EOSimulator:
Event Oriented Simulator

Developer Manual v1.01

Facultad de Ingenieria
Universidad de la Reptblica
June 2005

EOSimulator Developer Manual

Preface

For many years the Departamento de Investigacioerddipa of Facultad de
Ingenieria has been using Pascal Birthe courses of Discrete Event Simulation. This
department was looking for new simulation softwas@ich had common features with
Pascal_Sim and a more modern design. It has to library that support event
scheduling world view with event method or threeagdh approach. For that purpose,
EOSimulator was created.

EOSimulator is inspired in two different simulatidibraries: Pascal _Sim and
Desmo3. Those libraries were selected because they sufigoevent scheduling world
view. EOSimulator looks like Pascal_Sim with a miadwesign that reminds DesmoJ
architecture. It is a hybrid between both librari€sere are some features that are not
implemented in EOSimulator like antithetic streams entities engaged in many
activities. This was done on purpose in order fostisdents to implement some of them.

EOSimulator was design and implemented by Sebasfidggia under supervision
of Ing. Maria Urquhart and Ing. Antonio Mauttone.

It is assumed that the developer has already amfjwioncepts in simulations and
object oriented programming in C++. See referefit$2] and [6].

Acknowledgments
Many people have provided help with the developnoéthis library:
» Javier Cohenar for supplying code of random nungleeerators.

e Bruno Martinez and Fernando Pardo for helping whith implementation of
the library.

* Maria Urquhart and Antonio Mauttone for guiding fr®ject.

Notation

Class’s and operation’s names are shown intthsef ace.

! Pascal_Sim: Discrete event simulation package [1].

2 DesmoJ: Simulation framework created by the University afnburg — Department of Computer
Science. See [3].

EOSimulator Developer Manual

Index
Chapter 1 - StatiC ArChitECIUIE........ooeiieeeeeeeeeee e 4
Y = Yo o o o a1 = ot] = SRR 4
L2 COr@MOUUIR ... ettt sttt ens 5
1.2.1 DeSigN RESIICHONS.cciiiiiiii ittt ettt e e e et e e e e e e e e s s nnannbbbbeeeeeeeeeeas 6
1.2.2 Implementation RESIICHONS. ettt e e e e e e e e 6
RGN I T 1Y o T | S 7
1.3.1 DeSIgN RESIICHONS.ccceiieiiie e i e oo oo e e e e e e s et ee e e e e e e e eeeeeessnnnnnneennnnenneeeeees 7
1.3.2 Implementation Restrictions
1.4 SEALICS M OAUIE ..ottt 8
T 1 T K=Y o LS 9
1.5.1 Implementation RESIIICHONS.............. oo e e et e e e e e e e e e e e s e e e e e e e e e s e e s e eaannnns 9
Chapter 2 - Collaborations...........coeereriiieereeeee e 10
P28 A 1 o1 oo [F ot A o o [OOSR 10
A2\ oo 1= B ola T = o o o TP 10
2.3MOde:: regitEr BEVENT.......ccci et ettt nre e 11
A R\ oo 1= B = e £ = O < o | P 12
2.5 MOOE] T EQISTEI DISE ...t 13
2.6 Model::register HistOgram ..ot 14
2.7 EXPEriMENt:iSELSEOAccue ettt et nn 15
2.8 EXPEITMENTIITUN .ottt sttt b b e e e 16
2.9 MOAE: 1 SCREAUIE. ...t 18
2.10 BiNS Collabor @tions..........coouiieiierie ettt 19
2.11 Distribution CONSLIUCTOTc.ceueeiiiieriirierierie et 20
Chapter 3 - REFEIENCESc.coieeeree e 21

EOSimulator Developer Manual

Chapter 1 - Static Architecture

1.1 Macro Architecture

EOSimulator is a discrete event simulation librargated for educational purposes.
It is based in event scheduling world view and sufsp event method (two phase
executive) and three phase approach (three phasetese).

