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Abstract

A numerical method is presented to deal with the difficulties associated with
discontinuous coefficients and data in hyperbolic partial differential equations. The
method applies directly to first order linear systems. It combines aspects of the
Courant-Rees-Isaacson method, the essentially non-oscillatory derivative approxi-
mations of Harten and Osher, and, to propagate solutions in more than one space
dimension, Strang splitting. Several examples in one and two space dimensions
are presented which indicate that the method maintains sharp waveforms without
introducing spurious oscillations. One of the examples, taken from [Dablain, The
application of high-order differencing to the scalar wave equation, Geophysics, vol.
51 (1985), pp. 54-66], allows a comparison with existing finite difference methods.

Keywords: hyperbolic partial differential equations, finite difference methods,
essentially non-oscillatory (ENO) methods, Strang splitting.

1 Introduction

The simulation of wave propagation through highly heterogeneous media is
important in many applications, e.g., seismic and ultrasound modeling and
imaging. In these applications, material parameters like density and wave
propagation speed may change drastically over short length scales. In practice,
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these rapid variations are often modeled with hyperbolic partial differential
equations having nonsmooth coefficients.

To solve these equations, asymptotic techniques may sometimes be applied.
They can effectively handle discontinuities, but they are difficult to imple-
ment if the geometry of the discontinuities becomes too complex. Numeri-
cal methods—primarily finite difference methods—are a widely used alterna-
tive. While relatively easy to implement, these methods may perform poorly
when applied to equations with nonsmooth coefficients or nonsmooth initial
or boundary data. Even for equations with smoothly varying coefficients and
data, standard finite difference methods suffer from numerical dispersion, i.e.,
the propagation of differing frequency components at different speeds. This
is manifested in the spread of waveforms and the introduction of spurious
oscillations (see [2,9]).

In this paper, we present an adaptive stencil scheme to deal with these numer-
ical difficulties. This scheme combines elements of the Courant-Isaacson-Rees
(CIR) method [1], the essentially non-oscillatory (ENO) scheme of Osher and
Harten [4], and Strang splitting [6]. While the method is adaptive in nature, it
does not seek to increase accuracy or resolution by refining the computational
grid. Instead, it uses a fixed regular grid and adapts the finite difference sten-
cil from point to point. This strategy eliminates spurious oscillations, reduces
the spreading of waveforms, and allows numerical propagation of waveforms
across discontinuities in spatially dependent coefficients. The adaptive nature
of the mesh selection strategy makes the method nonlinear—in spite of the
fact that it is designed for linear hyperbolic systems in one or more spatial
dimensions.

To illustrate this method, we describe in detail its implementation for the
scalar wave equation. Section 2 deals with the case of one space dimension,
while section 3 covers the 2-D case. Subsection 2.1 reviews the conversion of
the 1-D scalar wave equation to first order system form and the implementa-
tion of the CIR method for this linear system. The CIR method exhibits only
first order accuracy. In subsection 2.2, we utilize the ENO criterion to develop
a stencil selection strategy which has higher order spatial accuracy. This strat-
egy is illustrated with an example in subsection 2.3. Subsection 2.4 presents
an approach for increasing temporal accuracy. Subsection 2.5 addresses the
issue of computational complexity. In subsection 3.1, we review the conver-
sion of the 2-D scalar wave equation to first order system form. Subsection 3.2
describes the implementation of Strang splitting for this system. This allows
us to accurately propagate solutions in two (or more) space dimensions using
a product of 1-D propagators.

Numerical results in one and two space dimensions are presented in sections 4
and 5, respectively. Results for a one dimensional initial value problem (IVP)



for the scalar wave equation with non-smooth initial data are presented in
subsection 4.1. A second IVP, this one with a discontinuous coefficient (wave
speed), is given in subsection 4.2. This second example was taken from [2],
allowing a comparison of the adaptive stencil scheme with existing finite dif-
ference methods. Subsection 4.3 briefly describes how boundary conditions are
handled numerically. Subsections 5.1 and 5.2 present results for a pair of IVP’s
for the two dimensional scalar wave equation, each having discontinuous wave
speeds. In the second 2-D example, the discontinuity is not aligned with the
computational grid.

