Teoría de Lenguajes

2do. Parcial – Curso 2017 Soluciones

Consideraciones generales

- i) Escriba nombre y C.I. en todas las hojas.
- ii) Numere todas las hojas.
- iii) En la primera hoja, indique el total de hojas.
- iv) Comience cada ejercicio en una hoja nueva.
- v) Utilice las hojas de un solo lado.
- vi) Entregue los ejercicios en orden.

Ejercicio 1 [Evaluación individual del obligatorio]

a)

- i) Lo que está entre [] es opcional
- ii) Entre comillas.
- iii) Entre comillas.

b)

- i) No sirve porque la lista de identificadores va a ser siempre de largo 2.
- ii) Es correcta.
- lii) No sirve porque obligamos a que las constantes y números siempre tengan un más o un menos adelante. Además el array type tiene un solo tipo cuando puede tener n.

Ejercicio 2

Sean los siguientes lenguajes sobre un mismo alfabeto Σ . Indique si las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso.

a) L_1 Libre de Contexto no Regular y L_2 Libre de Contexto no vacío. Entonces $L_1 \cap L_2$ no es Regular.

Falso:

```
Sean L_1 = \{a^n b^n / n \ge 0\} Libre de Contexto no Regular y L_2 = \{b^n a^n / n \ge 0\} Libre de Contexto no vacío Sin embargo L_1 \cap L_2 = \{epsilon\} es Regular
```

b) L_3 Recursivamente Enumerable no Libre de Contexto y L_4 Libre de Contexto no Regular. Entonces $L_3 \cap L_4$ es Libre de Contexto.

Falso:

```
Sean L_3=\{a^n\,b^n\,c^n\,/\,n\geq 0\} R.E. no Libre de Contexto y L_4=\{a^n\,b^n\,c^m/\,n\geq 0\,y\,m\geq 0\} Libre de Contexto Sin embargo L_3\cap L_4=\{a^n\,b^n\,c^n\,/\,n\geq 0\} R.E. no Libre de Contexto
```

Nota: $L_4 = \{a^n \ b^n \ c^m/\ n \ge 0 \ y \ m \ge 0\}$ es Libre de Contexto dado que existe la siguiente gramática que lo genera:

 $S \rightarrow R T$ $R \rightarrow a R b$

 $T \rightarrow c T \mid epsilon$

 L_4 no es Regular dado que si aplicamos el homomorfismo h / h(a) = a, h(b) = b y h(c) = epsilon. h(L_4) = {aⁿ bⁿ c^m/ n >= 0} L.C. no regular. Y si L_4 fuera regular, h(L_4) debería haber sido regular por propiedad de clausura de los homomorfismos sobre los lenguajes regulares.

c) L_5 Finito (no vacío) y L_6 Recursivamente Enumerable no Libre de Contexto. Entonces $L_5 \cap L_6$ es Libre de Contexto no Regular.

Falso:

Si L_5 es Finito (no vacío), entonces $L_5 \cap L_6$ es finito, y por lo tanto Regular, no pudiendo ser Libre de Contexto pero no Regular.

d) $L_7 \cap L_8$ es Libre de Contexto no vacío. Entonces L_7 y L_8 son ambos Libres de Contexto.

Falso:

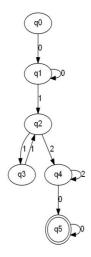
Sean por ejemplo $L_7=\{a^nb^nc^n\ ,\ n>0\}$ y sea $L_8=\{abc\}$. Luego, $L_7\cap L_8=\{abc\}$ que es Regular y por jerarquía de Chomsky es Libre de Contexto. Sin embargo, L_7 no es Libre de Contexto.

Ejercicio 3

a) $L_a = \{ 0^k 1^{j+1} 2^t 0^r, \text{ donde } r > 0, \text{ j par, } k, t \ge 1 \}$

 L_a es un lenguaje regular, siendo $L_b = L(r)$ con $r = 00^*1(11)^*22^*00^*$

El siguiente AFD genera el lenguaje La



A partir de este AFD y a partir del algoritmo correspondiente que identifica estados con variables y transiciones con producciones se construye la gramática lineal derecha $Ga_{//}L_a=L(G_a)$.

$$G_a = (\{S,A,B,C,D,E\}, \{0,1,2\},P,S\}$$

Ga está simplificada porque:

- 1) No tiene producciones-ε
- 2) No tiene producciones unitarias
- 3) Todas las variables son alcanzables desde S (por ser construida a partir de un AFD en el que todos los estados son alcanzables desde el estado inicial)
- 4) Todas las variables son positivas (porque desde cada estado se alcanza el estado de aceptación del AFD)

$$L_b = \{ 0^k 1^{j+1} 2^t 0^r, \text{ donde } r = j/2, j \text{ par, } k, t \ge 1 \}$$

L_b es un lenguaje libre de contexto no regular (no se hace el PL para Lenguajes Regulares, ya que no se exigía)

Se dará una gramática independiente de contexto simplificada G_b que genera L_b.

