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The solution of partial differential equations on a parallel computer usually follows the data
parallel paradigm. The grid is partitioned and mapped onto the processors. In this paper a
parallelisable and cheap method based on space-filling curves is proposed. The partitioning
is embedded into the parallel solution algorithm using multilevel iterative solvers and adap-
tive grid refinement. Numerical experiments on two massively parallel computers prove the
efficiency of this approach.

1 Introduction

In this paper, we consider parallel versions of adaptive multigrid solvers and adaptive
sparse grid discretisations for elliptic partial differential equations. The multigrid method
operates on a finite difference discretisation on quad-tree and oct-tree meshes, which are
obtained by adaptive mesh refinement. The adaptive sparse grid discretisation is also based
on a finite difference scheme and is well suited for higher dimensional problems. A fast
parallel load balancing strategy for both approaches is proposed which is defined by a
space-filling Hilbert curve. It is furthermore applicable to arbitrary shaped domains. Some
numerical experiments demonstrate the parallel efficiency and scalability of the approach.

2 Multigrid Solver

Our goal is to solve an elliptic partial differential equation efficiently. The PDE is dis-
cretised by finite differences on a 1-irregular quad-tree or oct-tree grid. Here, we set up
the operator as a set of difference stencils from one node to its neighboring nodes in the
grid, which can be easily determined: Given a node, its neighbors can be only on a limited
number of levels. The distance to the neighbor is determined by the refinement level the
nodes share, see Figure 1.

So pure geometric information is sufficient to apply the finite difference operator to
some vector. Hence we avoid the storage of the stiffness matrix or any related information.
For the iterative solution of the equation system, we have to implement matrix multiplica-
tion, which is to apply the operator to a given vector.

We use an additive version of the multigrid method for the solution of the equation sys-
tem, i.e. the so called BPX preconditioner

�
. This requires an outer Krylov iterative solver.

The BPX preconditioner has the advantage of an optimal �����	� condition number and an
implementation of order ����
�� , which is optimal, even in the presence of degenerate grids.
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Figure 1. Adaptively refined quad-tree grid (left) and a finite difference stencil (right)

Furthermore, this additive version of multigrid is easier to parallelise than multiplicative
multigrid versions.

The straightforward implementation is analogous to the implementation of a multigrid
V-cycle. However, the implementation with optimal order is similar to the hierarchical
basis transformation and requires one auxiliary vector � . Two loops over all nodes are
necessary, one for the restriction operation and one for the prolongation operation. They
can be both implemented as a tree traversal or alternatively by iterating over the nodes in
the right order.

A parallel version of multiplicative multigrid usually is based on a partition of all nested
grids. The domain

�
is decomposed into several sub-domains

���
, which induces partitions

of all grids. Each processor holds a fraction of each grid in such a way that these fractions
of each grid form a nested sequence. Hence each operation on a specific level is parti-
tioned and mapped to all processors. Furthermore the communication during grid transfer
operations is small because of nested sequences on a processor. This means that one has to
treat global problems on each level, which are partitioned to all processors. The intra-grid
communication has to be small, i.e. the number of nodes on the boundary of the partition
should be small. Furthermore the amount of work on coarse grid levels usually is small and
each processor does not compute much. There are several strategies to deal with the coarse
grid problem in general, such as to centralize the computation on a master processor, to
perform identical computations on all processors or to modify the coarse grid correction
step.

A static partition of the domain into strips or squares can be used for uniform grids and
has been used for the first parallel multigrid implementations ��� � , see also the survey Ref. 5.
In contrast to the geometry oriented parallelisation of multiplicative multigrid methods,
the additive multigrid version or additive multilevel preconditioners can be parallelised
in a more flexible way. The overall workload has to be partitioned, but we do not have
to consider individual levels. Here, the communication takes place in a single step for
all nodes, which are located on the boundary of at least one grid of the nested sequence.
The multilevel BPX preconditioner for a uniform grid has been parallelised �	� 
 . These
approaches can easily be generalized to block-structured grids.

