
EOSimulator:
Event Oriented Simulator

User Manual v1.01

Facultad de Ingenieria
Universidad de la República

June 2005

EoSimulator User Manual

 - 2 -

Preface

For many years the Departamento de Investigación Operativa of Facultad de
Ingenieria has been using Pascal_Sim1in the courses of Discrete Event Simulation. This
department was looking for new simulation software which had common features with
Pascal_Sim and a more modern design. It has to be a library that support event
scheduling world view with event method or three phase approach. For that purpose,
EoSimulator was created.

EoSimulator is inspired in two different simulation libraries: Pascal_Sim and
DesmoJ2. Those libraries were selected because they support the event scheduling world
view. EoSimulator looks like Pascal_Sim with a modular design that reminds DesmoJ
architecture. It is a hybrid between both libraries. There are some features that are not
implemented in EoSimulator like antithetic streams or entities engaged in many activities.
This was done on purpose in order to ask students to implement some of them.

EoSimulator was design and implemented by Sebastián Alaggia under supervision of
Ing. Maria Urquhart and Ing. Antonio Mauttone.

This is a user manual, not an introductory text in system simulations. It is assumed
that those concepts have been already acquired by the student. See references [1] and [2].
The student also has to have some basic knowledge in object oriented systems and in
C++ programming language.

Acknowledgments

Many people have provided help with the development of this library:

• Javier Cohenar for supplying code of random number generators.

• Bruno Martínez and Fernando Pardo for helping with the implementation of
the library.

• Maria Urquhart and Antonio Mauttone for guiding the project.

Notation

Class’s and operation’s names are shown in this typeface .

1 Pascal_Sim: Discrete event simulation package [1].
2 DesmoJ: Simulation framework created by the University of Hamburg – Department of Computer

Science. See [3].

EoSimulator User Manual

 - 3 -

Index

Chapter 1 - Getting Started... 4

1.1 General Description .. 4

1.2 Installing EoSimulator.. 4

1.2.1 Using EoSimulator Library ... 4

1.2.2 Compiling the source code .. 5

Chapter 2 - Modeling in EoSimulator ... 6

2.1 Introduction ... 6

2.2 Model Building .. 6

2.2.1 Model .. 6

2.2.2 BEvent... 7

2.2.3 CEvent... 7

2.2.4 Entity ... 8

2.2.5 EntityComp ... 8

2.3 Collections .. 8

2.4 Distributions .. 9

2.5 Data Collectors .. 9

Chapter 3 - Simulation in EoSimulator ... 10

3.1 Introduction ... 10

3.2 Running a simulation .. 10

3.2.1 Making one run ... 10

3.2.2 Making multiple runs .. 10

3.3 Errors ... 11

3.3.1 Bin Errors .. 11

3.3.2 Collection Errors ... 11

3.3.3 Entity Errors .. 12

3.3.4 Experiment Errors ... 12

3.3.5 Histogram Errors ... 12

3.3.6 Model Errors.. 12

Chapter 4 - Future extensions.. 14

Chapter 5 - References ... 15

EoSimulator User Manual

 - 4 -

Chapter 1 - Getting Started

1.1 General Description

EoSimulator is a discrete event simulation library created for educational purposes. It
is based in event scheduling world view and supports event method (two phase
executive) and three phase approach (three phase executive).

EoSimulator is implemented in C++. It has a modular architecture divided in four
modules: Core , Dist , Statics and Utils . Each of these modules encapsulates a
specific part of the library.

The Core module contains both the system modeling classes and the simulator’s
engine. This module separates system modeling from running simulation using classes
such as Model and Experiment . It’s intended that the programmer first build a model
and then simulates it as he pleases.

The Dist module contains pseudo-random number generators and distributions.
Like every simulation library, EoSimulator contains some of the most common
distributions (normal, log normal, negative exponential) and one random number
generator. It also provides the user with simple interfaces in order to add more
distributions and generators.

The Statics module contains output data collectors. EoSimulator implements two
kinds of collectors, time series histograms and time weighted histograms.

The Utils module has the collections defined by the library. The library provides
the programmer with built-in containers. Its interface is quite standard and easy to
understand.

In the rest of this manual, we will explain how to model a system, use of containers,
use of distributions, use of data collector and how to run a simulation. Finally, we
describe some of the improvements that could be done to EoSimulator and references.

