[School of Mathematical and
JEVI\%IL\%% Computer Sciences (MACS)]

UNIVERSITY

Type Based Static Analysis

Jurriaan Hage

School of Mathematical and Computer Sciences
E-mail: J.Hage@hw.ac.uk
With contributions by Stefan Holdermans

J.Hage@hw.ac.uk

vvyyy

Terminology, context, motivation

Some really basic functional programming

Typing the polymorphic lambda calculus
Type based static analyis

» control-flow analysis
» adding effects (if time permits)

Contents taken from a master course largely based on Chapter 5
of Nielson, Nielson and Hankin.

[School of Mathematical and Computer Sciences (MACS)]

A bit about me

» Professor at Heriot-Watt University, Edinburgh
» Research focus:

» static analysis of functional languages
» type error diagnosis
» maintainer of the Helium Haskell compiler

» But all we do today is in a strict setting!

[School of Mathematical and Computer Sciences (MACS)]

Static Analysis and Types

[School of Mathematical and Computer Sciences (MACS)]

Static program analysis: compile-time techniques for
approximating the set of values or behaviours that arise at
run-time when a program is executed.

Applications: verification, optimization.

Different approaches: data-flow analysis, constraint-based
analysis, abstract interpretation, type-based analysis.

Type-based analysis: equipping a programming language with a
nonstandard type system that keeps track of some properties of
interest.

Advantages: reuse of tools, techniques, and infrastructure
(polymorphism, subtyping, type inference, ...).

Focus: accuracy vs. modularity.

[School of Mathematical and Computer Sciences (MACS)]

Examples

Side-effect analysis.
Callability analysis. o
Reachability analysis. Sign analysis.

Uniqueness analysis. Flow analysis.
Totality analysis. Control-flow analysis.
Security analysis. Class-hierarchy analysis.
Strictness analysis. Region analysjs
Sharing analysis. Binding-time analysis

Trust analysis. Alias analysis.
Communication analysis

Accuracy

» Establishing nontrivial properties of
programs is in general undecidable
(halting problem, Rice's theorem).

» In static analysis we have to settle
for “useful” approximations of
properties.

underapprox.

exact

» “Useful” means: sound (“erring at
overapprox.

the safe side”) and accurate (as
precise as possible).

[School of Mathematical and Computer Sciences (MACS)]

HERIOT
JATT

How do types help us?

v

Consider a higher-order setting

‘ compose f g =Az.f (g)

» When we analyse g z and f (g =), we must analyze their bodies
» However, not every combination of functions can arise
» Only those where the output of g is compatible with the input
type of f.
> A type based approach to analyze takes advantage of this
implicitly, weeding out combinations that cannot actually occur

» What information we shall compute, also depends on the type

[School of Mathematical and Computer Sciences (MACS)]

HERIOT
JATT

How would this be for, say, Python?

> 0O.0. style: what x.foo(); can target depends on what the
receiver x can be (and vice versa): type and control-flow are
mutually dependent

» If you call a function parameter f of a function p in this setting
you have even fewer clues, particularly if you export p as part of
a library.

» Here, a more natural approach is data-flow analysis (where
functions are considered data!)

[School of Mathematical and Computer Sciences (MACS)]

Modularity

» Breaking up a (large) program in
smaller units or modules is generally
considered good programming style.

» Separate compilation: compile each A
module in isolation. M

» Advantage: only modules that have] \
been edited need to be recompiled. R A

» To facilitate seperate compilation, ',
each unit of compilation needs to be B
analysed in isolation, i.e., without
knowledge of how it's used from
within the rest of the program.

&= Tension between accuracy and modularity: whole-program

analysis typically yields more precise results.
[School of Mathematical and Computer Sciences (MACS)]

10

11

Hindley-Milner and Algorithm W

[School of Mathematical and Computer Sciences (MACS)]

HERIOT
JATT

A simple functional language

f,x € Var variables
t € Tm terms
s | = | Az.
| tt
|

[School of Mathematical and Computer Sciences (MACS)]

12

HERIOT
JATT

A simple functional language

f,x € Var variables
t € Tm terms
s | = | Az.
| tt
|

[School of Mathematical and Computer Sciences (MACS)]

12

A simple functional language

f,x € Var variables
t € Tm terms
s | = | Az.
‘ t1 to | let z = t; in &
|

12

[School of Mathematical and Computer Sciences (MACS)]

A simple functional language

f,x € Var variables
t € Tm terms
s | z | Az.ty | wf-Az. ty
‘ 1 to | let z = t; in &
|

12

[School of Mathematical and Computer Sciences (MACS)]

A simple functional language

n € Num=N numerals
f,x € Var variables
t € Tm terms
t = n | z | Az.ty | wf-Az. ty
‘ 1 to | let z = t; in &
\

[School of Mathematical and Computer Sciences (MACS)]

12

A simple functional language

n € Num=N numerals
f,x € Var variables
t € Tm terms
t == n | false | true | =z | Az.t; | uf.Az. 4
‘ t1 to | if t1 then to else tg | let z = t in to
\

[School of Mathematical and Computer Sciences (MACS)]

12

A simple functional language

12

/s

8

M MMM

Num =N
Var
Op
Tm

numerals
variables

binary operators
terms

n | false | true | z | Az.ty | wf.Az. ty
t1 to ’ if t1 then to else tg | let z = t in to

11 D o

[School of Mathematical and Computer Sciences (MACS)]

Some simple terms (aka programs)

‘ if true then false else true

[School of Mathematical and Computer Sciences (MACS)]

13

Some simple terms (aka programs)

‘ if true then false else true ‘

‘ Az.x ‘

[School of Mathematical and Computer Sciences (MACS)]

13

Some simple terms (aka programs)

