Plelad’

Gradual Typing

Eric Tanter
University of Chile

https://pleiad.cl/etanter

Tutorial @ IFL 2025

Basics

Gradual Typing

Basics

Basics

Static vs Dynamic Type Checking

Long-standing divide in programming languages

skatic

|early error detection
enforce abstractions
checked documentation

7efficiency

dynamic

flexible programming idioms
'rapid prototyping

NO Spurious errors

simplicity

Java, Scala, C#/...,
ML, Haskell, Go, Rust, etc.

Python, JavaScript, Racket,
Clojure, PHP, Smalltalk, etc.

Basics

why should we have to choose?

can’t we have both?

Static and Dynamic Checking

many languages (now) try to have both

Typed Clojure

C#40
Dart
ActionScript Python 3
TypeScript
Typed Racket Hack Elixir
Perl 6
Scala Kotlin

—
. very different flavor & guarantees...)

5

Static and Dynamic Checking

many different theories too!

multi-language
programs

hybrid typing
soft typing

quasi-static typing

gradual typing
RTTI
optional typing

manifest contracts

f very different flavor & guarantees...)

6

Basics

Gradual Typing

[Siek & Taha, 2006]

Combine both static and dynamic checking
in a single language

Programmer controls which discipline is used where

Supports seamless evolution between static/dynamic

Pay-as-you-go: static regions can be safely optimized

Fully Static & Fully Dynamic

Gradual as superset of static and dynamic

def f(x) = x + 2 def f(x) = x + 2

def h(g) = g(1) def h(g) = g(true)

h(f) h(f)

I 3\/ — true + Zx

runtime error

def f(x:int) = x + 2 def f(x:int) = x + 2
def h(g:int-int) = g(1) def h(g:int-int) = g(true)
h(f) h(f)

static error

— 3y

Basics

Basics
Sound Interoperability Inside Gradual Typing
Partially-typed programs
def f(x:int) = x + 2 def f(x:int) = x + 2 def £(x) = x + 2 def £(x:?) = x + 2
def h(g) = g(1) def h(g) = g(true) def h(g) = g(true) — def h(g:?) = g(true)
h(f) h(f) h(f) h(f)
—~ 3y — f(true) P
runtime error
at the boundary unknown type ?
protect assumptions made in static code
9 10
Basics

Inside Gradual Typing

static semantics: consistency

type equality type consistency

T=T # T~T
T~7 ?2~T
not transitive! S~S T~T
int ~ ? ? ~ bool SoT~8-T
int + bool def f(x:int) = x + 2

f(true)y¢ static error

Inside Gradual Typing

dynamic semantics: casts

def f(x:?) = x + 2 wwwp def f£(x:?) = <inte?>x + 2

(check that it's an int |

f(5) — <inte?>5 + 2 — 5 + 2

v

_,7

f(true) — <inte?>true + 2 — runtime error

X

Basics

def f(x:int) = x + 2 o body is safe!
def h(g) = g(true) lcan be compiled efficiently

h(f) *
(check it isafung tagged value)

def f(x:int) = x + 2
def h(g:?) = (<?-?=?>g) (<?=bool>true)
h(<?=int-int>f)

— (<?-?=?><?eint-int>f) (<?=bool>true)

—> (<?-?«int-int>f) (<?<bool>true)

— fun(x:?){<?=int>f(<inte?>x)} (<?«<bool>true)

—> <?e=int>f(<inte?><?<bool>true)

— <?eint>f(<intebool>true)

X

13

— runtime error

Gradual Typing
Research Directions

Metatheory & criteria
Foundational methodologies

Advanced typing disciplines
Implementation & performance

14

Beyond Simple Gradual Typing

* Subtyping (structural/nominal, records, objects, classes)
[Siek&Taha’07, Ina&lgarashi’11, Takikawa+'12, etc.]
» Parametric polymorphism
[Ahmed+'08'11'17°20, Igarashi’17, Toro+'19, etc.]
» Type inference and gradual types
[Siek&Vachharajani’08, Garcia&Cimini’15]
* Union and recursive types
[Siek&Tobin-Hochstadt'16]
» Algebraic data types
9 yp [Malewski+'21]

¢ Delimited continuations [Miyazaki+'16]

» Effect handlers [New+'23]

Metatheory & criteria

Gradual Typing

Refined

Metatheory & criteria

Properties of Gradual Languages

[Siek & Taha, 2006]

type safety {édmits runtime type errors)

If +¢t:7T then either

t is a value v, or
t—t' with ¢ :T, or
t — error

equivalence for static terms «:onservative extension)

embedding of dynamic terms <, expressive)

Metatheory & criteria

Conservative Extension wrt Static

Static Language

“7 applied to 3?7?”
NOPE!
[_ static error

Gradual Language

Fgt:Tif and only if H¢: T t s vifand only if t | v

Dynamic Embedding

Dynamic Language Gradual Language

73 — (7::7)(3::7)
“7 applied to 3?77”

YUP!
Ldynamic error

If ¢ is closed then + [t]:7 ¢ {p rif and only if [¢] | r

Metatheory & criteria

What do you mean “Gradual’?