EOSimulator is implemented in C++. It has a modalathitecture divided in four
modules:Cor e, Di st, Statics andUti | s. Each of these modules encapsulates a
specific part of the library.

core B } dist
|
|
N | |
I | |
| | |
I | |
| | |
I | |
| | |
I | |
| | |
I | |
Wi | '
|
|
statics i util

Figure 1-1:EOQSimulator Macro Architecture

The Cor e module contains both the system modeling clasedstl@de simulator’'s
engine. This module separates system modeling froming simulation using classes
such asvbdel andExperi nment. It's intended that the programmer first build adal
and then simulates it as he pleases.

The Di st module contains pseudo-random number generatatsdestributions.
EOSimulator contains some of the most common Udisions (normal, log normal,
negative exponential) and one random number gemerdit also designed to be
extensible: distributions and generators can biyestded.

TheSt at i ¢s module contains output data collectors. EOSimuliabplements two
kinds of collectors, time series histograms anc: twmeighted histograms.

The Ut i | s module has the collections defined by the librarye library provides
the programmer with built-in containers. Its intex¢ is quite standard and easy to
understand.

1.2 Core Module

dist::DistManager|

EOSimulator Developer Manual

1

1 0.1

Experiment

Frunning : bool
FactualTime @ double

+runiin time : double)

+schedule(in imeCifset | double, in who : Entity)
+registerDist(in d © Distribution)

+salhModel(in M : Model)

+registerCEvent{in cev | CEvent)
+oetSimTime() : double

+setSeed(in seed : long)

aghstracts aabstracts
dist:: Distribution statics::Histogram
0.1 1
aabsiracs
Model
+init) wabstracts
+alolnilial Schedules)) I Bin

+connectToExp(in exp @ Experiment)
+registerBEvent{in & | BEvent)
+registerCEvent(in e : CEvent)

+setExp(in exp | Experiment)
+registerDist{in d : Distribution)
+registerHistogramyin h - Histogram)

+schedule(in imeOffset - double, in who : Entity, in what : string)

~ouantity : double

+acquirein amount : double)

+getCuantity() - double

+isfvailable{in amount : doubla) : bool

+getSimTime() : double
1
1
0.1 1
1
CCalendar “ibslmn‘?:” Renewable NonRenewable
ve -max : doubla
+registerCEvent(in cev | CEvent, " HreturnBin(in amount : double] T— &
*cF?hase(} : 1 +evantRoutine() *geiMax[}t; double) raddBin(in amount : double]
BCalendar
FsimTime : double Entity
lend : double 0.1 . - . 0.1 «abstracts
Fohock : doubla BEvent
+hbPhase() B * atril
+isStopped|() : baol HgetTime(} : double [name : string
rschedule(in tmeOffset : double, in who : Entity) ‘processEvent(} - +eventRouting(in who | Entity)
+endTime(in when : double) setBEvent{in what | BEvent))

+oetSimTime() : double

wabsiracts
EntityComp

+comparafin e @ Entify. in 2 : Enfity) bool)

Figure 1-2:The Core Module

The main responsibility of this module is to defie simulator engine and system
modeling classes.

The engine main class Exper i ment . Its responsibility is to run simulations. For
that it contains two calendars: bounded event dale@Cal endar) and a conditional
event calendar ({Cal endar); and a pseudo-random stream manager
(di st:: D st Manager). BCal endar manages simulation time and entities which
are schedule to BEvent , while CCal endar contains all registere@Event s and
tries to execute them every time beat. Findllyst Manager manages the streams of
every distribution registered.

System modeling classes abstract classes which thalbe user-defined. They are
Model , CEvent, BEvent, Entity andEntityConp (in some cases). For more
information see [4] and [5].

