
Chapter 3

Error Analysis

3.1 Introduction
In the problems we are interested in algorithms, like the LU–decomposition, are applied to given data, like
matrices and right hand sides, to compute solutions to the given problems,

DATA −→ ALGORITHM −→ RESULT.

In practical applications, the given data are usually contaminated by errors and the while applying algorithms
errors are introduced. Inevitably, this leads to errors in the computed result.

ERRORS in DATA −→ ERRORS in ALGORITHM −→ ERRORS in RESULT

The purpose of this chapter is to study the influence of errors in the data and errors in the algorithms on
the computed solutions.

Before we start with the analysis, let us discuss some sourses of errors. Errors in the input data are
caused by the conversion real numbers into floating point numbers. If x ∈ IR is the exact input, then the
floating point number fl(x) obtained by rounding of x is the used input. It holds that |fl(x) − x| ≤ u|x|,
where u is the unit roundoff. There may be other sources of errors in the input data such as measurement
errors. A source of errors in the algorithm are floating point operations. If x and y are two floating point
numbers and if ✷ is one of the elementary operations +,−, ∗, /, then fl(x✷y) = (x✷y)(1+ ε), where |ε| ≤ u.
Another source of errors in an algorithm are approximations of quantities that cannot be computed exactly.
For example, if an algorithm requires the evaluation of an integral

∫ 1

0 g(x)dx, then this usually cannot be
done exactly, but the integral has to be approximated by, say,

∑n
i=1 wig(xi). Approximations are also needed

in algorithms for the solution of differential equations.
Two notions are important for this analysis: the condition of a problem and the (numerical) stablility

of an algorithm.

3.2 Conditioning versus Stability
Conditioning of a Problem A problem is well–conditioned if small variations in data produce small varia-

tions in associated solutions. It is ill–conditioned if small variations in data can produce large variations
in associated solutions.

Stability of an Algorithm An algorithm for solving a problem is stable if the computed solution for given
data is the exact solution to the problem after slightly perturbing the given data. It is unstable if the
computed solution for given data is the exact solution to the problem only after a large perturbation
in the given data.

3–1

3–2 CHAPTER 3. ERROR ANALYSIS

Figure 3.1: Changes in the solution x of f(x) = y for small changes in the data.

Example 3.1 Let

f : IR → IR.

and let y ∈ IR. Suppose we want to an x such that

f(x) = y. (3.1)

i. The conditioning of the root finding problem. To simplify our presentation, we assume that
the function f is monotone and that f(x) = y has a solution x for every y. This implies that the inverse
function f−1 exists. In particular, the unique solution of (3.1) is x = f−1(y). In general it will be sufficient
that a solution x of f(x) = y exists and that f is monotone in a neighborhood of x.

We are interested in how the solution x changes when the data y are perturbed by a small δy.
We can look at two quantities. We can compare the absolute error in the input data, |(y+δy)−y| = |δy|

with the absolute error in the solution, |f−1(y + δy)− f−1(y)|. This leads to
|f−1(y + δy)− f−1(y)|

|δy| . (3.2)

We can also compare the relative error in the input data, |(y+ δy)− y|/|y| = |δy|/|y| with the relative error
in the solution, |f−1(y + δy)− f−1(y)|/|f−1(y)|. This leads to

|f−1(y + δy)− f−1(y)|/|f−1(y)|
|δy|/|y| . (3.3)

If f is sufficiently smooth, then its inverse function f−1 is also sufficiently smooth and the Taylor expansion
of f−1 gives

f−1(y + δy) = f−1(y) + (f−1)′(y)δy +O(|δy|2 ≈ f−1(y) + (f−1)′(y)δy

for small |δy|. From calculus we remember that

(f−1)′(y) =
1

f ′(x)
,

where x = f−1(y). Hence

f−1(y + δy) ≈ f−1(y) +
1

f ′(x)
δy (3.4)

for small |δy|. If we insert (3.4) into (3.2) and (3.3), then we arrive at
|f−1(y + δy)− f−1(y)|

|δy| ≈ 1
|f ′(x)| (3.5)

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.2. CONDITIONING VERSUS STABILITY 3–3

and

|f−1(y + δy)− f−1(y)|/|f−1(y)|
|δy|/|y| ≈ |y|

|f ′(x)| |f−1(y)| =
|y|

|f ′(x)| |x| , (3.6)

respectively. Equation (3.5) states that small changes δy in the data may lead to changes in the solution of
size |f ′(x)| |δy|. If |f ′(x)| is large the root finding problem (??) is well–conditioned; if |f ′(x)| is small the
root finding problem (3.1) is well–conditioned. We call

κabs =
1

|f ′(x)|
the absolute condition number of the root finding problem (3.1). The scalar

κrel =
|y|

|f ′(x)| |x|
is called the relative condition number of the root finding problem (3.1). Equation (3.6) tells us that a small
change δy in the input data may lead to a relative error |f−1(y + δy) − f−1(y)|/|f−1(y)| in the solution of
size κrel|δy|/|y|.

For example consider f(x) = ax2 + bx with a �= 0. Let y be given such that b2 > −4ay. If we set
c = −y, then (3.1) is equivalent to

ax2 + bx+ c = 0 (3.7)

and the two solutions of this equation are given by

x± =
(
−b±

√
b2 − 4ac

)
/(2a).

Clearly, f ′(x) = 2ax+ b and

f ′(x±) = ±
√

b2 − 4ac.

We calculate that

κ±
abs =

1√
b2 − 4ac

.

and

κ±
rel =

c√
b2 − 4acx±

.

Thus, the problem of solving the quadratic equation (3.7) with b2 > 4ac is well–conditioned if b2 − 4ac � 0;
it is ill–conditioned if b2 − 4ac is small. In particular, if a = 5 ∗ 10−4, b = 100, and c = 5 ∗ 10−3 then
x+ ≈ −5 ∗ 10−5, x− ≈ −2 ∗ 105 and

κ±
abs ≈ 10−2.

and

κ+
rel ≈ 1,

κ−
rel ≈ −2.510−10.

Thus, solution of this quadratic equation is a well–conditioned problem.

c©2001 M. HEINKENSCHLOSS

3–4 CHAPTER 3. ERROR ANALYSIS

ii. The stability of an algorithm for solving the quadratic equation. We want to compute the
roots of the quadratic equation (3.7). We assume b2 � 4ac. The roots are given by

x± =
(
−b±

√
b2 − 4ac

)
/(2a). (3.8)

Let a = 5∗10−4, b = 100, and c = 5∗10−3. We have seen that solving this quadratic equation is a well–posed
problem.

Application of the formula for x+ using the single precision Fortran on a SUN SparcStation 10 gives
the computed value

xcomp
+ = 0.

(see example 2.9). The exact root is x+ ≈ −0.5E− 04. Hence the absolute error and relative error are given
by |xcomp

+ − x+| ≈ 0.5E − 04 and |xcomp
+ − x+|/|x+| = 1.

The reason for this large error in the solution is that the straight forward implementation of (3.8) leads
to an unstable algorithm. To see this, note that xcomp

+ = 0 is the exact solution of the quadratic equation

ax2 + bx+ 0︸︷︷︸
=c+δc

= 0.

