
EOSimulator:
Event Oriented Simulator

Developer Manual v1.01

Facultad de Ingenieria
Universidad de la República

June 2005

EOSimulator Developer Manual

 - 2 -

Preface

For many years the Departamento de Investigación Operativa of Facultad de
Ingenieria has been using Pascal_Sim1in the courses of Discrete Event Simulation. This
department was looking for new simulation software which had common features with
Pascal_Sim and a more modern design. It has to be a library that support event
scheduling world view with event method or three phase approach. For that purpose,
EOSimulator was created.

EOSimulator is inspired in two different simulation libraries: Pascal_Sim and
DesmoJ2. Those libraries were selected because they support the event scheduling world
view. EOSimulator looks like Pascal_Sim with a modular design that reminds DesmoJ
architecture. It is a hybrid between both libraries. There are some features that are not
implemented in EOSimulator like antithetic streams or entities engaged in many
activities. This was done on purpose in order to ask students to implement some of them.

EOSimulator was design and implemented by Sebastián Alaggia under supervision
of Ing. Maria Urquhart and Ing. Antonio Mauttone.

It is assumed that the developer has already acquired concepts in simulations and
object oriented programming in C++. See references [1], [2] and [6].

Acknowledgments

Many people have provided help with the development of this library:

• Javier Cohenar for supplying code of random number generators.

• Bruno Martínez and Fernando Pardo for helping with the implementation of
the library.

• Maria Urquhart and Antonio Mauttone for guiding the project.

Notation

Class’s and operation’s names are shown in this typeface.

1 Pascal_Sim: Discrete event simulation package [1].
2 DesmoJ: Simulation framework created by the University of Hamburg – Department of Computer

Science. See [3].

EOSimulator Developer Manual

 - 3 -

Index

Chapter 1 - Static Architecture... 4

1.1 Macro Architecture... 4

1.2 Core Module .. 5

1.2.1 Design Restrictions.. 6

1.2.2 Implementation Restrictions.. 6

1.3 Dist Module.. 7

1.3.1 Design Restrictions.. 7

1.3.2 Implementation Restrictions.. 7

1.4 Statics Module ... 8

1.5 Utils Module... 9

1.5.1 Implementation Restrictions.. 9

Chapter 2 - Collaborations ... 10

2.1 Introduction ... 10

2.2 Model::connectToExp... 10

2.3 Model::registerBEvent.. 11

2.4 Model::registerCEvent ... 12

2.5 Model::registerDist ... 13

2.6 Model::registerHistogram .. 14

2.7 Experiment::setSeed ... 15

2.8 Experiment::run.. 16

2.9 Model::schedule... 18

2.10 Bins Collaborations ... 19

2.11 Distribution Constructor .. 20

Chapter 3 - References ... 21

EOSimulator Developer Manual

 - 4 -

Chapter 1 - Static Architecture

1.1 Macro Architecture

EOSimulator is a discrete event simulation library created for educational purposes.
It is based in event scheduling world view and supports event method (two phase
executive) and three phase approach (three phase executive).

EOSimulator is implemented in C++. It has a modular architecture divided in four
modules: Core, Dist, Statics and Utils. Each of these modules encapsulates a
specific part of the library.

Figure 1-1: EOSimulator Macro Architecture

The Core module contains both the system modeling classes and the simulator’s
engine. This module separates system modeling from running simulation using classes
such as Model and Experiment. It’s intended that the programmer first build a model
and then simulates it as he pleases.

The Dist module contains pseudo-random number generators and distributions.
EOSimulator contains some of the most common distributions (normal, log normal,
negative exponential) and one random number generator. It also designed to be
extensible: distributions and generators can be easily added.

The Statics module contains output data collectors. EOSimulator implements two
kinds of collectors, time series histograms and time weighted histograms.

The Utils module has the collections defined by the library. The library provides
the programmer with built-in containers. Its interface is quite standard and easy to
understand.

EOSimulator Developer Manual

 - 5 -

1.2 Core Module

Figure 1-2: The Core Module

The main responsibility of this module is to define the simulator engine and system
modeling classes.

The engine main class is Experiment. Its responsibility is to run simulations. For
that it contains two calendars: bounded event calendar (BCalendar) and a conditional
event calendar (CCalendar); and a pseudo-random stream manager
(dist::DistManager). BCalendar manages simulation time and entities which
are schedule to a BEvent, while CCalendar contains all registered CEvents and
tries to execute them every time beat. Finally, DistManager manages the streams of
every distribution registered.