EOSimulator Developer Manual

1.2.1 Design Restrictions
» Entities are either scheduled for a BEvent (cominn BCalendar) or
waiting in a queue.

» The relation between Model and Bins, CEvents, [higtions and
Histograms is through attributes: Model has ongbaittie for each of them.
BEvents are attributes too, but they are storeddanllection in the Model.

1.2.2 Implementation Restrictions

* Entities have to be created dynamically. BEventsnsBi CEvents,
Distributions and Histograms could be created dyoalhy or statically but
they must be attributes of a subclass of Model.rirare information see [5].

EOSimulator Developer Manual

1.3 Dist Module

wsingletons
NumberGeneratorFactory

+maka(in lype : GenTypa) : NumberGenerator

wanumarations
GenType

1

ore::Experiment

0.1

0.1

MersenneTwister LinearCongruential ShuffleOutput]
winterfaces
NumbarGenarator
+satSeed(in seed : long)
+nextDouble() : double 1
+nextLong() : long
1
0.1
DistManager
+satSead(in seed | long) 1
+ragisterDist{in d : Distribution))
1
0.1
aghsiracts
Distribution
+setSeed(in seed : long)
+sample() ; double
Mormal LogMormal Exponencial Poisson Cauchy

Figure 1-3:The Dist Module

1

«abstracts
core::Model

In this module we have encapsulated pseudo-randemergtors and distribution
sampling. All distributions are subclassesDofst ri buti on, an abstract class which
defines the behavior of every distribution in EOSlator. Every distribution has a
pseudo-random number generator, defined by thefaceNunber Gener at or .

Finally Nunber Gener at or Fact ory createsNunber Gener at or s according
to the correspondin@enType label. This design allows the user to define bogthv
generators and distribution.

1.3.1 Design Restrictions

To add new generators, GenType has to be modifigdgga new label for
the generator. AlsoNunber Gener at or Fact ory: : make has to be
modified to accept the new label.

1.3.2 Implementation Restrictions

Distributions are responsible for deletes their egyators when they are

deleted.

EOSimulator Developer Manual

1.4 Statics Module

aabsiracts
Histogram

el ; std:vector= double =
Hower | double

Fupper @ double

Lwidth @ double

-count | double

Hotal | double

-e0sn - double

i double

Lrnaxx | double

-minY : double

Fmaxy ; double

-oantCall - int

Hname © siring * 1

Fmodel : Model wabsiracts
LorintH() - string coreModel
-orintT() : string

Flogiin x - double, in v : double)
+rasetl)

+sethvodel{in M - Model)
+print()

+print(in path : const char™)
+abla{)

+table{in path : const char*)
+gethaxX() . double
+gethinX() : double
+oetMany() ; double
+oathin() : double
+getvariance() - double
+gethMean() | double
+getMame() : sting

TimeSeries TimeWeighted
[asiTimeUsed ; double|
+Hogiin x - double, iny @ double) +Hog(in x : double)

Figure 1-4.The Statics Module

The data output is stored in the Statics’s clasBes.clasdHi st ogr amdefines the
behavior of every histogram in EOSimulatdr.neSeri es andTi neWei ght ed are
both subclasses of Histogram whose operationsrditfey little from their parent class.
These classes are particularly simple and colldabovaly with Model, in order to be
registered and don’t present any particular resins.

EOSimulator Developer Manual

1.5 Utils Module
CEventVector BEventMap DistVector
Lalems | std:vactor<CEvant= Lelems | atd: mapr<BEvent= Lelems @ std:vector<Distribution=
Hpushiin elem : CEvent) Hput(in elem : BEvant) +pushiin elem : Distribution)
Fremove(in i ;- unsigned int) Fremove(in key : string) +remove(in i - unsigned int)
+emply() ; bool +empty() | bool +empty(] © bool
+size() | unsigned int +size() | unsigned int +aize() : unsigned int
sinterfaces
EntityQueue
+pushiin ent | Entity)
+pop() @ Entity
+removedin i ; unsigned int)
+empty() - bool
+5ize() : unsigned int
I
I
r—--—=-=-="-=-"=-"="-""=-—"=-—"="=== _l_ ______________ =
| | |
| I |
EntityQueueFifo EntityQueueLifo e
i = " C = . Feomp @ EntityComp
elems : std::deque<Entity= elems @ std::deque<Entity= | slems * sid:deque-<Entily>