The straight forward implementation of (3.8) for computing x+ gives a computed solution xcomp
+ that is the

exact solution to the root finding problem only after the data c have been perturbed by δc = −c. Thus the
relative size of this data perturbation is |δc|/|c| = 1.

A stable formula for the computation of x+ in the case b > 0 and b2 ≥ 4ac is

x+ =
2c

−b −√
b2 − 4ac

(see Example 3.1).

iii. Using stability and condition number to analyse the error in the solution.
Let us consider (3.1). Suppose we apply an algorithm to solve (3.1) that insteasd of the exact solution

x = f−1(y) returns a computed solution xcomp. We interpret this computed solution as the exact solution
of a root finding problem with perturbed data y + δy, i.e.,

f(xcomp) = y + δy.

Case 1: The algorithm is stable and the problem is well–conditioned. The stability of the algorithm guar-
antees that |δy|/|y| is small. Since our problem is well–conditioned, κrel is small. Hence (3.6) implies
that

|xcomp − x|
|x| ≤ κrel︸︷︷︸

small

|δy|
|y|︸︷︷︸
small

.

Case 2: The algorithm is stable and the problem is ill–conditioned. Again, the stability of the algorithm
guarantees that |δy|/|y| is small. Since our problem is ill–conditioned, κrel is large. Hence (3.6)
implies that

|xcomp − x|
|x| ≤ κrel︸︷︷︸

large

|δy|
|y|︸︷︷︸
small

.

Hence the relative error |xcomp − x|/|x| could be large.

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.3. VECTOR AND MATRIX NORMS 3–5

Case 3: The algorithm is unstable and the problem is well–conditioned. Since the algorithm is unstable
|δy|/|y| is large. Since our problem is well–conditioned, κrel is small. Hence (3.6) implies that

|xcomp − x|
|x| ≤ κrel︸︷︷︸

small

|δy|
|y|︸︷︷︸
large

.

Again, the relative error |xcomp − x|/|x| could be large. This is what we have seen in part ii.
Case 4: The algorithm is unstable and the problem is ill–conditioned. Since the algorithm is unstable

|δy|/|y| is large. Since our problem is ill–conditioned, κrel is also large. Hence (3.6) implies that

|xcomp − x|
|x| ≤ κrel︸︷︷︸

large

|δy|
|y|︸︷︷︸
large

.

Again, the relative error |xcomp − x|/|x| could be large.
✸

3.3 Vector and Matrix Norms
Many problems involve data and results that are vectors or matrices. To investigate the conditioning of such
problems and the stability of algorithms for their solution, we need a measure for the ’size’ of a vector x and
a measure for the ’size’ of a matrix A. Such measures, the so–called vector norms and matrix norms will be
introduced in this section.

We begin with vector norms.

Definition 3.2. A (vector–) norm on IRn is a function

‖ · ‖ : IRn → IR
x �→ ‖x‖

which for all x, y ∈ IRn, α ∈ IR satisfies

i. ‖x‖ ≥ 0, ‖x‖ = 0⇔ x = 0,

ii. ‖αx‖ = |α| ‖x‖,
iii. ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

The most frequently used norms on IRn are given by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

, (3.9)

where p ∈ [1,∞), and

‖x‖∞ = max
i=1,... ,n

|xi|. (3.10)

c©2001 M. HEINKENSCHLOSS

3–6 CHAPTER 3. ERROR ANALYSIS

B2 B∞
B1

Figure 3.2: The unit “balls” B1, B2, B∞.

In particular for p = 1 and p = 2 we have that

‖x‖1 =
n∑

i=1

|xi|, ‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

.

The norm (3.9) is called the p–(vector–)norm and (3.10) is called the maximum–(vector–)norm.

Example 3.3 Consider the vector x = (1,−2, 3,−4)T . Then
‖x‖1 = 1 + 2 + 3 + 4 = 10,

‖x‖2 =
√
1 + 4 + 9 + 16 =

√
30 ≈ 5.48,

‖x‖∞ = max{1, 2, 3, 4} = 4.
✸

The boundaries of the unit “balls” defined by

Bp = {x ∈ IRn : ‖x‖p ≤ 1}
are plotted in Figure 3.2.

Theorem 3.4. Vector norms on IRn are equivalent, i.e. for every two vector norms ‖ · ‖a and ‖ · ‖b on IRn

there exist constants c, C such that

c‖x‖b ≤ ‖x‖a ≤ C‖x‖b ∀x ∈ IRn.

In particular, for any x ∈ IRn we have the inequalities
1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1,

‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞,

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.3. VECTOR AND MATRIX NORMS 3–7

Lemma 3.5. Let ‖ · ‖ be a vector norm on IRn. Then

‖x+ y‖ ≥ ∣∣ ‖x‖ − ‖y‖ ∣∣ ∀ x, y.

Proof. The triangle inequality yields

‖x‖ = ‖ − y + (x+ y)‖ ≤ ‖ − y‖+ ‖x+ y‖ = ‖y‖+ ‖x+ y‖ .

This gives ‖x+ y‖ ≥ ‖x‖ − ‖y‖. The inequality ‖x+ y‖ ≥ ‖y‖ − ‖x‖ can be proven by interchanging x and
y.

Lemma 3.6 (Cauchy-Schwarz Inequality). For any x, y ∈ IR,

|xT y| ≤ ‖x‖2‖y‖2. (3.11)

Now we consider matrices. Since any matrix A ∈ IRm×n can be identified with a vector in IRmn, which
is obtained by stacking the columns of the matrix into a long vector, the definition of a vector norm can
immediately be extended to matrices.

Definition 3.7. A (matrix–) norm on IRn×n is a function

‖ · ‖ : IRm×n → IR
A �→ ‖A‖

which for all A,B ∈ IRn×n, α ∈ IR satisfies

i. ‖A‖ ≥ 0, ‖A‖ = 0⇔ A = 0,

ii. ‖αA‖ = |α| ‖A‖,
iii. ‖A+B‖ ≤ ‖A‖+ ‖B‖. (triangle inequality)

Warning: Matrix– and vector–norms are denoted by the same symbol ‖ · ‖. However, as we will see
shortly, vector–norms and matrix–norms are computed very differently. Thus, before computing a norm we
need to examine carefully whether it is applied to a vector or to a matrix. It should be clear from the context
which norm, a vector–norm or a matrix–norm, is used.

As mentioned above, each matrix A ∈ IRm×n can be identified with a vector in IRmn, which is obtained
by stacking the columns of the matrix into a long vector. In particular, we obtain concrete matrix norms if
we apply (3.9) or (3.10) to the long vector generated by the matrix. For example, if we consider a matrix
A ∈ IRm×n as a vector of length mn, the 2–vector norm of this long vector is

‖A‖F =

 m∑
i=1

n∑
j=1

a2
ij

1/2

and it is called the Frobenius–norm. You may ask why we call this norm the Frobenius–norm and not the
2–norm. The reason is that there is another view of matrices that leads to a class of matrix-norms. These
matrix–norms are generated by the p–vector–norms (3.9) or (3.10), they are called p–matrix–norms (or p–
operator–norms) and they are denoted by the subscript p. The announced alternative view of matrices, does

c©2001 M. HEINKENSCHLOSS

3–8 CHAPTER 3. ERROR ANALYSIS

not consider matrices to be long vectors, but rather views a matrix A ∈ IRm×n as a linear mapping, which
maps a vector x ∈ IRn into a vector Ax ∈ IRm:

A IRn → IRm

x �→ Ax

Now we compare the size of the image Ax ∈ IRm with the size of x. This leads to the following definition.

