
On Accuracy of Alternating Direction Implicit

Methods for Parabolic Equations

Jim Douglas, Jr.� and Seongjai Kimy

Abstract

We study accuracy of alternating direction implicit (ADI) methods for

parabolic equations. The original ADI method applied to parabolic equations is

a perturbation of the Crank-Nicolson di�erence equation and has second-order

accuracy both in space and time. The perturbation error is on the same order

as the discretization error, in terms of mathematical description. However, we

often observe in simulation that the truncation error is one order larger than

the discretization error when the solution is moderately or highly oscillatory.

This paper presents the observation and strategies recovering the accuracy of

the Crank-Nicolson di�erence equation.

1 Introduction

Let
 = (ax; bx)�(ay; by) be a domain in IR2 with its boundary � = @
 and J = (0; T]

be the time interval, T > 0. The problem to be considered in this article is

(a) ut = r � (aru) + c(t; x; y; u) + f; t 2 J; (x; y) 2
;

(b) au� + �u = g; t 2 J; (x; y) 2 �;

(c) u = u0; t = 0; (x; y) 2
;

(1.1)

where the coe�cients a, c, and � are given functions de�ned on the domain
, the

subscript � denotes the outer unit normal from the domain, u0 is the prescribed

solution for t = 0, and f and g are the sources.

Alternating direction implicit/iterative (ADI) methods have proved valuable in

the approximation of the solutions of parabolic and elliptic di�erential equations in

two and three variables. The original method [6, 17, 27], when applied to the heat

equation of the form (1.1), is a perturbation of the Crank-Nicolson di�erence equation

�Department of Mathematics, Purdue University, W. Lafayette, IN 47097 USA Email:

douglas@math.purdue.edu
yDepartment of Mathematics, University of Kentucky, Lexington, KY 40506-0027 USA Email:

skim@ms.uky.edu

1

and is second-order correct both in space and time, in theory. Unfortunately, in

simulation, we often observe that the error introduced from the perturbation is much

larger than the truncation error brought forward from the numerical discretizations.

The object of this paper is to present a numerical strategy for ADI methods which

recovers the original accuracy of the Crank-Nicolson di�erence equation. When c is

independent of u or a predictor-corrector generalization is employed, the discretization

error becomes O(h2 + k
2), where h and k are respectively the spatial and temporal

grid sizes. The new ADI algorithm in each time step incorporates improved initial

values of the from

Eu
n = 2un � u

n�1;

the algorithm is called the ADI of improved initial (ADI-II). The perturbation error

for ADI-II is O(k3), while the original ADI method introduces the perturbation error

O(k2). It has been observed that ADI-II increases the computational cost only about

5-7% over the original ADI method and is accurate enough for moderately small k.

For large temporal grid sizes, i.e. k > h, we may adapt the algorithm to keep up

the original accuracy: ADI-II is followed by m iterations of Gauss-Seidel relaxation,

which is called ADI-II(m). For all cases we have tested, ADI-II(4) recovers the original

accuracy satisfactorily. Its L2-error hardly di�ers from that of a direct solver, mostly

less than 1%; its computation cost becomes only one fourth higher than the original

ADI method.

The ADI method was �rst suggested by Douglas and Peaceman [17], Douglas [6],

and Peaceman and Rachford [27] for solving the heat equation in 2D. The method

was extended for mildly nonlinear problems, [7], three space variables [10], and non-

symmetric problems [24, 29]. A general formulation for ADI methods for parabolic

and hyperbolic problems can be found in [16]. Pearcy [28] showed convergence of

ADI without requiring commutativity of operators, for the �rst time. Optimum ADI

parameters for the cycle length of the form 2m can be found in [33]. A collection

of interesting results were presented applying ADI to �nite element methods [12],

p-version �nite element methods [11], mixed �nite element methods [15], and collo-

cation methods [25, 31]. The ADI methods have been applied to various physical

problems [1, 3, 4, 5, 19, 20, 22, 23]. Parallelization of ADI methods has been tried in

[21, 26, 29]. See Varga [32, Ch.7] and Strikwerda [30, x7.3] for variants and systematic

descriptions for the ADI method.

