Teoría de Lenguajes

Solución 1er. Parcial – Curso 2015

Consideraciones generales

-) Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primer hoja, indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Ejercicio 1 [Evaluación individual del obligatorio]

a) Dado el siguiente código Perl:

```
$_ = "No te detengas ante el esfuerzo\npara alcanzar los valores esenciales de la vida;\nporque en ellos reside la verdadera conquista del espiritu";
if (EXPRESION) { print $1} else { print "No matchea"}
```

Indicar cuál es la salida, en cada caso, si se sustituye **EXPRESION** por las siguientes expresiones:

- i) /(\w*[aeiou])\$/
- ii) /(\w*[aeiou])\$/m
- iii) /([^aeiou].*)/
- iv) /([^aeiou].*)/s
- v) /\s(l.*?es)\s/
- vi) / (v[a-z]*a) b/

Solución:

- i) espiritu
- ii) esfuerzo
- iii) No te detengas ante el esfuerzo
- iv) Se imprime todo el texto.
- v) los valores
- vi) vida

- b) Suponiendo que \$texto es igual a "3,5 ,6 , 10,\n8, 71,52,7". Indicar cuáles de las siguientes sentencias deja \$texto igual a "3;5;6;10;8;71;52;7".
 - i) $\frac{1}{2}$ \$texto =~ $\frac{1}{2}$ \$\D+/;/
 - ii) $\frac{1}{3}$ \$texto =~ $\frac{s}{s^*}$, $\frac{s^*}{s^+}$
 - iii) \$texto = join(';', split(/[,\s]+/, \$texto))
 - iv) $\text{$texto = join(';', split(/\d+/, $texto))}$
 - V) \$texto = join(';', split(/(\s*,\s*|\s+)/, \$texto)
)
 - vi) \$texto = join(';', split(/[^,\s]+/, \$texto))

Solución:

- i) Falla, porque solo cambia el primer separador. Faltó el modificador g para cambiar todos los separadores.
- ii) Funciona.
- iii) Funciona.
- iv) Falla, porque toma como separadores a los números naturales: \d+
- v) Falla, porque al poner paréntesis () encerrando la expresión que representa los separadores, la función split devuelve la lista de los campos y también los separadores.
- vi) Falla, porque devuelve solo los separadores.
- c) Indicar si las siguientes expresiones siempre producen el mismo resultado:

```
\epsilon = \frac{1}{2} $ejemplo !~ /[a]/
```

No devuelven el mismo resultado, por ejemplo, para \$ejemplo igual a "ab". La primera expresión devuelve falso, porque encuentra una a, y por lo tanto el !~ es falso. La segunda expresión devuelve verdadero, porque encuentra un caracter distinto a una a.

Ejercicio 2

Decir si las siguientes afirmaciones son Verdaderas o Falsas. Justifique

- a) El lenguaje $L = \{ 0^k 1^j 0^q \text{ con } j \ge 0, q > 0, k > 0 \text{ impar} \}$ no es regular.
- b) El lenguaje $L' = \{ 0^k 1^j 0^q \text{ con } q > j \ge 0, k > 0 \text{ impar} \}$ no es regular.
- c) Sean L_1 y L_3 lenguajes regulares; L_2 un lenguaje no regular; $L_1 \cap L_2 \cap L_3 \neq \phi$. Entonces $L_1 \cap L_2 \cap L_3$ es un lenguaje NO regular.
- d) Sean L_1 un lenguaje no regular y L_1 U L_2 un lenguaje regular. Entonces L_2 es un lenguaje regular.

a) Falso

El lenguaje L es regular ya que existe la siguiente ER que describe el lenguaje:

0(00)*1*00*

b) **Verdadero**

El lenguaje L' no es regular y la siguiente es una demostración mediante el contrarrecíproco del Pumping Lema:

Sea N la cte. del P.L. y sea $z = 01^{N}0^{N+1}$ donde se ve que $z \in L'$ y $|z|=2N+2 \ge N$

Se analizan las descomposiciones de z = uvw que cumplan: $|uv| \le N$ y $|v| \ge 1$

$$\begin{array}{ll} i) & u=\epsilon \\ & v=01^t \\ & w=1^{N-t}0^{N+1} \end{array} \qquad t\geq 0$$

Luego, $z_i = (01^t)^i 1^{N-t} 0^{N+1}$ Debemos hallar i de modo que z_i no pertenezca a L' Sea i=2, luego $z_2=01^t 01^t 1^{N-t} 0^{N+1}$

En este caso, las discusión es: si t>0, se mezclan 0's con 1's. Si t=0, la cantidad de 0's al comienza es par, los cual hace que z_2 no pertenece a L'

ii)
$$u = 01^{j}$$
 $j+1+t \le N \ (j \ge 0)$
 $v = 1^{t}$ $t \ge 1$
 $w = 1^{N-j-t}0^{N+1}$

Luego, $z_i = 01^j 1^{ti} 1^{N-j-t} 0^{N+1} = 01^{N+(i-1)t} 0^{N+1}$

Debemos hallar i de modo que zi no pertenezca a L'

Sea i = 2, luego $z_2 = 01^{N+t}0^{N+1}$

Si z_i perteneciera a L', tendríamos que N+1 >N+t , lo que es absurdo porque $t \ge 1$ con lo cual cantidad de 0's después de los 1's es siempre menor o igual. Luego z_2 no pertenece a L'.

Estas son las únicas familias que cumplen las condiciones $|uv| \le N$ y $|v| \ge 1$, entonces, cualquier otra familia falla en alguna de estas.

