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¢ Martin-Luther-Universitat Halle-Wittenberg, FB Mathematik und Informatik,
Institut fiir Numerische Mathematik, D-06099 Halle/Saale, Germany
b Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Sciences
90 Nguyen Trai, Dong Da, Hanoi, Vietnam

ABSTRACT. Splitting methods are recognized as useful tools in the numerical solution of initial bound-
ary value problems of multi(space)-dimensional partial differential equations. Following the method
of lines we introduce a new class of linearly implicit splitting methods for the numerical solution of the
systems of ordinary differential equations arising from the semidiscretization in space of a parabolic
differential equation. In the usual splitting formulas the nonlinear equation systems are solved by
Jacobian-based iteration methods. In general, the Jacobian matrices used have a simple structure
(often tridiagonal). The linearly implicit splitting formulas directly involve approximations to the
Jacobian matrices in the scheme so that only linear equation systems with simple coefficient matrices
have to be solved. Furthermore, these formulas are consistent of order two and have good stability

properties.

1. INTRODUCTION

We consider parabolic differential equations of higher space dimension of the form

ou 0%u
ZG (t Tlgeee s Lp, U ,%,@), (11)

k3

with ¢ € [to,t.] and = = (21,...,2,) € @ C R". For simplicity, let Q be a rectangular, bounded
region, whose boundaries are parallel to the coordinate axes. We suppose that the coupling of the
space derivatives in the operators (G; is linear. Furthermore, the initial and homogeneous Dirichlet
boundary conditions are given by

u(to, 1,...,2,) = uo(21,...,2,) Ve =(z1,...,2,) € Q, (1.2)
ot x1,...,2,) =0 Vte€lg,te], Ve = (z1,...,2,) € 0. (1.3)

For the numerical solution of (1.1)-(1.3), we apply the method of lines (MOL), that is by discretizing
the space derivatives via standard second-order finite differences, we get an initial value problem for
a system of ordinary differential equations (ODEs)

w' = f(t,w) ZfZ (t,w), w(tg) =wo € R™, t € [to, 1], (1.4)

where f; corresponds to the semidiscretized operator G; (¢ = 1(1)r) and where m is equal to the
number of interior grid points. The function f(¢,w) is said to fulfill a linear splitting relation and
the components f;(t,w) are called splitting functions.

1991 Mathematics Subject Classification. 65M06, 65M12, 65M20.
Key words and phrases. numerical analysis, initial boundary value problems, splitting methods, linearly implicit
methods, method of lines.
!This work was supported by a three-month DAAD research grant.
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2 LINEARLY IMPLICIT SPLITTING METHODS

Since, in general, the system (1.4) is stiff, an implicit method should be used, and since it is large
for a small spatial meshsize, there would be high computation costs using fully implicit ODE solvers.

A splitting method consists of two components: a splitting function like fin (1.4) and a splitting
formula to be discussed later. We consider operator splitting methods based on the splitting functions
fi as described above (other types of splitting methods can be found in e.g. [7],[8],[15]). Splitting
functions arising from the semidiscretization mentioned above have tridiagonal Jacobian matrices
df

ow?
the computational costs.

In the following section, we give examples of well-known linear splitting formulas and their stability
properties. In the third section, we introduce a new class of linearly implicit splitting methods and
investigate its consistency and stability properties. In the last section, we give results of our numerical
experiments.

i = 1(1)r. Splitting formulas for solving (1.4) use this special property and decrease therefore

2. SPLITTING FORMULAS

In [8] autonomous problems (1.1) have been considered and a general class of linear splitting
formulas has been given by which many known splitting methods can be generated. For the numerical
integration of the nonautonomous ODE (1.4) its analogue is given by the s-stage linear one-step
splitting formula

-
- j r
7-7'2]4)_1 =V + Tn ZZAJM fz(tn + ClTnalerL:).l)a Jj= 1(1)57 (21)

=0 =1

(s)