Definition 3.8. The p–matrix–norm, p ∈ [1,∞) or p =∞, is defined by

‖A‖p = sup
x �=0

‖Ax‖p

‖x‖p
. (3.12)

Note that on the left hand side in (3.12) the symbol ‖ · ‖p refers to the p–matrix–norm, while on the
right hand side in (3.12) the symbol ‖ · ‖p refers to the p–vector–norm applied to the vectors Ax ∈ IRm

and x ∈ IRn, respectively. Warning: The same symbol ‖ · ‖p is used to denote the p–vector–norm and
the p–matrix–norm, respectively. However, the p–vector–norm and the p–matrix–norm are computed very
differently. Thus, before computing a norm we need to examine carefully whether it is applied to a vector or
to a matrix. It should be clear from the context which norm, the p–vector–norm or the p–matrix–norm, is
used.

At this point it is not clear that (3.12) in fact defines a matrix norm, i.e., that (3.12) satisfies the
conditions in Definition 3.7. We will convince ourselves of this fact in Theorem 3.10.

Note that the p–matrix–norm of the identity is always equal to one,

‖I‖p = max
x �=0

‖Ix‖p

‖x‖p
= 1.

In particular, ‖I‖2 = 1. On the other hand, if we compute Frobenius norm, which is obtained by viewing
the matrix as a long vector, then ‖I‖F =

√
n.

The following identities are useful for theoretical investigations.

Lemma 3.9. Let p ∈ [1,∞) or p =∞. The following identities are valid

sup
x �=0

‖Ax‖p

‖x‖p
= sup

‖x‖p=1

‖Ax‖p = max
x �=0

‖Ax‖p

‖x‖p
= max

‖x‖p=1
‖Ax‖p.

Theorem 3.10. Definition 3.8 in fact defines a matrix norm, i.e., (3.12) satisfies the properties in Defini-
tion 3.7.

Proof. i. From the definition of the matrix norm we immediately find that ‖A‖p ≥ 0 and ‖A‖p = 0 if
A = 0. Now suppose that ‖A‖p = 0 and that A �= 0. Then there exists x̄ �= 0 such that Ax̄ �= 0. Thus,

0 = ‖A‖p = max
x �=0

‖Ax‖p

‖x‖p
≥ ‖Ax̄‖p

‖x̄‖p
> 0,

a contradiction. Hence ‖A‖p = 0 if and only if A = 0.
ii. From the second property of vector norms we find that

‖λA‖p = max
x �=0

‖λAx‖p

‖x‖p
= max

x �=0

|λ| ‖Ax‖p

‖x‖p
= |λ| max

x �=0

‖Ax‖p

‖x‖p
= |λ| ‖A‖p .

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.3. VECTOR AND MATRIX NORMS 3–9

iii. The triangle inequality of vector norms implies that

‖A+B‖p = max
x �=0

‖(A+B)x‖p

‖x‖p
≤ max

x �=0

‖Ax‖p

‖x‖p
+

‖Bx‖p

‖x‖p

≤ max
x �=0

‖Ax‖p

‖x‖p
+max

x �=0

‖Bx‖p

‖x‖p
= ‖A‖p + ‖B‖p .

The formula (3.12) looks very impractical. However, for the most commonly used matrix–norms (3.12)
with p = 1, p = 2, or p =∞, there exist rather simple representations.

Theorem 3.11. Let ‖ · ‖p be the matrix norm defined in (3.12). Then

‖A‖1 = maxj=1,... ,n

∑m
i=1 |aij | (maximum column norm) ,

‖A‖∞ = maxi=1,... ,m

∑n
j=1 |aij | (maximum row norm) ,

‖A‖2 =
√

λmax(AT A) (spectral norm) ,

where λmax(AT A) is the largest eigenvalue of AT A.

Proof. For any x ∈ IRn it holds that

‖Ax‖1 =
m∑

i=1

|
n∑

j=1

aijxj | ≤
m∑

i=1

n∑
j=1

|aij | |xj | =
n∑

j=1

|xj |
m∑

i=1

|aij |

≤
m∑

j=1

|xj | max
k=1,... ,n

m∑
i=1

|aik|

= ‖x‖1 max
k=1,... ,n

m∑
i=1

|aik|.

This shows that ‖A‖1 ≤ maxj=1,... ,n

∑m
i=1 |aij |.

To show equality, we have to construct a vector x with ‖x‖1 = 1 such that ‖Ax‖1 =
maxj=1,... ,n

∑m
i=1 |aij |. Let j0 be an index such that

∑m
i=1 |aij0 | = maxj=1,... ,n

∑m
i=1 |aij |. Then ‖Aej0‖1 =∑m

i=1 |aij0 | and ‖ej0‖1 = 1. Thus, ‖A‖1 = maxj=1,... ,n

∑m
i=1 |aij |.

The proofs of the other identities are left as an exercise.

Corollary 3.12. Let ‖ · ‖p, p = 1, 2 or p =∞, be the matrix norm defined in (3.12). Then

‖A‖1 = ‖AT ‖∞
and

‖A‖2 = ‖AT ‖2.

If A is symmetric, then

‖A‖1 = ‖A‖∞ = max
i=1,... ,n

n∑
j=1

|aij |,

‖A‖2 = max
i=1,... ,n

|λi(A)| ,

c©2001 M. HEINKENSCHLOSS

3–10 CHAPTER 3. ERROR ANALYSIS

where λi(A) is the i–th eigenvalue of A.

Proof. The assertion concerning the norms ‖ · ‖1 and ‖ · ‖∞ follow immediately from Theorem 3.11.
If λ = λmax(AT A) > 0, then AT Ax = λx, x �= 0, implies Ax �= 0. Thus, AAT (Ax) = λ(Ax), Ax �= 0.

This shows that λ = λmax(AT A) is an eigenvalue of AAT . From this we can conclude that ‖A‖2 ≤ ‖AT ‖2.
The reverse inequality ‖AT ‖2 ≤ ‖A‖2 can be established by interchanging A and AT .
If A is symmetric with eigenvalues λ1, . . . , λn, then λ2

1, . . . , λ2
n are the eigenvalues of A2 = AT A. This

yields ‖A‖2 = maxi=1,... ,n |λi(A)|.

Example 3.13 i. Let

A =

 1 3 −6
−2 4 2
2 1 −1

 .

Then

‖A‖1 = max{5, 8, 9} = 9,
‖A‖∞ = max{10, 8, 4} = 10,
‖A‖2 ≈

√
max{3.0749, 23.8627, 49.0624} ≈ 7.0045,

‖A‖F =
√
76 ≈ 8.718.

(The eigenvalues of AT A were computed using Matlab.)
ii. Consider the so–called Hilbert matrix H ∈ IRn×n with elements hij given by

hij =
1

i+ j − 1
For n = 4 the Hilbert matrix is given by

H =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 .