[Siek et al., 2015]

meaning has become diluted to encompass

T anything related to the integration of static
1 i and dynamic typing”

jsiek@
2 University ol aukee, Department o S
PO Box 784, Milwaukee 201, USA

boyland@cs.uwm. edu

—— Abstract

Sick and Taha [2006] coined the terd | gradual typing to describe a theory for integrating static
and dynamic typing within a single | inguage that 1) puts the programmer in control of which
regions of code are statically or dynalhically typed and 2) enables the gradual evolution of code
between the two typing disciplines. Sihce 2006, the term gradual typing has become quite popular
but its meaning has become diluted to encompass anything related to the integration of static
and dynamic typing. This dilution is partly the fault of the original paper, which provided an
incomplete formal characterization of what it means to be gradually typed. In this paper we
draw a crisp line in the sand that includes a new formal property, named the gradual guarantee,
that relates the behavior of programs that differ only with respect to their type annotations. We
argue that the gradual guarantee provides important guidance for designers of gradually typed
languages. We survey the gradual typing literature, critiquing designs in light of the gradual
guarantee. We also report on a mechanized proof that the gradual guarantee holds for the
Gradually Typed Lambda Calculus.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs — Type structure 20

Gradual Typing, refined

[Siek et al., 2015]

it's all about (im)precision

some gradual types convey more information than others

Int—Int C Int—-?C 25?2 C ?

1‘.III.’P

Gradual Typing
best-effort static checking
backed by dynamic checking

21

Metatheory & criteria

Precision

type precision extends to term precision

x + 2
g(l)

1

def f(x:int) = x + 2
def h(g) = g(1)

h(f)
TI_II

def f(x:int) = x + 2
def h(g:int-int) = g(1)
h(f)

def f(x)
def h(q)
h(f)

no explicit checks
evolution is completely
driven by type annotations

22

Metatheory & criteria

Properties of Gradual Languages (ctd)

[Siek et al, 2015]

def f(x) = x + 2
hee, e Gradual Guarantee

T|_|| losing precision
def f(x:int) = x + 2
def h(g) = g(1)

1) preserves typing

e 2) preserves reduction
T LI

def f(x:int) = x + 2

i?i)h(g’ | adding type information can only J

introduce new static/dynamic errors

TS* is not “Gradual”

[Swamy et al., POPL'14]

Gradual Typing Embedded Securely in JavaScript

Nikhil Swamy! ~ Cédric Fournet! ~ Aseem Rastogi’> Karthikeyan Bhargavan®
Juan Chen! Pierre-Yves Strub? Gavin Bierman'

Microsoft Rescarch! University of Maryland? INRIA® IMDEA Sofware Institute*
et juanchen, arthik

{nswamy, fourr

(Af . f true) (A\z : x. 2) ok
(Af : bool—bool. f true) (Az : *.x) runtime
| error!
(Af : bool—bool. f true) (Az : bool. x) ok

“Coe(“ the gradual guarantee avoids such hiccups }er—order
values - the type

bool — bool using setTag will fail, since * £: bool.” [57]
24

Optional or Gradual?

protect assumptions made in static code @

B

“ok” if adding gradual types to
a safe dynamic language
(eg. JS, Python, Elixir, Racket)

def f(x:int-int) = x(2)
def h(g) = g(true)
h(f)

— f(true)x—>true(2) N x

runf:ime error \ runtime error
at t| e boundary not safe otherwise!

>>> x = True
>>> x(2)

even if Safe, COUId be 'Traceback (most recent call last):
(Side‘eﬁects type for secu File "<stdin>", line 1, in <module>

TypeError: 'bool' object is not callable

25

Metatheory & criteria

Optional or Gradual or Sound Gradual or ?

