 𝑡 ′ ⇄𝑚1 𝜆𝑥𝐴 .𝑟 , 𝑠′ ⇄𝑚2 Λ𝑋 .𝑟 ,𝑚1 +1+𝑚2 ≤
𝑛, and 𝑋 ∉ 𝐹𝑉 (𝐴)

3. ⟨𝑠′1, 𝑠′2⟩ with 𝑡 ′ ⇄𝑚1 ⟨𝑟1, 𝑟2⟩, 𝑠′𝑖 ⇄𝑚2𝑖 Λ𝑋 .𝑟𝑖 , and𝑚1 +
1 +𝑚21 +𝑚22 ≤ 𝑛

4. 𝜋∀𝑋 .𝐴𝑠′ with 𝑡 ′ ⇄𝑚1 𝜋𝐴𝑟 , 𝑠′ ⇄𝑚2 Λ𝑋 .𝑟 , and𝑚1 + 1 +
𝑚2 ≤ 𝑛

Proof. By induction on the equivalence derivation Λ𝑋 .𝑡 ′ ⇄𝑛

𝑠 . □

The characterization lemmas for the equivalence class of
the other term constructors are a work in progress. Once
we have them, we will be able to characterize the possible
one–step reducts of all terms. These will enable us to re-
produce the SN closure under head expansion lemma in
Polymorphic System I, and finally to proceed with the Ade-
quacy lemma.

WIP Lemma 6.12 (Adequacy). If Γ ⊢ 𝑡 : 𝐴 and 𝜃, 𝜎, 𝜌 ⊨ Γ,
then 𝜃 (𝜎 (𝑡)) ∈ J𝐴K𝜌 .
WIP Theorem 6.13 (Strong normalization). If Γ ⊢ 𝑡 : 𝐴,
then 𝑡 ∈ SN.

References
[1] Beniamino Accattoli and Alejandro Díaz-Caro. 2020. Functional Pearl:

The Distributive 𝜆-Calculus. In Functional and Logic Programming -
15th International Symposium, FLOPS 2020, Akita, Japan, September
14-16, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12073),
Keisuke Nakano and Konstantinos Sagonas (Eds.). Springer, 33–49.
https://doi.org/10.1007/978-3-030-59025-3_3

[2] Roberto Di Cosmo. 1995. Isomorphisms of types: from 𝜆-calculus to
information retrieval and language design. Birkhauser, Switzerland.



Reducibility candidates modulo isomorphisms IFL ’25, October 1–3, 2025, Montevideo, Uruguay

[3] Alejandro Díaz-Caro and Gilles Dowek. 2019. Proof Normalisation
in a Logic Identifying Isomorphic Propositions. LIPIcs (FSCD’19) 131
(2019), 14:1–14:23.

[4] Alejandro Díaz-Caro and Gilles Dowek. 2023. Extensional proofs in
a propositional logic modulo isomorphisms. Theor. Comput. Sci. 977
(2023), 114172. https://doi.org/10.1016/J.TCS.2023.114172

[5] Alejandro Díaz-Caro and Pablo E. Martínez López. 2015. Isomorphisms
considered as equalities: Projecting functions and enhancing partial
application through an implementation of 𝜆+. ACM IFL 2015, 9 (2015),
1–11.

[6] Jean-Yves Girard. 1971. Une Extension De ĽInterpretation De Gödel a
ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans
ĽAnalyse Et La Theorie Des Types. In Proceedings of the Second
Scandinavian Logic Symposium, J.E. Fenstad (Ed.). Studies in Logic
and the Foundations of Mathematics, Vol. 63. Elsevier, 63–92. https:
//doi.org/10.1016/S0049-237X(08)70843-7

[7] Jean-Yves Girard. 1972. Interpretation fonctionelle et elimination
des coupures dans l’aritmetique d’ordre superieur. https://api.
semanticscholar.org/CorpusID:117631778

[8] Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types.
Cambridge U.P., UK.

[9] Michel Parigot. 1997. Proofs of Strong Normalisation for Second Order
Classical Natural Deduction. J. Symb. Log. 62, 4 (1997), 1461–1479.
https://doi.org/10.2307/2275652

[10] Cristian Sottile, Alejandro Díaz-Caro, and Pablo E. Martínez López.
2020. Polymorphic System I. In IFL 2020: 32nd Symposium on Imple-
mentation and Application of Functional Languages, Virtual Event /
Canterbury, UK, September 2-4, 2020, Olaf Chitil (Ed.). ACM, 127–137.
https://doi.org/10.1145/3462172.3462198

[11] William W. Tait. 1967. Intensional Interpretations of Functionals of
Finite Type I. J. Symb. Log. 32, 2 (1967), 198–212. https://doi.org/10.
2307/2271658



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Foundations of Gradual Abstract
Interpretation (draft paper)

ANONYMOUS AUTHOR(S)

Static program analyses are valuable tools for testing and light-
weight verification of software, offering automated predictions
of program behavior. Soundness is desirable, but non-trivial pro-
gram properties are undecidable, so sound analyses must rely
on over-approximation. This often leads to imprecision, such as
false alarms or unnecessary rejections of valid programs, which
limits the usability of sound analyses in practice. To mitigate this
problem, some authors have proposed soundiness: analysis design-
ers can deliberately under-approximate certain features, provided
that assumptions are made explicit. However, soundiness alone
does not ensure that assumptions hold at runtime, leaving results
potentially invalid. We explore an alternative approach based on
gradual techniques: optimistic assumptions are combined with
runtime checks, producing not only analysis results but also elab-
orated programs that detect violations dynamically. This gradual
style allows analyses to recover precision without abandoning
reliability. We explore how the framework of abstract interpreta-
tion can be infused with this gradual approach to produce gradual
analyses. We develop the foundations of Gradual Abstract Inter-
pretation (GAI) and formalize its metatheory for a small language
in Rocq.

1 Introduction

Static program analyses are important tools in software
development. They help in both testing and lightweight
verification of programs. Their push-button nature is at-
tractive: they can automatically report the presence of bugs
or check that a program satisfies a given property without
requiring user interaction.

A central concern for such tools is soundness. A sound
analysis guarantees that no bugs are missed and that no
program is incorrectly verified as satisfying a given prop-
erty. Soundness is desirable because an unsound tool can
mislead developers, either by overlooking errors or by val-
idating programs that do not behave as prescribed by their
specification.

Themain framework for designing sound static analyses
is abstract interpretation [Cousot and Cousot 1977]. This

framework provides a systematic method for approximat-
ing program behavior in a way that preserves soundness.
However, by Rice’s theorem [Rice 1953], every non-trivial
semantic property of programs is undecidable. Therefore,
analyses cannot be both precise and sound. If soundness is
required, program behavior must be over-approximated.
Over-approximation ensures that all possible traces of ex-
ecution of a program are considered to make a prediction.
This might include paths that are actually impossible, in-
troducing imprecision. An analysis that is too imprecise
becomes impractical. For instance, if it reports too many
false alarms or rejects too many valid programs, developers
may start to disregard the alarms and error reports.

In practice, several sources make over-approximation
particularly troublesome. Some low-level details leak into
the analysis, such as the overflow behavior of machine inte-
gers. Certain language features are also difficult to handle
statically, for example dynamic evaluation, reflection, or
user input. Moreover, programs often depend on external
libraries or APIs for which precise models are not available.

To address these difficulties, the notion of soundiness has
been proposed by Livshits et al. [2015]. In soundy analyses,
designers intentionally under-approximate some features
in order to improve precision. This approach accepts a
degree of unsoundness but requires analysis designers to
state explicitly which features are under-approximated.
The drawback is that soundiness itself does not guaran-
tee that these assumptions are respected during program
execution. Which means that users might act on invalid
results if they misuse the tool.

In this work, we address the problem in a gradual style,
taking inspiration from the principles of gradual typing
[Siek and Taha 2006]. The approach relies on optimistic
under-approximations, which are validated through the in-
sertion of runtime checks that dynamically verify whether
the assumptions hold. In this way, the output of a gradual
analysis is not just an analysis result but also an elabo-
rated program. The instrumented program contains run-
time checks that raise errors as soon as an assumption
is violated, ensuring that the analysis results are sound
approximations of the elaborated program’s behavior.

1



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Anon.

Contributions. With this work, we make the following
contributions:

• We explore how the framework of abstract inter-
pretation can be infused with the ideas that come
from gradual typing to design gradual analyses.

• We develop the foundations of Gradual Abstract
Interpretation (GAI) and study its metatheory.

• We provide a mechanized formalization in Rocq
of a proof of concept for a small language.

Outline. The rest of the paper is organized as follows.
In § 2 we illustrate the essence of this work with a run-
ning example. The small language that we consider for
our development is defined in §3, where we also present a
sound static analysis for it. In §4 we present soundiness in
more detail, discussing how we could use that approach
to increase precision of the static analysis and ponder its
problems. The foundations of GAI are introduced in §5,
where we start with an overview of the technical aspects
of the approach (§5.1), followed by the presentation of the
formalization (§5.2) and the development of the metathe-
ory (§5.3). In §6 we discuss how we envision GAI to be
used in practice, as well as future extensions to this work.
Finally, we conclude in §8.

2 Running Example

To illustrate the essence of this work, let us consider the
following program, where we define a recursive function
which computes the sum of numbers from 1 to its argument,
and then apply it to 4.

0 def sum(n):

1 if (n <= 1):

2 return 1

3 else:

4 return n + sum(n - 1)

5

6 sum(4)

Suppose we wish to do a sign analysis on this program.
That is, predict the sign of the values that the program
will work with at runtime. We can achieve this with an

⊥

− 0 +

⊤

Fig. 1. Hasse diagram of the simple sign lattice.

abstract interpreter which uses the lattice shown in Fig. 1
as its abstract domain.

For the sake of illustration, we will also suppose that the
language has bounded integers. This means that arithmetic
operations might overflow. Consequently, the addition of
two positive numbers could result in a negative value. For
the analysis to be sound, the abstract addition used by the
abstract interpreter must satisfy +⊕ + = ⊤. In other words,
adding two positive numbers could result in a value of any
sign due to potential overflows.

In the initial steps of abstract interpretation, the abstract
result of the call sum(n - 1) in line 4 will be +. If the inter-
preter is path sensitive, it could even refine its information
to know that n is positive in the else branch1. However,
the result of the addition will be ⊤ nonetheless. As a conse-
quence, once the interpretation stabilizes, the conclusion
will be that the call sum(4) in line 6 can return a value of
any sign (i.e. ⊤).

This imprecision is undesirable, as in this context we
know that an overflow will not occur and that the call
will return a positive result. In fact, we could be using this
analysis during the development of a system in a particular
domain where we will always work with small integers.
Therefore, the precision of the analysis will suffer unnec-
essarily. What can we do to remedy this?

