Red "switcheada"

- □ Redundancia
 - Confiabilidad, disponibilidad
 - Costos
 - Pero quizás también, inestabilidad
 - Por ejemplo, un simple ARP request puede generar una tormenta de broadcast y afectar la performance de los switches de toda la red
 - Algo similar puede ocasionar un unicast
 - Precisamos una solución que evite los loops pero sin perder las bondades de la redundancia
 - En capa de enlace no existe el concepto de TTL
- Spanning-Tree Protocol (STP): Protocolo de gestión de capa de enlace que pone a disposición la redundancia de caminos pero previene de posibles loops en la red de switches (posible origen de duplicación de mensajes)

Protocolo Spanning-Tree (STP)

- □ El objetivo es que en cada instante exista un solo camino activo entre dos switches
 - Que existan loops físicos pero no lógicos
- Se define un árbol a través del cual se alcanza a todos los switches pero el árbol se "poda" de tal forma que algunos puertos quedan bloqueados a la espera de algún cambio topológico y los restantes puertos están en estado forwarding
- Algunos comentarios
 - Protocolo transparente a los usuarios
 - O Radia Perlman -> IEEE 802.1D
 - "Protocolo de árbol de expansión"
 - Referencias en la bibliografía
 - Secciones 4.4 o 4.7 "del Tanenbaum"
 - Sección 5.6 "del Kurose & Ross"

VLAN: Virtual LAN

- □ Empresa con *k* departamentos
 - 1 red LAN por departamento
 - Agrupar lógicamente usuarios de la red y recursos conectados a puertos definidos administrativamente
 - Broadcast
 - Seguridad
 - · Carga
- □ En los 90's: *k* redes LAN independientes significaba instalar *k* hubs (como mínimo)
- Luego, se incorporaron los switches
- □ Ahora: *k* redes LAN, técnicamente puede significar simplemente instalar 1 switch

VLAN: Virtual LAN (más)

- □ IEEE 802.1Q
- Permite crear "switches virtuales" en uno o más switches y de esa forma separar dominios de broadcast (más pequeños)
- □ Se debe definir:
 - Cantidad
 - Nombre de cada una ("color")
 - Miembros de cada una
- En cada puerto del switch, una sóla VLAN posible, salvo en los trunks

Capa de Enlace

- 5.1 Introducción y servicios
- 5.2 Detección y corrección de errores
- 5.3 Protocolos de acceso múltiple
- □ 5.4 Direccionamiento de Capa de Enlace
- □ 5.5 Ethernet

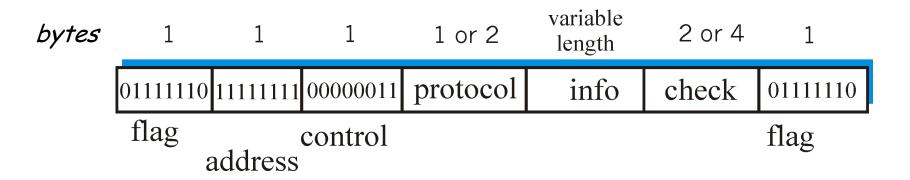
- □ 5.6 Switches de Capa de Enlace
- □ 5.7 PPP

Enlace de Datos Punto a Punto

- un emisor, un receptor, un enlace: más fácil que un enlace broadcast:
 - o no se requiere Medium Access Control
 - o no se necesita direccionamiento MAC explícito
 - o p.e., enlace discado
- protocolos point-to-point más populares:
 - PPP: Point-to-Point Protocol
 - O HDLC: High level Data Link Control

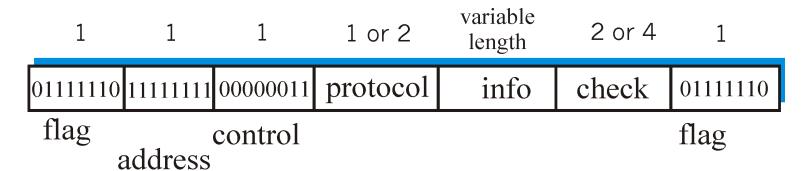
PPP (RFC 1547, 1661, 1962, 2153)