1 bl S: « . .
Fluggable Type Systems optional type systems are neither

syntactically nor semantically required,

@ no effect on the dynamic

aticre nf tha lanniiana”

Gilad Bracha
October 27, 2004

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vite!
Northeastern University, Boston, MA

Sound Gradual Txping is Nominally Alive and Well

FABIAN MUEHLBOECK, Cornell University, USA
ROSS TATE, Cornell University, USA

Abstract ‘many cases, the systems sta o . .
Programmers hav come to embrace dynamically-typed languages (hOUEh, (Y grow inocom Recent research has identified significant performance hurdles that sound gradual typing needs to overcome.
forpottypin and delcring lrge and complex sy, When PO Becngincrsealze - These performance hurdles stem from the fact that the run-time checks gradual type systems insert into code
g and mare, mostly due to the lac y -

omes to and evolving these systems, the lack of ex- oo s 315 can cause significant overhead. We propose that designing a type system for a gradually typed language hand
plicit satic typing becomes a botleneck. In response, rescarchers yping [21, N S : R b
D e i] s oy ocarshers this pressing software engit in hand with its implementation from scratch is possible way around these and several other hurdles on
which allow the incremental addition of type annolations to soft. € language 5o that progr the way to efficient sound gradual typing. Such a design process also highlights the type-system restrictions

ith . In i
Srovide progammers with: required for efficient composition with gradual typing. We formalize the core of a nominal object-oriented

e programme
Realizing type soundnes language that fulfills a variety of desirable properties for gradually typed languages, and present evidence that

ware written in one of these untyped languages. Some of these
es insert run-time checl
med e tn astablish

e
Gradual typing is a way to combine static and dynamic typing. Type-annotated Python allows opting in
to static type checking at a fine level of granularity, so that some type errors can be caught statically,

A gradual type system is one in which a special “unknown” or “dynamic” type is used to describe
names or expressions whose types are not known statically. In Python, this type is spelled Any.

These operations are still dyna

What do programmers want?

= - -

[OOPSLA'18]

“Our most important finding is that our
respondents prefer a runtime semantics that
fully enforces statically declared types”

A Spectrum of Type Soundn

BEN GREENMAN, PLT @ Northeastern Unive;
MATTHIAS FELLEISEN, PLT @ Northeaste;

The - e
prog
i | The Behavior of Gradual Types: A User Study
add

| Preston Tunnell Wilson Ben Greenman

Brown University
Providence, Rhode Island, USA
ptwilson@brown.edu

Northeastern University
Boston, Massachusetts, USA
benjaminlgreenman@gmail.com

Shriram Krishnamurthi
Brown University
Providence, Rhode Island, USA
sk@cs.brown.edu

Justin Pombrio
Brown University
Providence, Rhode Island, USA
jpombrio@cs.brown.edu

Abstract typing [27, 31]. In a gradually typed language, program-
There are several different gradual typing semantics, reflect- ~ mers are free to mix typed and untyped code. Some of the
ing different trade-offs between performance and type sound- €arly gradually typed languages were created by retrofitting
ness guarantees. Notably absent, however, are any dataon @ type system on a (sublanguage of a) dynamic language
which of these semantics developers actually prefer. (e.g., Typed Racket [32, 33], TypeScript [3], and Reticulated
We begin to rectify this shortcoming by surveying pro- Python [36]); more recently, new languages are being made
fessional developers, computer science students, and Me- gradually typed from the outset, such as Pyret (pyret.org)
chanical Turk workers on their preferences between three ~ and Dart 1 (vi-dartLang-org. firebaseapp. con).
gradual typing semantics. These semantics reflect important But what should the semantics of a gradually-typed pro-
points in the design space, corresponding to the behaviors of ~ 8ram be? In particular, when typed and untyped regions of [DLS’1 8]
Typed Racket, TypeScript, and Reticulated Python. Our most code interact, what sort of runtime checks should protect

important finding is that our respondents prefer a runtime ~ the invariants of typed code? The answer to this question 27
e O - "

What do programmers want?

are they willing to pay for it?

%) Racket

6.3.4 When to Use Deep, Shallow, or Optional?

Science of Computer Programming f

ELSEVIER Volume 96, Part 1,15 December 2014, Pag

Gradual typing for Smallt

« Deep types maximize the benefits of static checking and type-driven optimiz:
them for tightly-connected groups of typed modules. Avoid them when unty)
higher-order values frequently cross boundaries into typed code. Expensive t
types include Vectorof, ->, and Object.

Esteban Allende ® ' &, Oscar Callat ° & &, Johan Fab
Marcus Denker ®

= Onthis page > Customizing static analysis

Shallow types are best for small typed modules that frequently interact with
code. This is because Shallow shape checks run quickly: constant-time for m¢
and linear time (in the size of the type, not the value) for a few exceptions st
and case->. Avoid Shallow types in large typed modules that frequently call
or access data structures because these operations may incur shape checks a1
cost may be significant.