‘ if true then false else true ‘

‘ Az.x ‘

‘(Mc.a:+1)2 ‘

[School of Mathematical and Computer Sciences (MACS)]

13

Some simple terms (aka programs)

‘ if true then false else true ‘

‘ Az.x ‘

‘(7\3:.9:+1)2 ‘

‘letdabc:b*b—4*a*cind132 ‘

[School of Mathematical and Computer Sciences (MACS)]

13

Some less simple terms (aka programs)

‘ let niet b = if b then false else true in niet true

[School of Mathematical and Computer Sciences (MACS)]

14

Some less simple terms (aka programs)

‘ let niet b = if b then false else true in niet true

let apply = Af.Az.f x in apply Az.z+ 1) 2
let revapp = Az . Af.f = in revapp 2 (Az.x + 1)

[School of Mathematical and Computer Sciences (MACS)]

14

Some less simple terms (aka programs)

‘ let niet b = if b then false else true in niet true

let apply = Af.Az.f x in apply Az.z+ 1) 2
let revapp = Az . Af.f = in revapp 2 (Az.x + 1)

‘ let flip =Af.Az.Ay.fyx

[School of Mathematical and Computer Sciences (MACS)]

14

Some less simple terms (aka programs)

‘ let niet b = if b then false else true in niet true

let apply = Af.Az.f x in apply Az.z+ 1) 2
let revapp = Az . Af.f = in revapp 2 (Az.x + 1)

let flip =Af. Az Ay.fy |

‘letxz?inlety=x*wzw+xinifythenxelse0 ‘

[School of Mathematical and Computer Sciences (MACS)]

14

HERIOT
i

Some less simple terms (aka programs)

‘ let niet b = if b then false else true in niet true

let apply = Af.Az.f x in apply Az.z+ 1) 2
let revapp = Az . Af.f = in revapp 2 (Az.x + 1)

let flip =Af. Az Ay.fy |

‘letx=2inletyzx*wzw—l-xinifythenxelseO ‘

let fac = uf . Apz.if =0then 1 else z x f (z — 1)
in fac6

14

HERIOT
JATT

What’s missing?

» Implicit recursion, so we can't simply write

| fac n = if n = 0 then 1 else z * fac (n — 1)

Lists and list comprehensions

Datatypes and pattern matching
Advanced types (higher-rank, type classes)
Module system

Many syntactic niceties

vVvyvyVvVvYyypy

Think of the language as a strict, desugared functional language
without datatypes

[School of Mathematical and Computer Sciences (MACS)]

15

HERIOT
JATT

What’s missing?

» Implicit recursion, so we can't simply write

| fac n = if n = 0 then 1 else z * fac (n — 1)

» Lists and list comprehensions

» Datatypes and pattern matching

» Advanced types (higher-rank, type classes)

> Module system

» Many syntactic niceties

» Think of the language as a strict, desugared functional language
without datatypes

» Something else that’s missing: a type system!

[School of Mathematical and Computer Sciences (MACS)]

15

A simple functional language (reprise)

f,x € Var variables
t € Tm terms
t u= |z | ANz ty
|t b
\

[School of Mathematical and Computer Sciences (MACS)]

16

A simple functional language (reprise)

f,x € Var variables
m € Pnt program points
t € Tm terms
¢ = | | Arz. ty
| tt
|

16

[School of Mathematical and Computer Sciences (MACS)]

A simple functional language (reprise)

f,x € Var variables
m € Pnt program points
t € Tm terms
t u= | | Arz. ty
‘ t] to | let z = t; in &
|

16

[School of Mathematical and Computer Sciences (MACS)]

A simple functional language (reprise)

f,x € Var variables
m € Pnt program points
t € Tm terms
t u= | | Aez.ty | wf-Arz. by
‘ t] to | let z = t; in &
|

16

[School of Mathematical and Computer Sciences (MACS)]

16

n € Num=N numerals
f,x € Var variables
m € Pnt program points
t € Tm terms
t n | | Aez.ty | wf-Arz. by
t] to | let z = t; in &

[School of Mathematical and Computer Sciences (MACS)]

16

n € Num=N numerals
f,x € Var variables
m € Pnt program points
t € Tm terms
t == n | false | true | z | Ayz. &y | Wi Az ty
‘ t tg | if tl then t2 else tg | let z = tl in to
|

[School of Mathematical and Computer Sciences (MACS)]

16

n € Num=N numerals
f,x € Var variables
& € Op binary operators
m € Pnt program points
t € Tm terms
t n | false | true | = | Aqz. by | Wi Arz. ty

t tg ’ if tl then t2 else tg | let z = tl in to

11 D o

[School of Mathematical and Computer Sciences (MACS)]

Monomorphic types

17

T € Ty types

T == Nat | Bool | 11 = 1o

[School of Mathematical and Computer Sciences (MACS)]

Monomorphic types

17

T € Ty types

I' € TyEnv type environments
T == Nat | Bool | 11 = 1

r == []| [z 7]

[School of Mathematical and Computer Sciences (MACS)]

Monomorphic types

T € Ty types

I' € TyEnv type environments
T == Nat | Bool | 11 = 1

r == []| [z 7]

Typing judgements:

| N typing
“Term t has type 7 assuming that any of its free variables has the type given
by I".”