- □ Requerimientos de diseño de PPP: RFC 1547
 - simple
 - entramado de paquete: encapsulado del datagrama de capa de red en una trama de capa de enlace
 - transparencia: debe poder llevar cualquier patrón de bit en el campo de datos (incluso los vinculados al framing)
 - multiplexación: porta datos de capa de red de cualquier protocolo (no solamente IP) al mismo tiempo
 - posibilidad de demultiplexar
 - detección de error (no corrección)
 - estado de la conexión: detectar y señalizar a la capa de red sobre falla en el link
 - negociación de la dirección de la capa de red: un endpoint puede configurar la dirección de red del otro
 - o posibilidad de negociación de opciones
 - o posibilidad de compresión de datos


No requerimientos de PPP

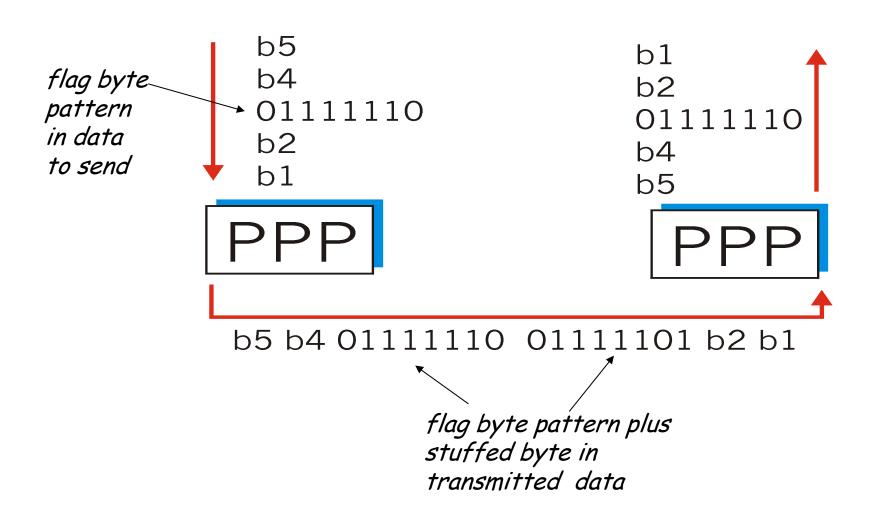
- corrección/recuperación de errores
- control de flujo
- 🗖 entrega de tramas en orden (secuenciamiento)
- no hay necesidad de soporte de enlaces multipunto (p.e., polling)

Recuperación de errores, control de flujo, reordenamiento de datos son relegados a las capas superiores


Trama de Datos de PPP (RFC 1662)

- J *Flag*: delimitador (*framing*); sincronización de trama
- Se pueden no enviar lo siguientes campos
 - Address: no hace nada; uso futuro
 - Control: no hace nada; uso futuro
- Protocol: protocolo de capa superior a quien debe ser entregada la trama (ej., LCP, NCP, IP, etc)

Tramas de Datos de PPP


- Info: datos de la capa superior que son llevados;
 1500 bytes máximo o negociable
- Check: detección de errores con Cyclic Redundancy Check