The Hilbert matrix is symmetric and therefore

‖H‖∞ = ‖H‖1 = max
i=1,... ,n

n∑
j=1

1
i+ j − 1 =

n∑
j=1

1
j

.

For n = 4 we find that ‖H‖∞ = ‖H‖1 = 25/12. ✸

Theorem 3.14. For any A ∈ IRm×n, B ∈ IRn×k and x ∈ IRn, the inequalities

‖Ax‖p ≤ ‖A‖p ‖x‖p (compatibility of matrix and vector norm)

and

‖AB‖p ≤ ‖A‖p‖B‖p (submultiplicativity of matrix norms)

are valid.

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.4. ERROR ANALYSIS FOR THE SOLUTION OF LINEAR SYSTEMS 3–11

Proof. i. If x = 0, then ‖Ax‖p = 0 = ‖A‖p ‖x‖p. If x �= 0, then the definition (3.12) of the p–matrix norm
implies that

‖Ax‖p

‖x‖p
≤ max

x̄ �=0

‖Ax̄‖p

‖x̄‖p
= ‖A‖p .

Thus, ‖Ax‖p ≤ ‖A‖p ‖x‖p.
ii. If Bx = 0 for all x, then ‖AB‖p = 0 = ‖A‖m,k ‖B‖k,n. Otherwise, we use the definition of the

matrix norm and the compatibility of the matrix norm to show that

‖AB‖p = max
x �=0

‖ABx‖p

‖x‖p

= max
Bx �=0

‖ABx‖p

‖Bx‖p

‖Bx‖k

‖x‖p

≤ max
Bx �=0

‖ABx‖p

‖Bx‖p
max
x �=0

‖Bx‖p

‖x‖p

= max
x̄ �=0

‖Ax̄‖p

‖x̄‖p
max
x �=0

‖Bx‖p

‖x‖p
= ‖A‖p ‖B‖p .

Theorem 3.15. For any A ∈ IRm×n, B ∈ IRk×m, and x ∈ IRn,

‖Ax‖2 ≤ ‖A‖F ‖x‖2

and

‖AB‖F ≤ ‖A‖F‖B‖F .

Proof. The inequalities can be proven using the Cauchy-Schwarz inequality (3.11).

Analogously to Lemma 3.5 we can prove the following result.

Lemma 3.16. Let ‖ · ‖ be a matrix norm on IRn×n. Then

‖A+B‖ ≥ ∣∣ ‖A‖ − ‖B‖ ∣∣ ∀ A,B ∈ IRm×n.

3.4 Error Analysis for the Solution of Linear Systems

3.4.1 The Condition Number of a Matrix (With Respect to Inversion)

Given A ∈ IRn×n, and b ∈ IRn we are interested in the solution x ∈ IRn of

Ax = b. (3.13)

Usually the input data A and b are not given exactly, but are perturbed due to rounding errors (floating
point representation) and measurement errors. Thus, instead of solving (3.13) we are actually solving a
perturbed linear system

(A+∆A)x = b+∆b, (3.14)

c©2001 M. HEINKENSCHLOSS

3–12 CHAPTER 3. ERROR ANALYSIS

where ∆A ∈ IRn×n and ∆b ∈ IRn represent the perturbations in A and b, respectively.
Let x denote the solution of (3.13) and let x +∆x denote the solution of (3.14). Since we really want

the solution x, but can only compute x+∆x we are interested to know how good the computed solution is.
Thus we want to have an estimate for the absolute error in the solution

‖x − (x+∆x)‖p = ‖∆x‖p

and an estimate for the relative error in the solution

‖x− (∆x + x)‖p

‖x‖p
=

‖∆x‖p

‖x‖p
.

In particular we want to investigate the dependence of the relative error in the solution upon the relative
errors in the input data

‖∆A‖p

‖A‖p
,

‖∆b‖p

‖b‖p
.

Before we can study the sensitivity of the solution of the linear system with respect to perturbations
in the input data we have to investigate the invertibility of the perturbed matrix (A+∆A). If we multiply
by A−1, then we obtain the matrix (I +A−1∆A). The following result investigates the invertibility of such
matrices:

Lemma 3.17. Let ‖ · ‖p be an operator norm. If B ∈ IRn×n is a matrix with ‖B‖p < 1, then the inverse of
I +B exists and it holds that

‖(I +B)−1‖p ≤ 1
1− ‖B‖p

.

Proof. Let x �= 0, then
‖(I +B)x‖p = ‖x+Bx‖p ≥ ‖x‖p − ‖Bx‖p ≥ ‖x‖p − ‖B‖p ‖x‖p = (1− ‖B‖p)‖x‖p > 0.

Hence, the linear system (I +B)x = 0 only has the trivial solution x = 0. Therefore I +B is invertible.
Since ‖ · ‖ is an operator norm we find that

1 = ‖I‖p = ‖(I +B)(I +B)−1‖p = ‖(I +B)−1 +B(I +B)−1‖p

≥ ‖(I +B)−1‖p − ‖B(I +B)−1‖p

≥ ‖(I +B)−1‖p − ‖B‖p‖(I +B)−1‖p

≥ (1− ‖B‖p

)‖(I +B)−1‖p .

This gives the assertion.

Remark 3.18. Lemma 3.17 can also be proven using the Neumann series. If x is a scalar with |x| < 1,
then

1
1− x

=
∞∑

i=0

xi.

A similar result holds true for matrices: If B ∈ IRn×n is a matrix, then I −B is invertible if and only if the
Neumann series

∑∞
i=0 B−i is convergent. In this case

(I − B)−1 =
∞∑

i=0

Bi.

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.4. ERROR ANALYSIS FOR THE SOLUTION OF LINEAR SYSTEMS 3–13

If ‖B‖p < 1, then the Neumann series
∑∞

i=0 Bi is convergent.

Theorem 3.19. Let ‖ · ‖ be a vector norm on IRn and let ‖ · ‖ be a submultiplicative matrix norm which is
compatible with this vector norm. Moreover, let A ∈ IRn×n be nonsingular and let ∆A ∈ IRn×n be such that
‖A−1‖p ‖∆A‖p < 1.

If x is the solution of

Ax = b

and if x+∆x is the solution of

(A+∆A)x = b +∆b,

then

‖∆x‖p

‖x‖p
≤ κp(A)

1− κp(A)
‖∆A‖p

‖A‖p

(‖∆A‖p

‖A‖p
+

‖∆b‖p

‖b‖p

)
, (3.15)

where

κp(A) = ‖A‖p ‖A−1‖p.

Definition 3.20. The (p–) condition number κp(A) of a matrix (with respect to inversion) is defined by

κp(A) = ‖A‖p ‖A−1‖p.

We set κp(A) =∞ if A is not invertible.

Proof. (Proof of Theorem 3.19)
It holds that

Ax = b,

(A+∆A)(x +∆x) = b+∆b.

Hence

(A+∆A)∆x = −∆Ax+∆b.

Multiplication with A−1 yields

(I +A−1∆A)∆x = −A−1(∆Ax +∆b).