We could follow the soundy approach of [Livshits et al.
2015] and design our analysis assuming that no overflows
will occur. In the spirit of soundiness, we would need to
be explicit about this assumption and inform the users
of the analysis about it. Our newfound optimism would
allow us, in particular, to under-approximate the behavior
1Path sensitivity is intractable in the general case. However, for simple
guard conditions such as n <= 1, the fact that n is strictly positive in the
else branch can indeed be derived automatically.



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Foundations of Gradual Abstract Interpretation (draft paper) 3

of the addition. Therefore, the abstract operation would be
such that + ⊕ + = +. This is enough to recover precision
in our previous example, and the abstract interpreter will
conclude that the call sum(4) returns a positive value.

The problem with this approach is that, although we
have warned the users about our assumption, the analysis
provides no mechanism to verify that the assumption is
respected. Consequently, users are left to fend for them-
selves, and they could end up acting on incorrect results
produced by an accidental misuse of the analysis.

An alternative route to address imprecision, inspired by
gradual typing [Siek and Taha 2006; Siek et al. 2015], is
to insert runtime checks in the points where the analysis
leverages optimistic assumptions. In our example program,
the assumption is used in line 4. Therefore, a runtime check
would be inserted to guard the addition, yielding an elabo-
rated program like the following, where check>0(·)2raises
an error if its argument is non-positive.

0 def sum(n):

1 if (n <= 1):

2 return 1

3 else:

4 return check>0(n + sum(n - 1))

5

6 sum(4)

A gradual analysis would, therefore, not only give a
more precise result, but also an elaborated program whose
runtime behavior is faithful to the prediction. The users of
such an analysis can now test the elaborated program in
realistic scenarios to make sure that the assumptions are
being respected, getting a runtime error as soon as possible
if that is not the case. This gives them the opportunity and
valuable information to correct the original program.

3 Base Language & Static Analysis

In this section we define a simple language and a sound
abstract interpreter for it, which we also refer to as static
analysis. Both of these are the base for our study of the
2For the addition of two strictly positive numbers, this check is enough
to guarantee that no overflow occurred, as an overflow cannot cause the
result to «loop around» yielding a strictly positive result.

foundations of Gradual Abstract Interpretation (GAI). All
the definitions, theorems and notable results presented in
this paper have been formalized in the Rocq prover.

The base language, defined in Fig. 2, contains integer
and boolean values, identifiers, addition and < comparison
for integers, and an if expression. In our formalization, in-
tegers aremodeled using the abstractions of fixed-length bi-
nary integers provided by CompCert [Leroy 2009], which
correctly model the overflowing behavior of arithmetic
operations. We also define concrete contexts (𝜌) as maps
from identifiers to values, and sets of contexts (𝜌).

The concrete semantics of the language is defined by
the big-step reduction relation ⟦𝑒⟧ 𝜌 ↦→ 𝑣 . As standard
practice in abstract interpretation, the collecting semantics
⟦𝑒⟧𝐶 𝜌 ↦→ 𝑣 is defined for sets of concrete contexts, and
its purpose is to collect the values which an expression
reduces to in each context of the set. Fig. 2 shows some of
the rules that define these relations.

The abstract domain used by our sound abstract inter-
preter is illustrated in Fig. 3. It is an extension of the lattice
presented in §2, and includes new abstract values to repre-
sent any integer (Z) and booleans (B). Thus, the ⊤ element
now represents any value, integer or boolean. We will refer
to this lattice as 𝐿, and use ⊑, ⊔ and ⊓ to represent its par-
tial order relation, join and meet operations, respectively.

To complete the abstract domain, we define abstract
contexts (𝜎) as maps from variables to abstract values. The
relations and operations of 𝐿 extend naturally to abstract
contexts through pointwise definitions, and we will over-
load the symbols to avoid verbosity.

The connection between the concrete and abstract do-
mains is established through the abstraction functions 𝛼 ,
𝛼𝑣 , 𝛼𝜌 and 𝛼𝜌 , defined for values, sets of values, contexts
and sets of contexts respectively, as illustrated also in Fig. 3.
Note that both 𝛼𝜌 and 𝛼𝜌 produce a single abstract context
as a result.

With the previous definitions in place, we are ready to
introduce the abstract interpreter. Some of its rules are
illustrated in Fig. 4. The most relevant for our discussion
is AAdd, which shows that the abstract interpreter han-
dles the addition with the sound abstract addition ⊕𝑠 . As



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Anon.

𝑣 ::= 𝑧 ∈ Z | 𝑏 ∈ B
𝑒 ::= 𝑣 | 𝑥 ∈ Var | 𝑒 + 𝑒 | 𝑒 < 𝑒 | if 𝑒 then 𝑒 else 𝑒

𝜌 ∈ Ctx = Var→ Val
𝜌 ∈ P(Ctx)
𝑣 ∈ P(𝑉𝑎𝑙)

⟦𝑒⟧ 𝜌 ↦→ 𝑣

...

⟦𝑒1⟧ 𝜌 ↦→ 𝑧1 ⟦𝑒2⟧ 𝜌 ↦→ 𝑧2

⟦𝑒1 + 𝑒2⟧ 𝜌 ↦→ 𝑧1 + 𝑧2
EAdd

⟦𝑒⟧𝐶 𝜌 ↦→ 𝑣

...

⟦𝑒⟧ 𝜌 ↦→ 𝑣 ⟦𝑒⟧𝐶 𝜌 ↦→ 𝑣

⟦𝑒⟧𝐶 {𝜌} ∪ 𝜌 ↦→ {𝑣} ∪ 𝑣
CollectCons

Fig. 2. Definition of base language: syntax, semantic domains and concrete semantics. The language features integer and boolean
values, identifiers, addition and < comparison for integers, and an if expression. For illustration, we show some of the rules that
define the relations of the concrete semantics.

.

discussed in §2, this operation accounts for potential over-
flows, returning Z (any integer) when both operands are
positive or both are negative. Its definition is also extended
to work with the new abstract domain. For instance, when
any of the operands of ⊕𝑠 is a boolean, it returns ⊥ to
signal an invalid addition.

We establish the soundness of this static analysis in
Theorem 3.1, which states that the result returned by the
abstract interpreter for an expression 𝑒 is a sound approxi-
mation of the values which 𝑒 can reduce to. The theorem
is illustrated pictorially in Fig. 5.

Theorem 3.1 (Soundness of Static Analysis).
If ⟦𝑒⟧𝐶 𝜌 ↦→ 𝑣 and ⟦𝑒⟧𝑎 𝛼𝜌 (𝜌) ↦→ 𝑎 then 𝛼𝑣 (𝑣) ⊑ 𝑎.

This formal result is desirable, however, as illustrated
in §2, it comes at the cost of the precision of the abstract
interpreter. As a consequence of the definition of the sound
abstract addition ⊕𝑠 , even for a simple expression such as
2 + 3, the static analysis returns Z, where we would want
the result to be +.

4 Soundiness

One way of increasing the precision of the static analysis
presented in the previous section is to follow the soundy ap-
proach [Livshits et al. 2015]. As introduced in §2, a soundy
analysis increases precision by under-approximating cer-
tain features. In other words, these kind of analyses opti-
mistically assume that some features are used in a specific
way and/or that some behaviors do not occur at runtime.

For example, we could turn the static analysis from §3
into a soundy analysis by switching the sound abstract
addition ⊕𝑠 with an optimistic version ⊕𝑜 which optimisti-
cally assumes that no overflow can occur. For instance, this
operation would say that adding any two positive integers
results in a positive value, i.e. + ⊕𝑜 + = +.

Soundy analyses are characterized by what is referred to
as a sound core. This is the fragment of the language whose
behavior is over-approximated by the analysis; in other
words, the subset of programs for which the soundy anal-
ysis returns sound results. In contrast, the soundy analysis



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Foundations of Gradual Abstract Interpretation (draft paper) 5

⊥

− 0 +

Z

B

⊤

𝜎 ∈ AbsCtx = Var→ 𝐿

𝛼 : Val→ 𝐿

𝛼 (𝑣) =
{
B , 𝑣 ∈ B
𝑠𝑖𝑔𝑛(𝑣) , 𝑣 ∈ Z

𝛼𝑣 : P(Val) → 𝐿

𝛼𝑣 (𝑣) =
⊔
𝑣∈𝑣

𝛼 (𝑣)

𝛼𝜌 : Ctx→ AbsCtx
𝛼𝜌 (𝜌) = {𝑥 ↦→ 𝑎 | 𝛼 (𝜌 (𝑥)), 𝑥 ∈ Dom(𝜌)}

∪ {𝑥 ↦→ ⊥ | 𝑥 ∉ Dom(𝜌)}

𝛼𝜌 : P(Ctx) → AbsCtx

𝛼𝜌 (𝜌) =
⊔
𝜌∈𝜌

𝜌

Fig. 3. Definition of the abstract domain as the extended sign
lattice 𝐿 which includes boolean values. Abstract contexts are
defined as maps from variables to abstract values of 𝐿. The con-
nection between the concrete and abstract domains is defined by
the abstraction functions 𝛼 , 𝛼𝜌 and 𝛼𝜌 .

could return either sound or unsound results for programs
that lie outside of the sound core.

Analysis designers ought to declare which features are
not part of the sound core, and describe how they are
under-approximated, i.e. describe what assumptions are
made about the behavior of those features. For the soundy
version of our analysis, we would declare that the addition
is under-approximated by assuming that it does not over-
flow. Our responsibility as analysis designers would end

⟦𝑒⟧𝑎 𝜎 ↦→ 𝑎

⟦𝑒1⟧𝑎 𝜎 ↦→ 𝑎1 ⟦𝑒2⟧𝑎 𝜎 ↦→ 𝑎2

⟦𝑒1 + 𝑒2⟧𝑎 𝜎 ↦→ 𝑎1 ⊕𝑠 𝑎2
AAdd

⟦𝑒𝑡⟧𝑎 𝜎 ↦→ 𝑎𝑡 ⟦𝑒𝑓 ⟧𝑎 𝜎 ↦→ 𝑎𝑓

⟦if 𝑐 then 𝑒𝑡 else 𝑒𝑓 ⟧𝑎 𝜎 ↦→ 𝑎𝑡 ⊔ 𝑎𝑓
AIf

Fig. 4. Relevant rules of the abstract interpreter which uses lat-
tice 𝐿 as the abstract domain. Interpretation of the addition is
performed using the sound abstract addition ⊕𝑠 . For the if, the
interpreter joins the results of both branches.

𝑃

𝐸𝑣𝑎𝑙 𝐴

𝑎𝑠

𝑣

SOUNDNESS

⊑
ො𝑣

α

Fig. 5. The results of the abstract interpreter soundly approximate
the values that a program reduces to.

there. The users of the analysis need to pay attention to
how they use the feature so that they can assess whether
their program is in the sound core or not, so that they can
correctly interpret the results of the analysis. However,
determining whether a program satisfies the assumptions
of the soundy analysis might not be straightforward, and
an incorrect appraisal of the situation might lead a user to
trust invalid results.