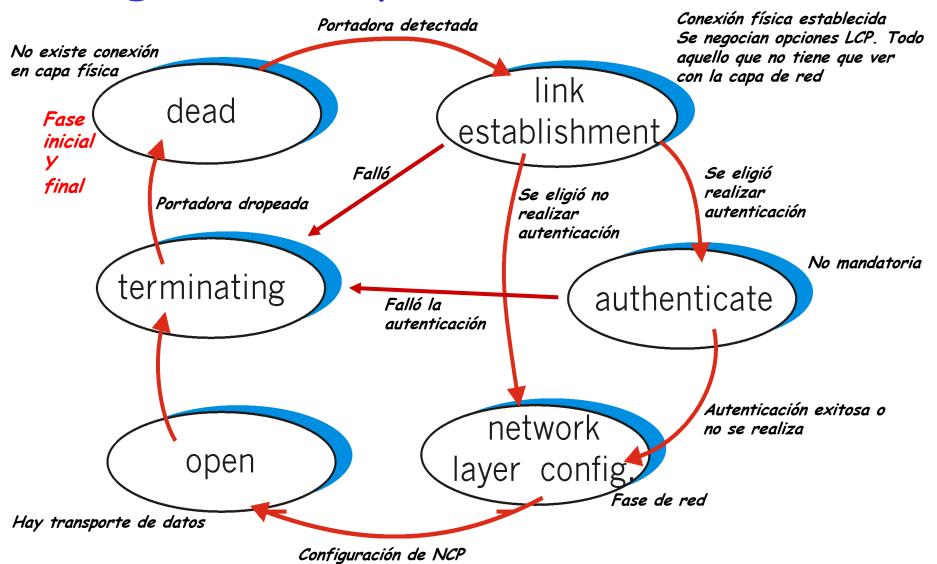
Byte Stuffing ("relleno")

- No es algo exclusivo de PPP
- requerimiento de "transparencia de los datos": el campo de datos debe permitir incluir el patrón de la flag <01111110>
 - P: se recibe <01111110>, ¿es datos o *flag*?
- Transmisor: agrega ("stuffs") un byte de relleno <01111101> (byte de escape) extra antes de cada byte <01111110> de datos. Îdem si aparece el byte de escape.
- □ Receptor:
 - Reacciona a la aparición de <01111110> o <01111101> respetando lo anterior
 - o un único <01111110>: byte flag

Byte Stuffing

Protocolo de Control de PPP Link Control Protocol

antes de intercambiar datos de la capa de red, los peers de la capa de enlace deben configurar el enlace y algunas cosas relacionadas con la capa de red


configurar enlace PPP

- o máx. long. de trama
- o uso o no de autenticación
 - protocolo
- o testing de la calidad de la línea
- o compresión de *header*

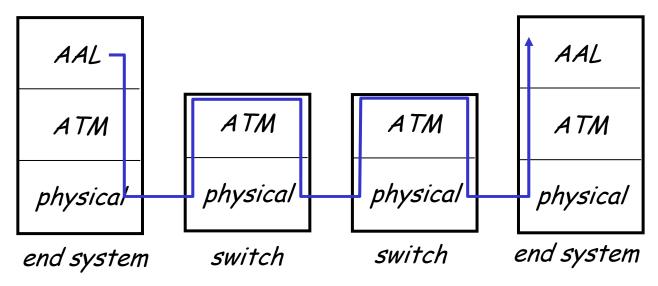
Protocolos de Control de PPP Network Control Protocol)

- configuración de aspectos de capa red
- □ NCP para IP: IPCP
 - o asignación de dirección IP
 - o asignación de direcciones de servidores DNS

Diagrama simplificado de fases

Virtualización en Internet

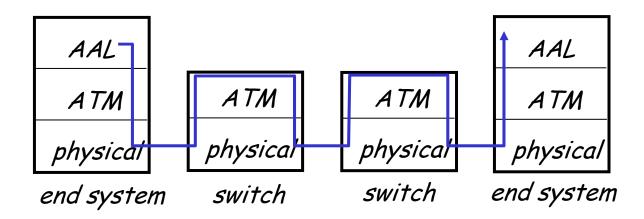
- □ En la evolución del estudio de capa de enlace:
- Cable que conecta dos computadoras -> múltiples computadoras conectadas por un cable compartido y ese "cable" puede ser el aire -> infraestructura de switches
- Por lo tanto, hemos ido agregando "complejidad" en el canal de interconexión, pero para los hosts sigue siendo "la capa de enlace entre nodos adyacentes"
- En el caso de PPP utilizado en el acceso discdo a Internet, se virtualiza completamente la red telefónica ("es un cable")