Unt+1 = Upqq
where v, is the numerical solution at the time point ¢ = ¢,, and 7, = t,,41 — ¢, is the stepsize in time.
Special splitting formulas are obtained by specifying the parameters A;;;, ¢; € R. Depending on these

parameters, we have different consistency and stability results. (Each stage should be implicit with
respect to only one of the splitting functions, i.e. if A;;x # 0 for one k € {1,..,7} then A;;; = 0 for

i k)

2.1. Examples of linear splitting formulas. In the following, we give three examples of linear
splitting formulas. The first example is the well-known alternating direction implicit method (ADI)
of Peaceman and Rachford (see [8], [11], [14]). This formula can be applied to problems with r = 2
and is given by

vibl_gl = Up + %Tn (fl(tn + 77”77)21_21) + f2(tn7vn)) ,

(2.2)
Up41 = '021_21 + %Tn (fl(tn + %l, '021_21) + fQ(tn—}—la vn+1)) .
A second example is the locally one-dimensional method of Yanenko (see [17])
175321 = Un;
L) G-1) 1— (1 , =1 (¢ o o(9) C—1(1 2.3
Upt1 = Vptp1 T 7n ( ) fi(tn + ¢j-1Tn, vy ) + afi(tn + €Tn, Un-|-1) )y J (1), (2.3)

(r)

Unt+1 = Upqqs
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which can be applied to (1.4) with arbitrary » > 2, » € N. Our third example is the 2r-stage
trapezoidal splitting method, recently introduced by Hundsdorfer (see [10]):

TRAPSP: o0 = o,
i i—1 i-1 .
'Ur(Lll = ‘U£L+1) + %Tn fi(tnv'l’q(zﬂ))a i=1(1)r, (2.4)
‘U,SL:—_i—l]) = '027:}—_1—1]_1) + %Tn fr—j+1 (tn+17v£:+—+_1]))7 .7 = 1(1)T7

(27)

Unt+1 = Upq1

which can also be applied for arbitrary r.

The ADI method (2.2) and the trapezoidal splitting method (2.4) have classical consistency order
two. The LOD method (2.3) is only of order one. All methods have fully implicit stages, which have
to be solved by iteration methods.

2.2. Stability investigations. In analogy with the stability investigation for ODEs (see [1], [2],
[6]), we analyze systems of the form (1.4), where f belongs to certain classes of linear functions
defined below. The reason is that the splitting formulas considered are applied to semidiscretized
PDEs. The linear ODE systems are assumed to be of the form

w'(t) = f(t,w) = Aw(t) = > Ajw(t), weR™, A € R™". (2.5)
=1

(Again each A; corresponds to the discretized derivatives of one space direction.) Applying a linear
splitting formula (2.1) to the test problem (2.5), we obtain with 7 = 7,, the relation

Vi1 = R(TA1,...,TA ) v, . (2.6)

Here, the matrix-valued function R is called the amplification matriz and the corresponding rational
function the stability function of the splitting formula. It is defined by the formal relations

R(O)(T Ay, ..., TA) =1, I € R™*™ the unit matrix, Jj=1(1)s

=1 r
RO(T Ay, .. 7 A) = (I — A0 Ap) " (I—I— YN A A RO (7 Ay, ,TAT)> ,

=0 =1
R(rAy,...,TA) = RE(T Ay,...,TA).

In general, the system (2.5) is large and stiff because of the usually small spatial meshsize. Fur-
thermore, for the matrices A; we assume p[A;] < 0 (¢ = 1(1)r). The logarithmic matrix norm pl.]
and the vector norm ||.|| are defined corresponding to a given inner product. Therefore, we have for
the exact solution of (2.5):

[w(t + 7l < [[w(®)] vr>0, (2.7)
Iim  w(t4+7)=0 Vi=1(1)r. (2.8)

Tu[A;]——o0

Ideally, the numerical solution of (2.5) should behave like the exact solution. The analogue of
property (2.7) reads ||v,41|| < ||v,||. Therefore, we shall require

|R(TAy,...,TA)| <1 vVr>0, (2.9)
where the matrix norm is subordinate to the vector norm used in (2.7). Secondly, the analogue of
(2.8) requires the stability function R(z1,...,z,) to satisfy

[Ali]m |R(T Ay,...,TA)|[|=0 Vi=1(1)r. (2.10)
TulA;]——00

The relations (2.9) and (2.10) describe stability properties of a splitting formula.
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We now introduce two classes of linear functions:

A {f s flt,w) = i:fz(t,w) = XT:AZ- w, weR™ A; e R™*™ and p[4;] < 0} ,
=1

=1

A :

{f s f(t,w) = Zfz(t,w) = ZAZ- w, plA;] <0, A; mutually commuting } c .
=1 =1

Definition 2.1. A splitting formula applied to the class 2 and e is called A-stable and A -stable,
respectively, if its amplification matrix R fulfills (2.9).