2



3 Sparse Grids

Before we consider the parallelisation in more detail, we introduce our second discretisa-
tion strategy, which is especially well suited for higher dimensional problems. Sparse grids
are a multi-dimensional approximation scheme, which is known under several names such
as ‘hyperbolic crosspoints’, ‘splitting extrapolation’ or as a boolean sum of grids. Probably
Smolyak � was the historically first reference. Directly related to the boolean construc-
tion of the grids was the construction of a multi-dimensional quadrature formula. Both,
quadrature formulae and the approximation properties of such tensor product spaces were
subject to further research, see Temlyakov

�
and others

��� � � � � � ��� � � . The curse of dimension
was also subject to general research on the theoretical complexity of higher-dimensional
problems. For such reasons, sparse grids play an important role for higher-dimensional
problems. Besides the application to quadrature problems, sparse grids are now also used
for the solution of PDEs. They were introduced for the solution of elliptic partial differen-
tial equations by Zenger

� � , where a Galerkin method, adaptive sparse grids and tree data
structures were discussed. At the same time a different discretisation scheme based on the
extrapolation of solutions on several related, regular grids was proposed, the ‘combination’
technique

���
.

In this paper we consider a finite difference (FD) scheme
� ��� � 
 . It is simpler to im-

plement and to apply to different types of equations, but there is not that much known
analytically yet. We focus on the parallelisation of such a FD scheme on sparse grids. So
far only the ‘combination’ technique can be run on a distributed-memory parallel com-
puter

� � , which is essential for many large scale simulations. The advantage of the FD
scheme is the flexibility of the grid. The sparse grid may be refined adaptively, while the
‘combination’ technique relies on regular sparse grids. However, the adaptive grid refine-
ment poses a severe load-balancing problem, which has to be resolved during runtime of
the simulation.

The multi-dimensional approximation scheme of sparse grids can be constructed as
a subspace of the tensor-products of one-dimensional spaces represented by a hierar-
chical multi-resolution scheme, such as the hierarchical basis, see the historical refer-
ence Faber

���
, or generally any basis system of pre-wavelets or wavelets � � . Each one-

dimensional basis function can be derived from a model function
�

by a scaling of �	��

(also called level � ) and a translation by a multiple of ��	
 . In the case of the piecewise
linear hierarchical basis, the model function

�
is the well known hat function. We denote

the one-dimensional space of functions up to level � by � 
 . On level � , the standard grid
space can be written as �

� 
��
� ������ � ����������� � � ���������	
 � (1)

In contrast to the regular grid, the corresponding sparse grid space consists of fewer func-
tions. On level � , it can be written as�� 
 �

� � � � � � �!������� �#" � " �����$�	
 � (2)

This is a subset of the regular grid space. A regular grid has about �&%�' 
 nodes, which is
substantially more than the �(
�)��*%�� � nodes of the sparse grid.

The major advantage of sparse grids compared to regular grids is their smaller number
of nodes (or grid points) for the same level � and resolution ��	
 . This is especially true in
higher dimensions +-, � .
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Of course, the question whether sparse grids have an advantage compared to regular
grids does also depend on the discretisation accuracy of a solution obtained on a grid.
Furthermore the number-of-operations complexity is of interest, because it is an estimate
for the computing time a specific algorithm needs. For details see Ref. 16,17.

We define the hierarchical transformation � as the hierarchical basis transformation
on the regular grid from nodal values to hierarchical values, which are restricted to the
sparse grid nodes. All wavelet-type basis functions provide such fast ����
�� transformation
to and from the nodal basis representation. The transformation is especially simple for the
one-dimensional hierarchical basis: Given the nodal values � � with � � ��� � � ����� � � 
 " � , the
hierarchical representation for interior points can be obtained by

�
� � � � ��� �

�
� �
	 ��������������������
��� �����������������! (3)

and the boundary nodes � � and � ��"$#&% remain unchanged. The nodal values are replaced by
their hierarchical excess or deterioration, compared to the value obtained by interpolation
between on the next coarser level grid. The inverse transformation can be implemented
similarly. However, the coarse nodes have to be computed before the finer grid nodes.
Furthermore, the transformation can be implemented in place, without an auxiliary vector.
The hierarchical basis transformation � is also abbreviated by the stencil ' �)((� � �)( �+* .