In practical analyses, under-approximations are justified
by domain knowledge. They reflect the way in which fea-
tures are actually used. For example, in a study by Richards
et al. [2011], the authors show that the eval construct in
JavaScript, which allows dynamic execution of arbitrary
code, is employed in very specific patterns by expert users.



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Anon.

As discussed, this kind of domain knowledge can be
levaraged to increase the precision of analyses. But it can
also guide us on how to check whether the under-appro-
ximated features are being used in a way that satisfies the
optimistic assumptions. For example, when computing an
addition of two positive numbers, we can check whether
an overflow occurred by testing if the result was positive.

Once we notice that, we can approach the design of
analyses using the gradual approach. That is, whenever
the analysis treats a feature optimistically, it inserts a run-
time check so that the assumption can be validated during
execution. Such a gradual analysis would not only return
a more precise prediction, but also an elaborated program
that the user can run in realistic scenarios to test whether
the original program actually satisfies the optimistic as-
sumptions leveraged by the analysis.

In the next section, we explore how we can infuse the
theory of abstract interpretation with the techniques that
come from gradual typing, in order to produce gradual
analyses such as the one described above.

5 Gradual Abstract Interpretation (GAI)

In this section we develop the theory of the gradual ap-
proach to program analysis based on abstract interpreta-
tion. All aspects of the formalization have beenmechanized
in the Rocq prover.

5.1 Approach

As illustrated in § 2, the essence of GAI is the insertion
of runtime checks to validate the optimistic assumptions
leveraged by an abstract interpreter to increase the pre-
cision of its results. Thus, a gradual abstract interpreter
(also referred to as gradual analysis), yields an elaborated
program along with its result.

The way we introduce optimism in an abstract inter-
preter is quite simple. Each language construct that is going
to be handled gradually has two corresponding abstract
operations: a sound one and an optimistic one. With these,
the gradual analysis can detect an opportunity to be opti-
mistic by performing both operations and comparing the
sound result 𝑎𝑠 with the optimistic one 𝑎𝑜 . If 𝑎𝑠 @ 𝑎𝑜 , that

is, when the optimistic result is strictly more precise than
(or unrelated to) the sound one, then the analysis can be
optimistic. This condition also signals the need for a run-
time check. If not, the analysis simply returns the sound
result and does not insert any check.

The final result is obtained as the precision meet 𝑎𝑠 ⊓ 𝑎𝑜 ,
thereby ensuring the most precise under-approximation.
If the sound and optimistic results are unrelated but have
a non-empty intersection, the meet yields the intersection.
And if the intersection is empty, the meet results in ⊥,
which lets us know that the check will always fail. Simply
returning the optimistic result 𝑎𝑜 would miss those cases.

To illustrate the approach, let us see how the gradual
version of the static analysis of §3 would operate. Firstly,
it would have both a sound abstract addition ⊕𝑠 and an
optimistic one ⊕𝑜 , such as the one discussed in §4. When
analyzing the addition of two positive numbers, the analy-
sis notes that +⊕𝑠 + = Z @ + = +⊕𝑜 +. Therefore, the final
result is Z ⊓ + = + and, because the analysis is being opti-
mistic, it inserts a runtime check in the elaborated program,
in order to validate the assumption during execution.

5.2 Formalization

We begin the formalization of GAI by extending the base
language presented in §3 with a construct called assume.
This expression is an abstract representation of a runtime
check. An assume takes a subject expression 𝑒 and an ab-
stract value 𝑎, which we refer to as the assumption. During
execution, 𝑒 is reduced and if the abstraction of the re-
sulting value is at least as precise as the assumption, the
execution continues with the computed value. Otherwise,
execution terminates with an error. For simplicity, errors
are represented by the special value ⊥. These extensions
to the base language and reduction are presented in Fig. 6.

We can also extend the static analysis presented in §3
to handle the assume expression. As presented in the rule
AAssume, and consistent with the discussion in §5.1, the
analysis uses the meet operation to combine the result of
3To simplify the presentation, we omit the propagation rules for errors.
They are defined as expected, i.e. when any of the operators of an operation
is an error, the operation results in an error. Likewise, when the condition of
an if is an error, the expression reduces to an error (no branch is evaluated).



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Foundations of Gradual Abstract Interpretation (draft paper) 7

𝑣 ::= ... | ⊥
𝑒 ::= ... | assume 𝑒 𝑎

⟦𝑒⟧ 𝜌 ↦→ 𝑣 𝛼 𝑣 ⊑ 𝑎
⟦assume 𝑒 𝑎⟧ 𝜌 ↦→ 𝑣

EAssumePass

⟦𝑒⟧ 𝜌 ↦→ 𝑣 𝛼 𝑣 @ 𝑎

⟦assume 𝑒 𝑎⟧ 𝜌 ↦→ ⊥ EAssumeFail

Fig. 6. Base language and reduction rules extended with the
assume construct3.

⟦𝑒⟧𝑎 𝜎 ↦→ 𝑎𝑒

⟦assume 𝑒 𝑎⟧𝑎 𝜎 ↦→ 𝑎𝑒 ⊓ 𝑎
AAssume

Fig. 7. Static analysis rules extended for the assume construct.

the analysis for the subject expression and the assumption.
This handling preserves soundness of the static analysis
as stated in Theorem 3.1.

With the presented extensions, we are ready to define
the gradual abstract interpreter. We write 𝜎 ⊢ 𝑠 ⇝ 𝑒 : 𝑎 to
mean that, when a gradual abstract interpreter analyze a
source expression 𝑠 in the abstract context 𝜎 , it returns the
elaborated expression 𝑒 and the result 𝑎. Both the source
expression 𝑠 and the elaborated one 𝑒 are terms of the same
extended language, but we use different metavariables to
make it evident in text when we are talking about one kind
of expression or the other.

The structure of the rules of the static analysis are pre-
served by the gradual analysis except for the addition,
where we now have two rules (GAddSafe and GAddOpti-
mistic) to detect an opportunity for optimism as described
in §5.1. The sound abstract addition used in these rules
(⊕𝑠 ) is the same operation used by the static analysis in
AAdd.

The gradual analysis is parameterized by a set of op-
timistic abstract operations, 𝑜𝑝𝑠 , yielding the notation
𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠 ⇝ 𝑒 : 𝑎. Likewise, the optimistic abstract ad-
dition is written ⊕𝑜𝑝𝑠𝑜 . This parameterization allows us to
further fine-tune the precision of the gradual analysis, and
also provides a means to decouple the theory from the

actual implementation of the optimistic operations. Conse-
quently, it allows us to study the formal requirements for
those optimistic operations.

As shown in rule GAddOptimistic, when optimism is
applied, the analysis inserts an assume, representing the
runtime check. The assumption that is checked during ex-
ecution is the same abstract value that the analysis returns
as a result (𝑎𝑠 ⊓ 𝑎𝑜 ). This ensures that this result soundly
approximates the reduction of the elaborated expression.

5.3 Metatheory

One of the objectives of a gradual analysis is to increase the
precision of the results by leveraging optimistic assump-
tions. As we noted in the previous section, the gradual
analysis preserves the structure of the rules of the static
analysis, modulo the gradual handling of the addition. This
means that the gradual analysis produces the same results
as the static analysis for all expressions except for the ad-
dition. However, in this case there are two options. Either
the gradual analysis proceeds optimistically, returning a
result that is more precise than the one that the static one
returns (𝑎𝑠 ⊓𝑎𝑜 ⊑ 𝑎𝑠 ), or it uses no optimism, returning the
same result as the static analysis. Therefore, irrespective
of the route that the gradual analysis takes, its results will
be at least as precise as the results of the static one. And, in
some cases, it yields results that are indeed more precise.
We establish this in Theorem 5.1.

Theorem 5.1 (Gradual Analysis is More Precise). If
𝜎 ⊢ 𝑠 ⇝ 𝑒 : 𝑎𝑔 and ⟦𝑠⟧𝑎 𝜎 ↦→ 𝑎𝑠 then 𝑎𝑔 ⊑ 𝑎𝑠 .

Note that whenever we use the notation that leaves
the set of optimistic operations implicit, it means that the
property in question is quantified for all possible sets of
operations. Therefore, the formal result is valid for all in-
stantiations of the gradual analysis.

Another interesting property of the gradual analysis is
that it is idempotent. That is, if the analysis of a source
expression yields a result 𝑎 and an elaborated expression 𝑒 ,
then analyzing 𝑒 returns the same result 𝑎. In other words,
the gradual analysis cannot apply further optimism. This
property is interesting because when the gradual analysis



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Anon.

𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠 ⇝ 𝑒 : 𝑎

𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠1 ⇝ 𝑒1 : 𝑎1 𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠2 ⇝ 𝑒2 : 𝑎2 𝑎1 ⊕𝑠 𝑎2 ⊑ 𝑎1 ⊕𝑜𝑝𝑠𝑜 𝑎2

𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠1 + 𝑠2 ⇝ 𝑒1 + 𝑒2 : 𝑎1 ⊕𝑠 𝑎2
GAddSafe

𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠1 ⇝ 𝑒1 : 𝑎1 𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠2 ⇝ 𝑒2 : 𝑎2 𝑎1 ⊕𝑠 𝑎2 @ 𝑎1 ⊕𝑜𝑝𝑠𝑜 𝑎2

𝜎 ⊢⟨𝑜𝑝𝑠⟩ 𝑠1 + 𝑠2 ⇝ assume (𝑒1 + 𝑒2) (𝑎𝑠 ⊓ 𝑎𝑜 ) : 𝑎𝑠 ⊓ 𝑎𝑜
where 𝑎𝑠 = 𝑎1 ⊕𝑠 𝑎2 and 𝑎𝑜 = 𝑎1 ⊕𝑜𝑝𝑠𝑜 𝑎2

GAddOptimistic

Fig. 8. Relevant rules of the gradual analysis. The addition is handled by two rules to detect an oportunity for optimism.

cannot be optimistic, it returns the same results as the
static analysis.

As a consequence, analyzing an elaborated expression
with the static analysis returns the same result that the
gradual analysis returnswhen analyzing the corresponding
source expression. This is stated in Lemma 5.2.

Lemma 5.2 (Static Analysis on Elaborated Program).
If 𝜎 ⊢ 𝑠 ⇝ 𝑒 : 𝑎, then ⟦𝑒⟧𝑎 𝜎 ↦→ 𝑎

With this lemma, we can appeal to the soundness of the
static analysis to establish the notion of gradual soundness
(Theorem 5.3), which states that the results of the gradual
analysis are sound approximations of the behavior of the
elaborated expressions.