1.2 Installing EoSimulator

There are two ways to install EoSimulator: using the compiled library or compile the
source code. EoSimulator has been compiled successfully with g++ in Windows and
Linux.

1.2.1 Using EoSimulator Library

Use the library to compile your programs. Add the following flags:

• –I< EoSimulator_Library_path>/include

• -L< EoSimulator_Library_path>/lib

• -leosim

EoSimulator User Manual

 - 5 -

1.2.2 Compiling the source code

EoSimulator’s code is open, so you can compile it yourself. There are two installers,
one for Windows and other for Linux, but they are very much alike.

To install EoSimulator you have to modify the makefile. Fill in correctly the fields:

• CXXINCS: Default includes of C++ and std includes.

• BUILD: The path where you are going to install EoSimulator Library.

Then execute the install batch file (install.sh in Linux or install.bat in Windows)
adding the path where EoSimulator will be installed:

• sh install.sh <EoSimulator_Library_path> (Linux),

• install <EoSimulator_Library_path> (Windows).

Note: To compile the source code successfully, make sure that the make and g++
command is set in the environment variables.

EoSimulator User Manual

 - 6 -

Chapter 2 - Modeling in EoSimulator

2.1 Introduction

As we said above, EoSimulator is divided in four modules: Core , Dist , Statics
and Utils . In order to build a simulation, you have to implement subclasses of Core’s
abstract classes. Those abstract classes are Model , BEvent , CEvent , Entity and
EntityComp (if needed). You may use collections defined in Utils , pseudo-random
number generators or distributions from Dist or output data collector from Statics .

2.2 Model Building

This is a main activity in the process of simulating a system. EoSimulator provides
the user with five abstract classes that have to be derived properly to build a specific
system. For most models you have to implement:

• one subclass of Model ,
• one subclass of BEvent for each bounded event in your system,
• one subclass of CEvent for each conditional event in your system if you are

using three phase approach,
• one subclass of Entity for each kind of entity in your system
• as many EntityComp subclasses as priority queues your system have.

Although, there are some implementation issues that you must pay attention while
modeling your system with EoSimulator, otherwise it won’t run properly or it won’t run
at all. If you don’t follow these instructions and try to execute a simulation, it might abort
displaying an error message.

2.2.1 Model

Model is an abstract class which represents a model of the system that we are going
to simulate. It contains attributes such as bounded and conditional events, global entities,
waiting queues, arrival distributions, service distributions and output data collectors. This
class is responsible of:

• containing and registering every attribute,
• defining the initial state of the system,
• give access to those attributes which are required for both bounded and

conditional events.

As we said above, Model is an abstract class. So, to create a specific model, we
have to implement a subclass of Model . To do that we must declare every attribute and
implement four methods: a constructor, a destructor (because EoSimulator is written in
C++), init and doInitialSchedules .

Attributes such as events (bounded or conditional), distributions, containers and data
collector have to be created, stored and deleted by the model. The library just keeps
references to those attributes and doesn’t delete any of them. Besides, these attributes
could be created either statically or dynamically. For global entities see section 2.2.4.

EoSimulator User Manual

 - 7 -

Then, we have to give a method to init . In this operation we must create (if we
haven’t done it yet) and register every attribute using the register operations defined in
Model . If you don’t register an attribute, it won’t work properly. For more information,
see [4].

Finally, doInitialSchedules defines the system initial state. Here you
schedule the first entities to the corresponding bounded events. To schedule an entity use
the operation schedule with the entity, the time when it is schedule (indicated by a
time offset) and the name of the event. The last parameter is very important, it is the key
used by the model to find the right event. On return, the entity is inside the calendar,
pointing to the BEvent that it was scheduled and with the time when the event is going
to happened.

2.2.2 BEvent

BEvent is an abstract class which represents a bounded event that is relevant to a
system. BEvents are stateless objects; they must not have any attribute that change over
a simulation. They are just treated as a sample of code which is executed by the entities.
Remember that BEvents are Model ’s attributes.

Like in Model , to create a subclass of BEvent you must implement three methods:
a constructor, a destructor and eventRoutine .

Every BEvent has a name and belongs to a Model . name is very important
because it is the key used by Model to schedule an entity. Besides, BEvents have the
attribute owner (whose static type is Model) to have access to its model. These
parameters appear in BEvent constructor and it must be called at the constructor of any
subclass. It could be a good idea to keep all names in a separate header file in order to
make fewer mistakes scheduling entities.

eventRoutine is the main operation of this class. It defines every action taken in
that particular point in time. BEvents acts over one specific entity, and may change the
state of the model. If one event creates an entity, follow the rules decrypted in section
2.2.4.