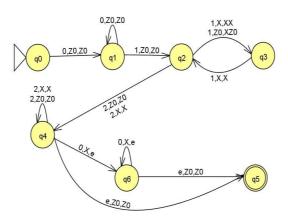
Notar que las tiras de L_b pueden expresarse como $x = 0^k 1(11)^n 2^k 0^n$, con $k,t \ge 1$ y $n \ge 0$

```
Esto sugiere la gramática G_b = (\{S,A,B,C\}, \{0,1,2\},P,S\} con P formado por las siguientes producciones: \{S \rightarrow AB | AC A \rightarrow 0A | 01 B \rightarrow 11B0 | 11C0 C \rightarrow 2C | 2\}
```

G_b es simplificada porque:

- 1) No tiene producciones-ε
- 2) No tiene producciones unitarias
- 3) Todas las variables son alcanzables desde S
- 4) Todas las variables son positivas. En el caso de B se tiene por ejemplo la derivación B =>11C0 =>1120

c) Se construye $M_3 / L_3 = L(M_3)$



Es un APD NO Determinista, ya que existen las transiciones $\delta(q_4, 2, Z_0)$ y $\delta(q_4, \varepsilon, Z_0)$

Ejercicio 4

$$L_4 = \{ x \# y / x, y \in \{a,b\}^* \text{ donde } \boldsymbol{y} \in \text{Perm}(\boldsymbol{x}) \}$$

a) L₄ es un lenguaje recursivamente enumerable no LC. En la parte (b) se presenta una gramática irrestricta que lo genera y en la (c) una Máquina de Turing que lo reconoce.

Para demostrar que no es LC, se demuestra con el CR del Pumping Lema para lenguajes LC:

Dada N la constante del Pumping Lema, se elige $z = a^N b^N \# a^N b^N$ Las descomposiciones z = uvwxy a estudiar que cumplen $|vwx| \le N$ y $|vx| \ge 1$ son:

familia	a ^N	b ^N	#	a ^N	b ^N
1	v x				
2	VX	Х			
3	V	Х			
4	V	v x			
5		VX			
6		VX	Х	Х	
7		V		X	
8		V	V	VX	
9				VX	
10				VX	X
11				V	X
12				V	VX
13					VX

Familia 1:

$$\begin{array}{l} u{=}a^p, \, v{=}a^q, \, w{=}a^r, \, x{=}a^s, \, y{=}a^{N{\text{-}}p{\text{-}}q{\text{-}}r{\text{-}}s}b^N\#a^Nb^N\\ z_i = a^{N{\text{+}}(q+s)(i{\text{-}}1)}b^N\#a^N \, b^N\\ \text{Para } i = 0, \, z_0 = a^{N{\text{-}}(q+s)}b^N\#a^N \, b^N \end{array}$$

Dado que $|vx| \ge 1$, tenemos $|q+s| \ge 1$ por lo que la cantidad de símbolos a la izquierda del # es menor que la cantidad de símbolos a la derecha.

Por lo cual $z_0 \not\in L_4$ ya que no puede ser \boldsymbol{y} una permutación de \boldsymbol{x} al ser de distinto largo.

Las familias 2, 3, 4 y 5 se pueden demostrar con el mismo argumento. Por otro lado, las familias 9, 10, 11, 12 y 13 se demuestran con un argumento similar pero el problema es que la cantidad de símbolos a la derecha del # es menor a la cantidad de símbolos de la izquierda.

Familia 6:

$$\begin{array}{l} u{=}a^Nb^{N\text{-}p\text{-}q\text{-}r}, \ v{=}b^p, \ w{=}b^q, \ x{=}b^r\#a^s, \ y{=}a^{N\text{-}s}b^N \\ z_i = a^Nb^{N+p(i\text{-}1)\text{-}r}(b^r\#a^s)^ia^{N\text{-}s} \ b^N \\ \text{Para } i = 0, \ z_0 = a^Nb^{N\text{-}p\text{-}r}a^{N\text{-}s} \ b^N \end{array}$$

Le falta el # por lo que $z_0 \not\in L_4$. La familia 8 se demuestra análogamente.

Familia 7:

$$\begin{array}{l} u{=}a^{N}b^{N\text{-}p\text{-}q},\ v{=}b^{p},\ w{=}b^{q}\#a^{r}\ x{=}a^{s},\ y{=}a^{N\text{-}r\text{-}s}b^{N}\\ z_{i}=a^{N}b^{N+p(i-1)}\#a^{N+s(i-1)}b^{N}\\ Para\ i=0,\ z_{0}=a^{N}b^{N\text{-}p}\#a^{N\text{-}s}b^{N} \end{array}$$

Dado que $|vx| \ge 1$, tenemos que o p>0 y/o s>0 por lo que la cantidad de b's a la izquierda del # es menor que la cantidad de b's a la derecha, y/o la cantidad de a's a la izquierda del # es mayor que la cantidad de a's a la derecha.

Si p=s >0, el argumento es que las cantidades de a's y de b's son diferentes a ambos lados del #.

Por lo tanto $z_0 \not\in L_4$ ya que no puede ser \boldsymbol{y} una permutación de \boldsymbol{x} al ser de distinto largo.

Como las planteadas son todas las descomposiciones posibles que cumplen las condiciones $|vwx| \le N$ y $|vx| \ge 1$, cualquier otra falla en alguna de estas, por el CR del PL, el lenguaje L₄ **NO** es Libre de Contexto.

b) A continuación se construye una Gramática Irrestricta G_4 / L_4 = $L(G_4)$

$$S \rightarrow aAS \mid bBS \mid \#$$

 $Ab \rightarrow bA$
 $Aa \rightarrow aA$
 $AB \rightarrow BA$
 $A\# \rightarrow \#a$
 $Bb \rightarrow bB$
 $Ba \rightarrow ba$
 $BA \rightarrow AB$
 $B\# \rightarrow \#b$

Otra solución podría ser:

$$S \rightarrow aSa \mid bSb \mid \#$$

 $ab \rightarrow ba$
 $ba \rightarrow ab$

c) Finalmente se construye una MT $M_4 / L_4 = L(M_4)$