Customizing sti

Tools > Static analysis

Optional types enable the typechecker and nothing else. Use them when you

Static analysis allows you to find problems be want types enforced at run-time.

powerful tool used to prevent bugs and ensur

With the help of the analyzer, you can find simple typos:
accidental semicolon made its way into an if statement:

plErpeErnapsan

More Criteria for Gradual Typing

it’s not over yet D
* Blame assignment [ESOP’09, TOPLAS’23]
* Open world soundness [POPL'17]
* Complete monitoring [OOPSLA'19]
* Graduality (semantic account of DGG) [ICFP’18]
» Fully-abstract embedding from static to gradual [POPL'21]
* Vigilance [OOPSLA24]

* Robust dynamic embedding [ICFP’25]

29

Advanced typing disciplines

Gradual Typing

Extended

30

What are types useful for?

define & enforce properties about program behavior

“no leaks of information”

well-behaved correct
. e
no segfault \/_\/\/

what about richer properties?

no exceptions X,Y,Z

31

Advanced typing disciplines

list -» list - list —

list a -» list a - list a

Parametricity

list a -» list a & list a

Effects

list a n » list a m » list a (n+m)

Dependencies
n:int{n>=0} - l:1list a{length 1 > n} - Tot a

1l:1ist a n -» 12:1ist a m » l:1list a (n+m) Refinements

{Vi i€{0..n-1}=1[i]=11[i]
A i€{n..n+m}=1[i]=12[i]}

32

Rich Types: Bestiary

Parametricity Affine types

Effects
Typestates

Dependencies Ownership types

Linear types

Security types Refinements

_ Energy types
Session types o
Sensitivity types

33

Advanced Gradual Types

some exampi.es

* Gradual typestate [ECOOP’'11, TOPLAS'14]

* Gradual effects [ICFP'14, OOPSLA'15, JFP'16]

» Gradual refinement types [POPL'17, OOPSLA'18]

* Gradual security types [TOPLAS'18]

* Gradual sensitivity types [CSF'25]

* Gradual parametricity [POPL'19, OOPSLA22, JACM'22]

[ICFP’19, TOPLAS 22,

¢ Gradual dependent types
P yp ICFP'22 (x2), ICFP'24]

34

Advanced typing disciplines

Gradual Effects

[ICFP’14, OOPSLA'15, JFP'16]

35

Effects

[Marino & Millstein, 2009]

performing an effectful operation
requires the corresponding privilege

effect domains

t o

memory

effectful operations
println, File.read(), ...]

effect privileges

in, out, err

alloc, read, write new, x[i], x[il=y, ...

exceptions raise[T] throw e

36

Effect Systems

) ":JL éet of latent effects)
T:—> T

// Inéigjlnt

def f(x: Int): Int @{io} =
@rintln(”hola")l y,

x + 1

// Intﬁ>Int

def f(x: Int): Int @{} =
(println(”hola"ﬂ

)‘static error
x + 1

37

Gradual Effects

dgf f(x: Int): Int =
\println(“hola”) »
x + 1 //

“untyped” = has unknown effect ¢

def f(x: Int): Int @{c} =
has(print); println(“hola”)

x + 1\ xruntime error

dynamic check:
has print privilege?

def run(callback: Int@lnt) =
v = .
callback(v)

- Y
restrict current context
to no privileges)

run(f) = run(fun(x:Int){ restrict {} f£(x) })

v

has/restrict play the role of “effect casts”

38

Advanced typing disciplines

Gradual Refinement Types

[POPL’17, OOPSLA'18]

39

Refinement Types

type Nat = {v:Int | v = 0}
def fib(x: Nat): Nat
def isNat(x: Int):{V: Bool | v=true & x = 0}
def bar(x: Int): Int
if isNat(x)

then fib(x) static error
else fib(—x)\/)‘static error

40

Gradual Refinement Types

type Nat = {v:Int | v = 0}
def fib(x: Nat): Nat
def isNat(x: Int):{v: Bool | Vv = true = x =2 0 A 2}
def bar(x: Int): Int
if isNat(x)

then fib(x) \/ + dynamic check
else fib(—x)\/ + dynamic check

41

Gradual Refinement Types

type Nat = {v:Int | v =2 0}
def fib(x: Nat): Nat
def isNat(x: Int):{v: Bool | v = true = x =2 0 A ?}
def bar(x: Int): Int
if isNat(x)

then fib(-x)d static error
else fib(x) &/ + dynamic check

42

Advanced typing disciplines

Gradual Parametricity

[POPL'19, JACM'22, OOPSLA22]

Parametricity, Intuitively

Polymorphic types dictate uniformity of behavior
[Reynolds83]
f=id

let £ : VX.X-X =

in £ [Int] 10 % should get back 10

strong type-based reasoning principle

“free theorems” [Wadler89]