An outline of the paper is as follows. In x2, we brie
y review the classical ADI

method, a perturbation of the Crank-Nicolson di�erence equation. In x3, the pertur-
bation error is numerically tested. It has been observed that the perturbation error

often becomes one order larger than the discretization error. In x4, we suggest a

strategy for getting rid of the perturbation error. Its e�ciency is numerically veri�ed

in x5. The resulting algorithm reduces the perturbation error less than 1% of the total

error; its computation cost increases only one fourth of the original ADI method.

2

2 Classical ADI method

In this section we review the classical ADI method applied to the heat equation of

the form (1.1). Let's start with linear reactions, i.e. c(t; x; y; u) = c(t; x; y) �u. De�ne

A1u = �(aux)x �
1

2
cu; A2u = �(auy)y �

1

2
cu:

Then, the equation (1.1a) can be rewritten as

ut +A1u+A2u = f: (2.1)

Let the time interval J = (0; T] be partitioned into f0 = t
0
< t

1
< � � � < t

nt = Tg,
where

t
n = n � k; n = 0; 1; � � � ; nt; k = T=nt: (2.2)

For partitions in the spatial directions, we choose nx+1 and ny+1 grid points equally

distributed in x and y directions, respectively, as follows:

xi = ax + i � hx; i = 0; 1; � � � ; nx; hx = (bx � ax)=nx;

yj = ay + j � hy; j = 0; 1; � � � ; ny; hy = (by � ay)=ny:
(2.3)

The temporal discretization employs the Crank-Nicolson scheme that is centering

the di�erence scheme about t = (n+ 1

2
)k. By the Taylor series, (2.1) becomes

u
n+1 � u

n

k
+
1

2
(A1u

n+1 +A1u
n) +

1

2
(A2u

n+1 +A2u
n) = f

n+1=2 +O(k2)

or �
I +

k

2
A1 +

k

2
A2

�
u
n+1 =

�
I � k

2
A1 �

k

2
A2

�
u
n + kf

n+1=2 +O(k3); (2.4)

where

f
n+1=2 =

1

2
(fn+1 + f

n):

Now, we replace the operators A1 and A2 in (2.4) respectively by their spatial approx-

imations A1h and A2h, central �nite di�erences on the partition (2.3). Then, (2.4)

becomes

(I +B1 +B2)u
n+1 = (I �B1 �B2)u

n + kf
n+1=2

: (2.5)

where

B1 =
k

2
A1h and B2 =

k

2
A2h:

Here the truncation error is O(kh2 + k
3): Note that this is a local error; after a time

integration over J , the global error becomes O(h2 + k
2):

The ADI method starts with adding B1B2u
n+1 to the both sides of (2.5). Then

it reads
(I +B1 +B2 +B1B2)u

n+1 = (I �B1 �B2 +B1B2)u
n

+B1B2(u
n+1 � u

n) + kf
n+1=2

;
(2.6)

3

which can be factored as

(I +B1)(I +B2)u
n+1 = (I �B1)(I �B2)u

n

+B1B2(u
n+1 � u

n) + kf
n+1=2

:
(2.7)

Consider the second term on the right side. We have

u
n+1 = u

n +O(k);

so with the k
2 factor this second term is O(k3), which is the same order as the

truncation error already introduced. Ignoring the term

Gh(u
n+1

; u
n) := B1B2(u

n+1 � u
n); (2.8)

we can rewrite (2.7) as

(I +B1)(I +B2)u
n+1 = (I �B1)(I �B2)u

n + kf
n+1=2

: (2.9)

To solve (2.9), Douglas, Peaceman, and Rachford [6, 17, 27] proposed

(a) (I +B1)eun+1=2 = (I �B2)u
n +

k

2
f
n+1=2

; (x-sweep)

(b) (I +B2)u
n+1 = (I �B1)eun+1=2 + k

2
f
n+1=2

: (y-sweep)