[School of Mathematical and Computer Sciences (MACS)]

17

Monomorphic type system: constants

[t-num]

I'by, n: Nat

[School of Mathematical and Computer Sciences (MACS)]

18

Monomorphic type system: constants

[t-num]

I'by, n: Nat

[t-false]
I' by, false: Bool

[t-true]

I' Fy, true : Bool

[School of Mathematical and Computer Sciences (MACS)]

18

Monomorphic type system: variables

[School of Mathematical and Computer Sciences (MACS)]

19

Monomorphic type system: functions

F[x —> 7'1] |—UL t1: 71

[t-lam]
I |—UL 7\7rx. th:171 — T2

[School of Mathematical and Computer Sciences (MACS)]

20

Monomorphic type system: functions

F[x —> 7'1] |—UL t1: 71

[t-lam]
I |—UL 7\7rx. th:171 — T2

Lif—= (- mn)]lz—n]twt:n

[t-mu]

r f—UL uf.)\ﬂx. t1: 71 — T2

[School of Mathematical and Computer Sciences (MACS)]

20

Monomorphic type system: functions

F[x —> 7'1] |—UL t1: 71

[t-lam]
I |—UL 7\7rx. th:171 — T2

Lif—= (- mn)]lz—n]twt:n

[t-mu]
r f—UL uf.)\ﬂx. t1: 71 — T2

byt — 7 Thy ta:m
F'_ULtl t2:7—

[t-app]

[School of Mathematical and Computer Sciences (MACS)]

20

Monomorphic type system: conditionals

Ibkyp t1:Bool T'hyLto:7 DhyLts:T
I'Fyp, if 4 then t else ¢3: 7

[t-if]

[School of Mathematical and Computer Sciences (MACS)]

21

Monomorphic type system: local definitions

Fhowti:m Dz m)bete:T

- [t-let]
IFhyplet z =t inty: 7

[School of Mathematical and Computer Sciences (MACS)]

22

Monomorphic type system: binary operators

Fl—UL tlTela FI—UL t2:7—€29

[t-op]

[School of Mathematical and Computer Sciences (MACS)]

23

Monomorphic type system: example

I'Fo uf-Apz.if z =0then 1 else z x f (x — 1) : Nat — Nat

[School of Mathematical and Computer Sciences (MACS)]

24

Monomorphic type system: example

ek x=0:Bool Tpby, l:Nat Tpbyzxf(xz—1): Nat
'ty if z=0thenlelse z xf (z —1): Nat
[Fo wf - Apz.if z =0 then 1 else z x f (x — 1) : Nat — Nat

Ty =T[f — (Nat — Nat)][z — Nat]

[School of Mathematical and Computer Sciences (MACS)]

24

Polymorphic functions

[School of Mathematical and Computer Sciences (MACS)]

25

Polymorphic functions

ApZ. T

[School of Mathematical and Computer Sciences (MACS)]

25

Polymorphic functions

‘ ApZ. T ‘

| Aez.Acy. @ |

[School of Mathematical and Computer Sciences (MACS)]

25

HERIOT
JATT

Polymorphic functions

‘ ApZ. T ‘

| Aez.Acy. @ |

Af Ao f @ |

[School of Mathematical and Computer Sciences (MACS)]

25

Polymorphic functions

‘ ApZ. T ‘

| Aez.Acy. @ |

Af Ao f @ |

‘ wf.Apg. Aqz. Ayy.if z =0then yelse f g (z — 1) (g y) ‘

[School of Mathematical and Computer Sciences (MACS)]

25

Polymorphic types

26

T € Ty types

I' € TyEnv type environments
T u= | Nat | Bool | 71 — T2

r == []| [z 7]

g t:r typing

[School of Mathematical and Computer Sciences (MACS)]

Polymorphic types

a € TyVar type variables

T € Ty types

I' € TyEnv type environments
T == « | Nat | Bool | 11 — 72

r == []| [z 7]

g t:r typing

[School of Mathematical and Computer Sciences (MACS)]

26

Polymorphic types

26

a € TyVar type variables

T € Ty types

o € TyScheme type schemes

I' € TyEnv type environments
T u= «a | Nat | Bool | 11 = T

o = 7 | Ya.oy

r == []| [z 7]

g t:r typing

[School of Mathematical and Computer Sciences (MACS)]

Polymorphic types

26

a € TyVar type variables

T € Ty types

o € TyScheme type schemes

I' € TyEnv type environments
T u= «a | Nat | Bool | 11 = T

o = 7 | Ya.oy

' == []| [z~ o]

g t:r typing

[School of Mathematical and Computer Sciences (MACS)]

Polymorphic types

26

a € TyVar type variables

T € Ty types

o € TyScheme type schemes

I' € TyEnv type environments
T u= «a | Nat | Bool | 11 = T

o = 7 | Ya.oy

' == []| [z~ o]

kg t:o typing

[School of Mathematical and Computer Sciences (MACS)]

Polymorphic types

26

a € TyVar type variables

T € Ty types

o € TyScheme type schemes

I' € TyEnv type environments
T u= «a | Nat | Bool | 11 = T

o = 7 | Ya.oy

' == []| [z~ o]

kg t:o typing

iz Ty C TyScheme

[School of Mathematical and Computer Sciences (MACS)]

generalisation and instantiation

Introduction:

rl_ULt:Ul Oé¢ ftV(F)
'ty t:Va.oq

[t-gen]

[School of Mathematical and Computer Sciences (MACS)]

27

generalisation and instantiation

Introduction:

[t-gen]

rl_ULt:Ul Oé¢ ftV(F)
'ty t:Va.oq

Elimination:

'y t:Va. oq
[t-inst]

TChy t:[a— 19]on

[School of Mathematical and Computer Sciences (MACS)]

27

variables and local definitions

I'z)=0

———— [t-var]
FEonz:o

[School of Mathematical and Computer Sciences (MACS)]

28

variables and local definitions

I'z)=0

———— [t-var]
FEonz:o

Fhwticor Tz op]bute:T

[t-let]

IFhypletz =t inty: 7

[School of Mathematical and Computer Sciences (MACS)]