44

Advanced typing disciplines

Gradual Parametricity, Intuitively

let g : ? =[ka.Ab.if b then a else a+£]

in N ﬁa
\] “half paraffictri ic”

let £ : VX.X-X =

Ax:Ax:X{é]xifalsel -'==i

in £ [Int] 10 +—* ek@o¥

is £ really
parametric?

tracking type safety at runtime is not enough

need some form of runtime sealing [Morris73]

45

Advanced typing disciplines

GSF: Gradual System F

46

GSF in Action

conservatlve extension of System F I

VX.X-»X ~ Int-Bool X \X
VX . X-? / X v

i

.. .’ r
natural precision & consistency r

let f : 2 = AX.Ax:X.X in
f [Int] true true true error
respect explicit type instantiations J:r
let £ : VX.X-»? = AX.Ax:X.xX in

error

(f [Int] 1) + 1 errog// 2

type-driven sealing ﬁ/

47

@ GSF: Type-Driven Sealing =

= AX.Ax:X.x in ..
~———
7 X - X<

let £ : VX.X-?

— justifies both sealing and unsealing

= NX.Ax:X.(x:

~

(‘)X*”

— only justifies sealing

let £ : VX.X-? :?) in ..

= NX.<Ax:X.(x::?),Ax:?.(X:

~ —

X - 2

let p :X)> in ..

'?—)X

— pair of seal and unseamotlons a la Asea!
[Sumii&Pierce’04]

48

Dynamic Sealing in GSF

gen-seal = AX. (Az: X .(z :: ?), \x:?.(z :: X))

let (s, u) = gen-seal [Int] in

let v:? = 5(10) in

value is sealed

let 7:? = ..

any use of v will fail

(v)... in..él

let w:Int = u(r -
() unsealing succeeds
only for values sealed with s

G
= e

49

Advanced typing disciplines

' GSF |

System F)\ﬂ

50

Advanced typing disciplines

Gradual Security Types

[TOPLAS'18]

51

Security Typing

let age = 31_

let salary = 58000y

let intToString : Int,— String,= ...
let print : String— Unit = ...
print (intToString (salary))

K static error |-
private salary
goes to public channel

52

Gradual Security Typing

let age = 312

let salary = 58000y

let intToString : Int,— String,= ...
let print : String— Unito= ...
print (intToString(salary))

\/ + dynamic check
(runtime error)

53

Security Types & Free Theorems

let mix : Inty = Inty — Int, =
fun p\\[b priv => ..

theorem
result does not leak 2nd argument

let foo :(Inty — Inty — Int) —» Booly =

fun £ => . f x y ..

\\\ \

t can assume theorem is not violated]

54

Advanced typing disciplines
Gradual Security Typing, with Theorems

let mix : Inty — Inty — Int, =
fun pub priv => if pub < priv then 1. else 2,
A static error

let mix :

ilnt._—) Into, — Int|_'= \/
fun pub Priv =5 1f pu wn 1. else 2

mix 1, 2, *runtime error

let mix’: i Int, = Inty — IntL,M
fun pub Priv = priv

mix’ 1, 2, xruntime error

the types tell
the theorems!

55

Advanced typing disciplines

fully Ranges of Precision fully

precise imprecise

gradual effects
A { io,alloc } BEA {io,?} BEA {7} B
gradual refinements

{Int |0<v <10} C{Int|0<vA?}C{Int]|?}

gradual security
Inty C Int-

56

Advanced typing disciplines

Many different soundness properties

Gradual typestate: respect resource protocols

Gradual effects: no unauthorized effectful operations

Gradual refinement types: result satisfies predicate

Gradual parametricity: relational parametricity

Gradual security types: noninterference

Gradual sensitivity types: metric preservation

it's not all about type safety!

57

Foundational methodologies

Gradual Typing

Designed

58

Foundational methodologies

- ra - Y
Where "\ nats the connection to the
com static language?

semantics directly?
| A4S

Y RE
SYSTEM | SEMANTIC

how to deal with
imprecision?