2 The One Dimensional Case

In this section, we outline the adaptive stencil finite difference method for the
one dimensional acoustic wave equation. First, we review the CIR method;
then we extend it to obtain higher order methods.

2.1 The CIR Method

Courant, Isaacson and Rees introduced what has become known as the CIR
method in 1952 [1] (see also [3, p. 48]). The adaptive stencil method presented
here may be viewed as an extension of CIR.

To illustrate, consider the one dimensional scalar, or acoustic, wave equation

Ofu — *9%u = 0. (1)

This is equivalent to the first order system

0,0 + A9,T =0, (2)
where
Oyu 0 —1
U= , A= (3)

atu —C2 0

Let F denote the matrix of eigenvectors and let A = diag{\;, A2} be the
diagonal matrix of corresponding eigenvalues of A, so that A = FAE™'. Then
(2) becomes

E'054+ AE0,7 = 0.



Setting @ = E~'¥, we have (assuming c is a function of space but not time)
O + NOpw = A0, E~"Ew. (4)
The left hand side is decoupled, and with the spatial and temporal discretiza-

tions w7 = [wl} ,w{,’}]T, where w? = w;(mAt,jAz) and m > 0, j =

,—1,0,1,..., the CIR method yields

G E | Ay A

! = AO,E)Ew™, (5)
At A2 Au(Ag)uwl: !

where we define for a spatial grid function f = {f(jAz)} = {f;},
f] f] 1

A , ifA>0 eo
AN = v 6
W Jimi=li 0 o o
Az

Hence, upwinding is used in the selection of the spatial difference stencils. At
any given time step, one can recover U by computing v = Ew.

The symbols to the right in (6) indicate which stencil is being used. The
solid dot e represents the point at which the spatial derivative is being ap-
proximated, and the circles o represent other points that are to be used. For
example, o eis the first order finite difference approximation that requires f
at z; and the point to the left, z;_;.

The local truncation error for the CIR method is O(Az) + O(At) (see [3]).
Since |A;| = ¢, the CFL stability condition reduces to

max c(r)A— < 1.

X

Given stability, CIR is first order accurate in both space and time. Hence, one
obtains first order accurate approximations to the components of ¢ in (2)-(3).
One can then integrate the approximation of u; with respect to ¢t and obtain
a second order accurate approximation to the solution u of (1).

Note that the stencil adapts to the sign of the \;. For this reason, CIR can be
viewed as an adaptive stencil finite difference method. Also for this reason, CIR
deals with numerical dispersion better than standard methods based directly
on difference approximations to the second derivatives in problem (1) (see [9,

pp. 80-83]).



The low order accuracy of the CIR method results in undesirable smearing of
wave forms, as can clearly be seen in Figure 5 below. Higher order accuracy is
required to overcome this smearing. Unfortunately, higher order approxima-
tions tend to introduce spurious oscillations. This motivated the development
of ENO derivative approximation schemes, which we now describe.

2.2 ENO Higher Order Stencil Selection

Clearly O(Az") approximations to the derivative d,w; at the point z; may be
obtained using n + 1 distinct, consecutive points (see for example [8, p. 37]).
These need not be centered at x;. In fact, there are n + 1 possible stencils
containing z; that yield approximations with an O(Az") truncation error.

For n = 1, there are two stencil choices. With the CIR method, the sign of
the \;’s is used to make the appropriate choice. For n > 1, additional criteria
are needed to select the stencil. In order to minimize spurious oscillations
associated with higher order approximations, we adopt the ENO criterion.
This was originally developed by Harten and Osher [4] for scalar conservation
laws and later extended to first order scalar hyperbolic PDE’s in Hamilton-

Jacobi form [7].

To determine which (n + 1) spatial grid points to use in the finite difference
stencil, we start with the point z; and add points in a manner based on the
local smoothness of the data. The necessary decisions and resulting stencils
are displayed in the tree in Figure 1. Again, the solid dot e refers to the point
xj, and the circles o refer to other points that are used in the stencil.
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Fig. 1. Tree of possible finite difference stencils.