28

Polymorphic types: example

‘}\FI.I:VQ.OZ_)O[‘

‘ ArZ. Aqy. x : Vaq.Yas. ap — ag — aq ‘

‘ Aef Aez. f z:Vag.Vas. (o = ag) = a1 — ag ‘

wf.Apg. Agz. Ayy.if z =0then yelse f g (z —1) (g v)
:Va. (o - o) = Nat - a = «

[School of Mathematical and Computer Sciences (MACS)]

29

Inference algorithm

0 € TySubst = TyVar —, Ty type substitution

generalise;, : TyEnv x Ty — TyScheme
instantiatey;, : TyScheme — Ty

Uy, : Ty x Ty — TySubst

WL : TyEnv x Tm — Ty x TySubst

[School of Mathematical and Computer Sciences (MACS)]

30

Inference algorithm: constants

| W (T, n) = (Nat, id)

[School of Mathematical and Computer Sciences (MACS)]

31

Inference algorithm: constants

| W (T, n) = (Nat, id) |

| Wy (T, false) = (Bool, id) |

‘ Wo(I', true) = (Bool, id) ‘

[School of Mathematical and Computer Sciences (MACS)]

31

HERIOT
JATT

Inference algorithm: variables

‘ WUL (F, .T) = (InstantlateUL(F(x)), Id)

» The instantiation rule is built into the case for variables.
» By choosing fresh type variables, we commit to nothing,
» and let the actual types be determined by future unifications.

[School of Mathematical and Computer Sciences (MACS)]

32

Inference algorithm: functions

Wor (I, Azz. t1) = let i be fresh
(7—2,0) = WUL(F[.Z' — 041], tl)
in ((9 011) = T3, 9)

[School of Mathematical and Computer Sciences (MACS)]

33

Inference algorithm: functions

Wor (I, Azz. t1) = let i be fresh
(7—2, 0) = WUL(F[.'L' — Oél], tl)
in ((9 041) = T3, 9)

WUL (F, Hf}\ﬂ-ﬂ: t]_) =
let a1, o be fresh
(72,91) = WUL(F[f e (Oél — 042)][33 —> Oél], tl)
0y = Z/{UL(T2> 01 042)
in (92 (91 (11) — 92 T2 92 o 91)

[School of Mathematical and Computer Sciences (MACS)]

33

Inference algorithm: functions

33

Wor (I, Azz. t1) = let i be fresh
(7_2, 0) = WUL(F[.'E — (11]7 tl)
in ((9 al) = T3, 9)

WUL (F, }lf }\TI'I' t]_) =
let a1, o be fresh
(7'2,91) = WUL(F[f —> (Oél — 042)][33 — Oél], tl)
O = Uy (12,61 a2)
in (02 (01 a1) = 02 72, 0200;)

WUL (F, t tg) = let (’7’1,91) = WUL(F, tl)
(12,02) = Wor(01 T, t2)
« be fresh
93 :UUL(HQ T T2 =7 Oz)
in (93 (07 93092091)

[School of Mathematical and Computer Sciences (MACS)]

Unification

» To combine (join) two given types we apply unification
» l.e., in case rule for applications, Uy, (02 71,70 — @)

» Unification computes a substitution from two types:
Uyr, : Ty x Ty — TySubst
> If Uy (71, 72) =0 then 0 71 =0 1
» And 0 is the least such substitution
» Ex. Uy(ovy — Nat — Bool, Nat — Nat — «s) equals 6 with
0(a1) = Nat and 0(as) = Bool

» Note: unification is basically the Ll in the lattice of monotypes

[School of Mathematical and Computer Sciences (MACS)]

34

Unification Algorithm

Uy, (Nat, Nat) = id
Uy, (Bool, Bool) = id
Z/[UL (7’1 — 72,73 — ’7'4) = 92 (] 91
where

01 = Uy (7—177'3)

0o = Uy, (01 T2, 01 7'4)
Uy (o, 7) = [ae— 7] if chk (o, T)
Uy, (T,0) = [ae— 7] if chk (o, T)
Uy (-, —) = fail

Here, chk (o, 7) returns true if 7 = « or «v is not a free variable in 7.

[School of Mathematical and Computer Sciences (MACS)]

35

Inference algorithm: conditionals

Wi (I, if ¢ then t else t3) =
let (Tl, Ql) = WUL(F, tl)
(12,02) = Wur(01 T, t2)
(7-3,93) = WUL(92 (91 F), tg)
94 = Z/{UL(Gg (92 7'1), BOOZ)
05 = Uu(04 (03 12),04 73)
in (95 (04 7’3), 95094093092091)

» Subsitutions are applied as soon as possible.
» Error prone process of putting the right composition of
substitutions everywhere.

» Substitutions are idempotent: blindly applying all of them all the

time can only influence efficiency.
[School of Mathematical and Computer Sciences (MACS)]

36

Inference algorithm: local definitions

Wo(Dylet 2 =t in ty) =
Iet (7—1, 01) = WUL(F; t]_)
(T, 92) = WUL((HI F)[Z’ — generaliseUL(91 F, 7'1)], tg)
(7’, 92 o 91)

n

generalise;, generalizes all variables free in 6; I" at once.

[School of Mathematical and Computer Sciences (MACS)]

37

Inference algorithm: binary operators

WUL(Fa tl SY) t2) —
let (Tl, 91) = WUL(F, tl)
(12,02) = WyL(01 T, 1)
03 = Z/{UL(92 7'1’7'%9)
04 = Uy (03 7'277'625)
in (T@, 94093092091)

[School of Mathematical and Computer Sciences (MACS)]

38

39

Control-flow Analysis with Annotated Types

[School of Mathematical and Computer Sciences (MACS)]

Control-flow analysis

Control-flow analysis (or closure analysis) determines:

For each function application, which functions may be applied.