ATM y MPLS

- Las redes ATM y MPLS (circuitos virtuales, conmutación de paquetes, con sus formas propias de paquetes y técnicas de forwarding) se pueden ver como tecnologías de capa de enlace que interconectan dispositivos IP.
 - ATM: Asynchronous Transfer Mode
 - MPLS: Multiprotocol Label Switching

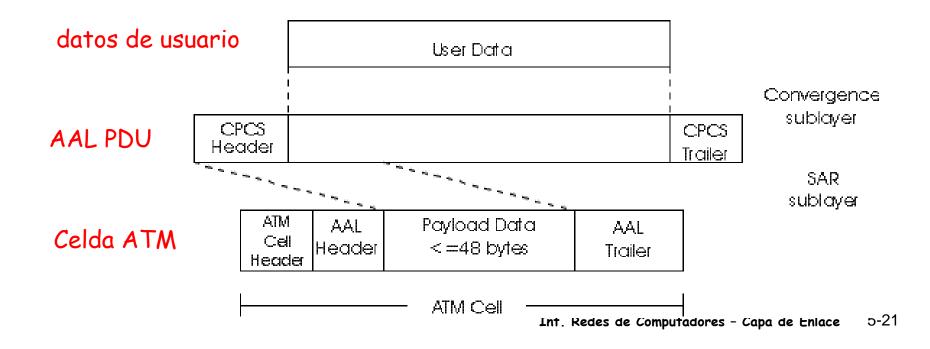
Asynchronous Transfer Mode: ATM

- Estándar de los 80's para alta velocidad (desde 155Mbps hasta 622 Mbps y más); arquitectura Broadband Integrated Service Digital Network
 - ex-ATM Forum, ex-MFA Forum, ahora IP/MPLS Forum, e ITU
- Objetivo: transporte integrado y end-to-end de voz, video y datos
- Principales caracterísicas
 - soporta diversos modelos de servicio (CBR, VBR, ...)
 - reune requerimientos de QoS de voz y video (versus el modelo best effort de Internet)
 - packet-switching (paquetes de longitud fija, llamados "celdas") utilizando una arquitectura de red de circuitos virtuales
 - Servicio orientada a conexión (Virtual Channel o Virtual Circuit)
 - 3 capas: AAL, ATM y PHY

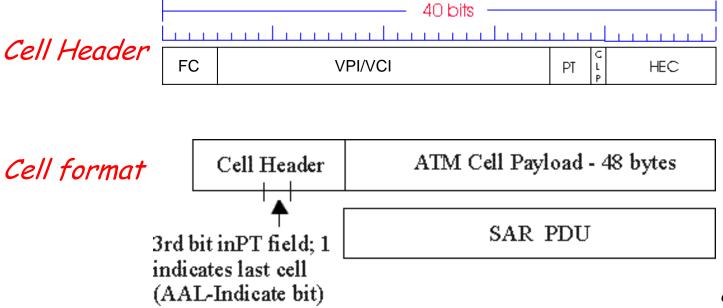

Arquitectura ATM

- ATM Adaptation Layer. sólo en el borde de la red ATM
 - Servicios: detección de errores, segmentación y re-ensamblado (SAR en inglés) de los datos
 - Sin mucha rigurosidad, análogo a la capa de transporte de Internet
 - Sobre ella, por ejemplo, IP
- □ ATM layer: "network" layer
 - Switching de celdas
- physical layer
 - O Según el medio físico

ATM Adaptation Layer (AAL)


- ATM Adaptation Layer (AAL): "adapta" las capas superiores (IP o aplicaciones ATM nativas) a la capa ATM de abajo
- AAL está presente solamente en los end systems, no en los switches
- Los PDUs de la capa AAL son fragmentados en múltiples celdas ATM

ATM Adaptation Layer (AAL), más...