Based on the hierarchical basis transformation � , we define the action of a one-
dimensional finite difference operator for the discretisation of a differential operator: We
apply the associated standard difference stencil , � along the -�� -axis to values located on
the sparse grid nodes in a specific basis representation. To this end the values are given
in nodal basis in direction . and in hierarchical basis representation in all other directions/1032 .�4 . The associated transformation is denoted by �65�798 �;: . The stencil , � for each node
itself is chosen as the narrowest finite difference stencil available on the sparse grid. It is
equivalent to the corresponding stencil on a regular, anisotropic refined grid. The finite dif-
ference stencil can be a 3-point Laplacian

�<>= ' � � � ��* , an upwind-stabilized discretisation
of the convective term ??>@BA , some variable coefficient operators and so on. In nodal values
the finite difference operator reads

C �C - �� �EDF� � �5�798 �;:HG , � � G �I5�798 �;: �-� (4)

A general difference operator is then obtained by dimensional splitting. A Poisson
equation, as a simple example, can be discretised in nodal basis representation as usual as a
sum of operators (4). Here the one-dimensional difference operators , � may be chosen as a
three point centered Laplacian

�J @ A #K% � @ A;L %NM = ' �
� � �O* . On adaptively refined grids, the near-

est neighbor nodes are chosen, which may lead to asymmetric stencils, i.e. non-uniform
one-dimensional stencils. Further higher order modifications of the stencils have been
tested, too. In the presence of a transport term in the equation, the unsymmetry is believed
to be no problem. There are ways to create discretisations for all kinds of equations, e.g.
for general diffusion problems, convection-diffusion problems, reaction-diffusion prob-
lems, for the Navier-Stokes equations

� 
 or for hyperbolic conservation laws � � . Known
facts on consistency and stability of this scheme are summarised in Ref. 17.
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4 The Load-Balancing Problem

Finite-Element, Finite-Volume and Finite-Difference methods for the solution of partial
differential equations are based on meshes. The solution is represented by degrees of free-
doms attached to certain locations on the mesh. Numerical algorithms operate on these
degrees of freedom during steps like the assembly of a linear equation system or the solu-
tion of an equation system. A natural way of porting algorithms to a parallel computer is
the data distribution approach. The mesh with attached degrees of freedom is decomposed
into several partitions and mapped to the processors of the parallel computer. Accord-
ingly also the operations on the data are partitioned. Goals of a partitioning scheme are
load-balancing and little communication between the processors. Sometimes also singly-
connected partitions are required. If the partitions are determined during run-time, further-
more a fast partitioning scheme itself is sought. This is e.g. the case within adaptive mesh
refinement of a PDE solver.

The partitioning problem in general is ��� -hard � � . There are many heuristics based
on graph connectivity or geometric properties to address this problem � ��� � � � � � � � �	� � 
 . In
practice fast heuristics are known. However, there is not much known about the general
quality of these methods � � . In contrary there exist examples, where single heuristics give
really bad results.

In this paper we propose a specific geometry based heuristic with space-filling curves.
It is cheap and helps to simplify the implementation of parallel algorithms � � � � � � � � � � �	� � �	� � � .
We are interested in bounds for the quality of the partitions. This will lead us to general es-
timates on the parallel performance of advanced numerical algorithms on these partitions.