[School of Mathematical and Computer Sciences (MACS)]

40

Annotated types

41

¢ € Ann annotations

o = 0| {7} | pr1Up

[School of Mathematical and Computer Sciences (MACS)]

Annotated types

¢ € Ann annotations

7 € Ty annotated types
¥ 01 {m} | p1Up

7 u= | Nat | Bool | 71 5 %

[School of Mathematical and Computer Sciences (MACS)]

41

Annotated types

¢ € Ann annotations
7 € Ty annotated types
o € TyScheme annotated type schemes

01 {m} | e1Ue2
o | Nat | Bool | 71 2 7
n= T | Ya.oy

SHR MRS
|

[School of Mathematical and Computer Sciences (MACS)]

41

Annotated types

41

HERIOT
JATT

¢ € Ann annotations

T € ’I/‘Sf annotated types

o € Ty@me annotated type schemes

T € Tﬁv annotated type environments
p = 0 {r} | e1Uep

7 u= | Nat | Bool | 71 5 %

o = T | VYa.o;

T [] | Ti[z 5]

[School of Mathematical and Computer Sciences (MACS)]

HERIOT
JATT

Annotated types

¢ € Ann annotations

7 € Ty annotated types

o € TyScheme annotated type schemes

I' € TyEnv annotated type environments
p u= 0| {7}] w1Up

7 u= | Nat | Bool | 71 5 %

o = T | VYa.o;

r [] | Ti[z — 0]

I'bepa t:0 control-flow analysis

[School of Mathematical and Computer Sciences (MACS)]

41

Control-flow analysis: constants

[cfa-num]

r Fora 7. Nat

[School of Mathematical and Computer Sciences (MACS)]

42

Control-flow analysis: constants

[cfa-num]

r Fora 7. Nat

= [cfa-false]
I' Fepa false : Bool

[cfa-true]

iy Fcora true : Bool

[School of Mathematical and Computer Sciences (MACS)]

42

Control-flow analysis: variables

= |[cfa-var]
10 [Femn 3@

[School of Mathematical and Computer Sciences (MACS)]

43

Control-flow analysis: functions

=

F[x = /T\l] Fera 1 :7A'2

. [cfa-lam]
= ~ {r}
[Fepa Arz. t1: 71 — T

[School of Mathematical and Computer Sciences (MACS)]

44

Control-flow analysis: functions

44

=

F[x = /T\l] Fera 1 :7A'2

= ~ U ~
I l_CFA 7\7r117.t1 T ——> T2

[cfa-lam]

Tl = @ 25)]z = A Fom & : 5

f }_CFA Hf}\ﬂ—m tl o

e [cfa-mu]
T — To

[School of Mathematical and Computer Sciences (MACS)]

Control-flow analysis: functions

=

F[x = /7\1] Fera 1 :7A'2

[cfa-lam]
= ~ {r}
[Fepa Arz. t1: 71 — T

Tl = @ 25)]z = A Fom & : 5

— e [cfa-mu]
r }_CFA [,Lf.)\ﬁaj'. t 15'\1 — 5'\2
fl_CFA tlfl—ai)’/]'\ fl_CFA t2?2
[cfa-app]

f l_CFA tl tQI?

» o describes what may be applied!

[School of Mathematical and Computer Sciences (MACS)]

44

Control-flow analysis: conditionals

F I_CFA tl o BOOZ f l_CFA t2 o ? F l_CFA t3 o 7/:

T Fopa if 4 then & else t3: 7

[School of Mathematical and Computer Sciences (MACS)]

45

Control-flow analysis: local definitions

=

I l_CFA t :(/7\1 F[:E — 81] |—CFA to : T

= — [cfa-let]
Fl_CFAletx:tl intQ:T

[School of Mathematical and Computer Sciences (MACS)]

46

Control-flow analysis: binary operators

I l_CF‘A tl 5 7—619 I l_CFA t2 5 7-629
f '_CFA tl EB tQ o T@

[cfa-op]

[School of Mathematical and Computer Sciences (MACS)]

47

Control-flow analysis: example

| (Avz.7) (Acy-y)

[School of Mathematical and Computer Sciences (MACS)]

48

Control-flow analysis: example

‘ (Arz.) Ay y)

r Fora Arz.) (Acy. y) : Va. a ﬂ) «

[School of Mathematical and Computer Sciences (MACS)]

48

Control-flow analysis: example

‘ (Arz.) Ay y)

= =

Lz — Tg] Fom T : Tq Fy— albea y:
T e Nedo B S T iz}—> Ta I'Fer Ay ¥ i Ta

I boes Aez.2) (Aay. y) : 7o

T Fora Arz.) (Acy. y) : Va. a ﬂ) «

{6}

Ta=0a — «

[School of Mathematical and Computer Sciences (MACS)]

48

Higher-order functions

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h =Ayz.23 in
hg+hf

[School of Mathematical and Computer Sciences (MACS)]

49

Higher-order functions

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h =Ayz.23 in
hg+hf

f : Nat ﬂ>Nmf

Nat ﬂ> Nat

[School of Mathematical and Computer Sciences (MACS)]

49

Higher-order functions

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h =)\HZ. z 3 in
hg+htf
f : Nat ﬂ) Nat
Nat ﬂ> Nat
h : (Nat KN Nat) A Nt

[School of Mathematical and Computer Sciences (MACS)]

49

Higher-order functions

let f = Apz. 2+ 1in
let g =Acy.y*2 in
let h =)\HZ. z 3 in
hg+htf
f : Nat ﬂ) Nat
Nat ﬂ> Nat
h : (Nat KN Nat) A Nt
Should we have £ : (Nat “5 Nat) L5 Nat or

B (Nat 25 Nar) 295 Nar?