Definition 2.2. A splitting formula applied to the class 2 and ¢ is called L-stable and L¢-stable
if it is A-stable and Ag-stable, respectively, and its amplification matrix R fulfills (2.10).

Furthermore, we will use for our investigations a lemma which is based on a result of von Neumann
[13] and can also be found in [5].

Lemma 2.1. Let ||.|| be defined by an inner product and let A € R™ ™ be a given matriz with
pu[A] < wv. Let R(z) be a rational function which is analytic in S(v) := {z € C: Re(z) < v}.Then
R(A) exists, and in the corresponding matriz norm holds

IR(A)] < R(v),
where R(v) = sup{ |R(z)| : z€ S(v) }.
For our investigations we make the following assumption:

Assumption 1. The amplification matrix R(r A1,...,7 A,) can be factorized in terms R, (7 A;)
which only depend on one of the matrix arguments, i.e.

R(rAn,...,tA) =[] I R A (2.11)
kEode{l,..,r}

Remark 2.1. Stability results for mutually commuting operators for more general amplification
matrices, which do not have to fulfill Assumption 1, are presented in [12].

Under Assumption 1, we can estimate by using Lemma 2.1 the norm of the amplification matrix

(2.11) of a linear splitting formula. Applying a linear splitting formula to the class Ac, we get with

IR(r Ar,os A < TT IR (T A0 < [ sup{lR(2)] ¢ Re(z) < 0}.
=1 =1

We have easily proved Ac-stability if |Riy(2)] < 1Vz € C7, Vi =1(1)r (see also Remark 2.1). We

now consider the class 2. If the matrices A; do not commute we can estimate

IR(rAyoor A < TT IT NRao(m A0l < TT II supdlRga(2)l = Re(z) <0}

k ie{1,..,r} k ie{1,..,r}

Hence, we can in general only prove A-stability if each of the | R(riy(2)] is bounded by 1 for all z € C~.
For example, the amplification matrix of the ADI method (2.2) is given by

R(TAl,TAQ) = (I— %Ag)_l (I—|— %Al) (I— %Al)_l (I—|— %Ag) .

::R(12)(TA2) ::R(H)(TAl) ::R(Ql)(TAl) ::R(22)(TA2)
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Although R(.) fulfills Assumption 1, the factors [R(11)(2)| and [R(29)(2)| are not bounded. However,

if we apply the formula to the class 2¢, then we can commute terms and obtain

R(TAl,TAQ) = (I — %Ag)_l(l+ %Ag) (I— %Al)_l(I—F %Al) .

=:Rgy(7 A2) =:R(1y(7 A1)

Since [R(1)(2)],|R2y(2)] < 1 V2 € C” and |R)(—00)| = |[Ry)(—o0)| = 1, the formula (2.2) is

Ac-stable. Analyzing analogously the other examples we obtain for the LOD method (2.3) the
amplification matrix

R(rAy,...,mA) = [J(T = rad) (T + 7(1 - a)4;) .

i=r

The norm of this matrix can easily be estimated and we have A-stability for o € [%, oo) and L-stability

for @ = 1. Finally, the trapezoidal splitting method (2.4) is Ac-stable because its amplification matrix
reads

which can be written as
R(T Avy.om A) = T = 5407 + 34

whenever the A; commute. Summarizing, there exist splitting formulas for solving (1.4) arising from
a semidiscretization of a PDE which are either of consistency order one and L-stable or of consistency

order two but only Ac-stable.