Theorem 5.3 (Gradual Soundness). If
𝛼𝜌 (𝜌) ⊢ 𝑠 ⇝ 𝑒 : 𝑎 and ⟦𝑒⟧𝐶 𝜌 ↦→ 𝑣 then 𝛼𝑣 (𝑣) ⊑ 𝑎.

All the previous connections between the gradual and
static analyses are depicted in Fig. 9, along with the results
stated by Theorem 5.1 and Theorem 5.3.

Respecting the expectations of users. In gradual typing,
one of the central concerns is to allow users to navigate the
static-to-dynamic spectrum without breaking their expec-
tations regarding typing and reduction. This is captured
by the gradual guarantees [Siek et al. 2015]. Similar con-
siderations also apply in the context of GAI, with some
nuance, in three dimensions, as explained hereafter.

Error-Approximation of Source Expressions. Firstly, the
elaboration needs to preserve the reduction behavior of the

𝑃

𝑃′

𝑎𝑔

𝐺 𝐴

𝑎𝑠

𝐸𝑣𝑎𝑙

𝑣

⊑

GRADUAL INCREASES PRECISIONGRADUAL SOUNDNESS

ො𝑣
⊑

α

Fig. 9. Relations between the gradual and static analyses. Ana-
lyzing an elaborated program with the static analysis yields the
same prediction that the gradual analysis returned for the corre-
sponding source program. The results of the gradual analysis are
sound approximations of the behavior of elaborated expressions,
and are at least as precise as the results of the static analysis.

source expressions. In other words, if the source expression
reduces to a value, then the elaborated expression must
also reduce to a related value or fail with an error raised by
a runtime check. This property is inspired by the dynamic
gradual guarantee (DGG) of gradual typing, and we call it
error approximation (following New and Ahmed [2018]).

In our context, this property is established from the
well-formedness of the elaboration, defined by the relation
ElabWF𝜎 𝑠 𝑒 , whose presentation we omit for brevity. This
relation essentially requires the elaboration to preserve
the syntactic structure of the source expression 𝑠 , and only
allows it to introduce assumes in 𝑒 . We prove that the
elaborated expressions produced by the gradual analysis



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Foundations of Gradual Abstract Interpretation (draft paper) 9

𝑃

𝑃′

𝑎𝑔

𝐺

𝐸𝑣𝑎𝑙 𝑣

⊑

ELABORATED TERM

ERROR-APPROXIMATES

SOURCE TERM

𝐸𝑣𝑎𝑙 𝑣′

⊥

𝐸
𝑙𝑎
𝑏
𝑊
𝐹 𝜎

Fig. 10. Well-formedness of the elaboration and error-
approximation of the source term by the elaborated term.

are well-formed with respect to their source expressions
(Theorem 5.4).

Theorem 5.4 (Elaboration of Gradual Analysis is
Well-Formed). If 𝜎 ⊢ 𝑠 ⇝ 𝑒 : 𝑎 then ElabWF𝜎 𝑠 𝑒 .

We also prove that, whenever ElabWF𝜎 𝑠 𝑒 holds, 𝑒
error-approximates 𝑠 (Theorem 5.5).

Theorem 5.5 (Elaborated Expression Error-Approx-
imates Source). If ElabWF𝛼𝜌 (𝜌 ) 𝑠 𝑒 then,

(1) if ⟦𝑠⟧ 𝜌 ↦→ 𝑣𝑠 then ⟦𝑒⟧ 𝜌 ↦→ 𝑣𝑒 and 𝑣𝑒 ⊑ 𝑣𝑠 .
(2) if ⟦𝑒⟧ 𝜌 ↦→ 𝑣𝑒 and 𝑣𝑒 ≠ ⊥ then ⟦𝑠⟧ 𝜌 ↦→ 𝑣𝑠 and

𝑣𝑒 ⊑ 𝑣𝑠 .

The second part of Theorem 5.5 is important, because it
ensures that if a user runs an elaborated program in a given
context and the program reduces without failing, then the
corresponding source program can be run safely in the
same context, reducing correctly. In other words, it verifies
that in that context, no assumptions were violated, and
the results given by the gradual analysis are also sound
approximations of the behavior of the source program
(without runtime checks). The previous results are depicted
in Fig. 10.

Monotonicity with Respect to Expression Precision. The
second dimension in which a gradual analysis honors the
expectations of users is with respect to the precision of
the analyzed programs. For this, we define a precision

relation for expressions. We say that 𝜎1, 𝜎2 ⊢ 𝑒1 ≼ 𝑒2 holds
when both expressions are syntactically equal modulo the
pressence of assumes, as handled by the rules shown in
Fig. 11. The relation is indexed by two abstract contexts,
𝜎1 and 𝜎2, to allow relating expressions that have the same
identifiers bound to related values.

In rule LTEEAssume, we relate two assumes expres-
sions when their subjects and assumptions are related by
precision.

Notable are the cases where we try to relate expressions
with asymmetric presence of assumes. When an assume

appears on the left expression, the premise in rule LTEE-
AssumeL tells us (by inductive reasoning) that the analysis
result and reduction for 𝑒1 are more precise than the anal-
ysis result and reduction of 𝑒2. And, since an assume can
only increase precision, that sole premise is enough to es-
tablish that surrounding 𝑒1 with an assume is more precise
than 𝑒2.

The rule for the opposite case (LTEEAssumeR) has more
requirements. Since an assume can increase precision, the
premise 𝜎1, 𝜎2 ⊢ 𝑒1 ≼ 𝑒2 is not enough to establish 𝜎1, 𝜎2 ⊢
𝑒1 ≼ assume 𝑒2 𝑎2. We also need to show that the result
and reduction for 𝑒1 are more precise than the assumption
on the right. We achieve this with the help of the static
analysis, which we can then relate to the gradual analysis
with Lemma 5.2.

Monotonicity with Respect to Precision of Operations. The
third dimension is the precision of the optimistic abstract
operations with which a gradual analysis is instantiated. In
other words, the analysis result and elaboration need to be
monotonic with respect to the precision of the operations.

To this end, we define a precision relation for operations,
and say that 𝑜𝑝𝑠1 ⊑ 𝑜𝑝𝑠2 holds when, for the same inputs,
the operations in 𝑜𝑝𝑠1 yield results that are as precise as
those in 𝑜𝑝𝑠2.

With the previous definitions we establish adaptations
of the static and dynamic gradual guarantees of gradual
typing, which embody the monotonicity of the gradual
analysis, elaboration, and reduction with respect to the
precision of terms and operations.



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Anon.

𝜎1, 𝜎2 ⊢ 𝑒1 ≼ 𝑒2

𝜎1, 𝜎2 ⊢ 𝑒1 ≼ 𝑒2 𝑎1 ⊑ 𝑎2

assume 𝑒1 𝑎1 ≼ assume 𝑒2 𝑎2
LTEEAssume

𝜎1, 𝜎2 ⊢ 𝑒1 ≼ 𝑒2

assume 𝑒1 𝑎 ≼ 𝑒2
LTEEAssumeL

𝜎1, 𝜎2 ⊢ 𝑒1 ≼ 𝑒2 ⟦𝑒1⟧𝑎 𝜎1 ↦→ 𝑎1 𝑎1 ⊑ 𝑎2

𝑒1 ≼ assume 𝑒2 𝑎2
LTEEAssumeR

Fig. 11. Relevant rules of the precision relation for expressions.

The Static Gradual Guarantee (SGG) establishes that
when the gradual analysis is applied to expressions re-
lated by precision, the elaborated expressions and analysis
results are also related by precision.

Theorem 5.6 (SGG). If 𝜎1, 𝜎2 ⊢ 𝑒1 ≼ 𝑒2, 𝑜𝑝𝑠1 ⊑ 𝑜𝑝𝑠2,
𝜎1 ⊢⟨𝑜𝑝𝑠1⟩ 𝑒1 ⇝ 𝑒′1 : 𝑎1 and 𝜎2 ⊢⟨𝑜𝑝𝑠2⟩ 𝑒2 ⇝ 𝑒′2 : 𝑎2, then

(1) 𝜎1, 𝜎2 ⊢ 𝑒′1 ≼ 𝑒′2
(2) 𝑎1 ⊑ 𝑎2

The Dynamic Gradual Guarantee (DGG) captures the
fact that reduction is monotonic with respect to expression
precision. Similar to the case for well-formedness of the
elaboration, the DGG establishes that the most precise
expression error-approximates the least precise one.

Theorem 5.7 (DGG). If 𝛼𝜌 (𝜌1), 𝛼𝜌 (𝜌2) ⊢ 𝑒1 ≼ 𝑒2,

𝑜𝑝𝑠1 ⊑ 𝑜𝑝𝑠2, 𝛼𝜌 (𝜌1) ⊢⟨𝑜𝑝𝑠1⟩ 𝑒1 ⇝ 𝑒′1 : 𝑎1 and

𝛼𝜌 (𝜌2) ⊢⟨𝑜𝑝𝑠2⟩ 𝑒2 ⇝ 𝑒′2 : 𝑎2, then

(1) if ⟦𝑒′2⟧ 𝜌2 ↦→ 𝑣2 then ⟦𝑒′1⟧ 𝜌1 ↦→ 𝑣1 and 𝑣1 ⊑ 𝑣2.

(2) if ⟦𝑒′1⟧ 𝜌1 ↦→ 𝑣1 and 𝑣1 ≠ ⊥ then ⟦𝑒′2⟧ 𝜌2 ↦→ 𝑣2
and 𝑣1 ⊑ 𝑣2.

These results are illustrated in Fig. 12.

6 Discussion

Wenow discuss howwe envision GAI to be used in practice
and some considerations about future work.

6.1 GAI in Practice

One of the objectives of GAI is to allow users to check that
the programs they analyze indeed respect the optimistic
assumptions leveraged by an analysis. On this front, we

⊑

SGG

≼

𝑃1

𝑃1′

𝑎1

𝐺 𝐺

DGG

𝑃2

𝑃2′

𝑎2

⊕1 ⊕2
⊑

≼

𝐸𝑣𝑎𝑙

𝑣′⊥

𝐸𝑣𝑎𝑙

𝑣
⊑

Fig. 12. Gradual guarantees for the parametric gradual analysis.

imagine that users of gradual analyses would add them to
their development processes as follows.

During development, a user will write programs and
analyze them with a gradual analysis. She will assess if the
results are satisfactory, but also test the elaborated program
produced by the analysis in real scenarios, in order to check
that assumptions are not violated and confirm the validity
of the results. If any of the runtime checks fail, this signals
that the program needs to be corrected.

