Teoría de Lenguajes

Consideraciones generales

- Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primera hoja indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Sean los lenguajes:

```
\begin{array}{l} L_1 = \{ \; x \, / \, x \; \in \; \{a,b,c\}^* \; y \; \; 0 < |x|_c < |x|_b < |x|_a \; \} \\ L_2 = \{ \; x \, / \; x \; \in \; \{a,b\}^* \; \; y \; \; 0 < |x|_b < |x|_a \; \} \\ L_3 = \{ \; x \, / \; x \; \in \; \{a,b,c\}^* \; \; y \; \; |x|_c > 0 \; , \; |x|_b \; par \; , \; |x|_a \; impar \; \} \end{array}
```

Ejercicio 1 [8 puntos]

Clasifique L_1 , L_2 y L_3 según la Jerarquía de Chomsky.

Ejercicio 2 [11 puntos]

Construya gramáticas G_1 / L_1 = L(G_1), G_2 / L_2 = L(G_2) y G_3 / L_3 = L(G_3), de acuerdo al tipo de lenguaje.

Ejercicio 3 [15 puntos]

Construya autómatas $M_1 / L_1 = L(M_1)$, $M_2 / L_2 = L(M_2)$ y $M_3 / L_3 = L(M_3)$, de acuerdo al tipo de lenguaje y explique para cada uno si es determinista o no. Justifique en cada caso.

Ejercicio 4 [6 puntos]

- a) Construya un Autómata Finito Determinista de dos cintas que acepte la relación: $\{ < b^{2p}a^{2k+1}, ab^pa^{2k}b > / p, k > 0 \}$
- b) Indique si las siguientes afirmaciones son Verdaderas o Falsas. Justifique.
- i) Sean L_1 libre de contexto y L_2 regular, entonces $L_3 = L_1 \cap L_2$ es libre de contexto.
- ii) Sean L_4 y L_5 finitos definidos sobre el mismo alfabeto Σ , entonces $L_6 = L_4{}^c \cap L_5{}^c$ es finito.
- iii) Sea L_8 recursivamente enumerable no libre de contexto, entonces $\exists \ L_7$ y L_9 libres de contexto tal que $L_7 \subset L_8 \subset L_9$
- iv) { $(aba)^n / n>0$ } \cap { $a^n / n>0$ } = { $(aa)^n / n>0$ }