System modeling classes abstract classes which have to be user-defined. They are
Model, CEvent, BEvent, Entity and EntityComp (in some cases). For more
information see [4] and [5].

EOSimulator Developer Manual

 - 6 -

1.2.1 Design Restrictions

• Entities are either scheduled for a BEvent (contained in BCalendar) or
waiting in a queue.

• The relation between Model and Bins, CEvents, Distributions and
Histograms is through attributes: Model has one attribute for each of them.
BEvents are attributes too, but they are stored in a collection in the Model.

1.2.2 Implementation Restrictions

• Entities have to be created dynamically. BEvents Bins, CEvents,
Distributions and Histograms could be created dynamically or statically but
they must be attributes of a subclass of Model. For more information see [5].

EOSimulator Developer Manual

 - 7 -

1.3 Dist Module

Figure 1-3: The Dist Module

In this module we have encapsulated pseudo-random generators and distribution
sampling. All distributions are subclasses of Distribution, an abstract class which
defines the behavior of every distribution in EOSimulator. Every distribution has a
pseudo-random number generator, defined by the interface NumberGenerator.

Finally NumberGeneratorFactory creates NumberGenerators according
to the corresponding GenType label. This design allows the user to define both new
generators and distribution.

1.3.1 Design Restrictions

• To add new generators, GenType has to be modified giving a new label for
the generator. Also NumberGeneratorFactory::make has to be
modified to accept the new label.

1.3.2 Implementation Restrictions

• Distributions are responsible for deletes their generators when they are
deleted.

EOSimulator Developer Manual

 - 8 -

1.4 Statics Module

Figure 1-4: The Statics Module

The data output is stored in the Statics’s classes. The class Histogram defines the
behavior of every histogram in EOSimulator. TimeSeries and TimeWeighted are
both subclasses of Histogram whose operations differ very little from their parent class.
These classes are particularly simple and collaborate only with Model, in order to be
registered and don’t present any particular restrictions.

EOSimulator Developer Manual

 - 9 -

1.5 Utils Module

Figure 1-5: The Utils Module

The Utils Module contains the collections used in EOSimulator. They are based on
C++ standard containers (vector, deque and map). The collections defined are
basically wrappers; they hide the use of these containers from the user. Because these
containers support random access, EOSimulator collections also support random access
with operator[] efficiently.

1.5.1 Implementation Restrictions

• Although EntityQueueOrdered::pop is O(1) due to std::deque
implementation, the insertion algorithm is O(n).

• The operation given by EntityQueue relies on the efficiency of the C++::std
containers used. Changing the container may speed up some EntityQueue
operations and delay others. The implementation given is very efficient for
iterating in every queue and inserting forward and backward, but not in the
middle.

EOSimulator Developer Manual

 - 10 -

Chapter 2 - Collaborations

2.1 Introduction

In this section we show the more important collaborations in EOSimulator. For each
one we show a diagram, a brief description and the preconditions of the collaboration.
The preconditions apply to the complete operation; this mean the operation itself and the
operations it unleash, so they could be checked in more than one class. Preconditions are
checked with the assert function which aborts the program if the condition fails.

2.2 Model::connectToExp

Figure 2-1: Model::connectToExp Collaboration Diagram

2.2.1 Description

This collaboration describes how a model and an experiment are connected. Notice
that the abstract operation Model::init() is called in order to register the model’s
attributes. When exp sets M as his Model, it assigns 251182 as a default seed.

2.2.2 Precondition

• exp has to be a valid instance, this means not null.

EOSimulator Developer Manual

 - 11 -

2.3 Model::registerBEvent

Figure 2-2: Model::registerBEvent Collaboration Diagram

2.3.1 Description

This operation registers a BEvent in its model. The container bevents is an
instance of BEventMap. To insert e into bevents, bevents takes e’s name and use
it as a key.

2.3.2 Precondition

• M has to be previously connected to an experiment in order to complete the
operation.

• The name of bEv has to be different from any other BEvent registered in
bevents.

EOSimulator Developer Manual

 - 12 -

2.4 Model::registerCEvent

Figure 2-3: Model::registerCEvent Collaboration Diagram

2.4.1 Description

This collaboration shows how a CEvent is register in a model. Notice that M doesn’t
keep any reference to e, because it doesn’t need it. CEvents are finally stored in exp’s
CCalendar. CCalendar is the only class which contains all CEvents because its
responsibility is to iterate over them after every B phase.