Once the results of the analysis are satisfactory, and
there is enough certainty that assumptions are not violated,
the user can trust that the original program satisfies the
assumptions of the analysis in the contexts where it was
tested, and that the results of the analysis are valid under



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Foundations of Gradual Abstract Interpretation (draft paper) 11

those conditions. In this way, the user has more assurances
that if she decides to run the original program in produc-
tion, which is computationally cheaper than running an
elaborated programwith many (potentially expensive) run-
time checks, it will behave as expected.

This mode of operation relies on the properties estab-
lished by Theorem 5.4 and Theorem 5.5.

Of course, testing the elaborated program in a number
of representative scenarios does not guarantee that the
assumptions will not be broken in a scenario that was not
considered. But this is still an improvement over soundi-
ness, because a gradual analysis gives users a way to check
that they are respecting the optimistic assumptions.

6.2 Fixpoint Algorithm & Future Work

To simplify our exploration, our formal development con-
siders a very simple language which makes the fixpoint
algorithm of abstract interpretation unnecessary. We plan
on extending this language with first-order functions, in
order to assess the correct interaction of the fixpoint algo-
rithm with the essence of the proposed gradual approach.

This being said, there are some clues that suggest that
the ideas presented in this work are compatible with the
fixpoint algorithm. In particular, one of the requirements
to guarantee termination of the fixpoint algorithm and
ensure that an analysis finds a solution, is that all the ab-
stract operations should be monotonic. In the case of the
optimistic operations, we already require them to be mono-
tonic. Apart from that, the only other language construct
that we handle in a non-standard way is the assume. The
abstract interpreter analyses the subject of the assume and
combines the result with the assumption (using the meet).
So the corresponding abstract operation for that construct
is the meet, which is monotonic on both arguments by
definition. And, as long as the lattice used as the abstract
domain has finite height, or that an appropriate widening
operator is provided, the algorithm should converge to a
solution.

7 Related Work

The application of the techniques from gradual typing
to other reasoning approaches has already been explored
in the literature, in particular in gradual program verifi-
cation [Bader et al. 2018; Wise et al. 2020] and gradual
program analysis for null pointers [Estep et al. 2021]. In
both lines of work, following the approach of gradual type
systems, optimism is driven by imprecision in annotated
information (be it nullability, or logical predicates). These
approaches exploit the Abstracting Gradual Typing (AGT)
methodology [Garcia et al. 2016] to lift static reasoning
to operate over imprecise information. In contrast, GAI
introduces optimism at the level of the operations used by
the abstract interpreter, as exemplified with the optimistic
addition. Combining this approach to GAI with explicit,
possibly incomplete and/or imprecise annotations is an
interesting direction for future work.

8 Conclusion

We study an extension of the framework of abstract in-
terpretation with techniques inspired by gradual typing.
The purpose is two-fold: to produce analyses that leverage
optimistic assumptions in order to increase precision, and
to provide a way to check whether those assumptions are
respected by the analyzed programs.

We show that these objectives are achievable with a
mechanized formalization of the foundations of Gradual
Abstract Interpretation for a small language in the Rocq
prover. We have discussed how gradual analyses could
become an integral part of the development life-cycle, and
pondered the compatibility of the ideas put forth by this
work with the fixpoint algorithm, the cornerstone of the
framework of abstract interpretation.

Future work includes the extension of the proof of con-
cept with first-order functions, to formally study the inter-
action of the fixpoint algorithm with GAI.

References
Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual Program

Verification. In Proceedings of the 19th International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI 2018), Işil



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Anon.

Dillig and Jens Palsberg (Eds.), Vol. 10747. Springer-Verlag, Los Angeles,
CA, USA, 25–46.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (Los Angeles, Cal-
ifornia) (POPL ’77). Association for Computing Machinery, New York,
NY, USA, 238–252. doi:10.1145/512950.512973

Sam Estep, Jenna Wise, Jonathan Aldrich, Éric Tanter, Johannes Bader, and
Joshua Sunshine. 2021. Gradual Program Analysis for Null Pointers. In
Proceedings of the 35th European Conference on Object-Oriented Program-
ming (ECOOP 2021), Manu Sridharan and Anders Møller (Eds.). Aarhus,
Denmark.

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual
Typing. In Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2016), Rastislav Bodík and
Rupak Majumdar (Eds.). ACM Press, St Petersburg, FL, USA, 429–442.
See erratum: https://www.cs.ubc.ca/ rxg/agt-erratum.pdf.

Xavier Leroy. 2009. A formally verified compiler back-end. Journal of
Automated Reasoning 43, 4 (2009), 363–446.

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták,
J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P.
Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In defense
of soundiness: a manifesto. Commun. ACM 58, 2 (jan 2015), 44–46.
doi:10.1145/2644805

Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection
Pairs. Proceedings of the ACM on Programming Languages 2, ICFP (Sept.
2018), 73:1–73:30.

Henry G. Rice. 1953. Classes of recursively enumerable sets and their
decision problems. Trans. Amer. Math. Soc. 74 (1953), 358–366. doi:10.
1090/S0002-9947-1953-0053041-6

Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The
eval that men do: A large-scale study of the use of eval in javascript
applications. In Proceedings of the 25th European Conference on Object-
Oriented Programming (Lancaster, UK) (ECOOP’11). Springer-Verlag,
Berlin, Heidelberg, 52–78.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional
Languages. In Scheme and Functional Programming Workshop. 81–92.

Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland.
2015. Refined criteria for gradual typing. In 1st Summit on Advances
in Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter,
and Joshua Sunshine. 2020. Gradual Verification of Recursive Heap
Data Structures. Proceedings of the ACM on Programming Languages 4,
OOPSLA (Nov. 2020), 228:1–228:28.



Type Checking Dependently Sorted Nominal Signatures
Maribel Fernández
King’s College London

UK
maribel.fernandez@kcl.ac.uk

Miguel Pagano
Univ. Nac. Córdoba

Argentina
miguel.pagano@unc.edu.ar

Nora Szasz
Universidad ORT

Uruguay
szasz@ort.edu.uy

Álvaro Tasistro
Universidad ORT

Uruguay
tasistro@ort.edu.uy

ABSTRACT
Dependently sorted nominal signatures generalise standard many-
sorted first-order signatures by including nominal abstraction con-
structs and sorts that depend on terms. They can provide a suitable
basis for a logical framework with a distinctive first-order flavour,
provided a type checking algorithm can be defined. In this paper we
show that type-checking is decidable: we present a type-checking
algorithm for dependently sorted nominal signatures that can be
directly implemented in a functional programming language. We
prove its correctness and completeness with respect to the sorting
system.

KEYWORDS
Nominal Terms, Type-checking, Dependent Types, Functional Pro-
gramming.
ACM Reference Format:
Maribel Fernández, Miguel Pagano, Nora Szasz, and Álvaro Tasistro. 2025.
Type Checking Dependently Sorted Nominal Signatures. In Proceedings of
37th Symposium on Implementation and Application of Functional Languages
(IFL 2025). ACM, New York, NY, USA, 6 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Nominal languages [2, 5, 6] provide support for the specification of
data structures that include bound names and for the formalisation
of their properties. Dependently sorted nominal signatures [1] can
be seen as a generalisation of nominal signatures where sorts can
now depend on terms. The resulting dependently sorted language
inherits the distinctive first-order algebraic flavour of nominal sig-
natures, and can serve as a basis for a logical framework [4]. More
precisely, dependently sorted nominal signatures provide a founda-
tion for a theory of expressions subject to alpha-conversion, on top
of which a system of dependent sorts is built that respects alpha-
equivalence. Names carry sorts of data —but not abstraction (or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IFL 2025, October 1-3, 2025, Montevideo, Uruguay
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

"higher-order") sorts. This yields a limited form of computation as-
sociated to the elimination of abstractions (concretion), that can be
solved at the level of syntactic meta-definitions. Thus the language
becomes a first-order dependent sorts system.

Previous work showed that dependently sorted nominal sig-
natures provide an adequate foundation for a logical framework:
specifications of first and higher-order logic, and lambda-calculi
(untyped, simply typed) have been defined, together with corre-
sponding induction principles (that are directly derived thanks to
the nominal foundation). However, for the system to be usable in
practice, a type checking algorithm is needed.

In this paper, we describe an algorithm to check whether a term
is well sorted with respect to a set of declarations (that assign a
type to each function symbol and sort constructor) and a context
(that assigns sorts to the free names occurring in the term. This
algorihtm can be directly implemented in a functional language: an
implementation in Haskell is in progress. We prove that the type
checker is sound and complete with respect to the sorting system
previously defined [1]. This is a first step towards building a (first-
order) functional programming language or a software verification
tool based on nominal syntax.

2 SYNTAX
In this section we give a short overview of the system presented in
LFMTP 2025 [1].

2.1 Grammar
Consider a countably infinite set of name sorts, each one inhabited
by a countably infinite set of names (atoms). Let 𝑎, 𝑏, 𝑐 , range
over atoms. Let also there be countably infinite sets of parameters
𝑋, 𝑌, 𝑍, . . . ∈ X; term constructors, 𝑓 , 𝑔 . . . ∈ F; and sort constructors
F , G, . . . ∈ C. Following Gabbay’s permutative convention [3]: 𝑎, 𝑏
range over distinct atoms. The notation 𝑡 refers to a vector of terms
𝑡0, . . . , 𝑡𝑛 with 𝑛 ⩾ 0; given a term 𝑡 ′ and 𝑡 = 𝑡0, . . . , 𝑡𝑛 , we use 𝑡, 𝑡 ′
to represent the vector 𝑡0, . . . , 𝑡𝑛, 𝑡 ′.



IFL 2025, October 1-3, 2025, Montevideo, Uruguay Maribel Fernández, Miguel Pagano, Nora Szasz, and Álvaro Tasistro

Sorts 𝛾 and terms 𝑡 are generated by the grammar below. We
will use𝑀 to stand for either.

𝛾 ::=F 𝑡 𝑑𝑎𝑡𝑎 𝑠𝑜𝑟𝑡𝑠

| ≪𝑎 : F 𝑡≫ 𝛾 abstraction sorts

𝑡 ::=𝑎 𝑎𝑡𝑜𝑚

|𝑋 [𝑡] parameter with term concretions

| 𝑓 𝑡 application

| ≪𝑎 : F 𝑡≫ 𝑡 abstraction

Sorts are built using sort constructors or abstractions and can
depend on terms, which can be atoms, parameters, application of a
term constructor to a tuple of terms, or the abstraction of an atom
on a term.We say an expression (sort or term) is ground iff it contains
no parameters. When a parameter 𝑋 has no concretions, we omit
the square brackets. As stated earlier, parameters are intended
for declarations, as shown in the previous section, while sorting
judgments (i.e., the language generated by the system to be given
in the next section) involve only ground expressions.

2.2 Operations and Relations
We define the action of permutations on sorts and terms. Here, 𝜋 · 𝑡
denotes the vector 𝜋 · 𝑡0, . . . , 𝜋 · 𝑡𝑛 .