(2.10)

(The algorithm was presented in a slightly di�erent form in the beginning. It is

easy to see that the original algorithm is equivalent to (2.10); see [8].) Theoretical

aspects of the method were treated in detail in [6], while practical aspects of the

calculation are considered in the companion paper [27] in considerable detail. Through

this paper, algorithm (2.10) will be called the Douglas-Peaceman-Rachford (DPR)

method, if we need to specify it from other ADI methods later developed. Note that

for each sweep the matrix to be inverted is tridiagonal. The algorithm requires O(N)

ops (N := ntnxny, the number of grid points) for the whole computation. As in

Wachspress and Habetler [34], we can economize the algorithm by writing (2.10b) in

a form in which the matrix B1 does not appear explicitly. Substitute for B1eun+1=2
from (2.10a). Then, the algorithm can be rewritten as

(a) (I +B1)eun+1=2 = (I �B2)u
n +

k

2
f
n+1=2

; (x-sweep)

(b) (I +B2)u
n+1 = 2eun+1=2 � (I �B2)u

n
: (y-sweep)

(2.11)

Other ADI schemes can be derived starting with other basic schemes. Starting

with the backward-time central-space scheme for the problem (2.1), one can have

(I + kA1h + kA2h)u
n+1 = u

n + kf
n+1 +O(k2 + kh

2):

Adding k
2
A1hA2hu

n+1(:= 4B1B2u
n+1) to the both sides of the above equation, and

factoring its left side, we have

(I + 2B1)(I + 2B2)u
n+1 = u

n + 4B1B2u
n + kf

n+1

+4B1B2(u
n+1 � u

n) +O(k2 + kh
2):

4

Ignore the term

4B1B2(u
n+1 � u

n): (2.12)

Then, we can derive the Douglas-Rachford method [18]:

(a) (I + 2B1)eun+1=2 = (I � 2B2)u
n + kf

n+1
; (x-sweep)

(b) (I + 2B2)u
n+1 = eun+1=2 + 2B2u

n
: (y-sweep)

(2.13)

It is easy to see that algorithms (2.11) and (2.13) cost almost the same for the

same size of problems. It has been observed that algorithm (2.11) performs 2 to 7%

faster than (2.10) for most cases of various sources f and grid sizes. In this paper,

we are more interested in accuracy of ADI methods than in a slight improvement in

numerical performance; experiments will be focused on algorithm (2.10).

3 Numerical accuracy of ADI

ADI methods ignoring terms in (2.8) or (2.12) are often showing unsatisfactory per-

formances in terms of accuracy. More speci�cally speaking, the perturbation error

arising from the ignored terms can be much larger than the error originated from the

discretizations. In this section, we will numerically verify the above claim. Let's start

with choosing two di�erent solutions:

u+(t; x; y) = sin(2��tt) + sin(2��xx) + sin(2��yy);

u
�
(t; x; y) = sin(2��tt) � sin(2��xx) � sin(2��yy);

(3.1)

where �t, �x, and �y are respectively the frequencies of the solution in t, x, and y

directions. Set J �
 = (0; 1) � (0; 1)2, a � 1, and c = � � 0. For the solution

frequencies, choose �t = �x = �y = 1. The sources f and g are set to satisfy (1.1).

For discretizations, uniform meshes are selected; n := nt = nx = ny. To compare

the computation cost and accuracy, we implemented two algorithms: a PCG-ILU for

(2.5) and the ADI algorithm (2.10). The zero-level ILU is considered, that is, no �ll-in

is allowed for ILU. For the PCG-ILU, the initial point is set to be the extrapolation

u
n+1;0 = 2un � u

n�1
:

The main/driver routines are written in C++ and C, and the core routines in F77.

Every computation is carried out on a Gateway Solo, a 266 MHz laptop having 128M

memory and a Linux operating system.

