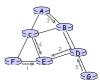

Cap. 4: Capa de red □ 4.5 Algoritmos de enrutamiento 4.1 Introducción 4.2 circuitos virtuales Link state y datagramas o Distance Vector □ 4.3 dentro de un Enrutamiento router jerárquico □ 4.4 IP: Internet □ 4.6 Enrutamiento en Internet Protocol o RIP o formato de datagramas OSPF o direccionamiento IPv4 BGP o ICMP □ 4.7 Broadcast y o IPv6 multicast Int. Redes de Computadores-Capa de Red 4-127 **Broadcast Routing** 🗖 entrega de paquetes desde la fuente a todos los nodos □ duplicación en la fuente es ineficiente: Duplicación en duplicación en la fuente: como determinar la dirección de los receptores? o registro? Int. Redes de Computadores-Capa de Red 4-128 Duplicación en la red 🗖 flooding: cuando un nodo recibe un paquete, envía copias a todos sus vecinos O Problemas: ciclos & "tormenta" de broadcasts □ flooding controlado: el nodo solo hace broadcast de un paquete si no lo ha enviado antes o el nodo debe llevar la cuenta de los paquetes enviados recientemente o o "reverse path forwarding" (RPF): solo envía un paquete si llegó por el camino más corto entre el nodo y la fuente □ spanning tree o ningún nodo recibe paquetes redundantes Int. Redes de Computadores-Capa de Red 4-129

Spanning Tree

- □ primero hay que contruir el spanning tree
- los nodos envían copias solamente sobre el spanning tree



(a) Broadcast iniciado en A

Int. Redes de Computadores-Capa de Red 4-130

Spanning Tree: creación

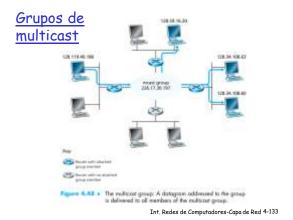
- 🗖 nodo central o raíz
- cada nodo envía un mensaje unicast al nodo central para unirse al árbol
 - o el mensaje es reenviado hasta que llega a un nodo que pertenece al spanning tree

(b) Spanning tree construido

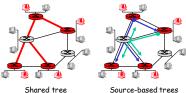
Int. Redes de Computadores-Capa de Red 4-131

Multicast

UNICAST: UN EMISOR, UN RECEPTOR.


BROADCAST: UN EMISOR, TODOS LOS RECEPTORES.

ANYCAST: VARIOS EMISORES, UN RECEPTOR (*).

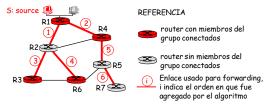

MULTICAST: VARIOS EMISORES, VARIOS RECEPTORES VOLUNTARIOS.

Multicast Routing: el problema

- □ *Objetivo:* encontrar un árbol (o árboles) que conecta routers que tienen miembros de grupos de mcast
 - o <u>árbol:</u> no se usan todos los caminos
 - o <u>source-based</u>: árboles diferentes desde cada fuente a receptores
 - o <u>shared-tree:</u> todos los miembros del grupo usan el mismo árbol

Int. Redes de Computadores-Capa de Red 4-134

Como se construyen los árboles de multicast?


Posibilidades:

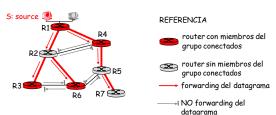
- □ source-based tree: un árbol por fuente
 - o shortest path trees
 - o reverse path forwarding
- group-shared tree: el grupo usa un único árbol
 - o minimal spanning (Steiner)
 - o center-based trees

...primero vamos a ver los enfoques básicos, y algunos protocolos que los implementan

Shortest Path Tree

 mcast forwarding tree: árbol de caminos más cortos desde la fuente a todos los receptores
 Algoritmo de Dijkstra

Int. Redes de Computadores-Capa de Red 4-136


Reverse Path Forwarding

- Se basa en el conocimiento que tiene el router del "unicast shortest path" desde si mismo a la fuente
- □ cada router se comporta de forma simple:

if (datagrama mcast recibido en enlace entrante en el "shortest path" hacia el centro) then "flooding" del datagram en los enlaces de salida else ignorar datagrama

Int. Redes de Computadores-Capa de Red 4-137

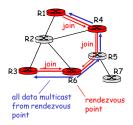
Reverse Path Forwarding: ejemplo

- el resultado es un "reverse SPT" específico para la fuente
 - puede ser una mala opción con enlaces asimétricos

Reverse Path Forwarding: pruning		
el árbol de forwarding contiene sub-árboles sin miembros del grupo de maast conectados		
o no es necesario reenviar datagramas en estos sub- árboles		
 Los routers que no tienen miembros conectados envían mensaje "prune" (poda) "hacia atrás" 		
S: source REFERENCIA		
grupo conectados		
R2 P P router sin miembros del grupo conectados P mensaje "prune"		
R3 enlaces con forwarding multicast		
Int. Redes de Computadores-Capa de Red 4-139		
Shared-Tree: Steiner Tree		
Steiner Tree: árbol de costo mínimo que conecta todos los routers con miembros del grupo conectados		
□ problema NP-completo		
 existen buenas heurísticas para atacarlo no se usa en la práctica: 		
o complejidad computational		
 se necesita información de toda la red monolítico: debe recalcularse cada vez que un 		
router hace un "join"/"leave"		
Int., Redes de Computadores-Capa de Red 4-140		
Center-based trees		
 árbol de entrega único compartido un router identificado como "centro" del árbol 		
□ proceso de unión (join):		
 Los routers de borde envían mensajes unicast join destinados al router central 		
 el mensaje join es procesado por los routers intermedios y reenviados hacia el centro 		
 el mensaje join se une a una rama existente, o llega al centro 		
 el camino recorrido por el mensaje join se convierte en una nueva rama 		

