Teoría de Lenguajes Teoría de la Programación I Soluciones

Ejercicio 1

a)

El lenguaje es recursivamente enumerable como vermos en la parte b) al construir una G.I. que lo genera o en c) al construir una M.T. que lo reconoce. Demostraremos que NO es libre de contexto, utilizando el CR del PL (para Libres de Contexto). Para eso elegimos la tira $z=a^{N+1}b^Nc^{N+1}d^{(N+2)}$, siendo N la constante del Pumping Lemma.

Consideramos todas las descomposiciones posibles de la tira z en uvwxy que cumplen |vx|>0 y

 $|vwx| \le N$, y probamos que existe un i tal que uviwxiy no pertenece a L₁

Familia	a ^{N+1}	b ^N	C ^{N+1}	d ^{N+2}
1	V X			
2		V X		
3			V X	
4				V X
5	V	Х		
6		V	X	
7			V	Х
8	V >	(X		
9	\	/V X		
10		V	xx	
11			vv x	
12			V	xx
13	-			VV X

Familia 1

 $u = a^{j}$

 $v = a^k$

 $w = a^{I}$

 $x = a^n$

 $y = a^{N+1-j-k-l-m}b^{N}c^{N+1}d^{N+2} con k+m>0$

Eligiendo i=3, $z_3 = a^{N+1+2(k+m)}b^Nc^{N+1}d^{N+2}$ no pertenece al lenguaje. Porque la cantidad de a_s y b_s queda mayor a la cantidad de c_s y d_s , y eso no sucede para ninguna tira de L_1 .

Familias 2, 5, 8 y 9

En forma análoga a la familia 1, se puede demostrar que eligiendo i=3, z_3 no pertenece al lenguaje por la misma razón.

Familia 3

 $u = a^{N+1}b^Nc^j$

 $v = c^k$

 $w = c^{\scriptscriptstyle I}$

 $x = c^m$

 $y = c^{N+1-j-k-l-m}d^{N+2} con k+m>0$

Eligiendo i=0, $z_0 = a^{N+1}b^Nc^{N+1-(k+m)}d^{N+2}$ no pertenece al lenguaje. Porque la cantidad de c_s y d_s no supera en al menos 2, a la cantidad de a_s y b_s .

Observación: todas la tiras del lenguaje cumplen que la cantidad de a_s y b_s (sumadas) es 2q+p y a cantidad de c_s y d_s (sumadas) es 2r+p, por lo tanto la diferencia es 2r+p-(2q+p)=2(r-q) y como r-q>0 entonces la diferencia entre la

cantidad de c_s y d_s (sumadas) respecto a la cantidad de a_s y b_s (sumadas) tiene que ser al menos 2 o más.

Por eso es importante distingüir el caso 3 de los 1 y 2, puesto que los argumentos son otros.

Familias 4, 7, 12 y 13

En forma análoga a la familia 3, se puede demostrar que eligiendo i=0, z_0 no pertenece al lenguaje, prque la cantidad de c_s y d_s no supera en al menos 2, a la cantidad de a_s y b_s .

Familias 6

```
 \begin{array}{l} u = a^{N+1}b^{j} \\ v = b^{k} \\ w = b^{N \cdot j \cdot k}c^{l} \\ x = c^{m} \\ y = c^{N+1 \cdot l \cdot m}d^{N+2} \ con \ k+m>0 \end{array}
```

suponemos además que k>0 y m>0 sino caigo en algunos de los casos anteriores. Eligiendo i=2, $z_2 = a^{N+1}b^{N+k}c^{N+1+m}d^{N+2}$ no pertenece al lenguaje. Porque la cantidad de b_s es mayor o igual a la cantidad de a_s , y eso no sucede para ninguna tira de L_1 .

Familias 10

Asumo que la x contiene b_s y c_s , sino caigo en algunos de los casos anteriores. En ese caso, eligiendo i=2 genero mezcla de b_s y c_s , lo cual no sucede para ninguna tira del L_1 , por lo tanto z_2 no pertenerce al lenguaje.

Familia 11

En forma análoga a la familia 10, pero asumiendo que y contiene b_s y c_s , eligiendo i=2, se concluye que z_2 no pertence al lenguje porque se generan mezclas de b_s y c_s .