The O(Az™) stencils are found on the (n 4+ 1)* level of the tree. Thus n
decisions must be made in order to reach this level. At level 1, add the point

(@]



that is in the upwind direction, which is determined by the sign of );, as
with the CIR method, c.f., (6). Take the arrow to the left at level 1 if A; >
0, otherwise take the arrow to the right. This ensures that the scheme is
upwinding, a necessary condition for numerical stability. The remaining n — 1
decisions are aimed at minimizing the spurious oscillations that often occur
when using a fixed finite difference stencil (see [2,9] for examples).

Each finite difference stencil in Figure 1 corresponds to a polynomial inter-
polant. Harten and Osher [4] have shown that choosing polynomial inter-
polants with small (in magnitude) higher derivatives will reduce the spuri-
ous oscillations. This selection criterion yields what are known as essentially
non-oscillatory (ENO) methods. Given a vector f of length N, let D(f) be
the vector of length N — 1 whose j* entry D(f); is fj+1 — f; and define
D"(f) = D(D"'(f)) for n > 1. Consider the decision that must be made at
level k. The arrow to the left is taken if

[DF(f)il < |1D*(f)isal, (7)

otherwise the one on the right is taken. This choice ensures that the method
will choose the stencil on the left at decision k if the leading coefficient of the
degree k polynomial interpolating the data represented on the left is smaller
in magnitude than the leading coefficient for the data on the right, which is
the ENO criterion.

The value of ¢ in (7) will depend on the results of the previous decisions. If [ is
the number of previous decisions that resulted in taking a path to the left (i.e.,
the number of o’s to the left of e in the current stencil), then ¢ = j—I. Hence,
the resulting method, even though applied to a linear system, is nonlinear.

2.3 An FEzample

To illustrate the advantages of the ENO stencil selection scheme, consider
first derivative approximations for the piecewise smooth function in Figure
2. Below are the three possible approximations to f’(z;) based on 3-point
difference stencils:

Jice —Afica +3f;

0o e
2Az
—_fj_l +fin 0O @O0 (8)
2Azx
St Al = L,
2Azx



The circles and solid dots have the same meaning as in equation (6). For
f € C*, each approximation is O(Az?) accurate.

Since f is not differentiable, we seek approximations to the left and right
derivative at each point. In frame 2 of Figure 2, we present the values that the
stencil ® o o would assign to an approximation of the derivative by superim-
posing a line that passes through each point that has a slope that is equal to
the approximation of the derivative at that point. Note that for x = 0,3,4,5
or 6, the lines shown appear to be tangent, implying that the approximations
are fairly accurate. Note also that at + = 2 and = = 8, the lines accurately ap-
proximate the tangents corresponding to the right derivative. Unfortunately,
this stencil does not work well at = 1, or x = 7, and the stencil may not
be applied at © = 9 or @ = 10 (there are not enough nodes to the right).
The reason it does not do well at * = 1, for example, is that f is not smooth
enough on the interval containing the nodes that are used; in this case the
interval (1,3).

In frames 3 and 4 of Figure 2, we present similar results obtained by applying
the centered stencil o e o and the stencil o o e, respectively. Clearly, if any
one fixed stencil is used, significant errors will be made. The last two frames
show the approximations that would be assigned by the adaptive stencil se-
lection scheme. The dash-dot lines were obtained from the centered stencil
o @ o. The solid and dashed lines were obtained from the stencils e o o and
o o e, repectfully.

2.4 Temporal Accuracy

Expanding the solution to

AT+ Ad,T =0 (9)

in a Taylor series about t yields
1
Oz, t+ At) = (1 + Atd, + §At28f + .. )6z, b). (10)
Using (9) to replace the temporal derivatives with spatial derivatives, we ob-
tain
1
vz, t+ At) = (1 — AtA9, + 5AtZ(AaI)Q — . )8(z,t). (11)

Taking the first 2 terms on the right hand side, diagonalizing A, and employing
the spatial derivative approximation found in level 2 of the tree gives the CIR
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Fig. 2. Various Second Order Approximations To The Derivative

method. One can derive higher order methods simply by taking additional
terms in the right hand side of (11) (increasing temporal accuracy), and by
continuing to lower levels in the tree (increasing spatial accuracy).



