Teoría de la Programación I

Consideraciones generales

- i) Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primera hoja indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Ejercicio 1 [14 puntos]

Sea $L_1 = \{ w \# w' / w \in \{0,1\}^* y w' \text{ surge de cambiar exactamente un símbolo de } w \}$

- a) Clasifique a L₁ según la Jerarquía de Chomsky. Justifique
- b) Construya un autómata $M_1 / L_1 = L(M_1)$
- c) Construya una gramática $G_1 / L_1 = L(G_1)$

Ejercicio 2 [8 puntos]

Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique adecuadamente.

- a) Si L_1 no es regular y $L_1 \cup L_2$ es regular, entonces L_2 es regular.
- b) Si L_1 no es regular y $L_1 \cup L_2$ es regular, entonces L_2 **no** es finito.
- c) L_1 es un lenguaje R.E. y no L.C., L_2 es finito pero no vacío, entonces $L_1 \cap L_2$ es libre de contexto pero no regular.
- d) L_1 es un lenguaje R.E. y no L.C. L_2 es un lenguaje regular. Luego, que L_1 U L_2 sea regular implica que $L_1 \subset L_2$.

Ejercicio 3 [6 puntos]

- a) Construya un autómata de dos cintas que acepte al lenguaje $\{(ab^nc^m, b^{2n}ac^pa) / \mathbf{0} \le \mathbf{p} < \mathbf{m}, n \ge 0\}$.
- b) Construya una máquina de Mealy donde:
 - el alfabeto de las tiras de entrada es {a,b}
 - el alfabeto del las tiras de salida es {0,1,#}
 - para la entrada w₁w₂...w_n devuelva la salida d₁#d₂#...d_n#

donde
$$\mathbf{w}_i = b^{m_i} a^{k_i}$$
 y $\mathbf{d}_i = m_i \mod 2$ con m_i , $k_i > 0$

Ejemplos:

- i. bbaabbbaaaaabbaaaaabababa -> 0#1#0#1#1#1#
- ii. **b**aa**b**a**b**ab**b**bab**b**aaa -> 1#1#1#0#0#

Ejercicio 4 (Teoría) [10 puntos]

Considere a los tres siguientes conjuntos de naturales:

$$A = \{ n / \phi_n(n) = n \}$$

$$B = \{ n / \phi_n \neq Id_N \}$$

$$C = \{ n / \phi_n = Id_N \}$$

¿Son las siguientes afirmaciones verdaderas o falsas? Justifique.

- i. A es un conjunto decidible.
- ii. B es un conjunto r.e.
- iii. C es un conjunto decidible.

Ejercicio 5 [2 puntos]

- i. Defina al problema SAT.
- ii. Enuncie al Teorema de Cook.