Note that ‖A−1∆A‖p ≤ ‖A−1‖p‖∆A‖p < 1. If we apply the previous lemma with B = A−1∆A, then we
find that I +A−1∆A is invertible and

‖(I +A−1∆A)−1‖p ≤ 1
1− ‖A−1∆A‖p

≤ 1
1− ‖A−1‖p‖∆A‖p

.

Hence

∆x = −(I +A−1∆A)−1A−1(∆Ax +∆b)

and

‖∆x‖p ≤ 1
1− ‖A−1‖p ‖∆A‖p

‖A−1‖p

(‖∆A‖p‖x‖p + ‖∆b‖p

)
.

c©2001 M. HEINKENSCHLOSS

3–14 CHAPTER 3. ERROR ANALYSIS

If we divide by ‖x‖p and use ‖b‖p = ‖Ax‖p ≤ ‖A‖p‖x‖p, we find that

‖∆x‖p

‖x‖p
≤ ‖A−1‖p‖A‖p

1− ‖A−1‖p‖∆A‖p

(‖∆A‖p

‖A‖p
+

‖∆b‖p

‖A‖p‖x‖p

)
≤ κp(A)

1− κp(A)
‖∆A‖p

‖A‖p

(‖∆A‖p

‖A‖p
+

‖∆b‖p

‖b‖p

)
.

Theorem 3.21. The condition number is invariant with respect to scaling of the matrix by a scalar, i.e.

κp(αA) = κp(A) ∀A ∈ IRn×n, α ∈ IR.

The condition number is submultiplicative, i.e.,

κp(AB) ≤ κp(A)κp(B) ∀A,B ∈ IRn×n.

The condition number is greater equaal to one

κp(A) ≥ 1 = κp(I) ∀A ∈ IRn×n.

Proof. The first property follows immediately from (αA)−1 = α−1A−1. The second property is an immediate
consequence of the submultiplicativity of the norm, and the third property follows from

1 = ‖I‖p‖I‖p = κp(I) = ‖AA−1‖p ≤ ‖A‖p‖A−1‖p = κp(A).

The first property in the previous theorem shows that the condition number is invariant with respect
to multiplication by a scalar. Notice that the determinant satisfies det(αA) = αndet(A). By multiplication
with small scalars the determinant can be made arbitrary small. Therefore the determinant is a bad indicator
of the conditioning of a matrix.

The condition number of A depends on the matrix norm that is used. We use the following notations

κ1(A) = ‖A‖1 ‖A−1‖1,

κ2(A) = ‖A‖2 ‖A−1‖2,

κ∞(A) = ‖A‖∞ ‖A−1‖∞,

where ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ are the operator norms induced by the vector norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞, respectively.
Example 3.22 Consider

A =

 1 3 −6
−2 4 2
2 1 −1

 , A−1 =

 − 1
10

1
20

1
2

1
30

11
60

1
6

− 1
6

1
12

1
6

 ,

cf. Example 3.13. Then

‖A‖1 = 9, ‖A−1‖1 = 5
6 , κ1(A) = 15

2 ,

‖A‖∞ = 10, ‖A−1‖∞ = 13
20 , κ∞(A) = 13

2 ,

‖A‖2 ≈ 7.0045, ‖A−1‖2 ≈ 0.5703, κ2(A) ≈ 3.9947.

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.4. ERROR ANALYSIS FOR THE SOLUTION OF LINEAR SYSTEMS 3–15

(The eigenvalues of AT A and (A−1)T A−1 were computed using Matlab.) ✸

Example 3.23 A standard example of an ill–conditioned matrix is the Hilbert matrix. This matrix arises
in the least squares polynomial approximation and its entires are given by

hij =
∫ 1

0

xi+j−2dx =
1

i+ j − 1 .

For n = 4 the Hilbert matrix and its inverse are given by

H =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 , H−1 =


16 −120 240 −140

−120 1200 −2700 1680
240 −2700 6480 −4200

−140 1680 −4200 2800

 .

Hilbert matrices are examples of ill–conditioned matrices. In fact, the condition number of a Hilbert matrix
grows very fast with n. For n = 4 we find that

‖H‖1 = 25/12, ‖H−1‖1 = 13620, κ1(H) = 28375 ,
‖H‖∞ = ‖H‖1, ‖H−1‖∞ = ‖H−1‖1, κ∞(H) = κ1(H) ,
‖H‖2 ≈ 1.5, ‖H−1‖2 ≈ 1.03 ∗ 104, κ2(H) ≈ 1.55 ∗ 104.

(Again, the eigenvalues of H and H−1 were computed using Matlab.)
We consider the linear systems

Hx = b.

For given n we set xex = (1, . . . , 1)T ∈ IRn, and compute b = Hxex. Then we compute the solution of the
linear system Hx = b using the LU–decomposition and compute the relative error between exact solution
xex and computed solution x. The results are shown in the Table 3.1 and Figure 3.3. All computations are
done in Matlab on a SUN Ultra10 workstation. ✸

Table 3.1. Condition Number of the Hilbert Matrix and Relative Error in System Solution

n κ∞(H)
‖xex−x‖∞
‖xex‖∞

4 2.837500E + 04 2.327027E − 13
5 9.436560E + 05 4.896639E − 12
6 2.907028E + 07 8.405362E − 10
7 9.851949E + 08 1.479009E − 08
8 3.387279E + 10 8.561445E − 07
9 1.099651E + 12 2.231209E − 05
10 3.535372E + 13 9.362458E − 04

Example 3.24 (See [?, Example 6, Chapter 4]) We consider the linear system Ax = b with

A =
(
0.780 0.563
0.913 0.659

)
, b =

(
0.217
0.254

)
.

c©2001 M. HEINKENSCHLOSS

3–16 CHAPTER 3. ERROR ANALYSIS

4 5 6 7 8 9 10
10

−15

10
−10

10
−5

10
0

10
5

10
10

10
15

 n

Figure 3.3: Condition Number κ∞ of the Hilbert Matrix (dashed) and Relative Error in System Solution
Measured in the ∞–Norm (solid)

The exact solution is given by x = (1,−1)T . Now we consider the perturbations

∆b1 =
(−1.343 ∗ 10−3

−1.572 ∗ 10−3

)
, ∆b2 =

(−1 ∗ 10−6

0

)
.

The solutions x1, x2 of Ax = b +∆b1, Ax = b+∆b2 are given by

x1 =
(

0.9990
−1.0010

)
, x2 =

(
0.341
−0.087

)
.

The inverse of A is given by

A−1 =
(

659000 −563000
−913000 780000

)
,

and the condition number of A is

κ∞(A) = ‖A‖∞‖A−1‖∞ = 1.572 ∗ 1693000 = 2661396.
The relative errors in the approximate solutions are

‖x− x1‖∞
‖x‖∞ = 0.001,

‖x − x2‖∞
‖x‖∞ = 0.913.

We now apply Theorem 3.19. For the first approximation we find that

0.001 =
‖x− x1‖∞

‖x‖∞ ≤ κ∞(A)
‖∆b1‖∞
‖b‖∞ = 2661396 ∗ 1.572 ∗ 10

−3

0.254
≈ 16471.67

and for the second approximation we compute

0.913 =
‖x− x2‖∞

‖x‖∞ ≤ κ∞(A)
‖∆b2‖∞
‖b‖∞ = 2661396 ∗ 10

−6

0.254
≈ 10.47794 .