2.5 Computational Complezity

Note that second order temporal accuracy requires computation of

(A0,)%5 = AD,(AD,D),

and hence, an additional application of the approximation to Ad,. Similarly,
n applications of A, are required for n'* order temporal accuracy.

There are n 4+ 1, n'* order stencils that may be applied at any one point,
each having an associated value D™(f);. Although this appears to imply that
N(n + 1) of the D*(f); must be computed in order to determine the appro-
priate stencil at N points, the trees (and therefore the elements D"(f);) of
neighboring points overlap. Thus, the one vector D"(f) contains all of the
needed information for the decisions that need to be made on level n of the
tree. Also, since the vectors D™ (f) decrease in length as n increases, the added
amount of work to go to the next level of the tree slightly decreases, even
though the number of possible stencil choices increases.

Near a boundary, the tree in Figure 1 must be truncated. How these trees are
truncated will affect the realized boundary conditions, and will be discussed
in section 4.3.

3 Multi-Dimensional Problems

Clearly, the method described above can be applied to any first order linear
hyperbolic system in one space dimension. Here we present a scheme that
utilizes the splitting techniques of Strang [6] to extend the method to more
than one space dimension.

3.1  System form of 2-D Scalar Wave Equation

To demonstrate this approach, consider the two dimensional acoustic wave
equation

Ou— A(2u+ diu) =0

This is equivalent to the first order system

0,0 + AD,T + BT =0, (1)



where

Oyu 0 0-1 0 0 O
d=|oul, A=l 000, B=|0 0 -1
osu -0 0 0—-c* 0

Unfortunately, A and B do not commute and cannot be simultaneously diag-
onalized, so the numerical scheme described above must be modified.

3.2 Strang Splitting

Note that (11) can be expressed as

v, t + At) = e 4% 5z, 1),

where

2
e_AtAax . AtAaI + ATt(Aar)Q — .

defines the propagator for the operator Ad,. In the two dimensional case,

By, t + At) = e 8B FBWG(g y 1),

Strang’s idea [6] was to approximate the two dimensional propagators by a
product of one dimensional propagators.

One can show

At?
e—At(A@ﬁ—Bay) — e—AtAaxe—AtBay + T(AB _ BA) + O(Atg), (2)

so that a first order accurate approximation is based on

U, y, 1) = e 8% (AN G (2, y, 1), (3)

One can also derive a second order approximation, utilizing the fact that

_ _1 _ _1
¢~ AUADABY) _ ~§AIAD, ~AtBOy ~3AIAD, | O(AL). (4)
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Applications of one dimensional propagators require numerical solutions to
systems of the form

07 + CO,5 = 0, (5)

where C' is either A or B, corresponding to s = x or s = y, respectively. v
is a function of z,y, and ¢, but one of x or y is treated as a parameter. For
example, to implement (3), one first propagates data ¢ (x;,y;) from ¢ to
t™ 4+ At by numerically solving N, linear systems

a{l? —|— Bayl_)) == 0,

one for each z;. Call the resulting intermediate approximation 7" = ¢*"(z;, y;).

This is then taken as initial data, and one solves the IV, systems

one for each y;, to obtain o™+,

4 Numerical Results in One Space Dimension

This section contains two examples that illustrate the attributes of the adap-
tive stencil method. We employed the approach described in subsection 2.4
to achieve second order temporal accuracy and, unless otherwise stated, an
O(Axz?) adaptive spatial stencil (level 3 in the tree) is used, and At is taken
to be Az/(2 max, ¢(x)).

