EOSimulator:
Event Oriented Simulator

User Manual v1.01

Facultad de Ingenieria
Universidad de la Reptblica
June 2005

EoSimulator User Manual

Preface

For many years the Departamento de Investigacioerddipa of Facultad de
Ingenieria has been using Pascal Birthe courses of Discrete Event Simulation. This
department was looking for new simulation softwas@ich had common features with
Pascal_Sim and a more modern design. It has to library that support event
scheduling world view with event method or threeagdh approach. For that purpose,
EoSimulator was created.

EoSimulator is inspired in two different simulatidibraries: Pascal _Sim and
Desmo3. Those libraries were selected because they sufigoevent scheduling world
view. EoSimulator looks like Pascal_Sim with a miadudesign that reminds DesmoJ
architecture. It is a hybrid between both librari€sere are some features that are not
implemented in EoSimulator like antithetic streamntities engaged in many activities.
This was done on purpose in order to ask studenisglement some of them.

EoSimulator was design and implemented by Seba&taggia under supervision of
Ing. Maria Urquhart and Ing. Antonio Mauttone.

This is a user manual, not an introductory texsystem simulations. It is assumed
that those concepts have been already acquirddebstadent. See references [1] and [2].
The student also has to have some basic knowledgbject oriented systems and in
C++ programming language.

Acknowledgments
Many people have provided help with the developnoéthis library:
» Javier Cohenar for supplying code of random nungleeerators.

e Bruno Martinez and Fernando Pardo for helping whith implementation of
the library.

* Maria Urquhart and Antonio Mauttone for guiding fr®ject.

Notation

Class’s and operation’s names are shown intyipsface

! Pascal_Sim: Discrete event simulation package [1].

2 DesmoJ: Simulation framework created by the University of biagn— Department of Computer
Science. See [3].

EoSimulator User Manual

Index
Chapter 1 - Getting SLArted........ccooereririeieeeeere e 4
1.1 General DESCIIPLIONcoccieeceeiie e ste et esr e sre e sreeete e reesreesneesnnes 4
1.2 1Nstalling EOSIMUIBLOLc.ceiveeeeecie ettt 4
1.2.1 Using EoSIimulator LIDIaryooo et 4
1.2.2 Compiling the SOUICE CORo 5
Chapter 2 - Modeling in EOSIMUIALOTcoocieiiriiiieseeesee e 6
P20 A 1 o1 oo [F ot o o ISP 6
2.2 MOUE BUITTING ...ttt 6
P2 1Y o To 1= OO OP PP PPPRPPP 6
2.2.2 BEVENE...coii ittt e 7
2.2.3 CEVENL ... e 7
S o1 1) Y/ PSSR 8
2.2.5 ENTIEYCOIMP 1ttt ettt ettt e e sttt e e e e e skttt e e e s saee e e e e s st bee e e e e e s anbbeeeeeeeane 8
2.3 COlECLIONS. ...ttt b et st n s 8
B I B T o1 1§ Lo L= 9
AN B L= N 0] = ot o =S 9
Chapter 3 - Simulation in EOSIMUIALONccoceeiieieceesecce e 10
G300 I 1 1 oo 11X A T o PP 10
3.2 RUNNING @ SIMUIBLTON ..o et e e reereenree s 10
3.2.1 MAKING ONE FUMN ittt et e ettt e ettt e e sttt e e e s aabn e e e e s s nbb et e e e e s annnnneeee s 10
3.2.2 MaKing MUILIPIE TUNSeeiiiiiiiie e e e e 10
GGl o] PSPPSRI 11
R T A =1 o I =1 (] £ OO PP O PP PPPPPOTPRPTOPRPT 11
3.3.2 COlIECHION EFTOIS .. .eiiiiitiieeiieee e s sttt ettt e sit e e st e e st e s smneesbre e e s snneeesnreeean 11
TR TR B 1 01 1) Y0 =1 (o) £ PPEUERRRRRR 12
3.3.4 EXPEIIMENT EFTOIS ..uutiiiiiiiiiiieieeeeeeeeeee ittt e e e e e e e e e e e e e e e s e e s sa s s nnnnneeneeeeeaaaaaeaeaeenaeas 12
TR ST o 115 0T [r= Lo = o) £ U 12
GG J G 1Y oo [T I = (o T PR PPRPPUPRPPPRIN 12
Chapter 4 - FULUIe EXTENSIONS........coiieieeeerie et eee e see e aeeneesreeneens 14
Chapter 5 - REFEIENCES ..ot et ee s 15