[School of Mathematical and Computer Sciences (MACS)]

49

Conditionals

Anz. if z2=0
then Arz. z + 1
else Aqy.y *2

[School of Mathematical and Computer Sciences (MACS)]

50

Conditionals

Anz. if z2=0
then Arz. z + 1
else Aqy.y *2

Should we have Nat 3, (Nat i, Nat) or
RGN — (Nat — AGIA Nat)?

[School of Mathematical and Computer Sciences (MACS)]

50

Subeffecting

f[x — ?1] '_CFA tl :7/—\2

f |_CFA 7\7r93. tl o ?] M) 5'\2

[cfa-lam]

[School of Mathematical and Computer Sciences (MACS)]

51

Subeffecting

f[x — ?1] '_CFA tl :7/—\2

f |_CFA 7\71—93. tl o ?] —>{7r}Uga 5'\2

[cfa-lam]

= e U ~ - .
Llf = (1 M)|z — 7T1] For &1 : T2

f l_CFA Hf. Aﬂ!l?. tl 5 ’/7—\1 M :/_\2

[cfa-mu]

[School of Mathematical and Computer Sciences (MACS)]

51

Subeffecting: example

let f = Apz. 2+ 1in
let g =Aqy.y*2 in
let h=Ayz. 23 in
hg+hf
f o Nat 2% Nt
Nat ﬁ) Nat
Bo: (NVat 228 Nap) B v

[School of Mathematical and Computer Sciences (MACS)]

52

Subeffecting: example

Anz.if z2=0
then A\rz. 2z +1
else Aqy.y *2

{u} {r.c}

Nat (Nat Nat)

[School of Mathematical and Computer Sciences (MACS)]

53

Inference algorithm: simple types

54

8 € AnnVar annotation variables

T € Sim/pETy simple types

g € Simpleﬁy\Scheme simple type schemes

T € Sim@Env simple type environments
= Tmst hybrid type substitution
C € Constr constraint

7 w= a| Nat | Bool | 71 &%

o u= 7T | Va.01

I' = []| Tz~ 3]

C == 0| {B2¢} | CLUGC

[School of Mathematical and Computer Sciences (MACS)]

Inference algorithm

55

generalise .,

instantiatecga
Z/{CFA

WC FA

SimpleTyEnv x SimpleTy —
Simpleﬁﬁcheme
Simpl@cheme — Sim/pETy
SimpleTy x SimpleTy —
Ty/S_IEst

Sim[ﬁfEnv X Tm —
Sim/pETy X T@st x Constr

[School of Mathematical and Computer Sciences (MACS)]

Inference algorithm: constants

Wer(T,n) = (Nat, id, 0) |

‘ Wera (I, false) = (Bool, id, 0) ‘

‘ Wera (L, true) = (Bool, id, 0) ‘

[School of Mathematical and Computer Sciences (MACS)]

56

Inference algorithm: variables

‘ Wera (I',) = (instantiateces (I'(2)), id, 0)

[School of Mathematical and Computer Sciences (MACS)]

57

Inference algorithm: functions

58

Wera (I, Azz. t1) = let o be fresh
(72,0,Ch) = WCFA(P[x = 041]7 t1)
0 be fresh

in (001) 5%, 0,C,0{B2{r}})

» Introduce fresh variables for annotations.

» Invariant: only variables as annotations in types (aka simple
types).
» Put concrete information about the variables into C.

v

Solve constraints later to obtain actual sets.

» Simplifies unification substantially.

[School of Mathematical and Computer Sciences (MACS)]

Changes to unification

Only the case for function changes:

Uy (11 6—1> To, T3 6—2> T4) = 603061 06
where
0o = [B1 — B2]
01 = Uyr (0o 71,060 73)
02 = Uy, (01 (0o 12),01 (00 74))

No need to recurse on annotations: just map one variable to the
other.

[School of Mathematical and Computer Sciences (MACS)]

59

Inference algorithm: recursive functions

Wera (U uf Az th) =
let vy, o, B be fresh

(?2,51,01) = Wera(T[f = (a1 LN az)][z = a1, t1)

~

0y = uCFA(’/r\Qa 51 042)

in (é\g (é\l Oél) w) 52 ?2, 52 o 51,

(62 C1) U {0 (61 B) 2 {m}})

Remember: 0 and > can only rename annotation variables.

[School of Mathematical and Computer Sciences (MACS)]

60

HERIOT
JATT

Constraints: example

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h=Ayz.23 in
hg+hf

[School of Mathematical and Computer Sciences (MACS)]

61

Constraints: example

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h=Ayz.23 in

hg+hf

f + Nat Py Nat

g : Nat 6—2> Nat

h : (Nat N Nat) LN

61

[School of Mathematical and Computer Sciences (MACS)]

Constraints: example

61

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h=Ayz.23 in

hg+hf

f + Nat Py Nat

g Nat 6—2> Nat

h (Nat N Nat) 1, Nat
0(81) = Ps

0(B2) = Bs

[School of Mathematical and Computer Sciences (MACS)]

Constraints: example

61

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h=Ayz.23 in

hg+hf

f + Nat Py Nat

g Nat 6—2> Nat

h (Nat N Nat) 1, Nat
0(81) = Ps

0(B2) = Bs

C ={p2{r},B22{c}}

[School of Mathematical and Computer Sciences (MACS)]

Constraints: example

61

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h=Ayz.23 in

hg+hf

f + Nat Py Nat

g Nat 6—2> Nat

h (Nat N Nat) 1, Nat
0(81) = Ps

0(B2) = Bs

g ={B12{r}, /2 2{G}}
0C={B2{r},B832{c}}

[School of Mathematical and Computer Sciences (MACS)]

Constraints: example

61

let f =Apz. 2+ 11in
let g =Acy.y*2 in
let h=Ayz.23 in

hg+hf

f + Nat Py Nat

g Nat 6—2> Nat

h (Nat N Nat) 1, Nat
0(81) = Ps

0(B2) = Bs

g ={B12{r}, /2 2{G}}
0C={B2{r},B832{c}}

Least solution: 3 = {F,G}.

