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Motivacion

e |a contaminacion del aire es uno de los principales riesgos para la salud
humana mundialmente

e PM:.s, NO:y O: causan miles de muertes prematuras cada ano en
Europa

e Predecir las concentraciones de contaminantes es clave para la
prevencion y para orientar las politicas publicas

e Los modelos estadisticos tradicionales (ARIMA, regresion) no
logran capturar la dinamica no lineal y temporal
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Caso de estudio

e Madrid, Espana — 37 estaciones de monitoreo
(urbana trafico, suburbana, urbana fondo)

e Observaciones horarias (Jul 2021 - Dic 2024)
de datos.madrid.es
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Implementacion 1
nput
[ shape: (W, F) }

e Utilizado como modelo base para la comparacion
COn el LSTM [ Flatten layer ]

vector length = W x F

e Red neuronal feed-forward simple

Y

e Optimizador Adam (tasa de aprendizaje 107?) [ i e Dl }
e Funcion de pérdida: Error Absoluto Medio (MAE)
e Captura combinaciones no lineales de la entrada, [ e i oS }

pero no tiene memoria temporal explicita

Y

Reshape layer
to (OUT_.STEPS, P)

\

Output
shape: (OUT_STEPS, P)
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LSTM codificador-decodificador oE LAREPUalica
Implementacion [ o mput }
e Arquitectura Sequence-to-sequence Y
e Codificador LSTM (128 unidades) que extrae las [ =128, vetum_state e, L2710 ]
caracteristicas temporales |
e Decodificador LSTM (128 unidades) inicializado con { R" }
los estados del codificador . '
e Regularizacion L2 = 10 en codificador y { 128”223‘39‘;;553 o }
decodificador =
e EIl mismo optimizador (Adam, Ir = 107°) y misma TimeDistul;lii:)}:zd(Dense) ]
funcion de peéerdida (MAE) "
e Horizontes de prediccién: 1 hora y 24 horas { P st J
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Evaluacion experimental

Resultados de prediccion LSTM — PM..s

e Predicciones a una hora en la estacion Escuelas Aguirre(urbana trafico)
e Los picos abruptos y las fluctuaciones irregulares son mas dificiles de modelar
e EI| modelo tiende a suavizar los picos de contaminacion

__ 757
g
o 501
=
10
o\ 25-
>
A

O_

0 1000 2000 3000 4000
Time [h]

(— : observed concentrations, — : predicted concentrations)

Neural networks for modeling and predicting pollution in urban environments



UNIVERSIDAD
DE LAREPUBLICA
URUGUAY

Evaluacion experimental

Resultados de prediccion LSTM — NO:y Os

e El modelo LSTM codificador-decodificador sigue de cerca las tendencias

e NO:y Os muestran pronosticos mas suaves y precisos
e EIl modelo captura de forma efectiva las dependencias temporales a corto plazo
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Evaluacion experimental

LSTM vs MLP comparacion de desempeno

e \alidacion cruzada con tres particiones consecutivas

e EILSTM supero al MLP en los horizontes de 1 hora y 24 horas

e Reducciones de MAE entre 39-60 % (1h) y 11-17 % (24h)

e Evaluacion por contaminante utilizando las métricas MAE y RMSE

Horizon  Pollutant MLP MAE LSTM MAE  Improvement

1h PM, 5 9.02 3.27 64%
1h NO2 10.04 6.09 39%
1h O3 16.34 6.39 61%
24h PM, 5 6.52 5.42 17%
24h NO2 15.54 13.72 11%

24h O3 18.44 15.97 13%
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Conclusiones y trabajo futuro

Conclusiones

e El modelo LSTM codificador—decodificador capturd eficazmente las dependencias
temporales
e Modelar estas dependencias permite obtener prondsticos de calidad a corto plazo

Trabajo futuro

e Extender hacia un modelado espacio temporal incorporando
iInteracciones entre todas las estaciones

e Actualmente desarrollando un modelo GCN combinado con el
LSTM codificador-decodificador
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