3. LINEARLY IMPLICIT SPLITTING FORMULAS

The aim of our paper is to find splitting formulas which are second-order consistent, L-stable and
where only linear equations have to be solved. Examples of integration methods for ODEs where only
linear equation systems have to be solved are the so-called linearly implicit Runge-Kutta methods,
e.g. Rosenbrock-type methods or adaptive Runge-Kutta methods (see [16]). These methods have
good stability properties and are easy to implement. They directly involve an approximation to the
Jacobian matrix in the scheme, but they do not exploit the special splitting relation of the right
hand side function in the equation (1.4).

We will now introduce a class of linearly implicit splitting formulas, whose structure is similar to
the adaptive Runge-Kutta methods.
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Definition 3.1. A locally one-dimensional, linearly implicit splitting formula (LISM) for solving
(1.4) is given by the following scheme

(0)

vn—l—l = Un
s—1

'vff_l)_l = Rés)(asrTs) ‘UT(L‘;I) + TRgs)(asrTs)ststj , s=1(1)r, (3.1)
7=0

i i i i 51

’U,ELS_I)_I = Rés)(agTTQT_g+1) ‘Ur(bs_l__ll)—}-’l' Rgs)(agTT27»+1_§) Z b§j](2r—§+1,j 5 s = T—|—1(1)27‘,
7=0

Unt1 = Uﬁf%

with K = filtn+eyr, 'vffll) -T; 'vffll , i=1(1)r, 7=0(1)2r—1.

In principle, the matrices T (s = 1(1)r) are arbitrary. However, for reasons of stability, they

are supposed to be approximations to the Jacobian matrices % The scalars a,,cs and b;; are

(%) (*)

parameters of the method. The matrix-valued functions Ry ’(.), B} ’(.) are supposed to correspond

(*)

to rational functions Ry ’(2), z € C, where

and Rg*)(z) approximates the exponential function e* (for z — 0) with at least first order of accuracy.
Furthermore, we assume, at least for the last r stages, that

Rgg)(z) is analytic for Re(z) < 0 and |Ré§)(—oo)| < 00, §=r4+1(1)2r. (3.2)
Therefore, the last r stages are linearly implicit.
3.1. Stability investigations. Applying the LISM (3.1) to the class 2 and choosing T, = A,

(s = 1(1)r), we obtain the amplification matrix

r+1 1
R(r A, 7 A) = [ BY (a5mAg—sin) [T RS (as7 A,). (3.3)

s=2r s=r

This matrix fulfills Assumption 1 and by the choice of the functions R(()S) we can directly influence
the stability of the LISM. Choosing, for example,

R(2) = —.  Vs=1(1)2n,
we have L-stability, because
IR (2) <1, Vz€C, Re(2)<0, and RY(-o0)=0. (3.4)

(Functions which satisfy (3.4) are called L-acceptable.) However, the following analysis will show
that we cannot achieve consistency order two for this choice. Fortunately, it can be shown that
there are possibilities for the choice of the matrix functions such that we do obtain L-stability and
consistency order two.
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3.2. Consistency order. In this subsection, we will give order conditions for the classical con-

sistency in time of the LISM (3.1).

Following the usual approach (see [3]), we compare the exact

solution w(t,+1) with the numerical solution #,41 after one single step starting with the exact solu-
tion w(t,), i.e. v, = w(t,). Using the Taylor expansions of the numerical solution and of the exact

solution at the time point ¢,, and requiring consistency order two, i.e.

’LNJn_|_1 —w(tn+1) = O(T

3)7

we obtain order conditions for determining the parameters of the method (3.1).

(s)

We assume that the rational functions Ry ’(z) are approximations to e* of at least order one, i.e.

Rés)(z) =1+ z+d, 2>+ O,

where d; is a parameter to be specified later. FFurthermore, we distinguish two cases for choosing the
matrices 1%, viz. T = % + O(7) and T} arbitrary.