Definition 1 (Permutation Action). A permutation 𝜋 is a
bijection on the set of atoms, A, with finite domain. We represent
permutations as lists of swappings (𝑎 𝑏). The identity permutation is
written id.

𝜋 · 𝑎 ≜ 𝜋 (𝑎)
𝜋 · ≪𝑎 : F 𝑠≫ 𝑀 ≜≪𝜋 (𝑎) : F 𝜋 · 𝑠≫ (𝜋 ·𝑀)

𝜋 · (𝑋 [𝑡]) ≜ 𝑋 [𝜋 · 𝑡]
𝜋 · 𝑓 𝑡 ≜ 𝑓 𝜋 · 𝑡
𝜋 · F 𝑡 ≜ F 𝜋 · 𝑡

To define alpha-equivalence, we first introduce the freshness rela-
tion. Call 𝑎 # 𝑀 a freshness constraint.

Definition 2 (Freshness Relation). A freshness judgement
has the form ⊢ 𝑎 # 𝑀 . To derive freshness judgements we use the
following rules. A premise ⊢ 𝑎 # 𝑡 is to be expanded as ⊢ 𝑎 # 𝑡0, . . .,
⊢ 𝑎 # 𝑡𝑛 .

(atm)# ⊢ 𝑎 # 𝑏
⊢ 𝑎 # 𝑡(cns)# ⊢ 𝑎 # F 𝑡

⊢ 𝑎 # 𝑡(app)# ⊢ 𝑎 # 𝑓 𝑡

⊢ 𝑎 # F 𝑡(abaa)# ⊢ 𝑎 #≪𝑎 : F 𝑡≫ 𝑀

⊢ 𝑎 # 𝑀 ⊢ 𝑎 # F 𝑡(abab)# ⊢ 𝑎 #≪𝑏 : F 𝑡≫ 𝑀
⊢ 𝑎 # 𝑡(var)#
⊢ 𝑎 # 𝑋 [𝑡]

The main difference with respect to the freshness relation for
standard nominal terms is the introduction of new rules (abaa)#,
(abab)#, (cns)#, and (var)#, the rule for concretion, which checks
freshness only in terms and not in the parameter. As will be com-
mented again later, parameters stand for arbitrary closed ground
terms of the target language.

Definition 3 (Alpha-eqivalence Relation). An𝛼-equivalence
judgement has the form ⊢ 𝑀 ≈𝛼 𝑁 , where𝑀 and 𝑁 are ground. We
introduce now the rules defining this relation. A premise ⊢ 𝑠 ≈𝛼 𝑡 ,
where 𝑠 and 𝑡 must always be of the same size, is to be expanded in
an element-wise manner into premises ⊢ 𝑠𝑖 ≈𝛼 𝑡𝑖 .

(atm)𝛼 ⊢ 𝑎 ≈𝛼 𝑎
⊢ 𝑠 ≈𝛼 𝑡(cns)𝛼 ⊢ F 𝑠 ≈𝛼 F 𝑡

⊢ 𝑠 ≈𝛼 𝑡(app)𝛼
⊢ 𝑓 𝑠 ≈𝛼 𝑓 𝑡

⊢ F 𝑡 ≈𝛼 F 𝑢 ⊢ 𝑀 ≈𝛼 𝑀 ′(abaa)𝛼 ⊢≪𝑎 : F 𝑡≫ 𝑀 ≈𝛼≪𝑎 : F 𝑢≫ 𝑀 ′

⊢ F 𝑡 ≈𝛼 F 𝑢 ⊢ 𝑀 ≈𝛼 (𝑎 𝑏) ·𝑀 ′ ⊢ 𝑎 # 𝑀 ′(abab)𝛼 ⊢≪𝑎 : F 𝑡≫ 𝑀 ≈𝛼≪𝑏 : F 𝑢≫ 𝑀 ′

This definition of alpha-equivalence generalises the standard
one for nominal terms. For simplicity, we omit a rule for param-
eters, which is not essential but would facilitate the writing of
declarations.

Lemma 1 (Eqivariance). If ⊢ 𝑎 #𝑀 then ⊢ 𝜋 · 𝑎 # 𝜋 ·𝑀 .
Similarly if ⊢ 𝑀 ≈𝛼 𝑁 then ⊢ 𝜋 ·𝑀 ≈𝛼 𝜋 · 𝑁 .

Proof. Straightforward induction. □

Freshness is stable by 𝛼-equivalence:

Lemma 2. If ⊢ 𝑎 # 𝑀 and ⊢ 𝑀 ≈𝛼 𝑁 then ⊢ 𝑎 # 𝑁 .

Proof. By induction on the freshness relation. Use equivariance.
□

Lemma 3. ≈𝛼 is a congruence.

Proof. Induction on the definition of ≈𝛼 . □

Definition 4 (Atom Substitution). We write [𝑎 ↦→ 𝑡] for the
operation that substitutes the atom 𝑎 by the term 𝑡 . This is defined on
expressions as follows:

𝑎 [𝑎 ↦→ 𝑡] ≜ 𝑡
𝑏 [𝑎 ↦→ 𝑡] ≜ 𝑏

(𝑓 𝑠) [𝑎 ↦→ 𝑡] ≜ 𝑓 (𝑠 [𝑎 ↦→ 𝑡])
(F 𝑠) [𝑎 ↦→ 𝑡] ≜ F (𝑠 [𝑎 ↦→ 𝑡])
(𝑋 [𝑡]) [𝑎 ↦→ 𝑡 ′] ≜ 𝑋 [𝑡 [𝑎 ↦→ 𝑡 ′]]

(≪𝑎 : F 𝑡≫ 𝑀) [𝑎 ↦→ 𝑡] ≜≪𝑎 : F 𝑡 [𝑎 ↦→ 𝑡]≫ 𝑀

(≪𝑏 : F 𝑡≫ 𝑀) [𝑎 ↦→ 𝑡] ≜≪𝑐 : F 𝑡 [𝑎 ↦→ 𝑡]≫ ((𝑏 𝑐) ·𝑀) [𝑎 ↦→ 𝑡]
(⊢ 𝑐 # 𝑀, ⊢ 𝑐 # 𝑡) .

Some explanations are in order: to avoid capturing unabstracted
atoms, when an atom substitution acts upon an abstraction or
abstraction sort (last case above), a suitable alpha-equivalent rep-
resentative of the latter is first chosen. Any implementation of
this definition as a recursive function must accommodate a suitable
mechanism for the generation of names; this is most easily achieved
by the threading of global state throughout the function or by the
use of a global choice function that returns the next available name.



Type Checking Dependently Sorted Nominal Signatures IFL 2025, October 1-3, 2025, Montevideo, Uruguay

Atom substitutions work uniformly on alpha-equivalence classes.

Lemma 4. If ⊢ 𝑀 ≈𝛼 𝑁 and ⊢ 𝑡 ≈𝛼 𝑢 then ⊢ 𝑀 [𝑎 ↦→ 𝑡] ≈𝛼
𝑁 [𝑎 ↦→ 𝑢]

Proof. Induction on the derivation of ⊢ 𝑀 ≈𝛼 𝑁 . □

A concretion 𝑤 [𝑡] is a partial operation: if 𝑤 is an abstraction
≪𝑎 : F 𝑠≫ 𝑢, then its concretion to 𝑡 evaluates to the body of the
abstraction, 𝑢, where the abstracted atom is substituted by 𝑡 . If𝑤 is
the parameter 𝑋 (possibly with other concretions suspended in it),
the concretion remains “suspended” (until 𝑋 is instantiated). Under
the sorting system of the next section, concretion of a parameter
will be well-sorted only if the parameter is of an (appropriate)
abstraction sort.

Definition 5 (Concretion). Concretion is a partial operation:

(≪𝑎 : F 𝑠≫ 𝑢) [𝑡] ≜ 𝑢 [𝑎 ↦→ 𝑡]
(𝑋 [𝑡]) [𝑡 ′] ≜ 𝑋 [𝑡, 𝑡 ′]

Definition 6 (Parameter Instantiation). A parameter instan-
tiation is a finite mapping from parameters to terms, and it acts on
expressions as just grafting (i.e., without a control of capture), subject
to the condition that each parameter to be replaced is in the domain
of the instantiation.

2.3 Sorting judgements
We use five forms of judgements: 1) Well-formedness of signature
Σ, formally ⊢ Σ sig-ok (Fig. 1a); 2) Well-formedness of telescopes T
under a valid signature, ⊢Σ T tel-ok(Fig. 1b); 3) Well-formedness
of contexts of atoms ( Fig. 1c), T ⊢Σ Γ ctx-ok; 4) Well-formedness
of sorts (Fig. 1d), T ; Γ ⊢Σ 𝛾 sort; and 5) Well-sortedness of terms
(Fig. 1e), T ; Γ ⊢Σ 𝑡 : 𝛾 .

As indicated above, the sorts are either data sorts or abstraction
sorts. Data sorts are introduced by sort constructors F , and these
can only introduce data sorts, never an abstraction sort —the latter
being formed exclusively by the binder≪_ : _≫ _. Similarly, terms
of the data sorts are formed by (term) constructors 𝑓 , and terms of
abstraction sorts exclusively by the corresponding binder. Signa-
tures are sequences of declarations of sort and term constructors.
As already explained, a declaration specifies the sorts of the cor-
responding parameters and a freshness context. These parameter
declarations are called telescopes. The word context is reserved for
atom contexts, Γ, necessary to sort abstractions.

As already stated, the intention is that the system is used for
generating well-formed ground sorts and terms. The rules given
below define well-formed scripts of declarations (i.e. signatures),
which involve not only ground expressions but also expressions
with parameters.

First, notice the use of freshness contexts (Δ) in declarations. They
involve conditions of the form 𝑎 # 𝑋 , where the atom 𝑎 is to appear
bound in the declaration and 𝑋 is any parameter of the declaration.

This defines the side condition on well-formedness of the con-
texts Δ. The rules check the validity of the freshness conditions
whenever a declaration is put into use, i.e. in rules (data) and (constr).
There the constructor employed must be declared in the signature
with a telescope T ′ and freshness context Δ, as stated in the side
condition. Then a fresh version of T ′, as well as of Δ, are created

by employing new atoms so as to avoid possible collisions with
unabstracted atoms in the expression being checked. We call this
new telescope T ′# , and the new context Δ#. Then it is checked that
the tuple 𝑡 of arguments fits the telescope T ′# and at the same time
the conditions in Δ# are satisfied, with the mentioned parameters
instantiated accordingly by the tuple 𝑡 —which we write (Δ#)𝑡 .
That a tuple of terms fits a telescope has the (obvious) meaning
that: a) The telescopes and the context are well-formed. b) They
are of the same length. c) Each term has the sort attached to its
corresponding parameter, instantiated on the preceding terms in
the tuple.

