
Chapter 2

Floating Point Arithmetic

2.1 Introduction

2.2 Floating Point Numbers

Theorem 2.1. Let β ≥ 2 be an integer. For every x ∈ IR there exist integers e and di ∈ {0, . . . , β − 1},
i = 0, 1, . . . , such that

x = sign(x)

( ∞∑
i=0

diβ
−i

)
βe. (2.1)

The representation (2.1) is unique if one requires that d0 > 0.

In a computer only a subset of all real numbers can be represented. These are the so–called floating
point numbers and they are of the form

x̄ = (−1)s

(
t−1∑
i=0

diβ
−i

)
βe, (2.2a)

with di ∈ {0, . . . , β − 1}, i = 0, 1, . . . , t − 1, and e ∈ {emin, . . . , emax}.
The integer β is called the base,

∑t−1
i=0 diβ

−i is the significant or mantissa, t is the mantissa length, e is the
exponent, and {emin, . . . , emax} is the exponent range.

A floating point number system is the set of all numbers that are of the form (2.2). A floating point
number system can be characterized by the four integers

β, t, emin, emax.

If β = 2, then we say the floating point number system is a binary system. In this case the di’s are called
bits. If β = 10, then we say the floating point number system is a decimal system. In this case the di’s are
called digits.

In this chapter we use x̄ to denote a floating point number.
A floating point number is called normalized if

d0 = 0 ⇔ x = 0.

Example 2.2 A sketch of the floating point number system (β = 2, t = 3, emin = −1, emax = 2) is given in
Figure 2.1. Notice that the normalized floating point numbers x̄ �= 0 are of the form

x̄ = 1.d1d2 × 2e
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2–2 CHAPTER 2. FLOATING POINT ARITHMETIC

since the normalization condition implies that d0 ∈ {1, . . . , β − 1} = {1}.

✲
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Figure 2.1: The floating point number system (β = 2, t = 3, emin = −1, emax = 2). Only positive numbers
are shown.

✸

Let us consider a floating point number system which is characterized by (β, t, emin, emax). A few
properties of this floating point number system are summarized below.

• The mantissa satisfies

t−1∑
i=0

diβ
−i ≤

t−1∑
i=0

(β − 1)β−i = β(1 − β−t) < β. (2.3)

• The mantissa of a normalized floating point number is always greater or equal to one.

• The largest floating point number is

x̄max =

(
t−1∑
i=0

(β − 1)β−i

)
βemax = (1 − β−t)βemax+1.

• The smallest positive normalized floating point number is

x̄min = βemin .

• The distance between x̄ = 1 and the next largest floating point number is β−(t−1). In fact, the spacing
between the floating point numbers in [1, β] is β−(t−1). The spacing between the floating point numbers
in [βe, ββe] is β−(t−1)βe.

Outside the range [−(1−β−t)βemax+1, (1−β−t)βemax+1] the number overflows and various things could
happen; numbers with absolute value in (0, βemin) underflow and, again, various things could happen.

If the number x neither overflows nor underflows we define

fl(x) = x̄ the normalized floating point number closest to x. (2.4)

The floating point number x̄ closest to x can be obtained by rounding. Suppose that

x = sign(x)

( ∞∑
i=0

diβ
−i

)
βe, (2.5a)
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2.2. FLOATING POINT NUMBERS 2–3

then

fl(x) =




sign(x)
(∑t−1

i=0 diβ
−i
)

βe, if dt < 1
2β,

sign(x)
(∑t−1

i=0 diβ
−i + β−(t−1)

)
βe, if dt ≥ 1

2β.
(2.5b)

Example 2.3 Let β = 10, t = 3. Then

fl(1.234 ∗ 10−1) = 1.23 ∗ 10−1,

fl(1.235 ∗ 10−1) = 1.24 ∗ 10−1,

fl(1.295 ∗ 10−1) = 1.30 ∗ 10−1.

✸

What is the error incurred by rounding?