2.2.3 CEvent

CEvent is an abstract class which represents a conditional event that is relevant to a
system. CEvents are stateless objects and Model ’s attributes as well.

To create a subclass of CEvent you must implement three methods: a constructor, a
destructor and eventRoutine . CEvents are very much alike BEvents , the only
difference is that BEvents occur at a certain time to a certain group of entities. But,
CEvents occur when its model meets certain conditions such as resources availability.
That’s why BEvent::eventRoutine is applied to an entity and
CEvent::eventRoutine is applied to its model.

All CEvents belong to a Model . Like BEvents , they have the attribute owner
(whose static type is Model) to have access to its model. This parameter appear in
CEvent constructor and it must be called at the constructor of any subclass

EoSimulator User Manual

 - 8 -

eventRoutine defines every action taken in this particular point in time.
CEvents acts over many unspecific entities, and may change the state of the model. If
one event creates an entity, follow the rules decrypted in section 2.2.4.

2.2.4 Entity

Entity is a class that represents objects or components of the system whose
activities are modeled. EoSimulator provides a primitive entity which has both a
BEvent and a time stamp that indicates the entity’s last bounded event, the clock .
Those are private members and have restricted access (see [4]). If your model needs a
more specific entity, just implement a new subclass.

There’s a particular issue when it comes to entities: They must be created
dynamically and the user is not supposed to delete them. Why? Because when a
simulation ends, every entity is scheduled or waiting in a queue, so they are in an
EoSimulator’s container. Entity containers have pointers to its elements, in order to avoid
copies. When their destructor is called, it destroys every entity stored. This policy is
imposed by EoSimulator but it must be controlled by the user. For more information
about containers, see section 2.3.

2.2.5 EntityComp

EntityComp is the only EoSimulator’s abstract class that is used optionally. Its
main operation is compare , which compare two entities and is abstract. These
comparators are user defined classes. There are used to order queues. For more
information, see [4] and section 2.3.

2.3 Collections

EoSimulator implements a number of collections that are used in the simulator and
can be used by the programmer to model his system. These collections are based in C++
STL containers (C++ Standard Template Library) which is a standard supported by every
C++ compiler. But this fact is transparent for the user. EoSimulator collections are
located in the Utils module.

Collections in EoSimulator offer an easy interface and some error control. Although
there are some differences between them, their design is very similar. These containers
are typed; you can’t put a BEvent in an EntityQueue . And they store pointers to the
contained objects, to avoid copies.

Another common feature is the access methods. All containers provide random
access to its elements. They are indexed by an int (CEventVector, DistVector
and EntityQueue) or by a key (BEventMap). For example:

Entity* ent = queue[5];

BEvent* bev = map[“llegada”];

 gets the 5º element in the EntityQueue queue and a BEvent whose name is “llegada”
from a BEventMap. Also you can remove elements by giving the proper type of index. In

EoSimulator User Manual

 - 9 -

case of indexing outside the container, EoSimulator immediately aborts displaying an
error message.

All containers are created empty and ready to use, but when it comes to destructors
things are a little bit complicated. As we said above, most model attributes could be
created statically or dynamically but is responsibility of the user to delete them. On the
other hand, entities must be created dynamically and EoSimulator deletes them.
EntityQueue and its subclasses delete every pointer they store, because they assumed
that all entities are created dynamically. CEventVector, DistVector and
BEventMap don’t make any assumptions so the programmer takes charge. For more
information about container see [4].

2.4 Distributions

Pseudo-random number generators and distribution play a critical roll in computer
simulations. Good generators ensure randomness between runs. So every simulation
library must provide these facilities. EoSimulator implements some of the most common
distributions and provides one generator, but its design allows more than one generator.

EoSimulator has no fixed number of streams. When a distribution is created, a new
generator of user defined type is assigned to it. The generator’s type is defined by a
GenType label (GenType is declared together with the NumberGenerator
interface). The generator is a Distribution’s private attribute.

To get a sampled value from a distribution, invoke the operation sample on any
Distribution’s subclass (LogNormalDist, NegexpDist, NormalDist,
PoissonDist or UniformDist). You can also change the generator’s seed with
the operation setSeed . EoSimulator doesn’t support antithetic streams, but it can be
easily implemented. For more information see [4].