1. In the case T =

following order conditions for order two

1=uas+ A2y —s541

2r—s

% - stj C; + Z b2r s+1,5 €5

N — N —

— 2 2
- ds Qg + d27’—s—|—1 a27=_5+1 + as A2r—s541

Simplifying these equations we have

(differential  fy),

differential %> ,

differential

(
(differential 9fs f5> ,
(

s—1
1
5 = s = stj , s =1(1)2r,
1=0
1 s—1 2r—s
1= d‘s + d27’—s+17 5 = (bS] + b27’ s+1,5 C] + Z b27’ s+1,5 €5 5 s = 1(1)
7=0 j=s
2. In the case of arbitrary matrices Ts, we obtain, again with a; = 25 ! o bsj, for s =
i € {1,..,7} the conditions
1=as+ agr—s41 (differential  fs),
1 2r—s
2 = stj c; + Z bar_st1,; C; (differential %) ,
1 2r—s
1< 8 3= stj + Z bar—st1,; (differential %fl) ,
1 2r—s
3= as Z bor_st1,; (differential %ﬁ) ,
j=s
2r—s 2r—s
1> 8 — =g Z bar—st1,; + (1 —as) Z bar—st1,; (differential %fl) ,
7=t 7=2r—14+1

% + O(7) we obtain, under the assumption a, = E;;é bs;, for s = 1(1)r the

1(1)r,
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=a, , 1 = ds+dop_st1 (differential T fi, i # s),

=d,a®+d, 4 a$+1 + a, aryq (differential T, f,).

N — N —

Frample 3.1. Let T be arbitrary and let r = 3, a3 = a4 = % Then the order conditions for arbitrary

T, simplify to: a1 = a9 = a3 = a4 = a5 = ag = %,

s bso bs1 bs2 bs3 bsa bss
1 ;

2 % + bs1 —bs1

3 % + ba1 + ba —bgy1 —bg

4 —(% + bar + baz)  bar ba 1

5 —1 — b5 bs1  bs4 1 — 2bs4 bs4

6 —% bes  bea 1 —2(bga+bss) bea bes

ds‘I'd?—s:la s=1,2,3,

1
3= 5, 0=bsa(ca+c5—1), 0=bea(ca+csa— 1)+ bgs(c1 +c5—1).

For arbitrary r we get analogous tables.

In both cases, it is possible to solve these systems of order conditions. Furthermore, in the
order conditions listed above, some parameters are still free. They can be chosen such that the
computational costs are reduced with respect to the number of function evaluations and the number

of LU-decompositions. For example, this is achieved if R(()S)((ZSTTS) = R(()QT_S+1)(Q27»_S+1TT5).

3.3. Examples of linearly implicit splitting methods. We will introduce methods which we
used for our numerical tests in Section 4. A LISM depends also on the special choice of the ma-

trix functions R(()S)(.). We now give a list of matrix functions used which are at least first order
approximations to e”.

Fl: Ro(asTy) = (I —va, 1) (I + (1= 27)a,Ty), 7=1-Y%2, (3.5)
= Ri(a;Ts) = (I —yasTy) 2 (I —~%a,Ts),

F2: Ro(a,Ty) = (I — %T,) 7" (I + %T,) (3.6)
= Ry(a,Ty) = (T —%T,)7",

F3: Ro(a,T) =T +a, T, = Ry(a,Ty) =1, (3.7)

F4: Ro(asTs) = (I —a,T,)' = Ri(a,Ty) = (I —a,Ty)™". (3.8)

Combining these matrix functions with the formulas in the examples below we obtain special meth-

ods.
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Frample 3.2. With LISM1 we denote the following formula for the case, that T is an approximation
to the Jacobian %: Let s=1(1)r,§=2r — s+ 1.
LISM1: o), = Ro(5T) 05D + R, (3T, )(fs(n,vn) Tsvn),
(3.9)
7(hz1 = Ro(3Ts) r(LS+11) + FR1(5T5) (fs(t +, Ur(L+)1) Ts U£L+)1>
Fzample 3.3. LISM2is a special formula of example 3.1, where T can be arbitrarily: Let s = 1(1)r,
S=2r—s+1.