Center-based trees: un ejemplo Supongamos que R6 se elige como centro: REFERENCIA router con miembros del grupo conectados router sin miembros del grupo conectados recorrido de los mensajes join R7 (200) Int. Redes de Computadores-Capa de Red 4-142 Internet Group Management Protocol: IGMP □ hemos visto como se arman los árboles de distribución... 🗖 ...pero todavía no sabemos como hace un host para unirse a un grupo de multicast □ IGMP: protocolo usado por los routers locales (los default gateways) y los hosts Int. Redes de Computadores-Capa de Red 4-143

IGMP

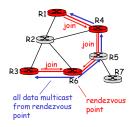

- mensajes:
 - o query: desde el router a los hosts
 - o membership report: desde los hosts a los routers
 - o leave: desde los hosts a los routers
- el router puede hacer queries genéricos ("todos los grupos") o específicos
- los hosts pueden enviar mensajes de asociación sin esperar ser interrogados (no solicitados)
- soft state: el router mantiene una tabla de los hosts que pertenecen a cada grupo enviando queries periódicos y recibiendo las respuestas
- □ IGMP: protocolo de control análogo a ICMP para unicast

Internet Multicasting Routing: DVMRP DVMRP: distance vector multicast routing protocol, RFC1075 □ flood & prune: reverse path forwarding, source-based tree o árbol RPF basado en las tablas de routing de DVMRP, construida por intercambio de mensajes nativos (no se basa en unicast) o el datagrama inicial se envía por flooding al grupo de mcast usando RPF o los routers que no participan del grupo envían mensajes prune hacia "arriba" Int. Redes de Computadores-Capa de Red 4-145 **DVMRP** □ <u>soft state:</u> los routers DVMRP "se olvidan" periodicamente (1 min.) que las ramas que están `pruned": o se vuelven a enviar flujos mcast por esas ramas o los routers "downstream" (hacia abajo) tienen que volver a mandar prune o seguirán recibiendo el flujo □ los routers pueden reconectarse o siguiendo los join de IGMP en las hojas (redes locales) "de la vida real" o usualmente implementado en routers comerciales o usado en Mbone (también MOSPF) Int. Redes de Computadores-Capa de Red 4-146 Tunneling P: cómo conectar "islas" de routers multicast en un "mar" unicast? topología física topología lógica datagramas mcast encapsulados en datagramas "normales" 🗖 datagramas enviados a través de "túneles" usando unicast al receptor mcast □ receptor mcast de-encapsula los datagramas Int. Redes de Computadores-Capa de Red 4-147

DTAA: Destace Tuden and out AAulticedt			
PIM: Protocol Independent Multicast ☐ no depende en ningún algoritmo de routing unicast			
específico (funciona con todos)			
dos escenarios de distril			
<u>Dense:</u> □ miembros del grupo	<u>Sparse:</u> □ # de routers con miembros		
"densamente empaquetados", o	del grupo conectado es pequeño con respecto al #		
cercanos	total de routers		
	membros "muy dispersos"menos ancho de banda		
	disponible Int. Redes de Computadores-Capa de Red 4-148		
Consecuencias de la Sparse-Dense:	<u>a dicotomía</u>		
Dense	Sparse:		
🗖 membresía de los	🗖 membresía explícita via		
routers al grupo <i>se</i> asume hasta que se	<i>join</i> □ la construcción del árbol		
ejecuta un <i>prune</i> explícito	mcast es <i>receiver- driven</i> (p.ej., center-based)		
 la construcción del árbencast es data-driven (p 	ol uso <i>conservador</i> de los recursos		
ej., RPF) derroche de recursos			
(ancho de banda y membresía)			
,	Int. Redes de Computadores-Capa de Red 4-149		
PIM- Dense Mode			
flood-and-prune RPF, similar a DVMRP,			
pero			
 el protocolo unicast de base provee la información RPF para el datagrama entrante 			
 el mecanismo de flooding "hacia abajo" (downstream) es más sencillo (y menos 			
eficiente) que en DVMRP, y por lo tanto no depende tanto del protocolo de base			
tiene un mecanismo para detectar los nodos "hoja" (leaf-node router)			
	Int. Redes de Computadores-Capa de Red 4-150		

PIM - Sparse Mode

- center-based
- 🗖 router envía mensaje join a un rendezvous point (RP)
 - o routers intermedios actualizan su estado y reenvían el *join*
- □ luego de asociarse via RP, un router puede cambiarse a un árbol source-specific
 - o mejora la performance: menor concentración, caminos más cortos



Int. Redes de Computadores-Capa de Red 4-151

PIM - Sparse Mode

fuente(s):

- datos unicast al RP, quien distribuye en el árbol del cual es raíz
- el RP puede extender los árboles mcast "hacia arriba" hasta la fuente
- □ el RP puede enviar mensaje stop si no hay receptores
 - o "nadie está escuchando!"

Int. Redes de Computadores-Capa de Red 4-152

Cap. 4: Capa de red

- 4.1 Introducción
- 4.2 circuitos virtuales y datagramas
- □ 4.3 dentro de un router
- □ 4.4 IP: Internet Protocol
 - o formato de datagramas
 - o direccionamiento IPv4
 - ICMP
 - o IPv6

- □ 4.5 Algoritmos de enrutamiento
 - Link state
 - o Distance Vector
 - Enrutamiento jerárquico
- 4.6 Enrutamiento en Internet
 - RIP
 - o OSPF
 - BGP
- □ 4.7 Broadcast y multicast