2.5 Data Collectors

Another important part of simulation software is output data collectors. They are
used to collect data from simulation’s output parameters. Later, these data are analyzed
statistically. The data collectors provided by EoSimulator are histograms (TimeSeries
and TimeWeighted) .

Histograms register the evolution of an output parameter in a run: for example queue
lengths over time. A histogram only records x’s values in an interval I, which is divided
in subintervals whose length is less or equal than l. So they must be created with a four
parameters: the interval I defined by a lower bound and an upper bound, the length l, and
a name. This data collector also calculates the mean value and the standard deviation of
the collected data.

Histograms must be registered before used, like any other model attribute. Data are
collected using the operation log . Histograms can be printed also. There are many ways
of printing them: the operation print() prints the histogram in the standard output
,print(path) prints it in the file whose path is path , table() prints a table with
the values stored in the histogram in the standard output, and table(path) prints it in
a file.

EoSimulator User Manual

 - 10 -

Chapter 3 - Simulation in EoSimulator

3.1 Introduction

At the moment we have only studied how to make model a system with EoSimulator.
In this section we will learn how to simulate a model using the facilities provided by the
library. Besides, we will describe the errors detected by EoSimulator.

3.2 Running a simulation

The process of simulate models is not as trivial as it appears. It is very important to
design set of runs varying seeds in those streams used by the model. Otherwise all the
experimentation done with the model will not be statistically valid. Remember, one
simulation run is not enough to draw any conclusions about a system.

Luckily, EoSimulator makes this running process a little bit easy. The Experiment
class handles the execution of a simulation. It contains a calendar, an executive and the
streams.

3.2.1 Making one run

To run a simulation you have to write a program. In this program, create an instance
of your system model and an experiment. Then connect them with the operation
Model::connectToExp . In that operation, the model is initialized (with the
operation Model::init) and connected to the experiment. Then use
Experiment::run to run the simulation. This operation makes the initial schedules in
the model (Model::doInitialSchedules) and simulates the model.

After the simulation is finished, print the histograms (the output data) and the
program ends.

3.2.2 Making multiple runs

As we said above, one run is not enough to draw conclusions. So in order to make
more runs, after the simulation is finished, create a new model and experiment. Then
connect them and set a new seed in the experiment using Experiment::setSeed .
This operation change the seed of every registered distribution in the model, and it let you
have a different run (the default seed is 251182). Finally, run the simulation
(Experiment::run).

But why we didn’t keep the old experiment and model? Another possibility may be
keep them, set a new seed and simulate again. This is possible because Experiment
doesn’t reset the simulation time. Check if the system you are modeling let you do that.

 We could create a new model and connect it the old experiment. But, in the old
experiment there may be some entities which are scheduled to arrive or to leave the
system. If an entity is schedule to leave, it may return some units of bins causing errors in
the output or even aborts the simulation. If we make a new experiment and connect it
with an old model, the queues of the model will full of entities. In this case the model has
already started (and if it can reach steady state) it may be stable. But, the clocks of the

EoSimulator User Manual

 - 11 -

entities waiting in a queue have not been updated3, so they still contain older values and
cause errors collecting waiting times.

3.3 Errors

EoSimulator control some common errors during execution, using assertions. When
an assertion occurs, EoSimulator aborts the simulation displaying an error message. This
message shows where assertion occurs, in which file and operation. In the next sections
we are going to give advice about what to do when some errors occur.

3.3.1 Bin Errors

1 Bin::Bin : An error in the constructor of a bin only occurs when the initial quantity
of the bin is negative.

2 Renewable::Renewable : This error occurs when the initial quantity of the bin is
negative or greater than max. If quantity is negative, the error message shown is the
error of Bin’s constructor.

3 Renewable::returnBin : This error occurs when the units of bin that are
returned overcome the max capacity of the bin. Check events that manipulate
renewable bins.

4 Bin::acquiere : This error occurs when you try to acquire more units than those
which are available. Before invoking this operation, check the availability with
Bin::isAvailable .

5 NonRenewable::addBin : This error occurs when you try to add negative units
the bin, which means taking units. Use Bin::acquiere instead.

3.3.2 Collection Errors

1 operator[] : These errors occur while iterating over a collection. It could happen
because you have indexed outside the bounces of the collection (EntityQueues ,
CEventVector or DistVector) or with an unregistered key (BEventMap).
Check those methods which iterate over the collection’s type that matches the error.