EoSimulator User Manual

Chapter 1 - Getting Started

1.1 General Description

EoSimulator is a discrete event simulation libraryated for educational purposes. It
is based in event scheduling world view and suppa&tent method (two phase
executive) and three phase approach (three phasetese).

EoSimulator is implemented in C++. It has a modaerhitecture divided in four
modules:Core, Dist , Statics andUtils . Each of these modules encapsulates a
specific part of the library.

The Core module contains both the system modeling clasedstl@de simulator’'s
engine. This module separates system modeling froming simulation using classes
such asModel andExperiment . It's intended that the programmer first build adeal
and then simulates it as he pleases.

The Dist module contains pseudo-random number generatatsdestributions.
Like every simulation library, EoSimulator contairsome of the most common
distributions (normal, log normal, negative expdr@h and one random number
generator. It also provides the user with simpleerfaces in order to add more
distributions and generators.

The Statics module contains output data collectors. EoSimulembplements two
kinds of collectors, time series histograms anetweighted histograms.

The Utils module has the collections defined by the librarye library provides
the programmer with built-in containers. Its inte¢ is quite standard and easy to
understand.

In the rest of this manual, we will explain hownmdel a system, use of containers,
use of distributions, use of data collector and howrun a simulation. Finally, we
describe some of the improvements that could be dofoSimulator and references.

1.2 Installing EoSimulator

There are two ways to install EoSimulator: using ¢bmpiled library or compile the
source code. EoSimulator has been compiled suctdlgsgfith g++ in Windows and
Linux.

1.2.1 Using EoSimulator Library

Use the library to compile your programs. Add tbkofving flags:
* —I< EoSimulator_Library_path>/include
* -L< EoSimulator_Library_ path>/lib

e -leosim

EoSimulator User Manual

1.2.2 Compiling the source code

EoSimulator’s code is open, so you can compileitrgelf. There are two installers,
one for Windows and other for Linux, but they aegywmuch alike.

To install EoSimulator you have to modify the malleefFill in correctly the fields:
* CXXINCS: Default includes of C++ arstd includes.
* BUILD: The path where you are going to install Bo8iator Library.

Then execute the install batch file (install.shLinux or install.bat in Windows)
adding the path where EoSimulator will be installed

* shinstall.sh <EoSimulator_Library path> (Linux),
* install <EoSimulator_Library_path> (Windows).

Note: To compile the source code successfully, make thaethemake andg++
command is set in the environment variables.

EoSimulator User Manual

Chapter 2 - Modeling in EoSimulator

2.1 Introduction

As we said above, EoSimulator is divided in fourdues:Core , Dist , Statics
andUtils . In order to build a simulation, you have to impent subclasses of Core’s
abstract classes. Those abstract classe®Madel , BEvent , CEvent , Entity and
EntityComp (if needed). You may use collections definedUiils , pseudo-random
number generators or distributions fr@ist or output data collector froftatics

2.2 Model Building

This is a main activity in the process of simulgten system. EoSimulator provides
the user with five abstract classes that have toldreved properly to build a specific
system. For most models you have to implement:

* one subclass d¥lodel

* one subclass @dEvent for each bounded event in your system,

» one subclass dEvent for each conditional event in your system if yoa a
using three phase approach,

* one subclass d@ntity for each kind of entity in your system

e as manyentityComp subclasses as priority queues your system have.