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.4. ERROR ANALYSIS FOR THE SOLUTION OF LINEAR SYSTEMS 3–17

Figure 3.4: A Well–Conditioned Linear System

Figure 3.5: An Ill–Conditioned Linear System

We see that in the first case the error estimate gives a far too pessimistic bound on the accuracy of x1,
whereas in the second case the error bound established in Theorem 3.19 is quite satisfactory.

The so–called residuals Ax1 − b and Ax2 − b are given by

Ax1 − b = ∆b1 =
(−1.343 ∗ 10−3

−1.572 ∗ 10−3

)
, Ax2 − b = ∆b2 =

(−1 ∗ 10−6

0

)
.

We observe that the more accurate solution x1 has a larger residual than the less accurate approximation
x2. Thus if the condition number of A is large, then a small residual Ax− b does not necessarily mean that
the solution is accurate. ✸

We can summarize the observations from the previous example as follows.

• If the condition number of a matrix A is large, then small errors in the data may
lead to large errors in the solution.

• If the condition number of a matrix A is large, then the residual is not necessarily
a good measure for the quality of an approximate solution.

The conditioning of a linear system can also be illustrated graphically. Each equation in Ax = b
represents a hyperplane in IRn. The row vector ai is orthogonal to the hyperplane. In the case n = 2
this is illustrated in Figures 3.4, Figures 3.5. The solution of the linear system is the intersection of these
n hyperplanes. If the row vectors are almost linearly dependent, then small perturbations lead to large
deviations in the point of intersection. See Figure 3.5.

If we use finite precision arithmetic, then rounding causes errors in the input data. Using t–digit
floating point arithmetic it holds that

|x − fl(x)|
|x| ≤ 0.5 ∗ 10−t+1.

Thus, if we solve the linear system in t–digit floating point arithmetic, then, as rule of thumb, we may
approximate the the input errors due to rounding by

‖∆A‖
‖A‖ ≈ 0.5 ∗ 10−t+1,

‖∆b‖
‖b‖ ≈ 0.5 ∗ 10−t+1.

c©2001 M. HEINKENSCHLOSS

3–18 CHAPTER 3. ERROR ANALYSIS

(This is only a heuristic argument since in general we cannot norm estimates for the relative error from the
relative errors of the components.) If the condition number of A is κ(A) = 10α, then

‖∆x‖
‖x‖ ≤ 10α

1− 10α−t+1

(
0.5 ∗ 10−t + 0.5 ∗ 10−t+1

) ≈ 10α−t ,

provided 10α−t+1 � 1.

Rule of thumb: If the linear system is solved in t–digit floating point arithmetic and
if the condition number of A is of the order 10α, then only t−α−1 digits in the solution
can be trusted.

Example 3.25 We consider the linear system

Ax = b,

where A ∈ IRn×n has the form

A =


1 t1 t21 · · · tn−1

1

1 t2 t22 · · · tn−1
2

...
...

...
...

1 tn t2n · · · tn−1
n

 . (3.16)

A matrix of the form (3.16) is called a Vandermonde matrix. We choose the so called nodes ti to be

ti = −1 + 2 i − 1
n − 1 , i = 1, . . . , n,

The right hand side is constructed so that the exact solution is known. This is done by setting

x = (1, 1, . . . , 1)T

and choosing

b = Ax.

Thus,

bi =
n∑

j=1

aij =
n∑

j=1

tj−1
i =

{
1−tn

i

1−ti
if ti �= 1,

n if ti = 1.

We compute the solution of the linear system Ax = b using the LU–decomposition and we compute the
absolute and the relative errors between exact solution xex and computed solution x. The results are shown
in the Table 3.2 and Figure 3.6. The computations were performed using Matlab program on a SUN Ultra10.

✸

3.4.2 The Stability of the LU–Decomposition

Suppose we have computed a solution x̂ of Ax̂ = b. The computed x̂ can mot expected to be the exact
solution of Ax̂ = b. Instead it is the exact solution of a perturbed system

(A+∆A)x̂ = b. (3.17)

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.4. ERROR ANALYSIS FOR THE SOLUTION OF LINEAR SYSTEMS 3–19

Table 3.2. Condition Number κ2 of the Vandermonde Matrix and Relative Error in System Solution
Measured in the 2–Norm.

n ‖x− xcomp‖2
‖x−xcomp‖2

‖x‖2
κ2(A)

2 0 0 1.0000E + 00
4 3.3307E − 16 1.6653E − 16 8.0116E + 00
6 8.6069E − 15 3.5138E − 15 6.3827E + 01
8 3.5742E − 14 1.2637E − 14 5.3535E + 02
10 6.8944E − 13 2.1802E − 13 4.6264E + 03
12 2.5120E − 12 7.2515E − 13 4.0755E + 04
14 9.0459E − 12 2.4176E − 12 3.6383E + 05
16 4.1435E − 11 1.0359E − 11 3.2800E + 06
18 2.2795E − 09 5.3729E − 10 2.9794E + 07
20 7.6731E − 09 1.7157E − 09 2.7224E + 08
22 8.5664E − 08 1.8264E − 08 2.4997E + 09
24 3.2457E − 06 6.6253E − 07 2.3043E + 10
26 2.6801E − 05 5.2561E − 06 2.1314E + 11
28 3.2168E − 04 6.0792E − 05 1.9772E + 12
30 6.8107E − 04 1.2435E − 04 1.8385E + 13
32 1.7475E − 03 3.0892E − 04 1.7136E + 14
34 7.4378E − 01 1.2756E − 01 1.5842E + 15
36 1.3912E + 00 2.3186E − 01 1.4187E + 16
38 1.6026E + 01 2.5997E + 00 1.0424E + 17
40 5.2901E + 01 8.3644E + 00 7.9772E + 17

We say that x̂ was computed stably if ‖∆A‖p/‖A‖p is not too large. How can we find out if x̂ was computed
stably? Define the residual

r = b − Ax̂.

We can write (
A+

r x̂T

‖x̂‖2
2

)
x̂ = Ax̂+

r x̂T x̂

‖x̂‖2
2

= Ax̂+ r = b.

Hence if we set

∆A =
r x̂T

‖x̂‖2
2

,

then x̂ is the exact solution of the perturbed system (3.17). The 2–norm (3.12) of ∆A is given by

‖∆A‖2 = sup
x �=0

‖∆Ax‖2

‖x‖2
= sup

x �=0

∥∥∥ rbxT x
‖bx‖2

2

∥∥∥
2

‖x‖2
= sup

x �=0

‖r‖2|x̂T x|
‖x̂‖2

2‖x‖2

By the Cauchy–Schwarz inequality,

‖r‖2|x̂T x|
‖x̂‖2

2‖x‖2
≤ ‖r‖2‖x̂‖2‖x‖2

‖x̂‖2
2‖x‖2

=
‖r‖2

‖x̂‖2

c©2001 M. HEINKENSCHLOSS

3–20 CHAPTER 3. ERROR ANALYSIS

0 5 10 15 20 25 30
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

 n

Figure 3.6: Condition Number κ2 of the Vandermonde Matrix (dashed), Absolute Error in System Solution
Measured in the 2–Norm (dotted), and Relative Error in System Solution Measured in the 2–Norm (solid).

and for x = x̂,

‖r‖2|x̂T x|
‖x̂‖2

2‖x‖2
=

‖r‖2

‖x̂‖2
.