Theorem 2.4. If x is a number within the range of floating point numbers and |x| ∈ [βe−1, βe), then the
absolute error is given by

|fl(x) − x| ≤ 1
2
βe−t (2.6)

and, provided x �= 0, the relative error is given by

|fl(x) − x|
|x| ≤ 1

2
β1−t. (2.7)

Proof. If x = 0, then fl(x) = x and (2.6) follows immediately. We now consider the case x > 0 and
x ∈ [βe−1, βe). In the interval [βe−1, βe] the floating point numbers are uniformly spaced with a separation
of βe−t. The closest one to x is fl(x) and must be within a distance of 1

2βe−t from x. That is,

|fl(x) − x| ≤ 1
2
βe−t.

Since βe−1 ≤ x we have (2.7).
The case x < 0 can be treated analogously.

The number

u =
1
2
β1−t (2.8)

is called unit roundoff. Sometimes it is also called machine precision and denoted by εmach.
The relation (2.7) implies that

fl(x) = x(1 + ε), with |ε| ≤ u. (2.9)

Example 2.5 Let β = 10, t = 3, thus u = 5 ∗ 10−3.

|fl(1.234 ∗ 10−1) − 1.234 ∗ 10−1| = 0.0004,

|fl(1.234 ∗ 10−1) − 1.234 ∗ 10−1|
1.234 ∗ 10−1

=
0.0004

1.234 ∗ 10−1
≈ 3.2 ∗ 10−3,

|fl(1.295 ∗ 10−1) − 1.295 ∗ 10−1| = 0.0005,

|fl(1.295 ∗ 10−1) − 1.295 ∗ 10−1|
1.295 ∗ 10−1

=
0.0005

1.295 ∗ 10−1
≈ 3.9 ∗ 10−3.
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2–4 CHAPTER 2. FLOATING POINT ARITHMETIC

✸

To estimate the unit roundoff it is useful to note that

fl(1 + ε) = 1 for all ε ∈ (−u,u). (2.10)

This follows from (2.5). In fact, if ε ∈ [0,u), then

1 + ε = +
(

1 + 0β−1 + . . . + 0β−(t−1) + dtβ
−t + dt+1β

−(t+1) + . . .
)

β0,

with dt < 1
2β. Thus, application of (2.5b) gives

fl(1 + ε) = 1.

The case ε ∈ (−u, 0) can be treated analogously. The observation (2.10) can be used to estimate the unit
roundoff with the following algorithm.

Algorithm 2.2.1 Estimation of Unit Roundoff u

Output: The algorithm returns s with s < u ≤ 2s.

1 s = 1
2 s1 = 1 + s
3 While s1 > 1 do
4 s = s/2
5 s1 = 1 + s
6 End

In Algorithm 2.2 we use division by 2 to decrease s. This division can be done exactly if the computer
uses a floating point system with base β = 2p.

2.3 The IEEE Standard

Most computers use the IEEE standard 754 for binary floating point arithmetic, which we sketch below.

IEEE Single Precision

IEEE single precision normalized floating point numbers are of the form

x̄ = (−1)s × 2e−127 × 1.f .

First note that the requirement d0 ∈ {1, . . . , β − 1} for a nonzero normalized number implies d0 = 1. Thus
the leading bit of a normalized number is implicitly given and the mantissa is of the form 1.f , where f is the
fraction. Next, observe that the form e − 127 of the exponent yields negative exponents if e ∈ {0, . . . , 126};
we do not need an extra bit for the sign of the exponent.

An IEEE single precision number is stored in 32 bits using the following format:

s exp[30:23] fraction[22:0]
31 30 23 22 0
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2.3. THE IEEE STANDARD 2–5

Here s is the sign bit. The bit s = 0 corresponds to positive numbers, s = 1 corresponds to negative
numbers. The integer e in the exponent of x̄ is of the form

e =
7∑

i=0

ei2i, ei ∈ {0, 1}.

However, only exponents e with 0 < e < 255 are used for the representation of normalized numbers. Thus
the exponent range is emin = 1 − 127 = −126 and emax = 254 − 127 = 127. The exponents e = 0, e = 255
are reserved for other representations.

The exponent e = 0 is used for the representation of subnormal numbers which are of the form

(−1)s × 2−126 × 0.f (f �= 0).

and zero ((−1)s×0.0). Subnormal numbers are introduced to reduce the gap between zero and the normalized
numbers. The presence of subnormal numbers reduces the influence of underflow.