Diferentes "sabores" de capas AAL, dependiendo de la clase de servicio ATM:

- □ AAL1: para servicios CBR (Constant Bit Rate), p.e. E1, T1
- AAL2: para servicios VBR (Variable Bit Rate), p.e., MPEG video
- AAL5: para datos (p.e., datagramas IP)

Capa ATM: celda ATM

- Encabezado de 5 bytes
- □ Carga útil de 48 bytes
 - ¿Por qué?: payload pequeño -> corto retardo de creación de la celda; para voz digitalizada
 - o semisuma de 32 y 64

Encabezado de la celda ATM

- □ FC: Control de flujo
 - Sólo se utiliza en el borde de la red
- □ VPI/VCI: Virtual Path ID / Virtual Channel ID
 - Uno por cada VC
 - o 24 bits
 - VPI: camino; 8 bits
 - O VCI: un VC; 16 bits
 - o cambia de link a link a través de la red (label switching)
- □ PT: Payload Type (p.e. celda de gestión, celda de datos)
- □ CLP: Cell Loss Priority bit
 - CLP = 1 implica celda de baja prioridad, puede ser descartada si hay congestión
- □ HEC: Header Error Checksum
 - Cyclic Redundancy Check
 - Detección y algunas correcciones

Capa ATM: Circuitos Virtuales

- transporte VC: celdas llevadas en VC desde el origen al destino
 - o establecimiento de llamada
 - cada paquete lleva identificador de VC (no ID de destino)
 - cada switch en el camino entre el origen y el destino mantiene el "estado" para cada conexión que pasa por él
 - enlace, recursos de conmutación (ancho de banda, buffers) pueden ser reservados al VC: para tener una comportamiento circuit-like
- Permanent VCs (PVCs)
 - o conexiones larga vida; estáticas
 - Establecimiento: provisioning
 - o típicamente: encaminado "permanente" entre routers IP
- Switched VCs (SVC):
 - o establecidos dinámicamente
 - o signaling entre el host y el switch ATM
 - Protocolo de señalización PNNI (Private Network to Network Interface)
 - VPI/VCI para control

ATM VCs

☐ Ventajas de ATM VC:

 Performance de QoS garantizada para la coneción mapeada al VC (ancho de banda, retardo, jitter)

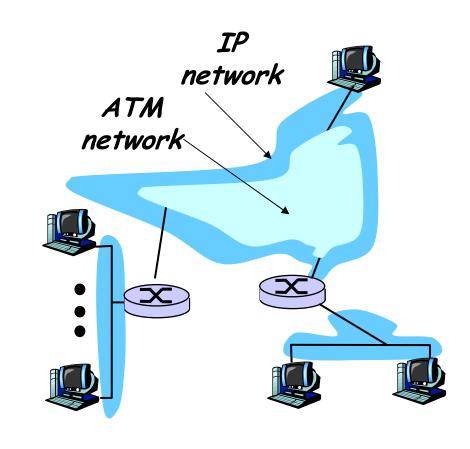
□ Desventajas de ATM VC:

- un PVC entre cada pareja origen/destino: no escala
- SVC introduce la latencia del establecimiento de la llamada, overhead de procesamiento para conexiones de corta vida

Capa ATM

Servicio: transportar celdas a través de la red ATM

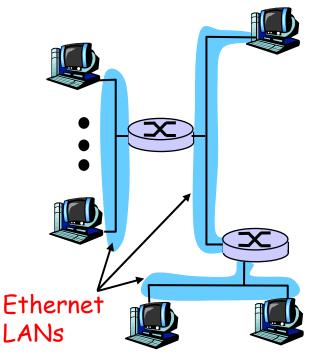
- análogo a la capa de red IP
- servicios muy diferentes a los de la capa de red IP
- □ CBR: Constant Bit Rate
 - Velocidad constante fija y retardo máximo
 - Reserva de recursos
- □ VBR: Variable Bit Rate
 - Aplicaciones sensibles al tiempo (retardo y jitter)
 - Velocidad pico y promedio
 - Pueden haber ráfagas
 - Reserva de recursos
- ABR: Available Bit Rate
 - Velocidad pico y mínima de celdas
 - Reserva de recursos
- □ UBR: Unspecified Bit Rate
 - Retardos variables y ciertas tasas de pérdidas
 - No hay reserva de recursos ni toma en cuenta la congestión


ATM: ccapa de red o capa de enlace?