Hence,

‖∆A‖2 =
‖r‖2

‖x̂‖2
. (3.18)

Hence, the relative error of the perturbation ∆A in (3.17) is

‖∆A‖2

‖A‖2
=

‖r‖2

‖A‖2‖x̂‖2
. (3.19)

If ‖r‖2/(‖A‖2‖x̂‖2) is small, then x̂ is computed stably. The right hand side (??) is our stability indicator.
Notice that in our derivation of (??) we have assumed that once x̂ all computations, such as the computation
of r = b−Ax̂ can be computed exactly. This is certainly not true in general and therefore (??) can only be
used as an indicator. More generally, we may use

‖r‖p

‖A‖p‖x̂‖p
(3.20)

with any p ∈ [1,∞), p =∞ as a stability indicator.
Note that the previous analysis did not use any information about the algorithm with which the

computed solution x̂ was obtained. The stability indicator (3.20) can only be computed after the computed
solution x̂ is obtained; (3.20) is an a–posteriori stability indicator.

Now we turn to the stability of the LU–decomposition. We want to give an a–priori estimate of the
size of ‖∆A‖p/‖A‖p. We use use p = ∞. Given A ∈ IRn×n, let P̂ , L̂, Û be the permutation matrix, the

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.4. ERROR ANALYSIS FOR THE SOLUTION OF LINEAR SYSTEMS 3–21

lower triangular matrix and the upper triangular matrix computed by the LU–decomposition with partial
pivoting, Algorithm 1.6.4. Because of rounding errors

P̂A �= L̂Û .

Thus, if we use the computed factors P̂ , L̂, Û in Algorithm 1.6.4 to compute the solution of the linear system
Ax = b, then we do not obtain the exact solution x = A−1b, but a vector x̂.

We interpret the computed decomposition P̂ , L̂, Û of A as the exact decomposition of a perturbed
matrix A+∆A, i.e.,

L̂Û = P̂ (A+∆A1).

Furthermore, we interpret the computed solution x̂ the exact decomposition of a perturbed system A+∆A,
i.e.,

(A+∆A)x̂ = b.

The perturbations ∆A1 and ∆A are not the same, since to get x̂ we have to apply Algorithm 1.6.4 with the
computed factors P̂ , L̂, Û and additional rounding error will occur in Algorithm 1.6.4.

We want to characterize how big the perturbations ∆A1 and ∆A are. This is done in the following
theorem, whose proof can be found in, e.g., [?, Thm. 9.3, 9.4]. Actually, the following theorem applies
not only to the LU–decomposition with partial pivoting. Recall that in step k the LU–decomposition with
partial pivoting interchanges rows k and i0 of A(k) = M̂k−1P̂k−1 . . . M̂1P̂1A, where i0 ≥ k is a row index that
satisfies

|a(k)
i0,k| = max

i=k,...n
|a(k)

i,k |.

Here a
(k)
i,j denote the entries of the matrix A(k) = M̂k−1P̂k−1 . . . M̂1P̂1A. The following result is valid if we

replace the partial pivoting rule by any pivoting rule that guarantees that a
(k)
i0,k �= 0, if maxi=k,...n |a(k)

i,k | > 0.
In particular, we can choose i0 to be the first row index greater equal to k that contains a nonzero entry.

Theorem 3.26. Let A ∈ IRn×n and let b ∈ IRn. Suppose that nu < 1, where u is the unit-roundoff.

i. The LU–decomposition with pivoting computes P̂ , L̂, Û so that

P̂ (A+∆A1) = L̂Û , where |∆A1| ≤ nu
1− nu

|L̂| |Û |. (3.21)

ii. Suppose the LU–decomposition with pivoting computes P̂ , L̂, Û and a computed solution x̂, then there
exists ∆A such that

P̂ (A+∆A)x̂ = b, where |∆A| ≤ 2 nu
1− nu

|L̂| |Û |. (3.22)

In (3.21), (3.22), the absolute value |B| of a matrix B is the matrix whose entries are obtained by taking the
absolute values of entries of B.

The previous result is incomplete. We want to estimate the size of ∆A1, ∆A in terms of the original
problem data A and, possibly, b. Thus, we need to estimate the sizes of L̂ and Û in terms of A and, possibly,
b. This is where the pivoting rule comes in. First, observe that if we use partial pivoting, then all entries in
L̂ below the diagonal have an absolute value less than one,

|l̂| ≤ 1

c©2001 M. HEINKENSCHLOSS

3–22 CHAPTER 3. ERROR ANALYSIS

Therefore, if the LU–decomposition with partial pivoting is used,

‖ |L̂| |Û | ‖∞ ≤ n‖Û‖∞

independent of A. What about ‖Û‖∞/‖A‖∞? If we define the so-called growth factor ρn to be the smallest
scalar such that

|ûij | ≤ ρn‖A‖∞,

for all i, j, then

‖ |L̂| |Û | ‖∞ ≤ n‖Û‖∞ ≤ n2ρn‖A‖∞.

Thus we have

Theorem 3.27. Let A ∈ IRn×n and let b ∈ IRn. Suppose that nu < 1, where u is the unit-roundoff. If x̂
is the computed solution of Ax = b using the LU–decomposition with partial pivoting, then there exists ∆A
such that

P̂ (A+∆A)x̂ = b, where ‖∆A‖ ≤ 2n2 nu
1− nu

ρn‖A‖∞. (3.23)

where ρn is the smallest number such that

|uij | ≤ ρn‖A‖∞.

How big is the growth factor? An upper bound for the growth factor is ρn ≤ 2n−1 and there are
matrices A for which this growth factor is actually attained. However in most cases the growth factor is
small. According to W. M. Kahan1,

Intolerable pivot growth [with partial pivoting] is a phenomenon that happens only to numerical
analysts who are looking for that phenomenon.

For some matrices with special structure one can prove that ρn is small. Theorem 3.27 is only applicable to
the LU–decomposition with partial pivoting. It is not valid for the LU–decomposition with simple pivoting,
in which we choose the pivot index i0 simply to be the first row index greater equal to k that contains a
nonzero entry. This leads to the following algorithm (compare with Algorithm 1.6.4).

1Cited from[?, p. 169].

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.4. ERROR ANALYSIS FOR THE SOLUTION OF LINEAR SYSTEMS 3–23

Algorithm 3.4.1 LU–Decomposition with Simple Pivoting

Input: A ∈ IRn×n.
Output: L,U ∈ IRn×n, ipivt ∈ INn (A is successively overwritten with L and U .)

The pivoting information is stored in ipiv.