[School of Mathematical and Computer Sciences (MACS)]

Poisoning

62

Naive use of subeffecting is fatal for the precision of your analysis:

let f =Apz.x + 1 in
let g = Acy.y x2 in
let h = Ayz.if z = 0 then f else g in
S

Nat % Nat

[School of Mathematical and Computer Sciences (MACS)]

Separate rule for subeffecting

Fl_CFAt:?li?Q

[cfa-sub]

= ~ YUp’ <
Fhepa t: 71 —— T

[School of Mathematical and Computer Sciences (MACS)]

63

Separate rule for subeffecting

Fl_CFAt:?li?Q

[cfa-sub]

= ~ YUp’ <
Fhepa t: 71 —— T

We can remove the subeffecting from the lambda rule:

=

F[.’L‘ —> 5'\1] |_CFA tl 17/'\2

f l_CFA }\ﬂ-ai. tl 5 7/:1 —>{Tr} 7/:2

[cfa-lam]

[School of Mathematical and Computer Sciences (MACS)]

63

Separate compilation?

let f = Apz. 2+ 1in

let g =Acy.y*2 in

let h =Ayz.23 in

hg+hf

f : Nat ﬂ) Nat

g : Nat Q Nat

h : (Nat L5 Nat) 1 Nat

[School of Mathematical and Computer Sciences (MACS)]

64

Separate compilation?

let f = Apz. 2+ 1in
let g =Acy.y*2 in
let h =Ayz.23 in
hg+hf
f Nat ﬂ) Nat
Nat Q Nat
h (Nat L5 Nat) 1 Nat

1&= We need to analyse the whole program to accurately deter-
mine the domain of h.

[School of Mathematical and Computer Sciences (MACS)]

64

Subeffecting and subtyping

> We have now seen subeffecting at work.
» The main ideas of all of these are:

» compute types and annotations independent of context,
» allow to weaken the outcomes whenever convenient.

> Weakening provides a form of context-sensitiveness.

» In (shape conformant) subtyping we may also weaken
annotations deeper in the type.

[School of Mathematical and Computer Sciences (MACS)]

65

66

Polyvariance

[School of Mathematical and Computer Sciences (MACS)]

Example: parity analysis

» The natural number 1 can be analysed to have type Natt9},

» A function like double on naturals should work for all naturals:
NattOE}Y s Not{E}

» The type of 1 can then be weakened to Nat{9F} as it is passed
into double, without influencing the type and other uses of 1.

let one= 1in
let double = Aqy.y *x2 in
one x double one

[School of Mathematical and Computer Sciences (MACS)]
67

Limitations to subeffecting and subtyping

| 4
>
| 2
>

68

vy

Weakening prevents certain forms of poisoning,
but it does not help propagate analysis information.
For id on naturals we expect the type Natl9F} o Ngi{O-F},

However, we also know that O inputs leads to O outputs, and
similar for F.

Our annotated types cannot represent this information.
Is it acceptable that id 1 and 1 give different analyses?

[School of Mathematical and Computer Sciences (MACS)]

HERIOT
JATT

Polyvariance

We consider only let-polyvariance.

Exactly analogous to let-polymorphism, but for annotations.

For id we then derive the type ¥f3. Nat® — Nat”.

For id 1 we can choose 5 = { O} so that id 1 has annotation
{0}

Allows us to propagate properties through functions that are
property-agnostic.

vvyYyy

v

» Polyvariant analyses with subtyping are current state of the art.
» But it depends somewhat on the analysis.

[School of Mathematical and Computer Sciences (MACS)]
69

Annotated polyvariant types

70

¢ € Ann

annotations

o u= B 0| {n} | pr1Uep2

[School of Mathematical and Computer Sciences (MACS)]

Annotated polyvariant types

¢ € Ann annotations

7 € Ty annotated types
p w= B0 {r}] e1Uep

7 == | Nat | Bool | 71 5 %

[School of Mathematical and Computer Sciences (MACS)]

70

Annotated polyvariant types

70

% Ann annotations

T ’I/‘Sr annotated types

o Ty@me annotated type schemes
¥ B0 {m} | er1Uea

7 u= | Nat | Bool | 71 5 %

o = T | VYa.o1 | VB.01

[School of Mathematical and Computer Sciences (MACS)]

Annotated polyvariant types

¢ € Ann annotations

T € ’I/‘Sf annotated types

o € Ty@me annotated type schemes

T € Tﬁv annotated type environments
¥ B0 {m} | ¢1Ueo

7 ou=]Nt\Bool|?1£>?2

3 = 7/'\ ’ Ya 0'1 | Vﬁ o1

I == []]| iz~ 3]

[School of Mathematical and Computer Sciences (MACS)]

70

Annotated polyvariant types

¢ € Ann annotations

7T € Ty annotated types

o € TyScheme annotated type schemes

I' € TyEnv annotated type environments
@ BLOIA{r} | prUeo

7 ou=]Nt\Bool|?1£>?2

G = 7/'\ | Va.o1 | V8.0

' == []]| Ti[zw— 0]

I'bepa t:0 control-flow analysis

[School of Mathematical and Computer Sciences (MACS)]

70

Is this enough?

71

let f = Apz. True in
let g = A¢k.if f 0 then k else (Ayy. False) in
9f

A (mono)type for g f is v1 A Bool.,

{H} is contributed by the else-part, {F} comes from the parameter
passed to g¢.