Consider for example the system of normalized floating point numbers that are of the form

(−1)s × 2e−2 × 1.f

with e ∈ {1, 2, 3, 4}. The positive normalized numbers are sketched in Figure 2.2 (bold lines). See also Figure
2.1. The subnormal numbers in this system would be of the form

(−1)s × 2−1 × 0.f (f �= 0).

These are the numbers −3/8,−1/4,−1/8, 3/8, 1/4, 1/8 and are indicated by the thin lines in Figure 2.2.
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Figure 2.2: A Floating Point Number System with Normal and Subnormal Numbers.

There are special quantities that you may have seen in previous computations. These quantities are
introduced to make debugging of codes easier. NaN (not a number) is assigned to the result of calculations
like 0/0 or

√−1. NaN is represented by e = 255, f �= 0. The quantities ±INF occur if one tries to divide a
nonzero number by zero. INF corresponds to (e = 255, f = 0).

The IEEE Single Precision Storage Format is summarized in Table 2.1.

IEEE Double Precision

IEEE double precision floating point numbers are stored in (32+32=) 64 bits using the following format:

s exp[52:62] fraction[51:32]
63 62 52 51 32

fraction[31:0]
31 0
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2–6 CHAPTER 2. FLOATING POINT ARITHMETIC

Table 2.1. IEEE Single Precision Storage Format

Single Precision Value IEEE Single Precision Representation

Normalized value (0 < e < 255) (−1)s × 2e−127 × 1.f

Subnormal value (e = 0, f �= 0) (−1)s × 2−126 × 0.f

Signed Zero (e = 0, f = 0) (−1)s × 0.0

−INF (e = 255, f = 0) s = 0; e = 255; f = 0 (all bits in f are zero)

+INF (e = 255, f = 0) s = 1; e = 255; f = 0 (all bits in f are zero)

NaN (e = 255, f �= 0)

Table 2.2. IEEE Values

Common Name (Approximate) Equivalent Value

Single Precision Double Precision

Unit roundoff 2−24 ≈ 6.e − 8 2−53 ≈ 1.1e − 16

Maximum normal number 3.4e + 38 1.7e + 308

Minimum positive normal number 1.2e − 38 2.3e − 308

Maximum subnormal number 1.1e − 38 2.2e − 308

Minimum positive subnormal number 1.5e − 45 5.0e − 324

The double precision values are summarized in Tables 2.3 and 2.2.

Table 2.3. IEEE Double Precision Storage Format

Single Precision Value IEEE Double Precision Representation

Normalized value (0 < e < 2047) (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0, f �= 0) (−1)s × 2−1022 × 0.f

Signed Zero (e = 0, f = 0) (−1)s × 0.0

−INF (e = 2047, f = 0) s = 0; e = 2047; f = 0 (all bits in f are zero)

+INF (e = 2047, f = 0) s = 1; e = 2047; f = 0 (all bits in f are zero)

NaN (e = 2047, f �= 0)
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2.3. THE IEEE STANDARD 2–7

IEEE Floating Point Operations

If we can only represent a limited number of numbers, then the question arises with what accuracy numbers
can be added, subtracted, multiplied, or divided. If ✷ represents one of the elementary operations +,−, ∗, /
and if x̄ and ȳ are floating point numbers, then x̄✷ȳ is not guaranteed to be a floating point number. Thus,
what is the computed value for x̄✷ȳ? In IEEE floating point arithmetic the result of the computation x̄✷ȳ
is equal to the floating point number that is nearest to the exact result x̄✷ȳ. Therefore we use fl(x̄✷ȳ) to
denote the result of the computation x̄✷ȳ

We can use the following model for the computation of x̄✷ȳ, where ✷ is one of the elementary operations
+,−, ∗, /.

1. Given floating point numbers x̄ and ȳ.

2. Compute x̄✷ȳ exactly.

3. Round the exact result x̄✷ȳ to the nearest floating point number and normalize the result.

The actual implementation of the elementary operations is more sophisticated. For more details see, e.g.,
[?]. Given two numbers x̄, ȳ in IEEE floating point format, the IEEE floating point arithmetic guarantees
that

|fl(x̄✷ȳ) − (x̄✷ȳ)|
x̄✷ȳ

≤ u, (2.11)

if no overflow or underflow occurs, c.f. (2.6).