Figure 1-5:The Utils Module

The Utils Module contains the collections used @3mulator. They are based on
C++ standard containers/dct or, deque and map). The collections defined are
basically wrappers; they hide the use of theseatoeits from the user. Because these

containers support random access, EOSimulatoratigiies also support random access
with oper at or [] efficiently.

1.5.1 Implementation Restrictions

o Although EntityQueueOrdered::;pop is O(1) due to :dahue
implementation, the insertion algorithm is O(n).

» The operation given by EntityQueue relies on tHeiehcy of the C++::std
containers used. Changing the container may sppesome EntityQueue
operations and delay others. The implementatioergig very efficient for

iterating in every queue and inserting forward &adkward, but not in the
middle.

EOSimulator Developer Manual

Chapter 2 - Collaborations

2.1 Introduction

In this section we show the more important collalions in EOSimulator. For each
one we show a diagram, a brief description andptieeonditions of the collaboration.
The preconditions apply to the complete operatibis; mean the operation itself and the
operations it unleash, so they could be checkedare than one class. Preconditions are
checked with the assert function which aborts ttogram if the condition fails.

2.2 Model::connectToExp

1: satExplexpExperiment)—

3 initp—m
connect ToExplaxp: Expariment) —e 2! setModaliM:Maodel)—»
'ﬁhiﬂdc;r sp . Expariment
1: madel = M—#

2 setSeed(251182: long)—w

selbodel{M: Model)—e

laxp Expersiment
Figure 2-1:Model::connectToExp Collaboration Diagram

2.2.1 Description

This collaboration describes how a model and areexyent are connected. Notice
that the abstract operatidvbdel : : i ni t () is called in order to register the model's
attributes. Wherexp setsMas his Model, it assigrib1182 as a default seed.

2.2.2 Precondition

* exp has to be a valid instance, this means not null.

-10 -

EOSimulator Developer Manual

2.3 Model::registerBEvent

registerBEvent{bEv: BEvent)—s 1: put{bEv:BEvent, bEv getMombre|) string)—m

agbstracto
W : Model beEvents

Figure 2-22Model::registerBEvent Collaboration Diagram

2.3.1 Description

This operation registers a BEvent in its model. Tdomtainerbevents is an
instance oBEvent Map. To inserte into bevent s, bevent s takes e’s name and use

it as a key.

2.3.2 Precondition

» Mhas to be previously connected to an experimewptrder to complete the
operation.

 The name obEv has to be different from any other BEvent regexiein
bevents.

-11 -

EOSimulator Developer Manual

2.4 Model::registerCEvent

registerCEvent{e:CEvent)—s 2 registerCEvent{cev:CEvent) —»
;j'hsr::gdcgr exp : Expariment
registerCEventicev:CEvent)—» 1: registerCEvent(cev: CEvent) —»
.) |] - |
ng - E:-cgerlmentl ccal - CCalendar
registerCEvent{cev: CEvent)—w 1: add|cev)—»
ccal - CCalendar L
e — cevenis

Figure 2-3:Model::registerCEvent Collaboration Diagram

2.4.1 Description

This collaboration shows howGEvent is register in a model. Notice thdtdoesn’t
keep any reference ®, because it doesn’t need it. CEvents are finatlyesl inexp’s
CCal endar . CCalendar is the only class which contains allvé&fs because its
responsibility is to iterate over them after evBrghase.

2.4.2 Precondition

* Mhas to be connected to an experiment.