2.4.2 Precondition

• M has to be connected to an experiment.

EOSimulator Developer Manual

 - 13 -

2.5 Model::registerDist

Figure 2-4: Model::registerDist Collaboration Diagram

2.5.1 Description

This collaboration shows how a Distribution is register in a model. Like in
CEvent, M doesn’t keep any reference to d, because it doesn’t need it. All Distributions
are finally stored in exp’s DistManagerCCalendar who initialized them with a new
seed taken from seedGen. DistManager contains all Distribution to provide a more
centralized stream management.

2.5.2 Precondition

• M has to be previously connected to an experiment.

EOSimulator Developer Manual

 - 14 -

2.6 Model::registerHistogram

Figure 2-5: Model::registerHistogram Collaboration Diagram

2.6.1 Description

This collaboration shows how a Histogram is register in a model. Like in CEvent,
M doesn’t keep any reference to H, only H has a reference to M..

2.6.2 Precondition

• M has to be previously connected to an experiment.

EOSimulator Developer Manual

 - 15 -

2.7 Experiment::setSeed

Figure 2-6: Experiment::setSeed Collaboration Diagram

2.7.1 Description

This diagram shows the process of changing a new seed in every Distribution and
stream (which are the same). As we see, exp calls dm::setSeed() and it changes the
seeds in every stream, using seedGen and seed.

2.7.2 Precondition

• exp has to be connected to a model.

EOSimulator Developer Manual

 - 16 -

2.8 Experiment::run

Figure 2-7: Experiment::run Collaboration Diagram

2.8.1 Description

This diagram shows how a simulation is run in EOSimulator. First
M::doInitialSchedules is called in order to start the model. Then the end time is
stored and the simulation starts. The main loop consist in checking if the simulation is
finished (BCalendar::isStopped), then the A phase and B phase are executed
(BCalendar::bPhase) and finally the C phase is executed
(CCalendar::cPhase).

In BCalendar::bPhase the first entity in the queue is removed the simulation
actual time is advanced up to the entity clock. Then every entity whose clock is equal to
the actual simulation time is processed (Entity::processEvent).

EOSimulator Developer Manual

 - 17 -

In CCalendar::cPhase every CEvent registered is executed
(CEvent::eventRoutine).

Finally in BCalendar::isStopped the actual simulation time is compared to
the end time and the queue of scheduled entity is checked to be empty.

2.8.2 Precondition

• exp has to be connected to M .

• time has to be greater or equal to the simulation actual time3
(BCalendar::getSimTime).

3 Remember that you could use an experiment which is connected to model and used before. See [4]

and [5]

EOSimulator Developer Manual

 - 18 -

2.9 Model::schedule

Figure 2-8: Model::schedule Collaboration Diagram

2.9.1 Description

To schedule the entity who given a time offset offset and a BEvent’s name what,
M fetches the BEvent whose name is what, assigns it to who and finally passes who to
exp. Then exp passes who to c which schedules who correctly according to offset.

2.9.2 Precondition

• M has to be connected to an experiment.

• M has to have a BEvent whose name is what and offset has to be positive.

• offset has to be positive.

EOSimulator Developer Manual

 - 19 -

2.10 Bins Collaborations

Figure 2-9: Bins Collaboration Diagram

2.10.1 Description

Here we describe all bins collaboration. As you can see these collaborations are very
simple and they are complete described in the diagram.

2.10.2 Precondition

Preconditions are explained in the notes.

EOSimulator Developer Manual

 - 20 -

2.11 Distribution Constructor

Figure 2-10: Distribution creation Collaboration Diagram

2.11.1 Description

The constructor of a Distribution calls the NumberGeneratorFactory in order
to get a new generator whose type is specified by type. When Dist is deleted, it must
delete the generator too.

2.11.2 Precondition

• type has to be a correct label.

EOSimulator Developer Manual

 - 21 -

Chapter 3 - References

[1] O’Keefe, R [1989] “Simulation modeling with Pascal” ISBN 0-13-811571-0.

[2] Law, A [1991] “Simulation Modeling & Analysis” ISBN 0-07-100803-9

[3] DesmoJ: A Framework for Discrete-Event Modeling and Simulation
http://www.desmoj.de/

[4] EOSimulator Programmer’s Manual

[5] EOSimulator User Manual

[6] Standard Template Library Programmer's Guide http://www.sgi.com/tech/stl/