Printing Floating Point Numbers

Internally, IEEE floating point numbers are stored in binary format. However, when printed, the numbers
are converted into the decimal system. This conversion introduces an error. This error depends on the
format with which the number is printed. Consider the following diary from a Matlab session. Matlab
uses IEEE double precision arithmetic. This Matlab session was run on a SUN Ultra 10 workstation using
Matlab Version 5.3.0.10183 (R11), Jan 21, 1999.

>> x = 1/6;
>> x

x = 0.1667

>> format short e
>> x

x = 1.6667e-01

>> format long e
>> x

x = 1.666666666666667e-01

>> fprintf(1,’ x = %30.15e \n’, x)
x = 1.666666666666667e-01

>> fprintf(1,’ x = %30.16e \n’, x)
x = 1.6666666666666666e-01
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2–8 CHAPTER 2. FLOATING POINT ARITHMETIC

>> fprintf(1,’ x = %30.17e \n’, x)
x = 1.66666666666666657e-01

>> fprintf(1,’ x = %30.25e \n’, x)
x = 1.6666666666666665741480813e-01

The number x = 1/6 can not be represented exactly in a binary floating point system with finite mantissa.
Thus, an error occurs when x = 1/6 is rounded to the nearest IEEE floating point number. The different
outputs of fl(x) are summarized below.

x = 1.6667e− 01, (2.12a)
x = 1.666666666666667e− 01, (2.12b)
x = 1.666666666666667e− 01, (2.12c)
x = 1.6666666666666666e− 01, (2.12d)
x = 1.6666666666666665741480813e− 01. (2.12e)

Using format long e or fprintf(1,’ x = %30.15e \n’, x) shows 1/6 correctly rounded to 16 digits,
see (2.12b) and (2.12c). Printing x = 1/6 using format short e shows 1/6 correctly rounded to 5 digits,
see (2.12a). However, information is lost because only 5 digits are requested for output. On the other hand, if
we request an output with a higher accuracy than supported by the floating point system, then the last digits
can not be trusted. This the case when the printing formats fprintf(1,’ x = \%30.16e \n’, x) or
fprintf(1,’ x = \%30.25e \n’, x) are used, see (2.12d) and (2.12e).

2.4 The Effects of Rounding Errors

2.4.1 Cancellation

For the estimate (2.11) to hold it is essential that x̄ and ȳ are both floating point numbers.

Example 2.6 Consider the floating point system β = 10 and t = 4. 1 If we subtract the floating point
numbers x̄ = 2.552 ∗ 103 and ȳ = 2.551 ∗ 103, then x̄− ȳ = 0.001 ∗ 103 = 1.000 ∗ 100. The result is a floating
point number and in this case no error aoccurs in the subtraction of these numbers.

If we subtract the floating point numbers x̄ = 2.552 ∗ 103 and ȳ = 2.551 ∗ 102, then

x̄ − ȳ = 2.2969 ∗ 103.

This is not a floating point number. Thus, the floating point result of this subtraction is fl(x̄−ȳ) = 2.297∗103.
We see that

|fl(x̄ − ȳ) − (x̄ − ȳ)|
|x̄ − ȳ| =

|2.297 ∗ 103 − 2.2969 ∗ 103|
2.2969 ∗ 103

≈ 4.4 ∗ 10−5 < u = 5 ∗ 10−5.

This agrees with (2.7). ✸

The addition/subtraction of two floating point numbers x̄ and ȳ in general only leads to benign can-
cellations.

The cancellation error can be much larger if we add/subtract two numbers that are not in floating
point format. Problems may occur if one subtracts two numbers with same sign and of approximately the
same size (or if one adds two numbers with opposite sign and with absolute values of approximately the

1The effects of canellation are easier to visualize if we use the decimal system. Your computer most likely uses the binary
system. Some cancellation effects are harder to recongnize because the binary numbers are converted to decimals for the output.
However, cancellation still occurs and the effects are the same.
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2.4. THE EFFECTS OF ROUNDING ERRORS 2–9

same size). In this case the most significant digits (left in the mantissa) match and cancel each other. To
normalize the result, the result will be shifted to the left and the last digits are filled with (spurious) zeros.
This is called catastrophic cancellation.