-12 -

EOSimulator Developer Manual

2.5 Model::registerDist

registerDist(d-Distribution) —w

M- ocel e

registerDisi{d: Distribution j—e

I - hodel
registerDist(d:Distribution) —e 1: reqisterDist(d:Distribution) —e
Exé: Exéarlmant Idlsﬂv'lan - dist:: Disthdanager
registerDist—e 1: seedi=naxtLong()—»
| et 0§ | winterfacen
I:!Isth-'lan clist:: Disthian | seadGen : dist:MumberGenerator
=}
-]
0
m
*I

wabstracts
d : dist::Distribution

—
dists

Figure 2-4:Model::registerDist Collaboration Diagram

2.5.1 Description

This collaboration shows how @i stri buti on is register in a model. Like in
CEvent,Mdoesn’'t keep any referencedp because it doesn’t need it. All Distributions
are finally stored irexp’s Di st Manager CCal endar who initialized them with a new
seed taken from seedGen. DistManager contains iglriflution to provide a more

centralized stream management.

2.5.2 Precondition
Mhas to be previously connected to an experiment.

-13 -

EOSimulator Developer Manual

2.6 Model::registerHistogram

registerHistogram(H:Histogram) —e 1: sethiodel(M:Modeal)—e
wabstracts wabstracts»
M : Model H - stalicsHistogram

Figure 2-5:Model::registerHistogram Collaboration Diagram

2.6.1 Description

This collaboration shows howH st ogr amis register in a model. Like in CEvent,
Mdoesn’t keep any referenceHiponly H has a reference id.

2.6.2 Precondition

* Mhas to be previously connected to an experiment.

-14 -

EOSimulator Developer Manual
2.7 Experiment::setSeed

setSeed(seed long)—e 1: setSeed(seed:long)—e

o i T

setSead{sead:long)—w 2% d = next{)—w

=
i

o
dm : DisiManager

=nextDoublel)

+— 1 setSeedizeedlong)
43" ns:

winterfaces wabstracts
seedGen : MumberSenearator d : Distribution

setSeediseed:long)—e 1: setSeed(seed:long)—»
xabstracts aintarfaces
d : Distribution i MumberGenarator

Figure 2-6:Experiment::setSeed Collaboration Diagram

2.7.1 Description

This diagram shows the process of changing a ned seevery Distribution and
stream (which are the same). As we s callsdm : set Seed() and it changes the
seeds in every stream, usisgedGen andseed.

2.7.2 Precondition

* exp has to be connected to a model.

- 15 -

EOSimulator Developer Manual

2.8 Experiment::run

20 running = true—m
5" [stop]: unning == false—s

3 endTime(time:double)—»
4" [running]: stop:=isStopped{)—»
run(ime:double) —s E* [running &% !stop): bPhase()—»

¢ : BCalendar

4 [simTime == end] end

T
I

i
3 simTime = tim—

ccal - CCalendar

10 & = first{)—»
5 [simTime < and]: ramovaie) —e
§* [simTime < end && hasFirsti]]: & = first{)j—w Ph — 1* [hasMext(}]: ce = [—
bPhase()—» 9* [simTime < end && tim == simTime]: removele) cPhase() hasNexi()); ce := nex
wabstracts
ents cavents
%
"u
Wabstracts
ge CRvent

2: slop = (simTima > end) || e—»

stop:=isStopped()— 1! & = isEmpty{}—»

c ' BCalsndar]

m
=
=

Figure 2-7:Experiment::run Collaboration Diagram

2.8.1 Description

This diagram shows how a simulation is run in EQS8ator. First
M : dol ni ti al Schedul es is called in order to start the model. Then the &me is
stored and the simulation starts. The main loopsisbrin checking if the simulation is
finished BCal endar: :i sSt opped), then the A phase and B phase are executed
(BCal endar : : bPhase) and finally the C phase is executed
(CCal endar : : cPhase).