4.1 A one-dimensional problem with non-smooth initial data

The first example is the one dimensional initial value problem (IVP)

O —Pu=0,—c0o<a<oo, t>0, (1)
u(z,0) = f(z), —oo<z< oo,
Owu(z,0) =0, —oo<a < o0,

where f(x) is the piecewise linear function on the left in Figure 3. The piece-
wise constant derivative f'(z) is shown on the right.

11



Initial Displacement u Initial d,u

1 2
0.8 — 1
—_ o
o S
ﬁ0.6 s 0
H S—
3 8
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0 -2
4 2 0 2 4 6 8 4 -2 0 2 4 6 8
X X

Fig. 3. Initial data a 1-D constant coeflicient, homogeneous IVP.

Recall that our method approximates the vector of derivatives v = [d,u, dsu]’.

The D’Lambert solution [5] of (1) is

1 1
u(z,t) = §f($—t)‘|‘§f($‘|‘t)a (2)
and so
. 1, .
Opu(z,t) = Ef (x —1t)+ Ef (x +1), (3)

i.e., dyu is the sum of translates of components of the piecewise constant
function shown on the right in Figure 3.

In Figure 4, we present the numerical approximation of d,u at various times. In
Figure 5 we present results obtained using approximations that are O(Az™) for
n = 1,2 and 3. In this figure, we have zoomed in on the subinterval 3 <z <6
at time ¢t = 3. Note that the approximations become increasingly sharp as n
increases, and that none exhibit spurious oscillations.

We also applied a fixed stencil finite difference approximation to (1). The
standard second order finite difference approximations to the derivatives,

w2y L™ = 2
U 2u]—}—u] Cufy 2u]—}—u]_1

J
= 4
At? Ax? 0 (4)

was used. We took the same At and Az as in the previous approximations to
(1), and the CFL condition was met. On the left in Figure 6 is the resulting
approximation of u at time ¢ = 3, and on the right is the finite difference
approximation to the derivative d,u(z,3). Note the spread in the waveform
and introduction of spurious oscillations in the approximation of w. Taking
the derivative d,u greatly magnifies these oscillations.

12
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Fig. 4. Adaptive stencil solutions for a 1-D, constant coefficient, homogeneous, scalar
wave [VP at times t =1
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Fig. 5. Effects of degree on adaptive stencil solutions.
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4.2 A one-dimenstonal discontinuous coefficient problem
The following test case was taken from [2]. Consider the IVP

Otu — c(x)?0%u = f(t)é(x — x0), —00 < & < 00, t >0, (5)
u(z,0) = du(z,0) =0, —oo <z < o0,

with the wave speed c(z), the forcing function f(t), and the source location
xo given in Figure 7 below. Note that ¢(z) is piecewise constant with a jump
discontinuity at position x = 5203 meters, where the wave speed doubles. Fig-
ure 8 shows our adaptive stencil results. For = beyond the jump discontinuity,
Ou is simply a rescaled translate of f(¢). The temporal rescaling factor is
1/2, while the amplitude changes by a factor of 4/3. In [2] Dablain advocated
high order (up to 10" order in space and 4" in time) difference approximation
schemes to accurately track u. This requires stencils with many points. Associ-
ated with these large stencils are difficulties in handling boundary conditions,
large storage requirements, and the need for a separate temporal “start-up”
procedure. Our second order adaptive stencil approach is relatively easy to
implement, angd gives results which compare very favorably with those in [2].

/f(s) ds 1) Depth in Meters
1 O 05 O o)
~
3 = &
05 =z 2,602 [ 2|Source
e = 0 ) . -
g g 3,902 | —|Receiver 1
= 0 < 5,203 = | Reflector
. <05 6,504 o% Receiver 2
505 S 7,805 Z | Receiver 3
7P} 2 o
o 33 66 o 33 66 10,406
Time (ms) Time (ms) Wave Speed ¢(x)

Fig. 7. The forcing function f(¢) and discontinuous wave speed ¢(z).

4.3  Boundary Conditions

The adaptive stencil selection procedure outlined above cannot be applied near
the boundary of the computational domain. Here we discuss modifications
required to accommodate various boundary conditions.