Example 2.7 Consider the floating point system β = 10 and t = 4. If we subtract the numbers x =
2.5515052 ∗ 103 and y = 2.5514911 ∗ 103 (notice that x and y are not in floating point format), then in
floating point arithmetic the result is obtained as follows:

1. Compute the floating point numbers x̄ and ȳ nearest to x and y, respectively: x̄ = 2.552 ∗ 103 and
ȳ = 2.551 ∗ 103.

2. Compute x̄ − ȳ exactly: x̄ − ȳ = 0.001 ∗ 103.

3. Round the exact result x̄ − ȳ to the nearest floating point number: fl(0.001 ∗ 103) = 0.001 ∗ 103. Shift
the result to the left to normalize the number: fl(0.001 ∗ 103) = 1.000. The last digits are filled with
(spurious) zeros.

The exact result is 2.5515052 ∗ 103 − 2.5514911 ∗ 103 = 1.410 ∗ 10−2. The relative error between exact and
computed solution is

|1.000 − 1.410 ∗ 10−2|
1.410 ∗ 10−2

≈ 70 � u = 5 ∗ 10−4.

Note that this large error is not due the computation of fl(x̄ − ȳ). In fact this operation could be computed
exactly. The large error is caused by the rounding of x and y at the beginning. ✸

It is important to notice that catastrophic cancellation can not be detected by looking at the numbers.
The zeros that showed up in the previous example after shifting the digits and normalizing the number are
only visible in the decimal system. Since most computers use binary systems, these binary zeros will be
converted to nonzero digits!

We can give a formal analysis of the error incurred by the subtraction of two numbers:
Suppose that x̄ and ȳ are the floating point approximations of x and y, respectively. Then

x̄ = x(1 + ε1), ȳ = y(1 + ε2), with |ε1|, |ε2| ≤ u,

see (2.9). Moreover

fl(x̄ − ȳ) = (x̄ − ȳ)(1 + ε3), with |ε3| ≤ u.

Thus,

fl(fl(x) − fl(y)) = fl(x̄ − ȳ) = (x̄ − ȳ)(1 + ε3) = [x(1 + ε1) − y(1 + ε2)](1 + ε3)
= (x − y)(1 + ε3) + (xε1 − yε2)(1 + ε3)

and, if x − y �= 0, then the relative error is given by

|fl(fl(x) − fl(y)) − (x − y)|
|x − y| =

∣∣ε3 +
xε1 − yε2

x − y
(1 + ε3)

∣∣ (2.13)

If ε1ε2 �= 0 and x − y is small, then the quantity on the right hand side could be big. In this analysis it is
not important that x̄ and ȳ are the floating point approximations of x and y, respectively. We can view x̄
and ȳ more generally as perturbations of x and y.
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2–10 CHAPTER 2. FLOATING POINT ARITHMETIC

Do we have to expect large errors also for other calculations? Similar to the derivation of (2.13) one
can show that

|fl(fl(x) + fl(y)) − (x + y)|
|x + y| =

∣∣ε4 +
xε1 + yε2

x + y
(1 + ε4)

∣∣, (2.14)

|fl(fl(x) ∗ fl(y)) − (x ∗ y)|
|x ∗ y| = |ε1 + ε2 + ε1ε2 + (ε1 + ε2 + ε1ε2)ε5| ≈ |ε1 + ε2|, (2.15)

|fl(fl(x)/fl(y)) − (x/y)|
|x/y| =

∣∣1 + ε1
1 + ε2

(1 + ε6) − 1)
∣∣ ≈ ∣∣ε1 − ε2

∣∣. (2.16)

Thus, catastrophic cancellation can only occur if one subtracts two numbers which are not both in
floating point format and which have the same sign and are of approximately the same size, see (2.13), or
if one adds two numbers which are not both in floating point format, which have opposite sign and their
absolute values of approximately the same size, see (2.14).