In BCal endar : : bPhase the first entity in the queue is removed the satiah
actual time is advanced up to the entity clock.nTaeery entity whose clock is equal to
the actual simulation time is processedt(i t y: : pr ocessEvent).

-16 -

EOSimulator Developer Manual
In CCal endar::cPhase every CEvent registered is executed
(CEvent : : event Rout i ne).
Finally in BCal endar : : i sSt opped the actual simulation time is compared to
the end time and the queue of scheduled entitiyaslked to be empty.
2.8.2 Precondition
* exp has to be connected kb.

« time has to be greater or equal to the simulation &ctime®
(BCal endar: : get Si mli ne).

¥ Remember that you could use an experiment which is cath&zimodel and used before. See [4]
and [5]

-17 -

EOSimulator Developer Manual

2.9 Model::schedule

schedule{timeOffset:double, whoEntity, what:string)— 1: b = find(what)—»
wabsiracts wabstracts
M Madel bEv
=
E
w < s
[=]
%
£ %
- _ql'-
£ 28
3 ‘e
= {)'\‘
Q
=
o
5]
£
)
=
=
o
1
[E)
]
‘I
schedule(timeCffset:double, who Entity)—e 1: schedule(timeOffset:double, whoEntity)—e
iexp ;. Experiment ¢ BCalendar
schedule(timeCfisat:double, whoEntity)= 1: schadule(timeOffsat+imTime, who)—
¢ : BCalendar ents

 —

Figure 2-8:Model::schedule Collaboration Diagram

2.9.1 Description
To schedule the entityho given a time offsedf f set and a BEvent’s namghat ,
Mfetches the BEvent whose namemMsat , assigns it tavho and finally passesho to
exp. Thenexp passesho toc which schedules who correctly accordingfd set .
2.9.2 Precondition
* Mhas to be connected to an experiment.
* Mhas to have a BEvent whose nametiat andof f set has to be positive.

» of fset has to be positive.

-18 -

EOSimulator Developer Manual

2.10 Bins Collaborations

acguirelamount:double) —s

if amount == cuantity
—————— cuantity = cuantity - amount
else (throw error)

«abstracts
b Bin

a=izfvailablejamount:doubla)—w

eabstracte | _ _ _ _ return cuantity - amount = 0

returnBirfamount: double) —e if amount + cuantity == max

= ({throw errar)
b : Renewable alse cuantity = cuantity + amount

addBin{amount: double) —

Inrh : MonRenewable|— — — — — — cuantity = cuantity + amount

Figure 2-9:Bins Collaboration Diagram

2.10.1 Description

Here we describe all bins collaboration. As you sae these collaborations are very
simple and they are complete described in the dragr

2.10.2 Precondition

Preconditions are explained in the notes.

-19 -

EOSimulator Developer Manual

2.11 Distribution Constructor

2 genarator= gen—e

create(type:GenType)—» 1: gen:=make(type:GenType|—»

wabstracts usinglatans
Dist : Distrbution nf : NumberGeneratorFactory

Figure 2-10Distribution creation Collaboration Diagram

2.11.1 Description

The constructor of a Distribution calls theinber Gener at or Fact ory in order
to get a new generator whose type is specifiedypg.tWhenDi st is deleted, it must
delete the generator too.

2.11.2 Precondition

* type hasto be a correct label.

-20 -

EOSimulator Developer Manual

Chapter 3 - References
[1] O’Keefe, R [1989] “Simulation modeling with Pascé$BN 0-13-811571-0.
[2] Law, A [1991] “Simulation Modeling & Analysis” ISBN-07-100803-9

[3] DesmoJ: A Framework for Discrete-Event Modeling an8imulation
http://www.desmoj.de/

[4] EOSimulator Programmer’s Manual
[5] EOSimulator User Manual
[6] Standard Template Library Programmer's Guntdp://www.sgi.com/tech/stl/

-21-