Although, there are some implementation issues {thatmust pay attention while
modeling your system with EoSimulator, otherwisevdn’t run properly or it won’t run
at all. If you don't follow these instructions atrgl to execute a simulation, it might abort
displaying an error message.

2.2.1 Model

Model is an abstract class which represents a modékeo$ystem that we are going
to simulate. It contains attributes such as bouradeticonditional events, global entities,
waiting queues, arrival distributions, service migttions and output data collectors. This
class is responsible of:

e containing and registering every attribute,

» defining the initial state of the system,

* give access to those attributes which are requioedooth bounded and
conditional events.

As we said aboveModel is an abstract class. So, to create a specificemodk
have to implement a subclassMbdel . To do that we must declare every attribute and
implement four methods: a constructor, a destruiiecause EoSimulator is written in
C++),init anddolnitialSchedules

Attributes such as events (bounded or conditiomig}ributions, containers and data
collector have to be created, stored and deletethbymodel. The library just keeps
references to those attributes and doesn’'t deleyeoh them. Besides, these attributes
could be created either statically or dynamicdfgr global entities see section 2.2.4.

-6 -

EoSimulator User Manual

Then, we have to give a methodinit . In this operation we must create (if we
haven't done it yet) and register every attribuseng the register operations defined in
Model . If you don’t register an attribute, it won't wogkoperly. For more information,
see [4].

Finally, dolnitialSchedules defines the system initial state. Here you
schedule the first entities to the correspondingnided events. To schedule an entity use
the operatiorschedule with the entity, the time when it is schedule {caded by a
time offset) and the name of the event. The lastmater is very important, it is the key
used by the model to find the right event. On metuhe entity is inside the calendar,
pointing to theBEvent that it was scheduled and with the time when thengeis going
to happened.

2.2.2 BEvent

BEvent is an abstract class which represents a boundent dévat is relevant to a
systemBEvents are stateless objects; they must not have anpwtrthat change over
a simulation. They are just treated as a sampt®dé which is executed by the entities.
Remember thaBEvents areModel 's attributes.

Like in Model , to create a subclassBEvent you must implement three methods:
a constructor, a destructor aggentRoutine

Every BEvent has aname and belongs to #Model. name is very important
because it is the key used blpdel to schedule an entity. Besid&vents have the
attribute owner (whose static type idModel) to have access to its model. These
parameters appear BEvent constructor and it must be called at the construat any
subclass. It could be a good idea to keep all namasseparate header file in order to
make fewer mistakes scheduling entities.

eventRoutine is the main operation of this class. It definesrg\action taken in
that particular point in timeBEvents acts over one specific entity, and may change the
state of the model. If one event creates an erfotigw the rules decrypted in section
2.2.4.

2.2.3 CEvent

CEvent is an abstract class which represents a conditev@nt that is relevant to a
systemCEvents are stateless objects aMiddel s attributes as well.

To create a subclass GEvent you must implement three methods: a constructor, a
destructor anceventRoutine . CEvents are very much aliké8Events , the only
difference is thaBEvents occur at a certain time to a certain group oftesti But,
CEvents occur when its model meets certain conditions fghesources availability.
That's why BEvent::eventRoutine is applied to an entity and
CEvent::eventRoutine is applied to its model.

All CEvents belong to aModel . Like BEvents , they have the attributewner
(whose static type idModel) to have access to its model. This parameter appea
CEvent constructor and it must be called at the construatt any subclass

EoSimulator User Manual

eventRoutine defines every action taken in this particular poin time.
CEvents acts over many unspecific entities, and may chdhgestate of the model. If
one event creates an entity, follow the rules deexy in section 2.2.4.