[Cah’t we define runtime

high cost

ingenious “tricks”
ad hoc justifications

“right” definitions? guarantees?

eg. equality, subtyping, containment, implication, etc.
59

Foundational methodologies

Designing Gradual Languages

without the quesswork

Abstracting&%’uual Typing

[POPL’16]

60

Foundational methodologies

Y
GType < >P(TYPE)
~__~

«
syntax & interpretation
of gradual types

static type system
& type safety proof

systematic,
not automatic

gradual language

Foundational methodologies

- Static Semantics

o
SYSTEM | SEMANTICS w e
61 62
Foundational methodologies Foundational methodologies
LT Thte:Ty Ti=Int T =Int e P& :Ty Triy:Th ﬁNlnt Ty /™ Int
D=ty 4o ¢ nt B explicit '+ tl + t2 In consistent
side conditions side conditions
oA o - .
(Tapp) '+ tl . T1 C O T2 = dOm(Tl) (fapp) I tl : Tl T+ t2 . T2 T2 ~ dom(Tl)
3 cod Tkt to: cod(Tl) compositional
syntax-directed partial lifting
rules | functions lifted partial (I
T ety 0y T ete:Ty I'Ets:Th 1 = Bool i -#,:T;, Tk functions fs: igradual meet |
1 . N) Tif — — ==
COZ('TTYPE}) T;PE ts : equate (T, Ty) [k if ¢1 then t5 else t3 : To P11 T3
coa(ly — Lz) = 12
cod(T') undefined otherwise (Garcia & Cimini, 2015] we now need to define and justify all of this!
63 64

Syntax of Gradual Types

static types TYPE
©~ T:u=Int|Bool | T —>T
‘represents”

gradual types GTYPE
T :=Int|Bool | T — T |?

65

Foundational methodologies

Concretization

v : GTYPE — P(TYPE)

v(Int) = {Int}
~(Bool) = { Bool }
(Tl — T2) {Tl — T | T, € ’Y(Tvl),TQ € ’Y(Tg)}
v(?) = TYPE
e.g.
y(Int = ?7)={Int T | T € TYPE }

66

Foundational methodologies

Type Precision

Int—1Int C Int—? L 727572 L 7

directly induced by concretization

Ty C 15

IN

67

Foundational methodologies

Consistency
lifting equality

existential lifting i
(captures plausibility) Th ~ 1>

/4

Lnot transitive!)

[ci)incides with [Siek & Taha, 2003]]

68

Foundational methodologies

Consistent Subtyping

lifting subtyping

coincides with [Siek & Taha, 2007]

69

Foundational methodologies

Consistent Join %‘%ﬁ%

Galois connection

Tl \/ Ty F (sound & optimal)

Yy

s

a({Int}) =Int

a({Bool }) =

a({Tn = T2 }) = a({Ta }) = a({T2 })
)
)

Bool

a(() is undefined

o(T) = ? otherwise

70

Foundational methodologies

Reminder

Galois Connection

abstract domain

(a > concrete domain
GTYPE L ol

P(TypE) C

1’?/
optimal Il
T

7

Foundational methodologies

AGT

Q-Q

Il - Dynamic Semantics

72

Curry-Howard

Logic PL
Propositions Types
Proofs Programs

Proof reduction Program evaluation

73

Foundational methodologies

Reminder

Type Safety as Proof Reduction

t—t

\\ TQCZ/ \ D,

P(T,T5)
[relies on transmvnty
" l: TL of type relations | Ht T

P(Tl,TQ) /\P(TQ,Tg) = P(Tl,Tg)

74

Foundational methodologies

Evidence

generalization of the
Threesome middle type

[Siek & Wadler, POPL'10]

T, < Ty

a\ h |

(T}, T3) 2

iocal justification
(sound & optimal)

? — Bool < Int — 7

75

Foundational methodologies

Reduction: Combining Evidence

typing derivations
W/th eV/dence

£12 " P(Tl Tg o /) \
=t P conSIStent tranS|t|V|ty

/ 5120 €23 \

ii€13 - P(Ty,Ts)

I—%v’:f’

refutatlon
(“cast error”)

76

Foundational methodologies

Consistent Transitivity
<T1,T§1f> of é%2,T3>

& undefined if empty
refutation / “cast error”

(17, T3)

o ({(T1, T3) € v*(T1, T3) | 3Tz € ¥(Te1) N y(Toa). P(T1, T) A P(T3, T3)})

7

Foundational methodologies

X?2Xx:? x?1:Int
<nt>+ ? ~Int
X?2X+1:Int
+ false : Bool
FAXx?.x+1):?—Int <Bool>+ Bool~?

FAXx:?.x+1) false :Int

- false : Bool + 1:Int
2 7?77 + Bool ~ Int

==

<Bo > + Bool ~ Int

+ false + 1 : Int]
undefined
= runtime error

78

Foundational methodologies

Gredex: AGT in Action

https://pleiad.cl/gredex

79

Designing Gradual Languages

v
GType ~~ »P(TYPE)
~

(07

* Galois connection
+ defining Y is the central design decision

* «is uniquely determined by 7y (“just” find it!)
* given the Galois connection, lifting the statics is direct

* Galois connection also central in the dynamics

80

Foundational methodologies

Designing Gradual Languages

Y
GType <~ »P(TYPE)
-

(%

* AGT also pays off for the runtime semantics
* justifies runtime errors, threesomes

» dynamic gradual guarantee “for free”
(monotonicity of consistent transitivity)

* Direct evidence-based semantics: canonical
* not a cast calculus

* can prove translation+cc equivalent [SAS'17]

81

Foundational methodologies

Perspectives

* Dynamics driven by type safety argument
e can involve more operators (eg. substitution [POPL'17])

e ensures type safety (+ gradual guarantee)

* type soundness % type safety
e eg. parametricity, noninterference, metric preservation, etc.