2.4.2 Examples

Example 2.8 Suppose we want to evaluate 1 − cos(x) near x = 0. Since cos(0) = 1 we expect catastrophic
cancellation. The computations of 1 − cos(x) at various x near zero are shown in the following table. All
computations were done on a SUN SparcStation 10 in single precision Fortran.

x 1 − cos
0.500000 0.122417
0.125000 0.780231E − 02
0.312500E − 01 0.488222E − 03
0.781250E − 02 0.305176E − 04
0.195312E − 02 0.190735E − 05
0.488281E − 03 0.119209E − 06
0.122070E − 03 0.
0.305176E − 04 0.
0.762939E − 05 0.
0.190735E − 05 0.
0.476837E − 06 0.
0.119209E − 06 0.
0.298023E − 07 0.

In this case we can avoid catastrophic cancellation for evaluations near x = 0. For example, since
cos2(x)+sin2(x) = 1 it holds that 1− cos(x) = sin2(x)/(1+cos(x)). Alternatively one may use of the Taylor
expansion of cos(x):

cos(x) = 1 − x2

2
+

x4

4!
− x6

6!
+

x8

8!
± . . . .

The Leibnitz criterion2 guarantees that∣∣∣ cos(x) −
(

1 − x2

2
+

x4

4!
− x6

6!

) ∣∣∣ <
x8

8!
.

Hence the truncated Taylor series is a good approximation if x is small. After some rearrangements we can
use the approximation

1 − cos(x) ≈ x2

2

(
1 − x2

12
+

x4

360

)
2The Leibnitz criterion says that if the series S =

P∞
i=1(−1)ici, ci ≥ 0, converges, then

�
�S −Pn

i=1(−1)ici

�
� < cn+1.
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and we know that the difference is less than x8/(8!) which allows us to control the error of the approximation.
The results of the computations using the various formulas are shown in the following table. The

computations were aagain performed on a SUN SparcStation 10 in single precision Fortran.

x 1 − cos sin2 /(1 + cos) Taylor
0.500000 0.122417 0.122417 0.122418
0.125000 0.780231E − 02 0.780233E − 02 0.780233E − 02
0.312500E − 01 0.488222E − 03 0.488241E − 03 0.488242E − 03
0.781250E − 02 0.305176E − 04 0.305174E − 04 0.305174E − 04
0.195312E − 02 0.190735E − 05 0.190735E − 05 0.190735E − 05
0.488281E − 03 0.119209E − 06 0.119209E − 06 0.119209E − 06
0.122070E − 03 0. 0.745058E − 08 0.745058E − 08
0.305176E − 04 0. 0.465661E − 09 0.465661E − 09
0.762939E − 05 0. 0.291038E − 10 0.291038E − 10
0.190735E − 05 0. 0.181899E − 11 0.181899E − 11
0.476837E − 06 0. 0.113687E − 12 0.113687E − 12
0.119209E − 06 0. 0.710543E − 14 0.710543E − 14
0.298023E − 07 0. 0.444089E − 15 0.444089E − 15

✸

Example 2.9 The roots of the quadratic equation ax2 + bx + c = 0 are given by

x± =
(
−b ±

√
b2 − 4ac

)
/(2a).

Let us consider the data a = 5 ∗ 10−4, b = 100, and c = 5 ∗ 10−3. The computed result (again using single
precision Fortran on a SUN SparcStation 10) for the first root is

x̂+ = 0.

We know this result cannot be exact, since x = 0 is a solution of the quadratic equation if and only if c = 0.
The reason for this result is that

√
b2 − 4ac ≈ b for the data given above. Thus we suffer from

catastrophic cancellation.
A remedy is the following reformulation of the formula for x+:

x+ =
−b ±√

b2 − 4ac

2a
=

1
2a

(−b +
√

b2 − 4ac
) (−b −√

b2 − 4ac
)

−b −√
b2 − 4ac

=
1
2a

4ac

−b −√
b2 − 4ac

Here the subtraction of two almost equal numbers is avoided and the computation using this formula gives
x̂+ = −0.5E − 04. ✸

Example 2.10 Consider the following computations (in Fortran on a SUN Sparcstation 10):

• Compute r = p ∗ p − 2 ∗ q ∗ q with p = 665857, q = 470832. The results are:

using single precision, computed r = 0.
using double precision, computed r = 1.00000000000
true value r = 1.00000000000

• Compute r = 9 ∗ p4 − q4 + 2 ∗ q2 with p = 10864, q = 18817. The results are:

using single precision, computed r = 708158976.000
using double precision, computed r = 2.00000000000
true value r = 1.00000000000
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• Compute r = p + q − p with p = 1034, q = −2. The results are:

using single precision, computed r = 0.
using double precision, computed r = 0.
true value r = −2.