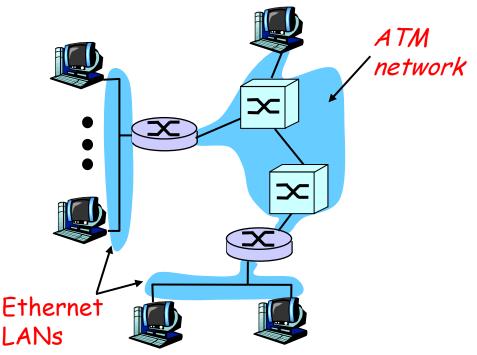
<u>Visión:</u> transporte *end to-end*: "ATM desde el *desktop* al *desktop*"

> ATM es una tecnología de red

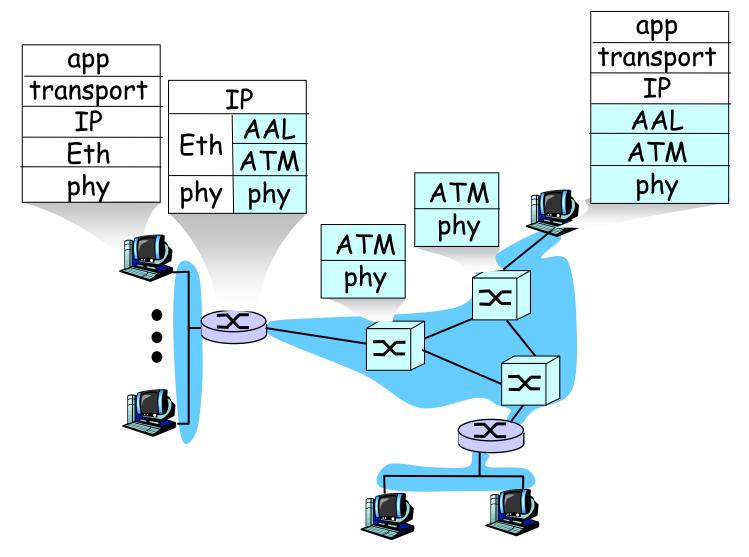
Realidad: utilizado para conectar los routers del *backbone* IP


- o "IP over ATM"
- ATM como una capa de enlace switched, conectando routers IP

IP sobre ATM


IP Clásico

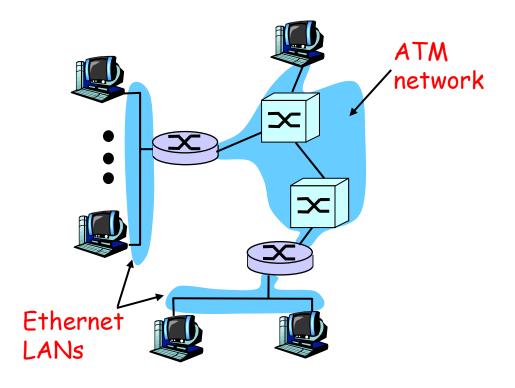
- □ 3 "redes" (p.e., segmentos LAN)
- □ direcciones MAC (802.3) e IP



IP sobre ATM

- □ reemplaza "red" (p.e., segmento LAN) con red ATM
- direcciones ATM e IP

IP sobre ATM



<u>Viaje de datagrama en red IP sobre ATM</u>

- □ en el *host* origen:
 - La capa IP mapea entre las direcciones destino IP y ATM (utilizando ARP)
 - Pasa los datagramas a AAL5
 - AAL5 encapsula los datos, segmenta en celdas y las pasa a la capa ATM
- □ red ATM: mueve celdas a través de VC hacia el destino
- en el host destino:
 - AAL5 re-ensambla las celdas en el datagrama original
 - o si CRC OK, el datagrama es pasado a IP

IP sobre ATM

- datagramas IP dentro de PDUs de ATM AAL5
- de direcciones IP a direcciones ATM
 - igual que de direcciones IP a direcciones MAC 802.3
 - protocolo ATMARP (RFC 2225)