Por lo tanto:

Como estas son todas las descomposiciones posibles de z en uvwxy que cumplen |vx|>0 y

|vwx| ≤N, por el CR del PL el lenguaje **no** es libre de contexto.

b)

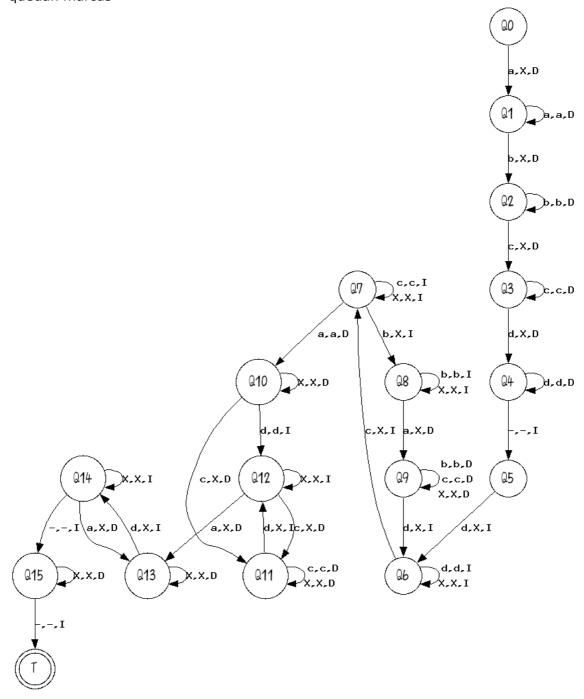
```
S
  -> aSd | aITFd
                       genera: apl Qq Rr F dp
Т
  ->
      QTR | TR | R
  -> Ab
Q
                       genera: d^p I (Ab)^q (cD)^r F d^p
  ->
R
      СD
bA ->
                       mueva las A a la izquierda
      Αb
DC ->
                       mueva las D a la derecha
      СD
                       transforma todas las A en a
      aI
                       y controla que estén antes de la primera b
Ib ->
      b
DF -> Fd
                       transforma todas las D en d
cF -> c
                       y controla que estén después la última c
```

c)

La idea básica del funcionamiento de la MT es:

- 1) ver que estén las a_s , b_s , c_s y d_s en ese orden, y marcar un símbolo de cada letra, dado que 0 < q < r;
- 2) marcar por cada d una a, b y c (esto se debería repetir q $1 = \text{cantidad de b}_s$ -1), pues al inicio ya marcamos una vez;
- 3) para las c_s y d_s que quedan, marcar una c y luego un d (esto se debería repetir rq veces, para garantizar r>q se sale de Q7 luego de haber marcado un d y c);

- 4) para las as y ds que quedan, marcar una a y luego un d (esto se debería repetir p veces, al menos una vez);
- 5) sino encuentro ninguna a más, me muvo a la derecha para verificar que solo quedan marcas



Ejercicio 2

Sea $L_2 = \{ \#w\#w' \ / \ w \in \{0,1\}^* \ donde: \ w = a_1a_2a_3a_4...a_{2n} \ y \ w' = a_{2n-1}a_{2n}...a_3a_4a_1a_2 \ \}$

- a) Clasifique a L₂ según la Jerarquía de Chomsky. Justifique
- b) Construya un autómata $M_2 / L_2 = L(M_2)$
- c) Construya una gramática $G_2 / L_2 = L(G_2)$

a)

El lenguaje es libre de contexto, no regular.

Que es L.C. se demuestra con la construcción del A.P.D. del parte b) o con la construcción de la G.L.C. de la parte c)

Que no es Regular se demuestra usando el contra-recíproco del P.L. para Leng. Reg. Sea $n \in \mathbb{N}$

Elegimos
$$z = \#0^{2n}\#0^{2n} \in L$$
 $y |z| = 4n+2 \ge n$

Estudiamos todas las descomposiciones de z = uvw talque $|uv| \le n$ y $|v| \ge 1$ y trataremos de encontrar un $i \ge 0$ para c/descomposición tal que $uv^iw \notin L$

Familias	#	0 ²ⁿ	#	0 ²ⁿ
1	V	٧		
2		V		

Familia 1

 $u=\epsilon\,$

 $v = #0^{q}$

con $1+q \le n$ y $q \ge 0$

 $w = 0^{2n-q} \# 0^{2n}$

 $z_i = uv^iw = (\#0^q)^i 0^{2n-q}\#0^{2n}$

Eligiendo i=0 se ve que uv⁰w \notin L, porque la tira z₀ no comienza con #

Familia 2

 $u = #0^q$

 $v = 0^p$

con $1+q+p \le n$ y $p \ge 1$

 $w = 0^{2n-q-p} \# 0^{2n}$

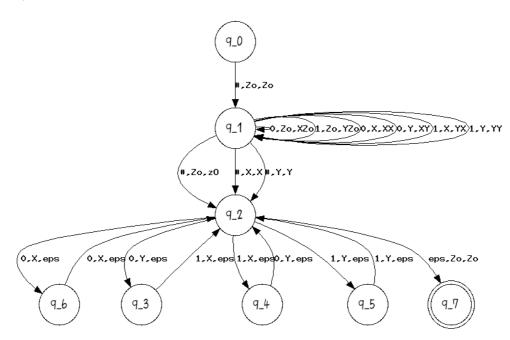
 $z_i = u v^i w = \# 0^q (0^p)^i \ 0^{2n-q-p} \# 0^{2n} = \ \# 0^q \ 0^{pi} \ 0^{2n-q-p} \# 0^{2n} = \ \# 0^{2n+(i-1)p} \# 0^{2n}$