5 Space-filling curves

First we have to define curves. The term curve shall denote the image of a continuous
mapping of the unit interval to the � % . Mathematically, a curve is space-filling if and
only if the image of the mapping does have a classical positive + -dimensional measure.
The curve fills up the whole domain. For reasons of simplicity we restrict our attention to
simple domains. We are interested in a mapping��� ' � � �O* � � /��	 ��
 � % � �

continuous and surjective. (5)

There are classical space-filling curves like the Hilbert-, the Peano- and the Lebesgue-
curve � � . However, we will also construct special space-filling curves on an unstructured
mesh.

A space-filling curve can also be used for the inverse mapping
�

from a domain
��
 � %

to the unit interval
/
. This means that we can map geometric entities in � % , such as

elements or nodes, to the one dimensional interval. Entities, which are neighbors on the
interval, are also neighbors in the volume � % . Unfortunately the reverse cannot be true and
neighbors in the volume may be separated through the mapping.

However, we can solve the resulting one-dimensional partition problem: We cut the
interval

/
into disjoint sub-intervals

/ �
of equal workload with  � / � � /

. This gives
perfect load-balance and small separators between the partitions. The partition

� � / � � of
the domain

�
induced by the space-filling curve with  � � � / � ��� �

also gives perfect
load-balance. However, the separators

C � � / � � 0 C � (boundary of the geometrical sets) are
larger than the optimal separators in general as we will see in the following.
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6 Quality of a partition

We use a basic performance model for a distributed memory computer. The execution time
of a program consists of computing time, which is proportional to the number of operations
on a processor, and of communication time. Communication between the processors is
implemented with message passing through some network and requires time linear in the
size of data � � ���;�����;����� � 
��	��
�������
� �O��� .

We consider � � 
�� algorithms which are linear in the size of data 
 , e.g. FEM matrix
assembly for 
 finite elements, sparse matrix multiply or components of a multigrid algo-
rithm such as a grid transfer or smoother � ��� � � . The parallel computing time is � � )�
 (�� for
a partition of 
 data onto � processors. We call � � � 
 (�� the volume. The runtime depends
on the communication time. The data to be transferred is proportional to the separator or
surface � � of the partition � � � � C � � / � � 0 C � . Altogether we have

� � � � 
� ��� � ��� �;�����;����� �����	� 
�������
� �O��� � � (6)

This model suggest that we have to minimize the surface to volume ratio �+(�� of the parti-
tion for a high parallel efficiency of

���������� !��" � �)( � �3� � �� � �
�
� � �;�����;����� �

�
� �	� 
B�#�����
� ����� �  � (7)

While the lowest continuous surface to volume ratio is obtained for the sphere by � �$% � + %�� �'& $)( =* J %,+ � M �
J %�� � M + % , we usually deal with partitions aligned with the mesh. Hence the

cube with � � �(+-�
J %�� � M + % is of interest. In general we regard estimates of type

�/.0�	�B���;� )�� J %�� � M + % (8)

with low constants � �����;� as optimal.

7 Estimates for space-filling curves

The estimate for the locality of a discrete space-filling curve 1 we will use with 1 �' � � ����� ��2 % * �	 ' � � ����� ��2 * % is of type
3 1 ��- � � 1 ��4 � 3 � .5� $6 7 - � 4 7 � (9)

Gotsman and Lindenbaum � 
 give an upper bound � � �*+ �98 � %,+ ��� % for the Hilbert
curve and tighter bounds for � �;: �� for + � � and � � �<8 for + � 8 , which has been
improved � � . Analogous estimates have been derived for the Hilbert curve � � and the Peano
curve � � . It turns out that a version of the Sierpinski curve, also called H-index gives even
better constants � � � � � .

Lemma 1: Given a connected discrete space-filling curve 1 on a domain ' � � ����� �2 * %
and a partition 1 ��' � � ����� � � �=� � �O* � of � nodes, the surface � of the partition is bounded
by (8). The constant �	�B����� depends on the curve.
The proof is based on (9) and the connectedness of the partition. It is sufficient to consider
� of the bounding box.