In all three computations catastrophic cancellation takes place. If double precision is used, then no, or
fewer significant digits may be lost. However, usually catastrophic cancellation still takes place. The
third computation is of particular interest. Sometimes people verify their computations by doing the
computations first in single precision and then in double precision. If both results agree, then the result is
assumed to be correct. The third computation shows that this is far from true! ✸

Example 2.11 We consider the computation of e−5.5 using the series

ex =
∞∑

n=0

xn

n!
.

The following computations are taken from [?, p.14]. Suppose that the floating point system is characterized
by β = 10 and t = 5. The first few terms in the series for e−5.5 are

e−5.5 = 1.000
−5.5000
+15.125
−27.730
+38.129
−41.942
+38.446
−30.208
+20.768
−12.692
+6.9803
−3.4902
+1.5997

...
= 0.0026363

The sum is terminated after 25 terms because subsequent terms no longer change it. The computed answer
is 0.0026363. The exact answer is e−5.5 ≈ 0.00408677. The reason for this poor result is that

∑∞
n=1

(−5.5)n

n! is
small (≈ 0.00408677) whereas

∑∞
n=1

(5.5)n

n! is large. Notice the large terms at the beginning of the summation.
These are much larger that the final sum.

A better way to compute e−5.5 is

e−5.5 =
1

e5.5
=

1
1.0000 + 5.5000 + 15.125 + . . .

= 0.0040865.

The computations are again done in five digit arithmetic. ✸

Example 2.12 In section 1.3 we have studied the solution of triangular systems. In particular, we have
developed Algorithm 1.3 for the solution of upper triangular systems Ux = b using back substitution. In
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2.4. THE EFFECTS OF ROUNDING ERRORS 2–13

exact arithmetic, Algorithm 1.3 determines whether a solution of Ux = b exists and if one exists it returns
a solution. What happens if we apply Algorithm 1.3 using floating point arithmetic?

For illustration we assume that the floating point system uses β = 10 and t = 4. The same effects
occur if IEEE floating point arithmetic is used.

(i) Consider the system 
 2 4 2

0 0 3
0 0 3




 x1

x2

x3


 =


 4

2
1


 .

It is easy to verify that this system does not have a solution.
The application of Algorithm 1.3, in (β = 10 and t = 4) floating point arithmetic yields

x̄3 = fl(1/3) = 3.333 ∗ 10−1

and

0 ∗ x̄2 = fl(2 − fl(3 ∗ (3.333 ∗ 10−1))) = fl(2 − 9.999 ∗ 10−1) = 1.

At this point Algorithm 1.3 would stop with the message that the system is not solvable.
(ii) Consider the system 

 2 4 2
0 0 3
0 0 3




 x1

x2

x3


 =


 4

1
1


 .

This system has infinitely many solutions.
The application of Algorithm 1.3, in (β = 10 and t = 4) floating point arithmetic yields

x̄3 = fl(1/3) = 3.333 ∗ 10−1

and

0 ∗ x̄2 = 1 − fl(3 ∗ (3.333 ∗ 10−1)) = 1 − 9.999 ∗ 10−1 = 1.000 ∗ 10−4.

Again, Algorithm 1.3 would stop stop at this point with the message that the system is not solvable. Of
course, this is not correct. ✸

Example 2.13 The derivative of a function g : IR → IR at x is defined by

g′(x) = lim
δ→0

g(x + δ) − g(x)
δ

.

A one-sided finite difference approximation of the derivative is given by

g′(x) ≈ g(x + δ) − g(x)
δ

(2.17)

for a sufficiently small δ. Using the Taylor expansion

g(x + δ) = g(x) + g′(x)δ + 1
2g′′(x + θδ)δ2

for some θ ∈ [0, 1], we express the approximation error as

g′(x) − g(x + δ) − g(x)
δ

= − 1
2g′′(x + θδ)δ.
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If we assume that |g′′(x + θδ)| ≤ M , for all θ ∈ [0, 1], then∣∣∣∣g′(x) − g(x + δ) − g(x)
δ

∣∣∣∣ ≤ M |δ|
2

. (2.18)

We use (2.17) to approximate the derivative of g(x) = exp(x) at x = 1. The error | exp(1) − (exp(1 +
δ) − exp(1))|/δ for various δ > 0 is shown in Figure 2.3. The computations were performed in Matlab on
a SUN Ultra 10 workstation using Matlab Version 5.3.0.10183 (R11), Jan 21, 1999.