Table 1 presents the elapsed times and numerical errors for u+ for various grid

sizes. One can see from the table that the two di�erent algorithms show the same

errors and their second-order convergence. The elapsed time (CPU) is measured in

second and the error in L
2-norm is evaluated at t = 1. Average 7-9 iterations were

performed for PCG-ILU to converge up to the relative L2 tolerance 10�5. The error in

PCG-ILU seems to come from discretizations; the same error level has been observed

when the problem in each time step is solved by LU -factorization.

5

n = 40 n = 80 n = 160

CPU L
2-error CPU L

2-error CPU L
2-error

PCG-ILU 0.9 4.11e-3 9.0 1.00e-3 91.7 2.48e-4

ADI 0.5 4.10e-3 4.0 1.00e-3 33.3 2.47e-4

Table 1: The performances of PCG-ILU and ADI for u = u+. For the computation,

a � 1, c = � � 0, and �t = �x = �y = 1. Meshes are set to be uniform: n := nt =

nx = ny.

n = 40 n = 80 n = 160

CPU L
2-error CPU L

2-error CPU L
2-error

PCG-ILU 1.5 2.46e-4 18.7 5.97e-5 207.5 1.42e-5

ADI 0.8 8.44e-3 6.7 2.02e-3 54.4 4.90e-4

Table 2: The performances of PCG-ILU and ADI for u = u
�
. The problem coe�cients

and algorithm parameters are chosen the same as in Table 1.

In Table 2, we present the results for u = u
�
. The problem coe�cients and

algorithm parameters are chosen the same as in Table 1. The computation cost for

ADI increases linearly as the number of grid points grows, while PCG-ILU shows a

slight super-linearity in its computation cost, as one can expect. For marching a time

step, average 12 to 22 iterations were required for PCG-ILU to converge, with the

iteration counts becoming larger for more grid points. (Note that the solutions change

non-trivially at every grid point in each time level.) In the table, both algorithms

show the second-order accuracy. However, ADI produces approximately 34 times

larger error than PCG-ILU for the same grid size. This implies that ADI requires

approximately 5.75 times more grid points in each direction to keep up the same level

of accuracy as PCG-ILU, which would result in an algebraic system about 190 times

larger. Take a look at the errors for n = 40 in PCG-ILU and n = 160 in ADI. The

number of grid points for ADI is 64 times larger than that for PCG-ILU, but the error

is still twice larger. In summary, ADI can produce a huge amount of perturbation

error that eventually makes the algorithm much more expensive.

One can easily see from the above tables that the larger errors result from the

ignorance of the term Gh(u
n+1

; u
n) in (2.8). It is obvious that Gh applied to u+ is

near zero, which explains the same level of accuracy for ADI and PCG-ILU in Table 1.

For u
�
in Table 2, the dominant error source for the ADI method is the ignorance of

Gh. In the next section, we will consider a recipe for ADI methods to get rid of the

perturbation error (without introducing extra grid points).

6

4 ADI as predictor and corrector

This section presents strategies to get rid of the perturbation error in ADI methods

and recover the accuracy of the Crank-Nicolson equation, for a small fraction of the

computation cost. As most iterative algorithms can be explained as a matrix splitting

[32], we �rst consider the following splitting: I �B1 �B2 = P
�
�Q; where

P
�
= I �B1 �B2 +B1B2 = (I �B1)(I �B2); Q = B1B2:

Then, it is clear that the solution of (2.10) at the n-th time step, un+1, is the �rst

iterate of the following algorithm: Find un+1;m+1, m = 0; 1; � � �, by recursively solving

P+u
n+1;m+1 = Qu

n+1;m + (I �B1 �B2)u
n + kf

n+1=2

= Q(un+1;m � u
n) + P

�
u
n + kf

n+1=2
;

(4.1)

starting with the initial value

u
n+1;0 = u

n
: (4.2)

(Here we have omitted the description of the intermediate steps.) Now, let us utilize

the initial guess of the form

u
n+1;0 = 2un � u

n�1
; n � 1: (4.3)

and perform just one iteration. Then, the resulting algorithm can be formulated as

follows, called an ADI of improved initial (ADI-II):

P+u
n+1 = P

�
u
n +Q(un � u

n�1) + kf
n+1=2

; n � 1: (4.4)

Compared with (2.7), algorithm (4.4) in each time step would introduce the pertur-

bation error

Q(un+1 � 2un + u
n�1): (4.5)

It is easy to see that the above term is O(k4) and therefore it is on one order higher

in k than the discretization error!