The free surface boundary condition, g—z = 0, is easily handled since the com-

ponents of Vu (rather than wu itself) are computed at each time step. For

14
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0.5
0.5 0.5
< 0 < 0 < 0
= = =
= 205 £0.5
0.5 =
< < <
-1 -1
-1
0.8 1 1.2 2 2.5 2.5 3
Time (ms) Time (ms) Time (ms)

Fig. 8. Time traces at various spatial locations obtained using a second order adap-
tive stencil method.

instance, in the 1-D case, we can set d,u equal to zero at the end points at
each time step. Standard methods (see (4)) require additional, often quite
complicated, difference approximations near the endpoints.

Absorbing boundary conditions allow a wave to pass through a computational
boundary with no reflections. Assuming a small homogeneous region near the
boundary (of the one dimensional problem), the system (4) decouples into
right- and left-moving waves that are easily absorbed by using stencils that
look inward at the computational boundaries. Suppose we wish to approximate
the derivative of f = (f1,..., fn) with the procedure outlined above. We
can force the selection of these inward looking stencils near the boundary by
setting fo = fvy1 = oo, or some relatively large value. The selection scheme
described by the tree in Figure 1 will not select these new end nodes at any
level, resulting in absorption.

5 Numerical Results in Two Space Dimensions

In the two examples below, we employed second order accurate Strang splitting
(4) together with a second order adaptive spatial stencil. In both examples,
absorbing boundary conditions are employed, Az = Az, and At is taken to
be Az /(2 max, ;) c(z, z)).

5.1 A two-dimenstonal discontinuous coefficient problem

Consider

15



Wave Speed ¢(z, 2) Source f(t)

Amplitude

c(x,z) =2

-5 0 5 0 02 04 06 08 1
— T — t

Fig. 9. Wave Speed and Forcing Function for a 2-D discontinuous coefficient problem.

Ou(x, z,2.45) Owu(x, z,3.5)

Fig. 10. Adaptive stencil approximations to 0;u at Various Times ¢ for a 2-D dis-
continuous coefficient problem.

Ofu — ¢ (Ofu+ 02u) = f(£)6(2)6(2), (1)
u= 0w =0att=0,

where ¢(xz, z) is the piecewise constant function shown on the left in Figure
9 and f(t) is the Ricker wavelet commonly used in geophysical problems [2],
shown on the right in Figure 9.

Note the term d,c¢ in equation (4). When ¢ has jump discontinuities, d,¢ must
be interpreted in a distributional sense. We use standard difference approx-
imations to the required distributional derivatives d,c¢ and d,c. The support
of the distributional derivative 0,c consists of the horizontal interfaces and is
the short vertical interface for d.c. Numerical results are shown in Figure 10.

In the first frame the wave propagates from a point source at the top center of
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Wave Speed ¢(z, 2) Source f(t)

J\ﬁ
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Fig. 11. Wave speed and forcing function for the Slanted Interface Problem.
Owu(x, z,2.8) Owu(x, z,5.075)

atu(a:, z, 7.0)

Fig. 12. Adaptive stencil approximations to d;u at various times ¢ for the Slanted
Interface Problem.

the media. In the second frame we see the wave soon after it reaches the left
interface. Note both the returning reflection and the higher speed transmitted
wave. In the third frame, the main wave meets the right horizontal interface,
causing a reflection which can be seen in the fourth and final frame. The effect
of the absorbing boundary conditions can also be seen in this final frame.

5.2 A two-dimensional problem with a slanted interface

Again consider (1) with the same forcing function and initial and boundary
conditions as above, but with a different discontinuous wave speed, given in
Figure 11.

In the first frame a wave propagates from a point source at the top center

17



of the media. In the second frame we see the wave soon after it reaches the
slanted interface. In the third frame, part of the transmitted wave reaches
the computational boundary and is absorbed, and the reflected wave becomes
apparent. In the final frame, both the transmitted and the reflected wave are

being absorbed.

In this test case, there seem to be no difficulties associated with discontinuities
that are not oriented along the computational grid.
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