10
−20

10
−15

10
−10

10
−5

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

δ

|e
xp

(1
+δ

)−
ex

p(
1)

|/δ

Figure 2.3: Finite Difference Error | exp(1) − (exp(1 + δ) − exp(1))|/δ.

Our error estimate (2.18) predicts that the finite difference error decreases linearly with the size of δ.
This is not what we see in Figure 2.3. How can this discrepancy be explained? Our error estimate (2.18)
assumes that the function values of g are available exactly. If we use floating point arithmetic this is not the
case. Instead of the exact function g we only compute an approximation gε. In our case gε(1) is the floating
point representation of exp(1) and gε(1 + δ) is the floating point representation of exp(1 + δ), i.e.,

gε(1) = fl(exp(1)), gε(1 + δ) = fl(exp(fl(1 + δ)))

Thus, the finite difference approximation of the derivative of g is not (2.17), but it is

g′(x) ≈ gε(x + δ) − gε(x)
δ

.

Suppose that

|g(x + δ) − gε(x + δ)| ≤ ε, |gε(x) − g(x)| ≤ ε.

In our case

|fl(exp(fl(1 + δ))) − exp(1 + δ)| ≤ u| exp(1 + δ)|,
|fl(exp(1)) − exp(1)| ≤ u| exp(1)|,

i.e., ε ≤ u| exp(1 + δ)| ≈ 10−15. From

g′(x) − gε(x + δ) − gε(x)
δ

= g′(x) − g(x + δ) − g(x)
δ

+
g(x + δ) − gε(x + δ)

δ
+

gε(x) − g(x)
δ
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and the estimate (2.18) we obtain∣∣∣∣g′(x) − gε(x + δ) − gε(x)
δ

∣∣∣∣
≤ M |δ|

2
+

|g(x + δ) − gε(x + δ)|
δ

+
|gε(x) − g(x)|

δ
,

≤ M |δ|
2

+
2ε

|δ| . (2.19)

The first term, M |δ|/2, of the error bound (2.19) results from the finite differences using exact function
values and the second term 2ε/|δ| results from the inexact function values. The error bound as a function of
δ is sketched in Figure 2.4. The δ > 0 that minimizes the bound on the right hand side in (2.19) is given by

δ

Figure 2.4: Finite Difference Error Bound.

δ∗ = (2/
√

M)
√

ε

and the corresponding error bound is

M |δ∗|
2

+
2ε

|δ∗| =
(√

M + 4/
√

M
) √

ε. (2.20)

Thus the quality of the finite difference derivative approximation is limited by the accuracy in function
values. If, for example, the eerror in the function values is ε = 10−15, then (2.19), (2.20) indicate that we
need to expect the error in the finite difference derivative approximation to be around 10−7 to 10−8. To
achieve this error in the finite difference derivative approximation, we have to choose the finite difference
step size δ properly. If we choose δ much smaller than δ∗, then we will ‘differentiate noise in the function
evaluation’ and 2ε/|δ| will dominate the error bound. If we choose δ much larger than δ∗, then the finite
difference approximation of the exact function will not be good enough and M |δ|/2 will dominate the error
bound.

Note that the Figures 2.3 and 2.4 agree qualitatively. Figures 2.3 shows that the smallest error in the
finite difference approximation is attained for δ around 10−7 to 10−8 and for those values of δ, the error
in the finite difference approximation is around 10−7 to 10−8, which agrees with (2.20). Also note that
fl(1 + δ) = 1 for δ < u. Thus for small δ,

fl(exp(fl(1 + δ))) = fl(exp(1))
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and the finite difference approximation is

fl(exp(fl(1 + δ))) − fl(exp(1))
δ

= 0,

which explains why the error in Figures 2.3 is equal to exp(1) for small δ. ✸
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