We see from (4.3) that information is required at two preceding time levels for

(4.4) to advance in time. Thus a staring procedure is needed to de�ne u1 which will

retain the overall accuracy of the method.

Let v1 be the solution of (2.10) for n = 0:

P+v
1 = P

�
u
0 + kf

1=2
: (4.6)

Then, it is easy to see that the error correction can be achieved by solving

P+�v = Q(�v + v
1 � u

0) (4.7)

or

(I +B1 +B2)�v = Q(v1 � u
0); (4.8)

7

and updating

u
1 = v

1 + �v:

To solve (4.7), we may employ (with the initial guess e0 = 0)

P+e
`+1 = Q(e` + v

1 � u
0); (4.9)

or (with the initial guess p0 = v
1 � u

0)

P+p
`+1 = Qp

`
: (4.10)

Theorem: Algorithms (4:9) and (4:10) are convergent and

e
` =

`X
j=1

p
j ! �v; as `!1: (4.11)

Proof. Recall that B1 and B2 are symmetric and positive semi-de�nite. (Symmetry

of B1 and B2 can be obtained from a discretization technique that mimics the bilinear

�nite element method incorporating the Trapezoid quadrature rule.) De�ne

R := (I +B2)
�1(I +B1)

�1
B1B2 (4.12)

and �(R) be the the spectral radius of matrix R. Then,

�(R) = �

�
(I +B1)

�1
B1B2(I +B2)

�1
�

�

(I +B1)

�1
B1

 �

B2(I +B2)
�1

= max
i

�i

1 + �i

�max
j

�j

1 + �j

< 1;

(4.13)

where k � k is the induced matrix L
2 norm and �i and �j are respectively the non-

negative eigenvalues of B1 and B2. We have proved the convergence. The equality in

(4.11) holds clearly.

We summarize the starting procedure: For a prescribed accuracy level " and

reduction level
, solve the following

(a) P+v
1 = P

�
u
0 + kf

1=2;

(b) Set u1 = v
1; p

0 = v
1 � u

0;

For ` = 0; 1; 2; � � �
P+p

`+1 = Qp
`;

u
1 u

1 + p
`+1;

If kp`+1k < max(";
kp0k); go to the next time step;

End

(4.14)

Remark. One can solve (4.8) for �v using e.g. PCG-ILU with the zero initial guess,

which is equivalent to solve (2.5) by PCG-ILU with the initial guess v1, where v1 is

8

the solution of (2.10) for n = 0. It has been observed that the resulting algorithm

performs about 10-20% faster in computation time than PCG-ILU applied to (2.5).

Remark. We can employ the algorithm (4.14) for all time levels. It is easy to see

from (4.12) and (4.13) that algorithm (4.10) reduces low-frequency components of the

iterates p` (the error) more rapidly, while most standard iterative algorithms decrease

high-frequency components of the error more e�ciently. This observation suggests

that (4.14b) can be combined with a few smoothing iterations of e.g. the Gauss-

Seidel (GS) method, to improve the performance of the algorithm. For numerical

comparisons, it is implemented and called ADG(";
; m), where m is the number of

GS iterations.

Remark. The truncation error in (4.5) is one order higher in k than the discretiza-

tion error, as mentioned earlier. However, the operator Q includes approximations

of second-order spatial derivatives. So, the truncation error can be large for the so-

lutions of large curvatures, i.e. for oscillatory solutions. As the same reason as in

the last remark, ADI-II can be followed by m GS iteration. We call the resulting

algorithm ADI-II(m).