2.2.4 Entity

Entity is a class that represents objects or componentheosystem whose
activities are modeled. EoSimulator provides a five entity which has both a
BEvent and a time stamp that indicates the entity’s laminded event, thelock .
Those are private members and have restricted a¢ses [4]). If your model needs a
more specific entity, just implement a new subclass

There’'s a particular issue when it comes to estiti€hey must be created
dynamically and the user is not supposed to deleten. Why? Because when a
simulation ends, every entity is scheduled or wgitin a queue, so they are in an
EoSimulator’s container. Entity containers havenfarss to its elements, in order to avoid
copies. When their destructor is called, it desreyery entity stored. This policy is
imposed by EoSimulator but it must be controlledtbg user. For more information
about containers, see section 2.3.

2.2.5 EntityComp

EntityComp is the only EoSimulator's abstract class thatssduoptionally. Its
main operation iscompare , which compare two entities and is abstract. These
comparators are user defined classes. There am teseorder queues. For more
information, see [4] and section 2.3.

2.3 Collections

EoSimulator implements a number of collections #rat used in the simulator and
can be used by the programmer to model his systéese collections are based in C++
STL containers (C++ Standard Template Library) Wwhga standard supported by every
C++ compiler. But this fact is transparent for thgser. EoSimulator collections are
located in thaJtils module.

Collections in EoSimulator offer an easy interfacel some error control. Although
there are some differences between them, theigulasivery similar. These containers
are typed; you can’t putBEvent in anEntityQueue . And they store pointers to the
contained objects, to avoid copies.

Another common feature is the access methods. étainers provide random
access to its elements. They are indexed byptan(CEventVector, DistVector
andEntityQueue) or by a key BEventMap). For example:

Entity* ent = queue|[5];
BEvent* bev = map[‘llegada’];

gets the 5° element in the EntityQueue queue d&fvant whose name is “llegada”
from a BEventMap. Also you can remove elementsitayng the proper type of index. In

EoSimulator User Manual

case of indexing outside the container, EoSimulatonediately aborts displaying an
error message.

All containers are created empty and ready to lngewhen it comes to destructors
things are a little bit complicated. As we said \aomost model attributes could be
created statically or dynamically but is responibbf the user to delete them. On the
other hand, entities must be created dynamicalld &wSimulator deletes them.
EntityQueue and its subclasses delete every pointer they,dbeuse they assumed
that all entities are created dynamicallgEventVector, DistVector and
BEventMap don’t make any assumptions so the programmer tekasye. For more
information about container see [4].

2.4 Distributions

Pseudo-random number generators and distributiay @lcritical roll in computer
simulations. Good generators ensure randomnesseéptwuns. So every simulation
library must provide these facilities. EoSimulatmplements some of the most common
distributions and provides one generator, butésigh allows more than one generator.

EoSimulator has no fixed number of streams. Wherstibution is created, a new
generator of user defined type is assigned to he generator’s type is defined by a
GenType label GenType is declared together with th&umberGenerator
interface). The generator is a Distribution’s ptévattribute.

To get a sampled value from a distribution, invoke operatiorsample on any
Distribution’s subclass LogNormalDist, NegexpDist, NormalDist,
PoissonDist or UniformDist). You can also change the generator’s seed with
the operatiorsetSeed . EoSimulator doesn’t support antithetic streams, ibcan be
easily implemented. For more information see [4].

2.5 Data Collectors

Another important part of simulation software istmu data collectors. They are
used to collect data from simulation’s output pagtars. Later, these data are analyzed
statistically. The data collectors provided by Eo@ator are histogramgimeSeries
andTimeWeighted)

Histograms register the evolution of an output peaer in a run: for example queue
lengths over time. A histogram only records x’sued in an interval |, which is divided
in subintervals whose length is less or equal th&o they must be created with a four
parameters: the interval | defined by a lower boand an upper bound, the length I, and
a name. This data collector also calculates thenmralue and the standard deviation of
the collected data.

Histograms must be registered before used, likecdingr model attribute. Data are
collected using the operatidng . Histograms can be printed also. There are maryg wa
of printing them: the operatioprint() prints the histogram in the standard output
print(path) prints it in the file whose path gath , table() prints a table with
the values stored in the histogram in the standatput, andable(path) prints it in
a file.