* can need a more precise GC for dynamics than for statics

. . Fil \
» tension with gradual ("o rantic property P[progre}mming}
enforcement flexibility

82

Applications of AGT soter.)

* records with subtyping

POPL'16
» gradual rows
« effect typing "] ICFP*14/ JFP'16 (statics)

« refinement types j POPL'17

j ICFP’17 (statics)

Jsasr

j TOPLAS'18

j POPL'19, JACM'22, OOPSLA22
j VMCAI'18, OOPSLA20

» set-theoretic types
e union types

* security typing

* parametricity

¢ Hoare-style verification

- dependent types ~J ICFP19, ICFP22 o

Foundational methodologies

AQ}' .
GType <~ »P(TYPE)
\O[/

— —
focus on key issues
streamline what can be

need not be mostly
guesswork & intuition

optimizations

semantic
, i properties
\/" Galois connection(s)

I algorithmic definitions richer types

=3
()

84

Implementation & performance

Gradual Typing

Implemented

Implementation & performance

85

A First Warning

[TFP'07]

Space-Efficient Gradual Typing

David Herman', Aaron Tomb?, and Cormac Flanagan® =

f
niversity
2 University of California, Santa Cruz

use coercions instead of casts
(avoid higher-order proxies)

Abstract
bet pi

Gradual

languages-and other langusges with hybrid type checking-t
ating fu des. “Thi
o

* GT breaks tail call optimizations

even = An:Int. Ak:(? —?). if (n=0) then (k true) elseodd (n—1)k
odd =\n:Int.\k:(Bool — Bool). if (n=0) then (k false) else even (n—1) k
Here, the recursive calls to odd and even quietly cast the continuation argument k

with higher-order casts (Bool — Bool) and (? —?), respectively. This means that
the function argument k is wrapped in an additional function proxy at each recursive

call!

Implementation & performance

A Second (Hard) Warning

Asumu Takikawa, Dasiel Feliey, Ben Greenman, Max . New, Jan Viek, Matthias Felleisen
‘Norbessen Us

Abstract iy cascs,the ysten s ot prtypes.Sooncoagh.

[POPL'16] %) Racket

 observed slowdowns of up to 105x @

* (Typed Racket is implemented with contracts)

Implementation & performance

Benchmarking Gradual Typing

[
0.7x

- 1034x 815x 17x 07x 114x 3.3x

000000 000000 000000 000000 000NI0 00000 000000 000000 000000 000000 400000 M0N0 000000 10000 00000
44.1x 992x 1008x 93.9x 1053x 8L9x BLO9x 77.5x 827x 18x I12Ix 43x 112x 33x 103x

000000 000000 000000 00M0 090000 000000 000000 00000 00000 044000 400000 400000 00000 G0K00F 000000 000000 490000 60000 $00K0 MO0

93.2x 104.6x 89.2x 81.1x 77.5x 82.6x 77.6x 83x 73.7x 124x 4.8x 11.2x 10.4x

37.3x 40.6x 12.8x 40.2x 99.1x 92x 104x

000000 000000 000060 00S000 000K 00MH00 000000 000080 0H0K00 (49000 $00000 400080 S00600 K000 0000
37.1x 85x 362x 12x 395x 47x 925x 104.6x 88.2x 892x 77.4x 832x 73.3x 738x 12.8x

es 35 i worse for fine-grained gradual typing]

(n is # of type annotations)

For n modules there are 2" possible configurations

= only measure a linear sample of configurations

An Extensive Research Agenda

2
Is Sound Gradual Typing Dead? *é

4]

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen

Toward Efficient Gradual Typing
for Structural Types via Coercions

Andre Kuhl Deyazeldeen / Jeremy G. Siek = |

Transitioning from Structural to Nominal Code
with Efficient Gradual Typing

FABIAN MUEHLBOECK, IST Austria, Austria

ROSS TATE, Comnell University, United States of America

Gradual typing is a principled me:
exhibit different programming pat
types ibiting typi

