Duración: 4hs.

Teoría de la Programación I

Consideraciones generales

- i) Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primera hoja indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Ejercicio 1 [14 puntos]

Sea $L_1 = \{ w \in \{a, b, c\}^*, |w|_a = 2|w|_b - |w|_c \}$

- a) Clasifique a L₁ según la Jerarquía de Chomsky.
- b) Construya una gramática $G_1/L_1=L(G_1)$. ¿Está simplificada? Justifique.
- c) Construya un autómata $M_1/L_1=L(M_1)$. ¿Es determinista? Justifique.
- d) Sea $L_2=L_1\cap L(abca*b*c*)$. Aplicando propiedades, ¿puede demostrar que L_2 es Libre de Contexto? Justifique.

Ejercicio 2 [7 puntos]

Sea $L_2 = \{ w \mid w \text{ es de la forma } xy\#z, \text{ donde } x,y,z \in \{0,1\}^*, |x|=|y|>0 \text{ y z es el OR bit a bit de x con y } \}$

Ejemplo de tiras 0101#01

10#1

000001#001

Construya una gramática $G_2/L_2 = L(G_2)$.

Ejercicio 3 [8 puntos]

Indique si las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso.

a) Se define la operación DEL que, si L es un lenguaje cualquiera y **a** un símbolo del alfabeto de L, DEL(L,a) es el lenguaje resultante de eliminar **a** de todas las tiras de L.

Los lenguajes libres de contexto son cerrados bajo la operación DEL.

- b) Si L_b no es regular, DEL(L_b,a) no es regular.
- c) Sea L_c un lenguaje regular. Sea L_s el lenguaje resultante de eliminar el primer y último símbolo de todas las tiras del lenguaje L_c . Entonces L_s es regular.
- d) Sea L_d un lenguaje para el cual existe una gramática libre de contexto G_d / L_d = $L(G_d)$. Entonces existe una máquina de Turing M_d / L_d = $L(M_d)$.

Ejercicio 4 [4 puntos]

Construya un Autómata Finito Determinista de dos cintas que acepte la relación: $\{<(a(bc)^k)^p, ((cb)^ka)^p > / p, k>0 \}$

Ejercicio 5 [8 puntos]

Sean los siguientes conjuntos:

 $A = \{\langle i,m \rangle / \exists n, lx(i,n) \downarrow en a los sumo m pasos\}$

 $B = \{\langle i,m \rangle / \forall n, lx(i,n) \downarrow en al menos m pasos \}$

Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique.

- i. A no es r.e.
- ii. B no es r.e.
- iii. B No es decidible