An equally valid alternative is that the freshness conditions are
rather imposed by the system, i.e. a freshness declaration is to be
interpreted as an assumption on part of the user about the employ-
ment of names in the (ground) expressions to be generated. The
conditions can be imposed by the system by generating in each
case a sample chosen among all the alpha-equivalent expressions
satisfying the sorting rules that also respects the freshness condi-
tions. For this to work, it is essential that the system is closed under
alpha-equivalence —which will be shown presently— and that the
freshness conditions are only on bound atoms —which is already
imposed in the well-formation of declarations.

In the rule (constr) we use the notation 𝑢𝑡 , which stands for the
instantiation of the parameters of the tuple of terms 𝑢 with the
tuple 𝑡 .

Finally, let us remark that, as stated in rule (fun-sig) and (cons-
tel), valid telescopes and target sorts of term constructors cannot
depend on (unabstracted) atoms. Also note that in the rules we
omit premises that can be deduced from some explicitly mentioned
premise.

3 PROPERTIES OF THE SORTING SYSTEM
In this section we analyse in more detail the properties of the
dependently sorted system given above, before designing a type
checking algorithm for it.

Lemma 5 (Concretion is well-typed). Let 𝑡, 𝑡 ′ be terms,𝛾 a sort,
and 𝑎 an atom. If T ; Γ ⊢Σ 𝑡 :≪𝑎 : F 𝑠≫ 𝛾 , and T ; Γ ⊢Σ 𝑡 ′ : F 𝑠 ;
then 𝑡 [𝑡 ′] is well-defined and T ; Γ ⊢Σ 𝑡 [𝑡 ′] : 𝛾 [𝑎 ↦→ 𝑡 ′].
Notice that the converse does not hold: consider the case of 𝑡 being
an abstraction≪𝑎 : F 𝑠≫ 𝑢 where 𝑎 does not occur free in 𝑢.

Proof. One can prove that a term has an abstraction sort if
and only if it is an abstraction or a meta-variable (possibly with
some concretions). Those are the cases when the concretion 𝑡 [𝑡 ′]
is well-defined.

The well-sortedness of the concretion is trivial when 𝑡 is a meta-
variable. The case for the abstraction depends on the substitution
lemma. □

Lemma 6 (Substitution lemma). If T ; Γ, (𝑎 : F 𝑠), Γ′ ⊢Σ 𝑡 : 𝛾
and T ; Γ ⊢Σ 𝑢 : F 𝑠 , then T ; Γ, (Γ′[𝑎 ↦→ 𝑢]) ⊢Σ 𝑡 [𝑎 ↦→ 𝑢] : 𝛾 [𝑎 ↦→
𝑢].

The inversion lemma gives information about the shape of the
sort of some term; when the term has parameters, then we can
state precisely the shape of the term because the sort system is



IFL 2025, October 1-3, 2025, Montevideo, Uruguay Maribel Fernández, Miguel Pagano, Nora Szasz, and Álvaro Tasistro

(empty-sig) ⊢ ⟨⟩ sig-ok
⊢Σ T tel-ok(sort-sig)

{ F ∉ dom(Σ)
Δ well-formed⊢ Σ, ⟨F : T → data ; Δ⟩ sig-ok

T ; · ⊢Σ F 𝑡 sort(fun-sig)
{

𝑓 ∉ dom(Σ)
Δ well-formed⊢ Σ, ⟨𝑓 : T → F 𝑡 ; Δ⟩ sig-ok

(a) Rules for signatures.

⊢ Σ sig-ok
(empty-tel) ⊢Σ · tel-ok

T ; · ⊢Σ 𝛾 sort
(cons-tel) 𝑋 ∉ dom(T )⊢Σ T , (𝑋 : 𝛾) tel-ok

(b) Rules for telescope formation.

⊢Σ T tel-ok(emp-ctx)
T ⊢Σ · ctx-ok

T ; Γ ⊢Σ F 𝑡 sort(cons-ctx) 𝑎 ∉ dom(Γ)
T ⊢Σ Γ, (𝑎 : F 𝑡) ctx-ok

(c) Rules for well-formed contexts.

T ; Γ ⊢Σ 𝑡 fits T ′# [(Δ#)𝑡 ](data)
{ F ∈ dom(Σ)

Σ(F ) = T ′ → data;ΔT ; Γ ⊢Σ F 𝑡 sort

T ; Γ ⊢Σ F 𝑡 sort T ; (Γ, 𝑏 : F 𝑡) ⊢Σ (𝑎 𝑏) · 𝛾 sort
(abs-*)

{
𝑏 ∉ dom(Γ)
𝑏 # 𝛾T ; Γ ⊢Σ≪𝑎 : F 𝑡≫ 𝛾 sort

(d) Rules for well-formed sorts.

T ⊢Σ Γ ctx-ok(atm) 𝑎 ∈ dom(Γ)
T ; Γ ⊢Σ 𝑎 : Γ(𝑎)

T ⊢Σ Γ ctx-ok(var1) 𝑋 ∈ dom(T )
T ; Γ ⊢Σ 𝑋 : T (𝑋 )

T ; Γ ⊢Σ 𝑋 [𝑡] :≪𝑎 : F 𝑠≫ 𝛾 T ; Γ ⊢Σ 𝑡 ′ : F 𝑠(var2)
T ; Γ ⊢Σ 𝑋 [𝑡, 𝑡 ′] : 𝛾 [𝑎 ↦→ 𝑡 ′]

T ; Γ ⊢Σ 𝑡 fits T ′# [(Δ#)𝑡 ](constr)
{
𝑓 ∈ dom(Σ)
Σ(𝑓 ) = T ′ → F 𝑢;ΔT ; Γ ⊢Σ 𝑓 𝑡 : F (𝑢𝑡 )

T ; Γ ⊢Σ F 𝑡 sort T ; (Γ, 𝑏 : F 𝑡) ⊢Σ (𝑎 𝑏) · 𝑡 : (𝑎 𝑏) · 𝛾(abs)
{
𝑏 ∉ dom(Γ)
𝑏 # {𝑡, 𝛾}T ; Γ ⊢Σ≪𝑎 : F 𝑡≫ 𝑡 :≪𝑎 : F 𝑡≫ 𝛾

·; Γ ⊢Σ 𝑡 : 𝛾(conv) 𝛾 ≈𝛼 𝛾 ′·; Γ ⊢Σ 𝑡 : 𝛾 ′
(e) Rules for well-sorted terms.

Figure 1: Sorting System

syntax-directed. For ground terms the inversion lemma has almost
the same statement: we replace 𝛾 = 𝛾 ′ by 𝛾 ≈𝛼 𝛾 ′.

Lemma 7 (Inversion of sorting). Let T ≠ ·.
(1) If T ; Γ ⊢Σ 𝑎 : 𝛾 , then 𝛾 = Γ(𝑎).
(2) If T ; Γ ⊢Σ 𝑋 : 𝛾 , then 𝛾 = T (𝑋 ).
(3) If T ; Γ ⊢Σ 𝑋 [𝑡, 𝑡 ′] : 𝛾 , then there exist 𝐹, 𝑠, 𝛾 ′ such that

T ; Γ ⊢Σ 𝑋 [𝑡] :≪ 𝑎 : F 𝑠 ≫ 𝛾 ′, T ; Γ ⊢Σ 𝑡 ′ : F 𝑠 , and
𝛾 = 𝛾 ′[𝑎 ↦→ 𝑡 ′].

(4) If T ; Γ ⊢Σ 𝑓 𝑡 : 𝛾 , then 𝑓 ∈ dom(Σ) and there exists F , 𝑢,
T ′, and Δ, such that Σ(𝑓 ) = T ′ → F 𝑢;Δ and 𝛾 = F (𝑢𝑡 ).

(5) If T ; Γ ⊢Σ≪𝑎 : F 𝑡≫ 𝑡 : 𝛾 , then there exist 𝛾 ′ such that
𝛾 =≪𝑎 : F 𝑡≫ 𝛾 ′, T ; Γ ⊢Σ F 𝑡 sort and T ; (Γ, 𝑏 : F 𝑡) ⊢Σ
(𝑎 𝑏) · 𝑡 : (𝑎 𝑏) · 𝛾 ′, for any 𝑏 such that 𝑏 ∉ dom(Γ) and
𝑏 # {𝑡, 𝛾 ′}.

Proof. When T ≠ ·, there is only one rule that can be used to
conclude T ; Γ ⊢Σ 𝑡 : 𝛾 . For each item, we invert that rule to obtain
the shape of 𝛾 .

The proof of the inversion lemma for ground terms proceeds by
induction on the derivation of the sorting judgment. We show the
proof for 𝑡 = 𝑎. If the last rule used is (atm), then we have 𝛾 = Γ(𝑎);
since ≈𝛼 is reflexive, we conclude 𝛾 ≈𝛼 Γ(𝑎). If the last rule used is
(conv), then by inductive hypothesis we deduce 𝛾 ≈𝛼 Γ(𝑎). Since
≈𝛼 is symmetric and transitive, we have 𝛾 ′ ≈𝛼 Γ(𝑎). □

To get uniqueness of typing (up-to 𝛼-equivalence) we need to
proceed by induction on the size of terms.

Lemma 8 (uniqeness of typing up-to 𝛼-eqivalence). If
·; Γ ⊢Σ 𝑡 : 𝛾1, and ·; Γ ⊢Σ 𝑡 : 𝛾2, then ⊢ 𝛾1 ≈𝛼 𝛾2.



Type Checking Dependently Sorted Nominal Signatures IFL 2025, October 1-3, 2025, Montevideo, Uruguay

Proof. Notice that 𝑡 can be an atom 𝑎, an application 𝑓 𝑡 , or an
abstraction≪𝑎 : F 𝑡≫ 𝑡 . In the first two cases, the result follows
directly from inversion because there exists a precise sort 𝛾 such
that 𝛾1 ≈𝛼 𝛾 and 𝛾2 ≈𝛼 𝛾 ; therefore 𝛾1 ≈𝛼 𝛾2.

When 𝑡 =≪𝑎 : F 𝑡≫ 𝑡 , then by inversion we get 𝛾 ′1 and 𝛾 ′2
such that 𝛾1 ≈𝛼≪𝑎 : F 𝑡≫ 𝛾 ′1 and 𝛾2 ≈𝛼≪𝑎 : F 𝑡≫ 𝛾 ′2; moreover
T ; (Γ, 𝑏 : F 𝑡) ⊢Σ (𝑎 𝑏) · 𝑡 : (𝑎 𝑏) · 𝛾 ′1 and T ; (Γ, 𝑏 : F 𝑡) ⊢Σ
(𝑎 𝑏) · 𝑡 : (𝑎 𝑏) · 𝛾 ′2. Then by inductive hypothesis on (𝑎 𝑏) · 𝑡 we
have (𝑎 𝑏) · 𝛾 ′1 ≈𝛼 (𝑎 𝑏) · 𝛾 ′2. □

Lemma 9 (Compatibility with instantiations). IfT ′; Γ ⊢Σ 𝑡 :
𝛾 , and T ; Γ′ ⊢Σ 𝜎 fits T ′ with Γ ⊲⊳ Γ′, then T ; Γ ∪ Γ′ ⊢Σ 𝑡 𝜎 : 𝛾 𝜎 .