5 Numerical experiments

Choose the domain
 = (0; 1)2 and the time interval J = (0; 1]. The di�usion

coe�cients are selected as

a1(x; y) = 1;

a2(x; y) = 1=(2 + cos(3�x) � cos(2�y));

a3(x; y) =

(
1 + 0:5 � sin(5�x) + y

3
; if x � 0:5;

1:5=(1 + (x� 0:5)2) + y
3
; else;

a4(x; y) =

"
a2(x; y) 0

0 a3(x; y)

#
:

(5.1)

For the correction step of (4.14), we choose " = 10�5,
 = 0:1, and four GS iterations

follow (m = 4). The �rst time step of (4.4) is performed by utilizing (4.14). Also we

try to solve all time steps by using (4.14); the resulting algorithm is called ADG(1e-

5,0.1;4). For comparisons, we implement six di�erent algorithms to solve the problem

in each time level: LU, PCG-ILU, ADI(DPR), ADG(";
;m), ADI-II, and ADI-II(m).

Table 3 presents the performances of the algorithms for various di�usion coe�-

cients. The ADI method deteriorates the solution, whose error is often about a digit

larger than the original truncation error. ADG(1e-5,0.1;4) performs average 3-4.5

ADI correction iterations for a time step; it seems eliminating more than 95% of the

perturbation error, for the extra cost of about 60-80% of the standard ADI. ADI-II

requires only about 5-7% extra cost over the ADI method; it shows the accuracy less

than 1% di�erent from that of the direct solver. ADI-II is superior to ADG(1e-5,0.1;4)

in accuracy and computation time.

9

a = a1 a = a2 a = a3

CPU L
2-error CPU L

2-error CPU L
2-error

LU 44.6 1.10e-3 52.7 3.53e-3 45.6 5.35e-3

PCG-ILU 35.1 1.10e-3 40.2 3.52e-3 40.6 5.36e-3

ADI 13.4 1.70e-2 20.0 1.02e-2 14.5 2.67e-2

ADG(1e-5,0.1;4) 25.3 1.13e-3 29.7 3.55e-3 26.6 5.37e-3

ADI-II 14.2 1.10e-3 20.9 3.54e-3 15.5 5.35e-3

Table 3: The performances of LU, PCG-ILU, ADI(DPR), ADG(1e-5,0.1;4), and ADI-

II. For the computation, c = � � 0, �t = 1, �x = 4, �y = 3, n = 100, and u = u
�
.

k = 2h k = h k = h=2

CPU L
2-error CPU L

2-error CPU L
2-error

PCG-ILU 44.8 2.14e-3 67.1 2.15e-3 109.6 2.14e-3

ADI 15.1 2.01e-1 29.8 6.76e-2 58.5 1.75e-2

ADI-II 16.0 1.10e-2 31.1 2.16e-3 61.5 2.13e-3

ADI-II(4) 19.8 2.13e-3 38.5 2.12e-3 75.9 2.13e-3

Table 4: The performances of PCG-ILU, ADI(DPR), ADI-II, and ADI-II(4). Set

a = a4, c = � � 0, �t = 2:0, �x = 6:25, �y = 7, h = hx = hy = 1=120, and u = u
�
.

Table 4 shows numerical results for various time steps k. Choose a = a4 (an

anisotropic di�usivity), c = � � 0, �t = 2:0, �x = 6:25, and �y = 7. The discretization

selects h = hx = hy = 1=120. It is clear from the table that ADI-II is su�ering

accuracy for large time steps k. It is expected! To improve its performance, we

introduce ADI-II(m) that is ADI-II followed by m GS iterations. ADI-II(4) performs

quite satisfactorily in accuracy for various time steps; it takes only one fourth extra

computation time over the original ADI method, DPR.