6



This lemma does not hold for curves of Lebesgue type which are also called bit-
interleaving � � , because the discrete partitions tend to be disconnected. However, we can
generalize the situation to unstructured and adaptively refined meshes by the following
construction: We create an enumeration of a mesh by some heuristic in order to obtain a
‘local’ discrete space-filling curve. Then we perform mesh refinement by some geometric
refinement rules � ��� � � . Each element � � of the coarse grid is substituted by several smaller
elements � � � � . The enumeration is changed such that it cycles through these new ele-
ments � � � � right after the elements � � � � or � � � � � � . This leads in the limit to a continuous
space-filling curve � �	� � � � � � . Alternatively a standard continuous space-filling curve can be
super-imposed onto the grid � � � � � .

Corollary 2: Estimate (8) also holds for a space-filling curve partitioning of a (quasi-)
uniform mesh by superposition of

�
or mesh dependent construction of

�
.

Estimate (7) combined with corollary 2 gives a parallel efficiency for large problems
of

���������� ��" � �+( � �3� � � � �B���;� � 
B�#�����
� ������ � ) �

 � + %  � (10)

This implies optimal parallel efficiency for very large problems, 
 	��
. Estimate (10)

holds for a code for the solution of partial differential equations in the steps of setting
up an equation system, a single matrix multiply and a fixed number of Krylov iterations.
Furthermore, using the same space-filling curve on all grid levels, this also holds for an
additive multigrid implementation and for standard multigrid if we neglect terms ����� 
 )
���;�����;����� proportional to the number of grid levels. For the scalability of a global PDE
solver an 	 ��
�� multigrid solver is essential. Solvers with higher than linear complexity
may scale in � like (10) but scale completely different in 
 . Under suitable conditions, the
estimates can be generalized to adaptively refined grids � � .

8 Key-Based Addressing

Instead of linked lists or trees, we propose to use hash storage techniques � 
 . First we
describe a key based addressing scheme. The entity (a node) is stored in an abstract vector,
where it can be retrieved by its key. Furthermore it is possible to decide, whether a given
key is stored in the table or not, and it is possible to loop over all keys stored in the vector.
In order to reduce the amount of storage of the grid, we omit any pointers and use keys
instead. For a (hyper-) cube shaped domain

� � ' � � �O**% , we can use the coordinates of
a node for addressing purposes. The coordinates (and the keys) of hierarchical son nodes
and father nodes can easily be computed from the node’s coordinates. The computation of
neighbor nodes requires special care, because it is not immediately clear, where to look for
the node. Given a one-irregular grid with hanging nodes, for example, a neighbor node can
be located in the distance of 
 or ��
 from the node with a local step-size 
 , see Figure 1
(right). In the worst case this results in two vector look-up operations, one in distance

 along a coordinate direction and, if it was unsuccessful, one look-up in distance ��
 � � .
Similar key based addressing schemes can be obtained for other grid refinement procedures
and for different domains � ��� � � .

Key based addressing does simplify the implementation of a sequential, adaptive code.
Now, we generalize the concept of key addressing and hash tables to the parallel case.
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The idea is to store the data in a hash table located on the local processor. However,
we use global keys, so a ghost copy of the node may also reside in the hash table of a
neighbor processor. Furthermore we base the code on the space-filling curve partitions
of the previous section. The position of a node on the space-filling curve, along with the
known partition, defines the home processor of a node. Given a node on a processor, it is
easy to determine to which processor the node belongs to. If a node occurs, which does
not belong to the processor, it must be a ghost copy, and it is computable where to find its
original.

The next idea is to combine the position on the space-filling curve with the hash
key � � � � ��� � � . The computation of the position on the curve can be computed for any given
coordinate tuple. It is a unique mapping ' � � �O**% 	 ' � � �O* similar to the mapping required
for hash keys. The position can be used as a key. Furthermore, for the construction of
the hash table, we need a hash function. This can be any mapping ' � � �O* 	 ' ����� * with a
large integer number

�

, preferably prime. Many cheap functions related to pseudo-random
numbers will do here. Modifications of the hash function can improve the cache perfor-
mance of the code: Space-filling curves introduce locality in the key addressing scheme,
which is used for the parallelisation of the code. Exploiting the data locality once again
on the local processor, one can optimize the usage of secondary disk storage and of the
memory hierarchy of caches, which is difficult otherwise

���
.