2 EntityQueue::pop : These errors occur while getting the first element of a queue
and removing it. The error occurs when the queue is empty. Another error which is
common (and doesn’t abort the simulation) is when you pop elements from ordered
queues. The order is only preserved by the comparator passed in the constructor of
the queue. If the elements don’t follow the order you need, check the comparator. See
[4].

3 BEventMap::put : These errors occur when you register two BEvents with the
same name. Check that all BEvents have different names. See the suggestions given
in section 2.2.2. Also check if you are registering BEvents only once in a Model .

3 The new experiment will start with time zero.

EoSimulator User Manual

 - 12 -

4 remove : These errors occur while removing elements from a collection. The causes
of that are exactly the same described in the point 1 of this section (bounces errors).

3.3.3 Entity Errors

1 setBEvent : This error occurs when a null BEvent* is assigned to an Entity. This
operation is used by EoSimulator and is involved with
Model::registerBEvent . So it is an uncommon error, unless you invoke it,
which is not recommendable.

3.3.4 Experiment Errors

1 run : This error occurs when the experiment is not connected to a model.

2 setModel : This error occurs when a null Model* is assigned to the experiment.
This operation is used by EoSimulator and is involved with
Model::connectToExp . So it is an uncommon error, unless you invoke it, which
is not recommendable.

3 setSeed : This error occurs when the experiment is not connected to a model.

4 registerDist , registerCEvent : This error occurs when the experiment is
not connected to a model. This operation is used by EoSimulator and is involved with
registration of attributes. So it is an uncommon error, unless you invoke it, which is
not recommendable.

3.3.5 Histogram Errors

1 Histogram::Histogram : This error occurs if the main interval is badly defined
(lower is greater then upper) or if the length of the subintervals is negative.

2 log : This error occurs when you try to log data to a non-registered histogram.
Histograms have to be registered before used.

3 setModel : This error occurs when a null Model* is assigned to the histogram or it
is already registered to another model. This operation is used by EoSimulator and is
involved with Model::registerHistogram

4 printH : This error occurs if you try to print an empty histogram. Although this
operation is private, it is invoked by both print() and print(const char*) .

5 printT : This error occurs if you try to print an the table of an empty histogram.
Although this operation is private, it is invoked by both table() and
table(const char*) .

6 getMaxX , getMinX , getMaxY , getMinY , getVariance , getMean ,
getName : These errors occur if you try to get one of these values from an empty
histogram.

3.3.6 Model Errors

1 connectToExp : This error occurs when a null Experiment* is assigned to the
experiment. If you are going to run multiple times a model and an experiment (you

EoSimulator User Manual

 - 13 -

don’t create new ones) connect them only once. Remember that this operation
invokes Model::init so if you connect a model with more than one experiment
some error may occur while registering attributes because some of them are register
in the model an others in the experiment.

2 registerBEvent , registerCEvent , registerDist ,
registerHistogram : These errors occur mainly if the model is not connected to
an experiment. But if the model is connected, some other errors may abort the
simulation, see BEventMap::put and Histogram::setModel . They also may
occur if you register a model to more than one experiment.

3 schedule : This error occurs when either a null Entity* is given, the time offset
is negative or the model is not connected to an experiment. Although all of this
paramenters may be right, if there aren’t any BEvent whose name is what_, a
BEventMap::operator[] error will occur.

4 getSimTime : This errors occur when the model is not connected to an experiment.

EoSimulator User Manual

 - 14 -

Chapter 4 - Future extensions

Although it has some interesting features, EoSimulator is a very basic simulation
library. Some features like antithetic streams or schedule entities to multiple events are
not supported by EoSimulator. Those extensions are left to future designers or students.
Here we mention some of them:

• Support the antithetic variables method for variance reduction;

• Incorporate more pseudo-random number generators;

• Incorporate more distributions;

• Support schedule entities to multiple events;

• Give some visual output interface;

• Give a more optimized calendar;

• And any other extension needed.

EoSimulator User Manual

 - 15 -

Chapter 5 - References

[1] O’Keefe, R [1989] “Simulation modeling with Pascal” ISBN 0-13-811571-0.

[2] Law, A [1991] “Simulation Modeling & Analysis” ISBN 0-07-100803-9

[3] DesmoJ: A Framework for Discrete-Event Modeling and Simulation
http://www.desmoj.de/

[4] EoSimulator Programmer’s Manual