For Table 5, the solution is selected as

u(t; x; y) = e
�t � sin(2��xx) � sin(2��yy); �x = �y = 3:

The nonlinear reaction is given as

c(t; u) = �u2eu=
p
0:1 + t2 + 2u2

and treated with either the fourth-order Runge-Kutta scheme (RK4),

C(Un

RK4
) =

1

6

�
Cn
1
+ 2Cn

2
+ 2Cn

3
+ Cn

4

�
;

where
Cn
1

= c(tn; un);

Cn2 = c(tn+1=2; un + kCn1 =2);
Cn3 = c(tn+1=2; un + kCn2 =2);
Cn4 = c(tn+1; un + kCn3);

10

Linear (c � 0) C(Un

RK4
) C(EUn)

CPU L
2-error CPU L

2-error CPU L
2-error

LU 20.9 4.06e-3 25.2 1.94e-2 22.6 3.96e-3

PCG-ILU 16.1 4.07e-3 19.6 1.96e-2 16.9 3.97e-3

ADI-II(4) 12.3 4.06e-3 15.9 1.94e-2 13.6 3.96e-3

Table 5: The performances of LU, PCG-ILU, and ADI-II(4) for nonlinear problem.

Set a = a4, � � 0, and nt = nx = ny = 120. The nonlinear reaction is given as

c(t; u) = �u2eu=(0:1 + t
2 + 2u2)1=2.

or the extrapolation

C(EUn) =

8><>:
C(Un

RK4); n = 0;

c

�
t
n+1=2

;
3

2
u
n � 1

2
u
n�1

�
; n � 1:

The linear case (c � 0) is reported to see the performance of algorithms for expo-

nentially decreasing solutions and to compare the e�ects of incomplete iterations for

the nonlinear term. In the table the nonlinear solver with the extrapolation shows a

slightly less error than the linear case, which is not common. We have found from

various numerical experiments that the extrapolation for nonlinear reaction is accu-

rate enough for most cases, in particular, when k � h. See e.g. [2, 9, 13, 14] for

analyses of incomplete iterations. ADI-II(4) performs satisfactorily for all cases. It

should be noticed that ADI-II(4) shows the same accuracy as the direct solver LU.

References

[1] S. Abarbanel, D. Dwoyer, and D. Gottlieb, Improving the convergence

rate to steady state of parabolic ADI methods, J. Comput. Phys., 67 (1986),

pp. 236{239.

[2] J. Bramble, J. Pasciak, P. Sammon, and V. Thom�ee, Multistep back-

ward di�erence methods for parabolic problems with smooth and nonsmooth data,

Math. Comp., 52 (1989), pp. 339{367.

[3] R. Chin, T. Manteuffel, and J. De Pillis,ADI as preconditioning for solv-

ing the convection-di�usion equation, SIAM J. Sci. Statist. Comput., 5 (1984),

pp. 291{299.

[4] C. Chiu and N. Walkington, An ADI method for hysteretic reaction-

di�usion systems, SIAM J. Numer. Anal., 34 (1997), pp. 1185{1206.

[5] H. De Vries, A comparative study of ADI splitting methods for parabolic equa-

tions in two space dimensions, J. Comput. Appl. Math., 10 (1984), pp. 179{193.

11

[6] J. Douglas, Jr., On the numerical itegration of @
2
u

@x2
+ @

2
u

@y2
= @u

@t
by implicit

methods, J. Soc. Indust. Appl. Math., 3 (1955), pp. 42{65.

[7] , Alternating direction iteration for mildly nonlinear elliptic di�erential equa-

tions, Numer. Math., 3 (1961), pp. 92{98.

[8] , Alternating direction methods for three space variables, Numer. Math., 4

(1961), pp. 41{63.

[9] , On incomplete iteration for implicit parabolic di�erence equations, J. Soc.

Indust. Appl. Math., 9 (1961), pp. 433{439.

[10] , Alternating direction methods for three space variables, Numer. Math., 4

(1962), pp. 41{63.

[11] , Alternating-direction iteration for the p-version of the �nite element

method, in Partial Di�erential Equations and Applications, vol. 177 of Lecture

Notes in Pure and Appl. Math., Dekker, New York, 1996, pp. 121{135.

[12] J. Douglas Jr. and T. Dupont, Alternating direction Galerkin methods on

rectangles, in Numerical Solution of Partial Di�erential Equations-II, B. Hub-

bard, ed., Academic Press, New York, 1971, pp. 133{214.