LISM2: o) = Ro(3T,) ol + TRy (5T;) Kspsmn,s

’U,Ef_l)_l = Ro(%T ) 7(’L+1 ) + TRI( ) (_%](s,s—l + I(s,r) 9
(3.10)
I(s,s—l = fs(t + 3 bR 'EL-|-1 )) T U'ELS—I—II)7

I(s,r = fs(t + 3 29 7(@-21) T viﬁ})—l
We note, that we can reuse the already calculated values K, ,_; in the stage 2r — s + 1.

If we combine the methods LISM1 or LISM2 with the rational functions F1 we get the L-stable

methods LISM1F1 or LISM2F1. Combined with F'2 we get the A-stable methods LISM1F2 and
LISM2F2.

Remark 3.1. The methods LISM1 and LISM2 offer the possibility to perform function and Jacobian
evaluations, matrix times vector multiplications and LU-decompositions in parallel.

Frxample 3.4. LISM3F3F} or LTRAP denote the following formula: Let s = 1(1)7‘ §=2r—s+ 1.

We use for R(()s) the function F3,i.e. the first r stages are explicit. Let T = (t + 7, Un+1) + O(7)
and R(()g) be the function F4. Hence, only the last r stages are implicit.
LTRAP: '07(;)_1 = ”n+1 + 5 fs(tn, ns_Hl)), s=1(1)r, s=2r—s+1,

(3) (3-1) (3-1) (3.11)
Vpi1 = Upiq —I—%(I—%T) fs(tn —I—T,vn_l_1 ).

This method is identical with the trapezoidal splitting method (2.4), if the implicit relations in this
scheme are solved by one Newton iteration step.

3.4. B-consistency. In the numerical integration of stiff problems it often occurs that the order of
accuracy of the approximation will be less than expected when the classical order of consistency is
taken into account. In the investigations of the foregoing section, where we used the Taylor expansion
in the classical way, we do not give attention to the stiffness of the problem (1.4). For stiff problems
elementary differentials may become very large even when the solution w(t) is smooth in the sense

of

d* w(t)
dt*

where the constants My are independent of any quantity which influences the stiffness of the problem

(1.4) considered. Hence we should try to eliminate these large derivatives from error bounds. For

this purpose, Frank, Schneid and Ueberhuber ([4]) introduced the concepts of B-consistency and

B-convergence: Let (.,.) be a given inner product on R™ and let v € R be a constant. We define the
class §, of problems (1.4) which satisfy the one-sided Lipschitz condition

<f(t7‘w1) - f(tale)awl - lw2> v ||w1 - lw2H27 te [OaT]a V wy, wy € R™. (313)

‘ng,te[O,T],kzl,Q,..., (3.12)

The problems considered in the following are supposed to fulfill



10 LINEARLY IMPLICIT SPLITTING METHODS

Assumption 2. We assume, that the solution w(¢) fulfills (3.12) and that

k
Tl ()

‘SLZ», tel0,T], i=1(1)r, k=1,2,..., (3.14)

with constants L; independend of stiffness.

Definition 3.2. A one-step method is called B-consistent of order ¢ on the class F, if the local error
satisfies

|Bpg1 — w(tpyr)]| < C 7T Ve (0,77, (3.15)
where the real quantities C' and 7* > 0 are independent of the stiffness of §,.

For simplicity we consider the class of linear problems (2.5)

w'(t) =Y Aiw(t),  weR™, A e R™™, u[A;] <0. (3.16)
=1
The norm of the local error of a LISM (3.1) applied to this class is given by
. - 72
[Bn41 = w(tnpr)l| < || R(T ALy, 7 A )w(tn) = <I+r2 AZ») w(itn)|| + 5 Mo.
=1

In order to achieve B-consistency order one we have to choose the Rg)(.), i =1(1)2r, (see (3.3)) so
that

r+1 1 T
H Rés)(aSTAQT_S_H) H Rés)(asrAs) — (I + TZ Ai) w(ty,)|| < 2 C,
s=27 s=r =1

where (' is a constant independent of the stiffness of the problem.