4 TYPE-CHECKING ALGORITHM
The rules of the sorting system are “almost” syntax directed. In fact,
notice that for terms with parameters (non-ground terms) they are
syntax-directed, because the rule (conv) is only for ground terms. In
the following, we introduce syntax-directed rules for incrementally
checking signatures, telescopes, contexts, sorts, and terms.

Definition 7 (Sort-checking). Given a signature Σ, telescope
T , context Γ, and a well-formed sort 𝛾 , T ; Γ ⊢Σ 𝛾 sort, we define the
following relations that are syntax-directed and can thus be under-
stood as the definition of a sort-checking algorithm: T ; Γ ⊢Σ 𝑡 ⇐ 𝛾 ,
in Fig. 2, and T ; Γ ⊢Σ 𝑡 ⇒ 𝛾 , in Fig. 3.

Notice the preconditions assuming the well-formedness of sig-
natures, telescopes, and sorts. This illustrates that first we check
the signature, once we know it is well-formed (initially the empty
signature is obviously well-formed), to extend it with a new con-
structor (either sort or term constructor) we check the telescope
with respect to that signature. So, in judgment ⊢Σ T ⇐, we can
assume ⊢ Σ sig-ok.

When we check that an instantiation fits in a telescope, in Fig. 6,
we change the perspective on telescopes; instead of seeing them
as snoc-lists we assume them to be cons-lists. Here we also check
that the instantiation fulfills the freshness condition; to check ⊢
Δ|𝑋 [𝑋 ↦→ 𝑡] ⇐ we get every freshness condition 𝑎 # 𝑋 in Δ and
check ⊢ 𝑎 # 𝑡 .

4.1 Properties of the type-checker
Theorem 1 (Correctness and completeness). The type-checker,

Fig. 2 and Fig. 3 is correct and complete with respect to the typing
system Fig. 1e.

5 CONCLUSIONS
Dependently sorted nominal signatures constitute:

• A logical framework in which it is possible to develop formal
and certified proofs of properties of, among others, program-
ming languages. In [1] we have sketched how some basic
meta-theory of lambda calculi can be developed.
• A basis for a (first-order) functional language built on top a
of nominal syntax and that, therefore, can treat binding as a
natural syntactic feature of expressions and let them operate
accordingly.

We are just starting with the implementation of the type-checker
in Haskell. We aim to have a first prototype ready for the confer-
ence.

REFERENCES
[1] Maribel Fernández, Miguel Pagano, Nora Szasz, and Alvaro Tasistro. Dependently

sorted nominal signatures. In Proceedings of LFMTP 2025: Logical Frameworks and
Meta Languages: Theory and Practice., 2025.

[2] Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence. PhD
thesis, University of Cambridge, UK, March 2001.

[3] Murdoch J. Gabbay. Nominal terms and nominal logics: from foundations to
meta-mathematics. In Handbook of Philosphical Logic, volume 17, pages 79–178.
Kluwer, 2011.

[4] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. In Proceedings of the 2nd IEEE Symposium on Logic in Computer Science
(LICS 1987), pages 194–204. IEEE Computer Society Press, New York, June 1987.

[5] Andrew M. Pitts. Nominal logic: A first order theory of names and binding. In
N. Kobayashi and B. C. Pierce, editors, Proc. 4th Int’l Symposium on Theoretical As-
pects of Computer Software (TACS 2001), volume 2215 of Lecture Notes in Computer
Science, pages 219–242. Springer, 2001.

[6] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification.
Theoretical Computer Science, 323(1–3):473–497, September 2004.



IFL 2025, October 1-3, 2025, Montevideo, Uruguay Maribel Fernández, Miguel Pagano, Nora Szasz, and Álvaro Tasistro

T ⊢Σ Γ ctx-ok(inf:atm) 𝑎 ∈ dom(Γ)
T ; Γ ⊢Σ 𝑎 ⇒ Γ(𝑎)

T ⊢Σ Γ ctx-ok(inf:var1) 𝑋 ∈ dom(T )
T ; Γ ⊢Σ 𝑋 ⇒ T (𝑋 )

T ; Γ ⊢Σ 𝑋 [𝑡] ⇒≪𝑎 : F 𝑠≫ 𝛾 T ; Γ ⊢Σ 𝑡 ′ ⇐ F 𝑠(inf:var2)
T ; Γ ⊢Σ 𝑋 [𝑡, 𝑡 ′] ⇒ 𝛾 [𝑎 ↦→ 𝑡 ′]

Σ(𝑓 ) = T ′ → F 𝑢;Δ T ; Γ ⊢Σ 𝑡 ⇚Δ T ′# [(Δ#)𝑡 ](inf:constr)
T ; Γ ⊢Σ 𝑓 𝑡 ⇒ F (𝑢𝑡 )

T ; (Γ, 𝑏 : F 𝑡) ⊢Σ (𝑎 𝑏) · 𝑡 ⇒ (𝑎 𝑏) · 𝛾(inf:abs)
{
𝑏 ∉ dom(Γ)
𝑏 # {𝑡, 𝛾}T ; Γ ⊢Σ≪𝑎 : F 𝑡≫ 𝑡 ⇒≪𝑎 : F 𝑡≫ 𝛾

Figure 2: Syntax-directed rules for sort inference.

·; Γ ⊢Σ 𝑡 ⇒ 𝛾
(gnd:check) 𝛾 ≈𝛼 𝛾 ′·; Γ ⊢Σ 𝑡 ⇐ 𝛾 ′

T ; Γ ⊢Σ 𝑡 ⇒ 𝛾
(check)

T ; Γ ⊢Σ 𝑡 ⇐ 𝛾

Figure 3: Sort-checking rules.

(chk-empty-sig) ⊢ ⟨⟩ ⇐
⊢ Σ ⇐ ⊢Σ T ⇐ F ∉ dom(Σ) Δ well-formed(chk-sort-sig) ⊢ Σ, ⟨F : T → data ; Δ⟩ ⇐

⊢ Σ ⇐ ⊢Σ T ⇐ T ; · ⊢Σ F 𝑡 ⇐ sort F ∉ dom(Σ) Δ well-formed(chk-fun-sig)
⊢ Σ, ⟨𝑓 : T → F 𝑡 ; Δ⟩ ⇐

Figure 4: Rules for checking signatures.

(check-empty-tel) ⊢Σ · ⇐
⊢Σ T ⇐ T ; · ⊢Σ 𝛾 ⇐ sort

(check-cons-tel) 𝑋 ∉ dom(T )⊢Σ T , (𝑋 : 𝛾) ⇐

Figure 5: Rules for checking telescopes.

(check-empty-fit)
T ; Γ ⊢Σ () ⇚Δ ·

T ; Γ ⊢Σ 𝑡 ⇐ 𝛾 ⊢ Δ|𝑋 [𝑋 ↦→ 𝑡] ⇐ T ; Γ ⊢Σ 𝑡 ′ ⇚Δ T ′[𝑋 ↦→ 𝑡]
(check-cons-fit) 𝑋 ∉ dom(T )

T ; Γ ⊢Σ 𝑡, 𝑡 ′ ⇚Δ (𝑋 : 𝛾),T ′

Figure 6: Rules for checking instantiations.

(chk-emp-ctx)
T ⊢Σ · ⇐

T ⊢Σ Γ ⇐ T ; Γ ⊢Σ F 𝑡 ⇐ sort(chk-cons-ctx) 𝑎 ∉ dom(Γ)
T ⊢Σ Γ, (𝑎 : F 𝑡) ⇐

Figure 7: Rules for checking contexts.

T ; Γ ⊢Σ 𝑡 ⇚Δ T ′# [(Δ#)𝑡 ] Σ(F ) = T ′ → data;Δ
(chk-data)

T ; Γ ⊢Σ F 𝑡 ⇐ sort

T ; Γ ⊢Σ F 𝑡 ⇐ sort T ; (Γ, 𝑏 : F 𝑡) ⊢Σ (𝑎 𝑏) · 𝛾 ⇐ sort
(chk-abs-*)

{
𝑏 ∉ dom(Γ)
𝑏 # 𝛾T ; Γ ⊢Σ≪𝑎 : F 𝑡≫ 𝛾 ⇐ sort

Figure 8: Rules checking sorts.


	Regular papers 
	Recipe-Based Errors Marco T. Morazán, Shamil Dzhatdoyev, Josephine Des Rosiers, Rose Bohrer, Andres Garced and David Anthony Fields
	Design and Implementation of DSLs for Unit TestingMarco T. Morazán and Andres Garced
	Compilation of the Stochastic Language ALEABaltasar Trancón Y Widemann and Markus Lepper
	Refinement-Types Driven Development: A studyFacundo Domínguez and Arnaud Spiwack
	Draft papers 
	Unrestricted Grammar Design and VisualizationMarco T. Morazán, Andres Garced and Tijana Minic
	AI-Assisted Program Design Using Structural RecursionMarco T. Morazán
	Heuristics-based Type Error Diagnosis for HaskellNiels Kwadijk and Jurriaan Hage
	Higher-ranked region inference for polymorphic, lazy languagesIvo Gabe de Wolff and Jurriaan Hage
	Closures in a Higher-Order Polymorphic DSL for GPU programmingAndre Rauber Du Bois, Henrique Gabriel Rodrigues and Rodrigo Geraldo Ribeiro
	Automatic Testing for Finite-State MachinesMarco T. Morazán, Sophia G. Turano, Andres Garced and David Anthony Fields
	Energy-aware Data-Parallel Functional Array Processing for Heterogeneous PlatformsClemens Grelck
	A Quantum-Control Lambda-Calculus with Multiple Measurement BasesNicolas A. Monzon and Alejandro Díaz-Caro
	List Fold Operators in DafnyJuan Michelini, Nora Szasz and Alvaro Tasistro
	Formalizating System I with type Top in AgdaAgustín Séttimo, Cristian Sottile and Cecilia Manzino
	Reducibility candidates modulo isomorphismsCristian Sottile and Alejandro Díaz-Caro
	Foundations of Gradual Abstract InterpretationGaspar Ricci, Sebastian Erdweg, Éric Tanter and Matías Toro
	Type Checking Dependently Sorted Nominal SignaturesMaribel Fernandez, Miguel Pagano, Nora Szasz and Alvaro Tasistro