This framework for the parallelisation of adaptive codes originally has been invented
for particle methods � � and has been generalized to programming environments for some
grand challenge PDE projects � � . Multigrid methods have been considered in Ref. 29,36.

9 Numerical Experiments

time processors
level nodes 1 4 4 uni proc 16 64 256 512

4 289 0.81 1.68 1.42 2.31 4.50 10.67 11.36
5 1089 9.51 4.02 3.74 3.40 5.35 10.66 24.79
6 4225 45.17 12.97 12.48 6.90 6.76 12.45 34.35
7 16641 267.7 53.08 51.77 18.28 14.15 18.15 23.59
8 66049 1722 302.4 289.3 72.92 29.20 33.10 32.58
9 263169 1891 1792 419.0 95.47 58.31 67.26

Table 1. Poisson problem, uniformly refined grids in two dimensions, timing of the multigrid solution on ASCI
Blue Pacific.

As test cases for our approach, we consider the Poisson equation and a convection-
diffusion problem. We use a finite difference discretisation, where the degrees of freedom
are associated with the nodes, and the differential operator is defined on the edges connect-
ing the nodes. In a similar fashion the sparse grid discretisation and the additive multigrid
can be defined.

All numbers reported are scaled CPU times measured on a Cray T3E parallel computer
with 300MHz Alpha 21164 processors (T3E-600) and on ASCI Blue Pacific (technology
refresh, PowerPC 604e, 332 MHz). We use the portable message passing MPI program-
ming interface and its intrinsic timing routines.
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time processors
level nodes 1 4 4 uni proc 16 64 256 512

3 729 7.41 5.55 4.69 4.64 8.26 17.34 26.51
4 4913 142.8 55.85 53.65 17.19 12.63 20.65 33.76
5 35937 5617 1088 1036 155.1 44.01 36.18 65.32
6 274625 3116 383.4 110.5 106.6

Table 2. Poisson problem, uniformly refined grids in three dimensions, timing of the multigrid solution on ASCI
Blue Pacific.

time processors
nodes 1 4 16 64 128 256
1089 5.08 1.27 0.72 0.64 0.84 1.30
1662 5.85 2.01 0.97 0.72 0.86 1.33
2745 10.7 3.26 1.37 0.85 0.94 1.38
4834 20.3 5.84 2.01 1.08 1.08 1.46
8915 39.8 10.9 3.38 1.42 1.26 1.56

16948 78.5 39.7 5.68 2.08 1.66 1.78
32788 157 77.7 10.7 3.34 2.30 2.14
64251 20.7 5.97 3.62 2.80

126810 10.9 6.14 4.12
251468 11.2 6.64
500135 21.2 11.7
996531 41.0 21.8

1988043 80.6 41.4

Table 3. Poisson problem, adaptively refined grids in two dimensions, timing of the multigrid solution on a Cray
T3E-600.

time processors
nodes 1 4 16 64 128 256
35937 291 85.6 29.6 11.2 7.61 5.94
50904 423 129 41.0 14.8 10.1 7.17
89076 405 236 71.2 24.6 14.6 9.98

189581 154 49.7 29.2 17.2
460421 109 61.1 35.6

1201650 142 77.2
3251102 345 188

Table 4. Poisson problem, adaptively refined grids in three dimensions, timing of the multigrid solution on a Cray
T3E-600.

nodes 1 4 4 uni proc 16 64 256 512
59049 210.6 89.07 85.97 33.91 12.13 20.95 132.3