EoSimulator User Manual

Chapter 3 - Simulation in EoSimulator

3.1 Introduction

At the moment we have only studied how to make rhadystem with EoSimulator.
In this section we will learn how to simulate a rabdsing the facilities provided by the
library. Besides, we will describe the errors detddy EoSimulator.

3.2 Running a simulation

The process of simulate models is not as triviat appears. It is very important to
design set of runs varying seeds in those strea®d by the model. Otherwise all the
experimentation done with the model will not betistecally valid. Remember, one
simulation run is not enough to draw any conclusiabout a system.

Luckily, EoSimulator makes this running procesgtkelbit easy. Théxperiment
class handles the execution of a simulation. It&@ios a calendar, an executive and the
streams.

3.2.1 Making one run

To run a simulation you have to write a programthiis program, create an instance
of your system model and an experiment. Then cdntieam with the operation
Model::connectToExp . In that operation, the model is initialized (witie
operation Model::init) and connected to the experiment. Then use
Experiment::run to run the simulation. This operation makes thigainschedules in
the model odel::dolnitialSchedules) and simulates the model.

After the simulation is finished, print the histagrs (the output data) and the
program ends.

3.2.2 Making multiple runs

As we said above, one run is not enough to dravelosions. So in order to make
more runs, after the simulation is finished, cremtaew model and experiment. Then
connect them and set a new seed in the experinggmg Experiment:.setSeed
This operation change the seed of every regististdbution in the model, and it let you
have a different run (the default seed is 251182pally, run the simulation
(Experiment::run).

But why we didn’t keep the old experiment and m@d&hother possibility may be
keep them, set a new seed and simulate again.igpisssible becaudexperiment
doesn’t reset the simulation time. Check if theeysyou are modeling let you do that.

We could create a new model and connect it theegfteriment. But, in the old
experiment there may be some entities which aredidbd to arrive or to leave the
system. If an entity is schedule to leave, it metym some units of bins causing errors in
the output or even aborts the simulation. If we enaknew experiment and connect it
with an old model, the queues of the model will &flentities. In this case the model has
already started (and if it can reach steady stat@py be stable. But, the clocks of the

-10 -

EoSimulator User Manual

entities waiting in a queue have not been updasaithey still contain older values and
cause errors collecting waiting times.

3.3 Errors

EoSimulator control some common errors during etecuusing assertions. When
an assertion occurs, EoSimulator aborts the simulatisplaying an error message. This
message shows where assertion occurs, in whiclarideoperation. In the next sections
we are going to give advice about what to do wlemeserrors occur.

3.3.1 Bin Errors

1 Bin::Bin : An error in the constructor of a bin only occwuisen the initial quantity
of the bin is negative.

2 Renewable::Renewable : This error occurs when the initial quantity oéthin is
negative or greater than max. If quantity is negatthe error message shown is the
error of Bin’s constructor.

3 Renewable::returnBin : This error occurs when the units of bin that are
returned overcome the max capacity of the bin. €heeents that manipulate
renewable bins.

4 Bin:acquiere - This error occurs when you try to acquire morésutinan those
which are available. Before invoking this operatiameck the availability with
Bin::isAvailable

5 NonRenewable::addBin : This error occurs when you try to add negativésun
the bin, which means taking units. LBi&::acquiere instead.

3.3.2 Collection Errors

1 operator[] : These errors occur while iterating over a coitectit could happen
because you have indexed outside the bounces afoltextion EntityQueues
CEventVector or DistVector) or with an unregistered keyBEventMap).
Check those methods which iterate over the cotiaiditype that matches the error.

2 EntityQueue::pop : These errors occur while getting the first eletridra queue
and removing it. The error occurs when the queuampty. Another error which is
common (and doesn’t abort the simulation) is when gop elements from ordered
gueues. The order is only preserved by the compapatssed in the constructor of
the queue. If the elements don’t follow the ordeu ymeed, check the comparator. See

[4].
3 BEventMap::put : These errors occur when you register BEvents with the

same name. Check that BEEvents have different names. See the suggestions given
in section 2.2.2. Also check if you are registefdteyents only once in &1odel .

