Teoría de Lenguajes

Consideraciones generales

- i) Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primera hoja indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Ejercicio 1 [7 puntos]

Indique si las siguientes afirmaciones son verdaderas o falsas, justificando en cada

- a) Sean L₁ Recursivamente Enumerable no Libre de Contexto y L₂ Regular. Entonces $L_1 \cup L_2$ es Recursivamente Enumerable no Libre de Contexto
- b) Sean L₃ no Regular y L₃ ∪ L₄ Regular. Entonces L₄ no es Regular
- c) Sean L_5 Libre de Contexto y L_6 Recursivamente Enumerable. Entonces L_5 . L_6 es Recursivamente Enumerable
- d) Sean L_7 el lenguaje de las tiras definidas sobre el alfabeto $\{0,1\}$ que terminan en 1 y un autómata finito determinista M tal que $L_7=L(M)$.

Entonces se cumple que 001 R_M 01, siendo R_M la relación definida en el curso.

Ejercicio 2 [14 puntos]

Sean

```
L_a = \{ \#xy \ / \ con \ x,y \in \{0,1\}^* \ |x|_0 = |y|_0 \}
L_b = \{ \#x \#y \ / \ \text{con} \ x,y \in \{0,1\}^* \ |x|_0 = |y|_0 \ , |x|_1 + |y|_1 \ \text{impar} \}
```

- a) Clasifique La y Lb según la Jerarquía de Chomsky.
- b) Construya gramáticas $G_a y G_b$ simplificadas / $L_a = L(G_a) y L_b = L(G_b)$.
- c) Construya autómatas M_a y M_b / L_a = $L(M_a)$ y L_b = $L(M_b)$. ¿Son deterministas? Justifique.

Ejercicio 3 [14 puntos]

```
L_3 = \{ ww^r # w^r / con w \in \{0,1\}^* \}
```

- a) Construya una gramática $G_3/L_3 = L(G_3)$.
- b) Construya un autómata M_3 / L_3 = $L(M_3)$.¿Es determinista? Justifique.

Ejercicio 4 [5 puntos]

a) Construya un Autómata Finito Determinista de dos cintas que acepte la relación: $\{\langle x\#, y\# \rangle \mid x \in \{a,b\}^*, y \in \{1,2\}^*\}$

Por cada par de símbolos consecutivos iguales en x, viene un 2 en y. Si fueran alternadas (a's y b's) o la cantidad es impar, viene un 1. Los símbolos se cuentan una sola vez.

<aabbab#, 2211#> Son ejemplos de pares válidos:

<ababbbaaaa#, 1112122#> <bbbbabbaaa#, 221221#> <aaa#,21#>

b) Construya un Autómata con Salida que reciba secuencias de a's y b's (como la 🗴 de la parte a) terminadas en # y devuelva secuencias de 1's y 2's con la misma restricción que el autómata de dos cintas de la parte a)

Ejemplos de tiras y sus salidas: aabbab# → 2211

> ababbbaaaa# → 1112122 bbbbabbaaa# → 221221 aaa# → 21