[13] J. Douglas Jr., T. Dupont, and R. Ewing, Incomplete iteration for time-

stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer.

Anal., 16 (1979), pp. 503{522.

[14] J. Douglas, Jr., T. Dupont, and P. Percell, A time-stepping method for

Galerkin approximations for nonlinear parabolic equations, in Numerical Anal-

ysis, Dundee 1977, vol. 630 of Lecture Notes in Mathematics, Springer-Verlag,

Berlin, 1978.

[15] J. Douglas, Jr., R. Dur�an, and P. Pietra, Alternating-direction iteration

for mixed �nite element methods, in Numerical Approximation of Partial Di�er-

ential Equations, E. Ortiz, ed., North-Holland, Ansterdam, 1987, pp. 21{30.

[16] J. Douglas, Jr. and J. Gunn, A general formulation of alternating direction

methods Part I. Parabolic and hyperbolic problems, Numer. Math., 6 (1964),

pp. 428{453.

[17] J. Douglas, Jr. and D. Peaceman, Numerical solution of two-dimensional

heat
ow problems, American Institute of Chemical Engineering Journal, 1

(1955), pp. 505{512.

[18] J. Douglas, Jr. and H. Rachford, On the numerical solution of heat con-

duction problems in two and three space variables, Transaction of the American

Mathematical Society, 82 (1960), pp. 421{439.

12

[19] D. Evans and G. Avelas, The solution of elliptic partial di�erential equations

in R{� geometry by extrapolated A.D.I. methods, Math. Comput. Simulation, 23

(1981), pp. 367{372.

[20] A. Jarzebsky and J. Thullie, A stable highly accurate ADI method for hy-

perbolic heat conduction equation, J. Comput. Phys., 63 (1986), pp. 236{239.

[21] S. Johnson, Y. Saad, and M. Schultz, Alternating direction methods on

multiprocessors, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 686{700.

[22] S. Kim, A parallelizable iterative procedure for the Helmholtz problem, Appl.

Numer. Math., 14 (1994), pp. 435{449.

[23] , Domain decomposition iterative procedures for solving scalar waves in the

frequency domain, Numer. Math., 79 (1998), pp. 231{259.

[24] D. Kwak, A norm estimate for the ADI method for nonsymmetric problems,

Linear Algebra and Its Applications, 266 (1997), pp. 127{141.

[25] B. Li, G. Fairweather, and B. Bialecki, Discrete-time orthogonal spline

collocation methods for Schr�odinger equations in two space variables, SIAM J.

Numer. Anal., 35 (1998), pp. 453{477.

[26] S. Malhotra, C. Douglas, and M. Schultz, Parameter choices for ADI-

like methods on parallel computers, Comp. Appl. Math., 17 (1998), pp. 221{236.

[27] D. Peaceman and H. Rachford, The numedrical solution of parabolic and

elliptic equations, J. Soc. Indust. Appl. Math., 3 (1955), pp. 28{41.

[28] C. Pearcy, On convergence of alternating direction procedures, Numer. Math.,

4 (1962), pp. 172{176.

[29] G. Starke, Alternating direction preconditioning for nonsymmetric systems of

linear equations, SIAM J. Sci. Comput., 15 (1994), pp. 369{384.

[30] J. C. Strikwerda, Finite Di�erence Schemes and Partial Di�erential Equa-

tions, Wadsworth & Brooks/Cole, Paci�c Grove, California, 1989.

[31] P. Tsompanopoulou and E. Vavalis, ADI methods for cubic spline colloca-

tion discretizations of elliptic PDEs, SIAM J. Sci. Comput., 19 (1998), pp. 341{

363.

[32] R. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, 1962.

[33] E. Wachspress, Optimum alternating-direction-implicit iteration parameters

for a model problem, J. Soc. Indust. Appl. Math., 10 (1962), pp. 339{350.

[34] E. Wachspress and G. Habetler, An alternating-direction-implicit iteration

technique, J. Soc. Indust. Appl. Math., 8 (1960), pp. 403{424.

13