% The new experiment will start with time zero.

-11 -

EoSimulator User Manual

remove : These errors occur while removing elements froooléection. The causes
of that are exactly the same described in the dooftthis section (bounces errors).

3.3.3 Entity Errors

setBEvent : This error occurs when a niBEvent* is assigned to an Entity. This
operation is used by EoSimulator and is involved thwi
Model::registerBEvent . So it is an uncommon error, unless you invoke it,
which is not recommendable.

3.3.4 Experiment Errors
run : This error occurs when the experiment is not eated to a model.

setModel : This error occurs when a nlModel* is assigned to the experiment.
This operation is used by EoSimulator and is ingdlv with
Model::connectToExp . So itis an uncommon error, unless you invokelitich

is not recommendable.

setSeed : This error occurs when the experiment is not ected to a model.

registerDist , registerCEvent . This error occurs when the experiment is
not connected to a model. This operation is useBd&imulator and is involved with
registration of attributes. So it is an uncommormerunless you invoke it, which is
not recommendable.

3.3.5 Histogram Errors

Histogram::Histogram : This error occurs if the main interval is badlfided
(lower is greater then upper) or if the lengthhaf subintervals is negative.

log : This error occurs when you try to log data to an-negistered histogram.
Histograms have to be registered before used.

setModel : This error occurs when a niMMlodel* is assigned to the histogram or it
is already registered to another model. This operas used by EoSimulator and is
involved withModel::registerHistogram

printH : This error occurs if you try to print an emptystogram. Although this
operation is private, it is invoked by bagihnt() andprint(const char*)

printT : This error occurs if you try to print an the wldf an empty histogram.
Although this operation is private, it is invokedy bboth table() and
table(const char*)

getMaxX, getMinX , getMaxY, getMinY , getVariance , getMean,
getName: These errors occur if you try to get one of theakies from an empty
histogram.

3.3.6 Model Errors

connectToExp : This error occurs when a niixperiment* is assigned to the
experiment. If you are going to run multiple timesnodel and an experiment (you

-12 -

EoSimulator User Manual

don’t create new ones) connect them only once. Réme that this operation
invokes Model::init so if you connect a model with more than one erpant
some error may occur while registering attributesause some of them are register
in the model an others in the experiment.

2 registerBEvent : registerCEvent , registerDist ,
registerHistogram : These errors occur mainly if the model is notremied to
an experiment. But if the model is connected, satieer errors may abort the
simulation, se®EventMap::put andHistogram::setModel . They also may
occur if you register a model to more than one arpnt.

3 schedule : This error occurs when either a nhlitity* is given, the time offset
is negative or the model is not connected to areexynt. Although all of this
paramenters may be right, if there aren’'t any BEwshose name is what , a
BEventMap::operatorf] error will occur.

4 getSimTime : This errors occur when the model is not connettexh experiment.

-13 -

EoSimulator User Manual

Chapter 4 - Future extensions

Although it has some interesting features, EoSitoulgs a very basic simulation
library. Some features like antithetic streams areslule entities to multiple events are
not supported by EoSimulator. Those extensiondedireéo future designers or students.
Here we mention some of them:

Support the antithetic variables method for vargareduction;
Incorporate more pseudo-random number generators;
Incorporate more distributions;

Support schedule entities to multiple events;

Give some visual output interface;

Give a more optimized calendar;

And any other extension needed.

-14 -

EoSimulator User Manual

Chapter 5 - References
[1] O’Keefe, R [1989] “Simulation modeling with Pascé$BN 0-13-811571-0.
[2] Law, A [1991] “Simulation Modeling & Analysis” ISBN-07-100803-9

[3] DesmoJ: A Framework for Discrete-Event Modeling an8imulation
http://www.desmoj.de/

[4] EoSimulator Programmer’s Manual

-15 -

