Teoría de Lenguajes

1er. Parcial - Curso 2017

Consideraciones generales

- i) Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primera hoja, indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Ejercicio 1 [Evaluación individual del laboratorio]

Asumiendo que se ejecutó:

```
import re s = "This document is an introductory\ntutorial to using regular expressions\nin Python with the re module."
```

a) Indicar cuál es la salida si se ejecuta:

```
###
m = p.search(s)
if m:
   print(m.group())
else:
   print('No match')
```

sustituyendo ### por:

b) Indicar cuál es la salida si se ejecuta:

```
###
print( p.findall(s) )
```

sustituyendo ### por:

Ejercicio 2 [14 puntos]

Sean los siguientes lenguajes:

 $\begin{array}{l} L_{a} = \{ \ 0^{p}1^{j}2^{t} \ ; \ p > 0 \ j \ge t \ge 0 \ \} \\ L_{b} = \{ \ 0^{p}1^{j}2^{t} \ ; \ p > 0 \ j, t \ge 0 \ \} \\ L_{c} = L_{b}{}^{c} \\ L_{d} = L_{a} \cup L_{b} \end{array}$

- a) Las siguientes afirmaciones son Verdaderas o Falsas. Justifique en cada caso.
- i) La es regular
- ii) L_c es regular
- iii) L_d es regular
- iv) L_a tiene más clases de equivalencia que L_b , según la relación R_L presentada en el curso
- b) Construya Autómatas Finitos para reconocer aquellos lenguajes que sean regulares.

Ejercicio 3 [14 puntos]

Sea L_3 el lenguaje reconocido por el siguiente autómata finito $M_3 = \{Q, \Sigma, \delta, q_0, F\}$ donde:

$$Q = \{q_0, q_1, q_2, q_3\}$$
 $\Sigma = \{a,b\}$ $F = \{q_1\}$

y la δ dada por:

	а	b	ε
\mathbf{q}_{o}	{}	{q₃}	$\{q_1\}$
q ₁	{}	{}	{q ₂ }
q ₂	$\{q_1\}$	{q ₂ }	{}
q₃	{}	{q₃}	{q₀}

- a) Defina la relación R_L para un lenguaje L cualquiera
- b) Construya el autómata mínimo para M₃.
- c) Obtenga las clases de equivalencia de la relación R_L para el lenguaje L_3 dando una expresión regular para cada una de ellas. Justifique su razonamiento.
- d) Dé una expresión regular \mathbf{r}_3 tal que $L_3 = L(r_3)$. Justifique.
- e) Diga si se cumple: i) bb R_{L3} ba
 - ii) ba R_{L3} aba

Ejercicio 4 [5 puntos]

a) Construya un autómata de dos cintas para el siguiente lenguaje:

 $L_4 = \{ (a^n c^m b, a^{|n/2|} b c^r) / r = m \text{ MOD 3}; n,m \ge 0 \}$ Son ejemplos de tiras válidas: <aaccccb, abc>

<aaacccb, ab>

<aaaaccb, aabcc>

b) Construya un autómata con salida M: $(Q, \Sigma, \Lambda, \delta, \lambda, q_0)$, $\Sigma = \{0,1\}$, $\Lambda = \{0,1\}$,

 $\lambda: Q \times (\Sigma \cup \{\epsilon\}) \to (\Lambda \cup \{\epsilon\})$ tal que lea secuencias de 0's y 1's (no vacías) de largo par y genere como salida la suma en binario tomados de a 2 símbolos. Ejemplos:

Entrada	Salida
0100	10
00101100	01100
0110	11