Con esto se puede afirmar que L' NO es Regular

c) **Falso**

Sean $L_1=1^*0^*$; $L_3=\Sigma^*$ (siendo $\Sigma=\{0,1\}$); $L_2=\{0^k1^k,\,k\geq 0\}$ Se cumple que $L_1\cap L_2\cap L_3\neq \phi$ y $L_1\cap L_2\cap L_3=\epsilon$ $L=\{\,\epsilon\,\}$ es un lenguaje Regular, ya que tiene solamente la tira $\,\epsilon$

d) Falso

Sean $L_1 = \{0^k 1^k, k \ge 0\}$ y $L_2 = L_1^c$ (el complemento de L_1)

Se tiene que L_1 U $L_2 = \Sigma^*$ (que es regular); sin embargo L_2 NO es un lenguaje regular, puesto que por la propiedad de clausura del complemento de los lenguajes regulares, L_1 sería regular, que es absurdo pues L_1 (probado en teórico por CR del PL) NO es regular.

Ejercicio 3

Sea L_3 el lenguaje reconocido por el siguiente autómata finito $M = \{Q, \Sigma, \delta, q_0, F\}$ donde:

 $Q \! = \! \{q_0, \, q_1, \, q_2, \, q_3 \, \} \qquad \Sigma \! = \! \{0,1\} \qquad F \! = \! \{q_3\} \quad \text{y la δ dada por:}$

		0	1	ε
_	qo	$\{q_1\}$	{q ₂ }	{}
	qı	{q₀}	{}	{q₃}
	q ₂	{q₃}	{}	$\{q_0\}$
_	qз	{}	{q₃}	{}

- a) Construya el autómata finito mínimo M' / L(M)=L(M')
- b) Dé una expresión regular que defina el lenguaje L(M). Justifique.
- c) Defina la relación R_L para lenguajes cualesquiera.
- d) ¿Cuántas clases define la relación R₁₃? Justifique.
- e) Decir si se cumple 0001 R_{L3} 110. Justifique.

Pasaje AFND-eps a AFND

 $eps-clausura({q0}) = {q0}$

	0	1
q0	{q1,q3}	{q0,q2}
q1	{q0}	{cp}
q2	{q1,q3}	{q0,q2}
q3	{}	{q3}

Pasaje AFND a AFD

		0	1
p0	{q0}	{q1,q3}	{q0,q2}
p1	{q1,q3}	{q0}	{q3}
p2	{q0,q2}	{q1,q3}	{q0,q2}
рЗ	{q3}	{}	{q3}

Estados finales p1 y p3

Minimización

[p0,p2][p1,p3]

[p0,p2][p1][p3]

[p0,p2] [p1] [p3] por tanto p0 es equivalente a p2

AFD Mínimo

	0	1
р0	p1	p0
p1	p0	р3
рЗ		р3

Estados finales p1 y p3

b) A continuación se resuelve el sistemas de ecuaciones. La solución será la ER asociada a $X_1 \mid X_3$ por ser estados finales p_1 y p_3

$$X_0 = X_0 \mathbf{1} \mid X_1 \mathbf{0} \mid \epsilon$$

 $X_1 = X_0 0$

 $X_3 = X_1 1 \mid X_3 1$

$$X_0 = X_0 1 \mid X_0 00 \mid \epsilon = X_0 (1|00) \mid \epsilon = (1|00)^*$$

 $X_1 = (1|00)*0$

 $X_3 = X_3 \hat{1} | (1|00)*01 = (1|00)*011*$

$$L(M) = X_1 | X_3 = (1|00)*0 | (1|00)*011* = (1|00)*01*$$

c) Definir la relación R_L

$$x R_L y si \forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L \land xz \notin L \Leftrightarrow yz \notin L$$

d) Como se construyó en a) el autómata mínimo, las clases de RL coinciden con la cantidad de estados del autómata mínimo (Myhil-Nerode). No obstante, si bien aparecen 3 estados, la cantidad de clase es **4** debido a la clase del estado pozo (porque la función de transición NO es total).

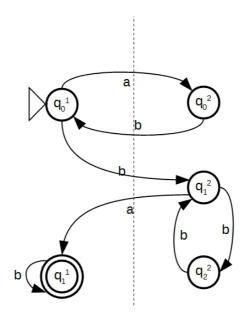
e) Ver si $0001 R_{L3} 110$

Ambas tiras perteneces a L3, con lo cual analizamos las posibles $z \in \Sigma^*$ pero tomado en cuenta la forma que tiene x = 0001 y y=110

Se puede ver que si z = 001 $xz \notin L_3$ mientras que $yz \in L_3$ con lo cual NO se cumple la definición de que x e y \in a la misma clase.

Ejercicio 4

a) Construya un autómata de dos cintas para el siguiente lenguaje: $L_{a}=\{\ (a^{k}\,b^{n},\ b^{j+k}\,a)\ /\ k\geq 0;\ n>0;\ j\geq 0\ par\ \}$



b) Construir un autómata con salida M: $(Q, \Sigma, \Lambda, \delta, \lambda, q_0)$ tal que lea secuencias de números romanos e imprima una P o una I si el número leído es Par (P) o Impar(I)

La entrada es una secuencia (no vacía) de l's y V's que termina con el símbolo "#"

$$\Lambda = \{I, P\}; \Sigma = \{I, V, \#\}; \lambda : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow (\Lambda \cup \{\epsilon\})$$