But what is the type of g that can lead to such type?

[School of Mathematical and Computer Sciences (MACS)]

Is this enough?

71

let f = Apz. True in
let g = A¢k.if f 0 then k else (Ayy. False) in
9f

A (mono)type for g f is v1 A Bool.,

{H} is contributed by the else-part, {F} comes from the parameter
passed to g¢.

But what is the type of g that can lead to such type?

g:¥a.Y8.(a % Bool) & (¢ 221 Booi)

But how can we manipulate such annotations correctly?
1= Add a few rules

[School of Mathematical and Computer Sciences (MACS)]

Polyvariant type system: generalisation

Introduction for type variables:

Thee t:0 aé ftv(l)
[cfa-gen]

T Fopa t:Va. o

Introduction for annotation variables:

Thomt:o B¢ fav(D)
T lom t:VB.5

[cfa-ann-gen]

Here fav(I") computes the free annotation variables in T".

[School of Mathematical and Computer Sciences (MACS)]

72

Polyvariant type system: instantiation

Elimination for type variables:

—— [cfa-inst]

r Fopa t:Va. o
T Fepa t:[a— To

Elimination for annotation variables:

f l_CFA t o V/B /O—\
[cfa-ann-inst]

T b t:[B— o]0

[School of Mathematical and Computer Sciences (MACS)]

73

Polyvariant type system: subeffecting again

74

To align the types of the then-part and else-part, and to match
arguments to function types, we still need subeffecting.

Recap:

FI—CFAt"/I'Ei):F\Q

[cfa-sub]

=3 ~ pU
FI_CFAt:Tl —>7—2

then-part: 3 can be weakened to 5 U {H}.
else-part: {H} can be weakened to {H} U /.

But these are not the same!

[School of Mathematical and Computer Sciences (MACS)]

When are two annotations equal?

The type system has no way of knowing, so we have to tell it when.

fl_CFAt:?li'/T\Q o=

[cfa-eq]

/

Fl—CFAt:?lg?l

In other words: you may replace equals by equals.
i {H}UB by fU{H}

Problem now becomes to define/axiomatize equality for these
annotations.

[School of Mathematical and Computer Sciences (MACS)]

75

Y =

A4
- [g-trans]
p=¢

w1 = <P1 Y2 = <P2
01U s = @1 U

[q -join]

[School of Mathematical and Computer Sciences (MACS)]

76

Equality of annotations axiomatized (2)

m [g-unit]

—— [g-idem)]
pUp=ep

[g-comm]

1 U2 = o Uy

[g-ass]
01 U (2 U @3) = (1 U p2) U ps

[School of Mathematical and Computer Sciences (MACS)]

v

78

This combination of axioms often occurs:

> Unit

» Commutativity
P Associativity
» Idempotency

1z Modulo UCAI

[School of Mathematical and Computer Sciences (MACS)]

What about the algorithm?

79

We still perform generalization in the let.
And instantiation in the variable case.

Recall:

» The algorithm unifies types and identifies annotation variables.
» |t collects constraints on the latter.

After algorithm Wgga, we solve the constraints to obtain
annotation variables.

In the monovariant setting this was fine: correctness did not
depend on the context.

In a polyvariant setting, the context plays a role

Constraints on annotations must be propagated along.

[School of Mathematical and Computer Sciences (MACS)]

Some variations

» Idea 1: simply store all constraints in the type.
» During instantation refresh type and annotations variables in the
type, and the constraint set (consistently).
» Includes also trivial and irrelevant constraints.
» Some say: simple duplication is not feasible.
» Idea 2: simplify constraints as much as possible before storing
them.

» Simplification can take many forms.
» Takes place as part of generalisation.
» Type schemes store constraints sets: rather like qualified types.

[School of Mathematical and Computer Sciences (MACS)]

80

Simplification

81

Simplification = intermediate constraint solving.

In both cases, annotations left unconstrained can be defaulted to
the best possible.

However, annotation variables that occur in the type to be
generalized must be left unharmed.

Why? Annotation variables provide flexibility for propagation.
1= Defaulting throws that flexibility away.

[School of Mathematical and Computer Sciences (MACS)]

Example (to illustrate)

82

HERIOT
JATT

Assume W, returns type (vl N vl) N (v1 B, vl) and

constraint set {32 2 {G}, 83 2 84,81 2 B1,B5 2 {1}, B3 2 3}
And that /3 occurs free in T.
Bs is not relevant, so it can be omitted (set to {H}).

» |t does not occur in the type, or the context
B4 is not relevant either, but removing it implies we must add
B3 2 Bi.
Neither 52 2 {G} and 3 O 8 may be touched.

Remember the invariant to keep unification simple: only
annotation variables in types.

[School of Mathematical and Computer Sciences (MACS)]

Constrained types and type schemes

83

Introduce an additional layer of types (a la qualified types):

Q)) N

«a
?
p

| Nat | Bool | 71 2 7

| c=p
| Vo5, | VB.51

[School of Mathematical and Computer Sciences (MACS)]

Generalisation and instantiation

84

Instantiation provides fresh variables for universally quantified
variables.

Generalisation invokes the simplifier.

Simplification can be performed by a worklist algorithm, that
leaves certain (which?) variables untouched.

1z Considers them to be constants

Type signature compartmentalizes a local definition: we do not
care what happens inside.

[School of Mathematical and Computer Sciences (MACS)]

If we do get here with time to spare

Hop over to the effect system slides

[School of Mathematical and Computer Sciences (MACS)]

85

	Static Analysis and Types
	Hindley-Milner and Algorithm W
	Control-flow Analysis with Annotated Types
	Polyvariance