Eligiendo i=0 se ve que $uv^0w \notin L$, porque como $p \ge 1$, la tira z_0 contiene menos 0's del lado izquierdo del 2do # que del lado derecho del 2do #

Por lo tanto:

Como estas son todas las descomposiciones posibles de z en uvw que cumplen |v| > 0 y

|uv| ≤n, por el CR del PL el lenguaje **no** es regular.



c)
$$S \rightarrow \#X$$
 $X \rightarrow 01X01$ | $00X00$ | $10X10$ | $11X11$ | $\#$

Ejercicio 3

- i. Si L_a es libre de contexto y L_b es R.E., entonces L_a.L_b es R.E.
- ii. Si $L_a \cap L_b$ es regular y no vacío y L_b es libre de contexto no regular, entonces L_a es regular.
- iii. Si $L_a \cap L_b$ es regular, $L_a \cap L_c$ es libre de contexto no regular y $L_a \neq L_b$, entonces $L_a \cap L_b \cap L_c$ es regular.

Respuestas:

- i. VERDADERO. Como L_a es libre de contexto, entonces (por Jerarquía de Chomsky) es recursivamente enumerables. Sea $G_a = <T_a, V_a, P_a, S_a>$ la gramática que genera L_a y $G_b = <T_b, V_b, P_b, S_b>$ la gramática que genera L_b y supongamos (sin pérdida de generalidad) que V_a y V_b son disjuntos (si no lo son, pueden renombrarse las variables en las gramáticas). Suponemos también que T_a y T_b son disjuntos (en caso de no serlo, deberían generarse reglas del tipo V_i ->t por cada terminal t y sustituir en las reglas de las gramáticas). La gramática $G = <T_a \cup T_b, V_a \cup V_b, P_a \cup P_b \cup \{S->S_a S_b\}, S>$ genera $L_a.L_b$ y por lo tanto es recursivamente enumerable.
- ii. FALSO. Contraejemplo: $L_b = \{a^nb^n / n \text{ natural}\}\$ que es libre de contexto no regular, y $L_a = \{b^nc^n / n \text{ natural}\}\$.

$$L_a \cap L_b = \{ \epsilon$$

i. } que es regular, pero La no lo es.

iii. FALSO. Contraejemplo: $L_a=\Sigma^*$, $L_b=L(a^*b^*)$, $L_c=\{a^nb^n / n \text{ natural}\}$. La intersección es L_c que no es regular

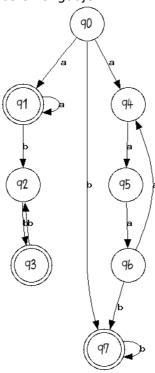
Ejercicio 4 [Teoría de Lenguajes]

Sean los siguientes lenguajes:

$$\begin{array}{l} L_5 = \{ \ a^p \, b^q \, / \, p \ mod \ 3 = 0 \ ; \ 0 < q \ \} \\ L_6 = \{ \ a^q \, b^r \, / \, r \ mod \ 2 = 0 \ ; \ 0 < q \ \} \\ L_4 = L_5 \cup L_6 \end{array}$$

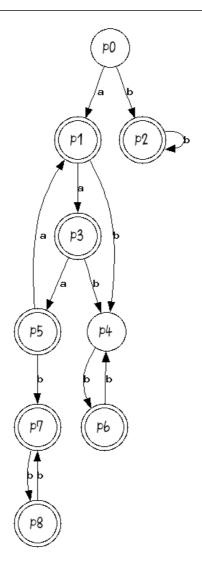
- a) Construya un autómata mínimo M_4 / L_4 = $L(M_4)$
- b) ¿Cuántas clases de equivalencia tiene L4 según RL? Justifique.
- c) Dé una expresión regular $r_4 / L_4 = L(r_4)$. Justifique.
- a)

AF no determinista que reconoce el lenguaje:



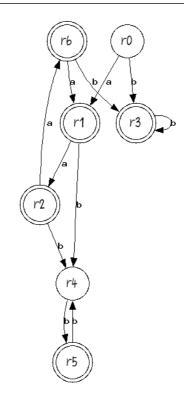
Obtengo autómata determinista:

		а	b	
p0	q0	[q1 q4]	[q7]	
p1	[q1 q4]	[q1 q5]	[q2]	
p2	[q7]		[q7]	
p3	[q1 q5]	[q1 q6]	[q2]	
p4	[q2]		[q3]	
p5	[q1 q6]	[q1 q4]	[q2 q7]	
p6	[q3]		[q2]	
p7	[q2 q7]		[q3 q7]	,
p8	[q3 q7]		[q2 q7]	



Obtengo autómata mínimo:

[p4 p0] [p1 p2 p3 p5 p6 p7 p8] [p4] [p0] [p1 p3 p6] [p2 p5 p7 p8] [p4] [p0] [p1] [p3] [p6] [p5] [p2 p7 p8]



b)

Por el teorema de MyHill-Nerode, las clases de equivalencia del autómata mínimo (R_M) coinciden con las clases de equivalencia de R_L . Dado que el autómata mínimo posee 8 estados (considerando el estado pozo), L_4 posee 8 clases de equivalencia.

c)

Planteo sistema de ecuaciones para obtener las clases de equivalencia de R_M

```
X0 = eps
X1 = X0a \mid X6a
X2 = X1a
X3 = X0b | X3b | X6b
X4 = X2b | X1b | X5b
X5 = X4b
X6 = X2a
XP = X3a | X4a | X5a | XP(a|b)
X1 = a \mid X6a = a \mid X2aa = a \mid X1aaa = a(aaa)*
X2 = a(aaa)*a
X6 = a(aaa)*aa
X3 = b \mid X3b \mid a(aaa)*aab = (b|a(aaa)*aab)b*
X4 = a(aaa)*ab | a(aaa)*b | X4bb = (a(aaa)*ab | a(aaa)*b)(bb)*
X5 = (a(aaa)*ab | a(aaa)*b)(bb)*b
XP = ((b|a(aaa)*aab)b*a | (a(aaa)*ab | a(aaa)*b)(bb)*a | (a(aaa)*ab | a(aaa)*b)
(bb)*ba)(a|b)*
```

La expresión regular del lenguaje se obtiene a partir de la unión de las expresiones regulares de los estados finales del autómata mínimo:

X1 | X2 | X3 | X5 | X6

Ejercicio 4 [Teoría de la Programación 1]

i. **f no es computable**. Supongamos que f es una función computable; luego, existe un programa en P que la computa. Sea MP una macro que lo hace.

Se construye una macro MQ que dado un índice de programa i y un natural n, calcula el índice del siguiente programa:

```
PROGRAM(X0)

X1:= EVAL_PROG(i,n);

X2:= SUC(0);

RESULT(X0)
```

(*)Observar que es condición necesaria y suficiente para que este programa asigna a X_2 el valor 1, que el programa de índice i con entrada j converja, sin importar la entrada dada al programa en sí.

Ahora, construimos el siguiente programa en P de índice p:

```
PROGRAM(<i,n>)

X1:= MQ(<i,n>);

X2:= MF(<X1,0,2,1>);

RESULT(X2)
```

Este programa siempre para, pues MF y MQ siempre lo hacen (f es total). Además se cumple que:

```
<I_x(p), <i,n>> \Rightarrow 1 \Leftrightarrow^1 MF(<MQ(<i,n>),0,2,1>)=1 \Leftrightarrow^2 MQ(<i,n>) con entrada 0 asigna a <math>X_2 el valor 1 \Leftrightarrow^3 <Ix(i),n> \downarrow \Leftrightarrow^4 STOP(i,n)=1
```

- 1. Por construcción de p.
- 2. Definición de la función f.
- 3. Por lo expresado en (*).
- 4. Definición de la función STOP.

Luego, el programa de índice p computa a la función STOP, lo que es un absurdo que se desprende de suponer que f es computable \Rightarrow f no es computable.

ii. **g no es computable**. Supongamos que g es una función computable; luego, existe una macro MG en P que la computa.

Sea MQ la macro de la parte anterior. Construimos el siguiente programa en P de índice p:

```
PROGRAM(X0)

X1:= MQ(<X0,X0>);

X2:= MG(<X1,0,2,1>);

RESULT(X2)
```

Este programa cumple que:

```
<I_x(p), i>\downarrow \Leftrightarrow^1 MF(<MQ(<i,i>),0,2,1>)\downarrow \Leftrightarrow^2 MQ(<i,i>) con entrada 0 no asigna a <math>X_2 el valor 1 \Leftrightarrow^3 <Ix(i),i>\uparrow \Leftrightarrow^4 i\in C(K)
```

1. Por construcción de p.

Soluciones

- 2. Definición de la función f.
- 3. Por lo expresado en (*) en la parte anterior.
- 4. Definición de C(K).

Cuando el programa de índice p converge, devuelve 1; luego, este programa computa a la función característica parcial de C(K), de donde C(K) es un conjunto r.e. Esto es un absurdo que se desprende de suponer que g es computable \Rightarrow g no es computable.