‘mixing typed and untyped code. But typed and w
. There is already substantial research investigating
e res: g eraduall

i these es
how to change types as code evol

th typed “nominal” code in

type
bjects to be treated as "stru ABSTRACT
l type 3 R I

Sound Gradual Typing is Nominally Alive and Well
FABIAN MUEHLBOECK. Comell University. USA
RC

R

hol

Fixing a P: gy of Gradual Typing
DANIEL FELTEY, Northwest
BEN GREENMAN, Northeast
CHRISTOPHE SCHOLLIE]

The
s
.
I Collapsible C
H
W
¢
"
do

GTP Benchmarks for Gradual Typing Performance

Ben Greenman
Brown University
Providence, Rhode Island, USA
benjaminlgreenman@gmail.com

PLrpBENCH for software

ducibl
rescarch because

they provide grounding and a way to measure

g’ d | rogress.
e d demonstrate that beimpla Por

CCS Concepts: - General and reference —» Performance; + Software and its engine
; 1 Interoperab

dual
to part of a codebase while leaving the rest untyped. The critc

language definitions; Object oriented la

{ against
! Additonal Key Words and Phrases: Gradual Typing, Gradual Guarantee, Nominal, Struct tees or bet thods could ead to answers, but
. ACMReference Format: evaluate competing designs.

- The

testbed for gradual typ-
tarting i

Ross Tate. 2021, Transitioni
Typing. Proc. ACM Program. Lang. 5, OOPSLA, Article 127 (October 2021), 29 pages. https:

3485504 te of 21

The Easy Way Out

* |f targeting a dynamic language, just fall back to
Optional typlng (or lightweight checks)

%) Racket O\ Dart

TypeScript C_ Python

* Not an option if target language is static

* Not an option for advanced typing disciplines

Implementation approaches

* casts

e coercions

e contracts

... evidence? [on-going]

Implementation & performance

A Compiler for Evidence-Based Gradual Typing

Value Block

Tuple [ev;len;vals...

Closure [ev;fptr;captured vals...

* int and bools are unboxed and tagged

Vec [ev;vals...

Variant [ev;id;vals...

» boxed values point to heap blocks

» evidence as a tree of tags \
o fptr_ cap
) oo | Jossceor]

* initial ascriptions (opt: remove safe ones

« consistent transitivity to reduce ascriptions (m,|,,(q;| 2'"|1(;:')'|1(im)|

use the benchmarks of Grift [PLDI’19]

gradual vs. static vs. dynamic gcomp vs Grift

P T oo S AP P P

I Ay AW | | g e ey
?:HIMWlJ EEZ_;E*LJM 1 i NPT eLare 3 :

ntime.
ntime (5)
s s o =
2 2 2 2 4 -
—————
———————i
e E—
—_—
e]
[sm— gy
e
——— e "]

Implementation & performance
gcomp vs Grift gcomp vs Grift

matmult qsort_mpairs
x

array matmult qgsort_mpairs,

2 8.9x 55.1x 85.1x
: 3 -

; i still need to polish and further analyze,

L g but at least, encouraging!

1
1
1
1
1
1
1
1
1
1
"
1
1
1
]
1
1
1
1
1
1
|

220

5.4x -
o o
sieve
16

10 8.0x

sieve tak

12.4x

Number of configu
] G

Tyger !’_

~—

* evidence-based gradual typing framework

* functional on a subset of Python, with IDE support
* early stage, on-going work

* highlights new issues (esp. inheritance)

* no performance evaluation yet

Conclusions

Gradual Typing
ﬁ

precision-driven type checking

Metatheory & criteria
Foundational methodologies

Advanced typing disciplines

Implementation & performance

... and Beyond!
ﬁ

precision-driven reasoning

core concepts are transferrable to other reasoning frameworks
* Hoare-style program verification [VMCAI'18, OOPSLA'20, TOPLAS 24]

* Program analysis:
nulls [ECOOP’21], abstract interpretation [draft@I|FL'25]

<« collaborators ..

Ron Garcia
Jonathan Aldrich
Esteban Allende

Johan Fabry
Oscar Callau
Felipe Bafiados
Nicolas Tabareau
Matias Toro
Nico Lehmann
Niki Vazou
Elizabeth Labrada
Joey Eremondi
Meven Lennon-Bertrand
Kenji Maillard
Johannes Bader
Jenna (Wise) DiVincenzo
Damian Arquez
Federico Olmedo
Mara (Stefan) Malewski
José Luis Romero
Cristobal Ardiles
and more...

Metatheory & criteria
Foundational methodologies

Advanced typing disciplines

Implementation & performance

www.dcc.uchile.cl

Plelad’

pleiad.cl

contact me if interested in
MSc / PhD / postdoc

http://www.dcc.uchile.cl
http://pleiad.cl