Corollary 3.1. Under the Assumption 2, a LISM (3.1) for r = 2 is B-consistent of order one on
the class of linear problems (1.4) with f € A, if its amplification matriz has the form

R(r Ay, mAy) = (1 - %AQ) B (I+ %AQ) (I - %Al)_l (1 n %Al) (3.17)

or
R(r Ay, 7 Ay) = (I— iAQ) ~ (I+ %12)2 (I - iAl)_Q (I—|— iAl)Q . (3.18)

Remark 3.2. 1. Splitting methods, which have amplification matrices of the form (3.17) or (3.18),

are Ac—stable.
2. The statements of Corollary 3.1 can be extended to systems of the form

w'(t) = Ayw(t) 4+ g1(t) + Ay w(t) + ga(1), (3.19)

where w,g; € R™, A; € R™*™ u[A;] <0, ¢ = 1,2. Here, the functions g;(t) can for example
contain the boundary values of the underlying PDE with inhomogeneous boundary conditions
(see [9],[10],[11]).

3. We could only find Splitting methods, which are L-stable and B-consistent of order greater
than zero, under the strong assumption, that Ay Ay w(?) is uniformly bounded. In [10], it is
mentioned that this holds, for example, for periodic boundary conditions.

4. For r = 3 we obtain B-consistency order one only under very strong assumptions.

Frample 3.5. For r = 2 the methods LISM1F2, LISM2F2, LTRAP and the trapezoidal splitting
method (2.4) are B-consistent of order one on the class of linear problems (3.16).



LINEARLY IMPLICIT SPLITTING METHODS 11

4. NUMERICAL TESTS

In this section some numerical results are presented for the methods of section 3.3 and the trape-
zoidal splitting method (2.4). The implicit relations in TRAPSP are solved by a simplified Newton
iteration process. We have implemented the methods with a stepsize control for the time integration
using Richardson extrapolation. At the end of the numerical integration process we compare the
numerical solution with the exact solution u(¢) of the PDE in each grid point. In the figures of the
examples below we plotted the computing time compared with the logarithm of the relative error

ERR= |~ i (”i — un(te); )2
m 14+ |uh(te)i|
at the endpoint t., where v is the numerical solution at ¢.. In these examples we distribute the source
terms equally to the splitting functions.
Frample /.1. We consider the 2-dimensional problem
w = 32(1—2)uge + (1 +az)y(1 - y)uy, — (1 —2)ou

on Q = [0,1]? and ¢ € [0, 1]. The initial condition and Dirichlet boundary conditions are chosen such
that we have the exact solution

u(t,z,y) = e FFVa(l —2)y(1-y).

Because the exact solution of the PDE is a polynomial in the space variables of degree less than 4
there is no spatial error in the ODE (1.4) after semidiscretization. The semidiscrete ODE is a linear
system of the form (2.5). We consider two cases, @ = 0 and & = 100. For & = 0 the matrices A; and

m=992=9801,t,=1

b —_—
—m— LISMIF1
—0O— LISMIF2
-6 - —0— [ TRAP 7
=2 —A—TRAPSP |
2 ]
g
o SF ° i
S \\ |
a a
|
10+ ° /. ,
-12 : : : 2
10 . 10
time (s)

FIGURE 4.1. Example 4.1, a = 0, m = 99% = 9801, ¢, = 1

Ay commute, because we use an equidistant grid in space. In Figure 4.1 we see, that all the methods
plotted there have similar properties. The L- and A-stable methods LISM1F1 and LISM1F2 are

faster than the Ag-stable method TRAPSP and LTRAP for this linear example. For a = 100 (see
Figure 4.2) the matrices A; and A do not commute. The assumptions for the stability of LTRAP
and TRAPSP are not satisfied. The methods LISM1F1 and LISM1F2 do not need the assumption of

commuting matrices. This seems to be the reason for the better performance of the A-stable method
LISM1F2. Furthermore, for this example the L-stability of the method LISM1F1 pays off.
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m= 992—9801 t,=
-4 —l*LISMlF] 7
L o —0O—LISMIF2 |
ol \ —®—LTRAP |
_ O- D\D —A— TRAPSP
§ \.F,&A b
B -121 B
o0
S i
2 /D
16+ \. g
_20; / ]
n M| |
1
10 10°
time (s)