1 For k = 1, . . . , n − 1 do
2 (* find pivot index i0 *)
3 amax = |akk|
4 i0 = k
5 while (amax = 0 and i0 < n) do
6 i0 = i0 + 1
7 amax = |ai0k|
8 End
9 ipivtk = i0
10 (* interchange rows if necessary *)
11 If i0 �= k then
12 For j = k, . . . , n do
13 t = ai0j

14 ai0j = akj

15 akj = t
16 End
17 Endif
18 (* If akk = 0 then all entries are zero and we do not need to eliminate *)
19 If akk �= 0 then
20 (* compute the Gauss transformation matrix Mk,
21 i.e., compute the multipliers −lik and store them in aik *)
22 For i = k + 1, . . . , n do
23 aik = −aik/akk

24 End
25 (* row elimination *)
26 For i = k + 1, . . . , n do
27 For j = k + 1, . . . , n do
28 aij = aij + aikakj

29 End
30 End
31 Endif
32 End

3.4.3 Putting Everything Together

Suppose we are interested in the solution x of

Ax = b, (3.24)

where A ∈ IRn×n and b ∈ IRn. However, we are not given the exact matrices A and b but only perturbations
A + ∆A and b + ∆b. together with estimates of the relative errors ‖A‖p/‖∆A‖p and ‖b‖p/‖∆b‖p, where
p ∈ [1,∞) or p =∞. The errors ∆A and ∆b could be due to rounding that occurs upon entry of the exact
data A and b into the computer. Errors also arise if A and b are obtained from measurements. Now, we

c©2001 M. HEINKENSCHLOSS

3–24 CHAPTER 3. ERROR ANALYSIS

solve

(A+∆A)x = b +∆b. (3.25)

using, e.g., the LU–decomposition. The computed solution x̂ of (3.25) does not satisfy (3.25) exactly, but

(A+∆A+∆A1)x̂ = b+∆b, (3.26)

where ∆A1 reflects the errors introduced by the numerical algorithm for the solution of (3.25). We can
estimate

‖∆A1‖p

‖A+∆A‖p

using the error indicator (3.20) applied to (3.25), i.e.,

‖∆A1‖p

‖A+∆A‖p
≈ ‖b+∆b − (A+∆A)x̂‖p

‖A+∆A‖p‖x̂‖p
.

Theorem 3.19 gives an estimate of the relative error between the computed solution x̂, i.e., the solution of
(3.26), and the desired solution x of (3.24). Estimate (3.15) applied in this context reads

‖x̂− x‖p

‖x‖p
≤ κp(A)

1− κp(A)
‖∆A+∆A1‖p

‖A‖p

(‖∆A+∆A1‖p

‖A‖p
+

‖∆b‖p

‖b‖p

)
,

To express the relative error ‖∆A+∆A1‖p/‖A‖p in known quantities, we use

‖∆A+∆A1‖p

‖A‖p
≤ ‖∆A‖p

‖A‖p
+

‖∆A1‖p

‖A‖p

≤ ‖∆A‖p

‖A‖p
+

‖∆A1‖p

‖A+∆A‖p

‖A+∆A‖p

‖A‖p

=
‖∆A‖p

‖A‖p
+

‖∆A1‖p

‖A+∆A‖p

(
1 +

‖∆A‖p

‖A‖p

)

3.5 Problems

Problem 3.1

i. Let

A =


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

 .

Compute the matrix norms ‖A‖p and the condition numbers κp(A) = ‖A‖p‖A−1‖p for p = 1, 2,∞.
ii. Let b = (5, 1.02, 1.04, 1.1)T . Compute b̂ by rounding the entries of b to the nearest integers. Compute
the solution x̂ of Ax̂ = b̂.

iii. Use Theorem 3.19 to compute upper bounds for the relative errors ‖x̂−x‖p/‖x‖p, p = 1, 2,∞. Do not
compute the solution x of Ax = b.

iv. Compute the solution x of Ax = b and the relative errors ‖x̂− x‖p/‖x‖p, p = 1, 2,∞.

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

3.5. PROBLEMS 3–25

Problem 3.2 ([?, p. 197]) Let

A =
(
1.000 1.001
1.000 1.000

)
.

i. The exact solution of Ax = b1 with b1 = (2.001, 2.000)T is x1 = (1, 1)T .

Compute the solution x̂1 of Ax = b̂1, where

b̂1 =
(
2.002
2.000

)
.

Compute ‖x1 − x̂1‖∞ and ‖b1 − b̂1‖∞.
ii. The exact solution of Ax = b2 with b2 = (1, 0)T is x2 = (−1000, 1000)T .
Compute the solution x̂2 of Ax = b2, where

b̂2 =
(

1
−1

)
.

Compute ‖x2 − x̂2‖∞ and ‖b2 − b̂2‖∞.
iii. Note that the residual ‖b1− b̂1‖∞ is small relative to ‖b1‖∞ while ‖x1− x̂1‖∞ is large relative to ‖x1‖∞.

On the other hand, ‖b2 − b̂2‖∞ is small relative to ‖b2‖∞ while ‖x2 − x̂2‖∞ is large relative to ‖x2‖∞.
Do your results agree with Theorem 3.19?

Problem 3.3

i. Modify lu pp.m to implement the LU–decomposition with simple decomposition, Algorithm 3.4.2, as
a Matlab function lu sp.m

ii. Generate m random n×n linear systems A = rand(n,n), x = rand(n,1) and b = A*x. Use m = 10,
n = 100.

– Use lu pp.m to compute the LU–decomposition with partial pivoting of A and apply lu pp sl.m
to solve the linear system. Let xcomp be the computed solution. For each system com-
pute ‖A − PT LU‖∞, κ∞(A)‖b − Axcomp‖∞/‖b‖∞, ‖b − Axcomp‖∞/(‖A‖∞‖xcomp‖∞), and
‖x − xcomp‖∞/‖x‖∞.
Report the results in form of a table or in form of a table or a graph.

– Repeat the computations with lu pp.m replaced by lu sp.m.

iii. Repeat the computations in ii. using the linear systems in Example 3.25 with n = 4, . . . , 30.

iv. Interpret the results you have obtained in ii. and iii.

Problem 3.4 Consider the truss in Problem 1.10

i. Compute ‖B|1, ‖B‖2, ‖BT‖2, ‖B‖∞.
ii. Suppose the manufacturer of the bars guarantees that the bars delivered have cross sectional areas ai,
Young’s moduli Ei and lengths /i that are within 5% of their requested values. (The requested areas
and Young’s moduli are the ones specified in Problem 1.10 and the requested lengths are the lengths
determined from Figure 1.9.) Let D = diag (. . . , aiEi//i, . . .) be the diagonal matrix computed with
the requested values and let D̂ be the corresponding diagonal matrix with the actual values for ai, Ei, /i.
Compute an upper bound for

‖D − D̂‖1, ‖D − D̂‖2, ‖D − D̂‖∞.

c©2001 M. HEINKENSCHLOSS

3–26 CHAPTER 3. ERROR ANALYSIS

iii. Let K = BDBT and K̂ = BD̂BT . Use your results in i. and ii. to compute an upper bound for

‖K − K̂‖1, ‖K − K̂‖2, ‖K − K̂‖∞.

iv. Let u = K−1f and û = K̂−1f . Apply Theorem 3.19 to compute upper bounds for

‖u − û‖1/‖u‖1, ‖u − û‖2/‖u‖2, ‖u − û‖∞/‖u‖∞.

CAAM 353 – COMPUTATIONAL NUMERICAL ANALYSIS