452709 2989 1462 1385 556.6 198.1 63.13 37.77
2421009 2290 768.5 458.9

Table 5. Poisson problem, uniformly refined sparse grids in ten dimensions, timing of the iterative solver on
ASCI Blue Pacific.
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time processors
level nodes 1/h 1 4 16 32 64 128 256 512

2 81 4 0.04 0.06 0.10 0.14 0.16
3 225 8 0.25 0.20 0.38 0.54 0.57 0.59
4 593 16 1.31 0.71 0.89 1.24 1.53 1.87 2.34 3.26
5 1505 32 10.0 3.66 3.03 3.67 5.75 5.28 7.17 9.97
6 3713 64 52.5 20.1 12.8 11.9 13.1 15.4 20.5 29.9
7 8961 128 158 58.2 29.6 22.6 20.9 23.0 27.9 40.6
8 21249 256 473 192 66.6 44.9 67.6 32.2 36.7 94.0
9 49665 512 1426 396 156 95.4 62.0 48.6 48.2 102.2

10 114689 1024 4112 125 85.9 68.5

Table 6. Convection-diffusion problem, uniformly refined sparse grids in three dimensions, timing of the iterative
solution on a Cray T3E-600.

time processors
level nodes 1/h 1 4 4 uni proc 16 64 256 512

4 593 16 0.67 0.47 0.42 0.46 0.54 0.80 0.66
5 1505 32 3.97 2.15 2.01 1.43 1.57 8.56 2.64
6 3713 64 23.33 11.14 10.81 5.70 4.80 19.63 9.34
7 8961 128 71.92 34.06 32.20 11.60 7.47 9.00 11.60
8 21249 256 208.8 90.62 86.40 27.33 12.41 10.89 13.75
9 49665 512 619.0 245.8 233.6 70.94 27.76 24.84 47.10

10 114689 1024 1845 740.5 693.0 189.2 66.36 45.92 62.85
11 262145 2048 2184 568.2 149.2 99.44 86.30
12 593921 4096 1766 343.2 143.0 150.6
13 1335297 8192 888.1 275.0 222.3

Table 7. Convection-diffusion problem, uniformly refined sparse grids in three dimensions, timing of the iterative
solution on ASCI Blue Pacific.

Tables 1 and 2 show execution times and scaling for uniform grids in two and three
dimensions with a multigrid solver. These times give the wall clock times for the solution
of the equation system, on different levels of grids and on different numbers of processors.
We assume a constant number of iterations within a nested iteration. We consider also
adaptively refined grids of the unit square and the unit cube. The grids are refined toward
the corner

��
. Tables 3 and 4 depict times in the adaptive grid refinement case of the Poisson

equation in two and three dimensions.

��� � � �� )�� � � � (11)

A convection-diffusion problem (11) on an uniform, ten-dimensional sparse grid can be
found in Table 5. Adaptively refined three dimensional sparse grid solvers are shown in
Table 6 and 7, where both hardware platforms can be compared.

We obtain a scaling of about a factor 2 from one level to the next finer level, which
means 2 times more unknowns on the next finer level. Increasing the number of processors
speeds up the computation accordingly. Again we observe scalability of the algorithm. In
order to use all processor efficiently the grid has to be fine enough, i.e. it has to possess a
large number of unknowns.
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10 Conclusion

In this paper we gave a survey of the basic ingredients of an efficient solver for self-adjoint
elliptic PDEs, i.e. multilevel solvers, adaptive grid refinement and parallelisation. We fo-
cused on the interplay between these ingredients and tried to illustrate how they can be
glued together into an adaptive parallel multilevel method. Here we proposed the appli-
cation of hash storage techniques for data management and the use of space-filling curves
for load balancing in the parallel version of the algorithms and presented a version of a
parallel adaptive multilevel method based on these approaches.

Note finally that load balancing for adaptive multilevel solvers with space filling curves
can be obtained (after slight modifications) in an analogous way and with analogous results
also for the case of general unstructured grids. This is actual work in progress.
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