FIGURE 4.2. Example 4.1, a = 100, m = 99% = 9801, ¢, = 1

Frample 4.2. We consider the 2-dimensional, nonlinear diffusion equation
U = € (Upp + uyy) +u (277" = 1), (4.1)

where Q = [0,1]? and ¢ € [0,10]. The initial and Dirichlet boundary conditions are chosen so that
we have the exact solution

u(t,z,y) = e 'sin(rz)sin(m,y) . (4.2)

In contrast to the semidiscretization described in Section 1, we calculate for our tests the analytical
expression of the spatial error introduced by the semidiscretization and add it to the right hand side
of the ODE (1.4). Then the exact solution of this ODE is equal to the exact solution of the PDE
(1.1) restricted to the grid and ERR does not depend on an error in space. Otherwise, the spatial
error would dominate the overall error if we require small tolerances in the step size control process.

Figure 4.3 shows, that the linearly implicit, L-stable method LISM1F1 is more accurate and stable

. m=69"=4761,t,= 10

1T —m— LISMIFI / il

-2~ —A— TRAPSP A R

log (ERR)
/

ol \.\ Al ]
[ ]
b e \. i
L \.
-8 L L 1
10° 10! 10 10° 10*
time (s)

FIGURE 4.3. Example 4.2, m = 69% = 4761, ¢, = 10

as the fully implicit, Ac-stable method TRAPSP.
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Frample /.3. As third example of this section we choose the 3-dimensional PDE
Up = Upp + Uyy + s + €' (2(1— 2)y(1 — y)2(1 - 2)
+2y(1 = 9)z(1 = 2) + 22(1 — 2)2(1 - 2) + 22(1 — 2)y(1 - y))

with Q = [0,1]*> and ¢ € [0, 10] and homogeneous Dirichlet boundary conditions. The initial condition
is chosen so that we get as exact solution

u(t,z,y,2) =z (1—2)y(1—y)z(1 - 2).

Using central differences of second order again no spatial error occurs. Figure 4.3 demonstrates that

m=49=117649, t = 1

t .;\ A\A\ i
_3 I .\A ]
~~ -4 [ 7
~
&
~ 5+ —
2 . 4
6 i
—m— LISMIFI
—A— TRAPSP
TE i
bl n n P | n n P
102 103 10*

time (s)
FIGURE 4.4. Example 4.3, m = 49% = 117649, ¢, = 10

both methods, LISM1F1 and TRAPSP, work similar and appropriate for very large problems.

m=69"=4761,t,= 1

2k i
e g
\\l
°
40 %A\ i
= ol
2 of U
o0 | | | ,
ke — m— LISMIFI oA
$- —e— LTRAP \ 1
| —Aa— TRAPSP ]
L N
-10 I I I
10° 10! 102 10°

time (s)

FIGURE 4.5. Example 4.4, m = 69? = 4761, ¢, = 1

Frample 4.4. Let the 2-dimensional problem

Up = U + gy + € (2 (1—2)y(1—y)(16+y) +2y(1—y) (16 +y)+6z2(1—2)(5+y))
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for Q = [0,1]%, ¢ € [0, 1] be given. The function
u(t,z,y) =€z (1—2)y(1—vy)(16+ y)

is the solution of the example, if we require u(0,z,y) = 2(1 — z)y(1 — y)(16 + y) and homogeneous
Dirichlet boundary conditions. Figure 4.5 shows that LISM1F1 is less accurate than LTRAP or
TRAPSP. We suppose, that the reason is the better B-consistency order of the trapezoidal method
on the class of problems (3.19) (see Remark 3.2).

5. CONCLUSION

We have derived a class of linearly implicit splitting methods of classical consistency order two,

which are A- and L-stable (independent of the commutativity of the A;). These methods are at-
tractive for the numerical solution of parabolic differential equations, because they only require the
solution of linear equations with tridiagonal matrices. Unfortunately, in contrast to the trapezoidal

splitting method TRAPSP (which is only /ig—stable), they are in general only of B-consistency order

zero. However, our numerical tests indicate that for certain problems L-stability (and classical order
two) can be more important than B-consistency.
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