
Scienti�c computing in the Latin
America-Europe GISELA grid infrastructure

S. García, S. Iturriaga, S. Nesmachnow
Universidad de la República, Uruguay

May 5, 2011

Abstract
This work presents the application of parallel computing techniques to

solve two scienti�c computing applications over the Latin America-Europe
GISELA grid computing platform. The article describes two scienti�c
computing applications �the semi-automatic processing of historical cli-
mate images and a software package for �uid dynamics� which usually
require large computing times when applied to realistic scenarios. The
proposal of applying parallel computing techniques over the GISELA grid
infrastructure is formulated, and the implemented solutions are described.
A preliminary experimental analysis is reported, presenting the estimated
e�ciency gains when using the grid infrastructure.

1 Introduction
Grid computing has become a new paradigm for e�ciently dealing with hard-
to-solve problems, by cooperatively using a large set of computational resources
distributed around the globe. Grid infrastructures provide a great computing
power, far larger than the one available on single research institutions and uni-
versities, making possible to face more complex problems, increasing the accu-
racy of the solutions, and solving them in reasonable times. In our research
context, the regional grid infrastructure has been developed by the Grid Initia-
tive for e-Science virtual communities in Europe and Latin America (GISELA)
project [5], which groups a large number of institutions from 19 countries on
Latin America and Europe.

A speci�c area of application of the new grid computing infrastructures is sci-
enti�c computing, a �eld where problems demanding large computing times are
very common. In this line of work, this article presents the application of paral-
lel computing techniques to solve two scienti�c computing applications over the
GISELA European-Latin American grid computing platform. Both scienti�c
computing applications described in this work �the semi-automatic processing
of historical climate images and a software package for �uid dynamics� have
a great relevance for meteorological forecast, disaster control, and natural re-
sources management in our country. Both applications usually require large
computing times when applied to model realistic scenarios. Thus, parallel com-
puting techniques are needed in order to reduce the computing times, allowing
to obtain accurate solution in reasonable times.

1

The main contribution of this article is to explain how this two scienti�c
computing applications have been adapted to execute in a grid computing envi-
ronment, and also to describe how to develop their parallel implementations over
the European-Latin American grid infrastructure built by the GISELA project.
A preliminary experimental analysis is also reported, and the estimated e�-
ciency gains when using the grid infrastructure are presented.

The rest of the article is organized as follows. Section 2 brie�y introduces
the grid computing paradigm, and Section 3 describes the main components of
the European-Latin American grid infrastructure built by the GISELA project.
After that, Section 4 presents the two scienti�c computing applications paral-
lelized in this work: Digi-clima and ca�a3d.MB. The main details about the
implementations of Digi-clima and ca�a3d.MB over the grid infrastructure are
provided in Section 5. A preliminary experimental analysis and the projected
e�ciency gains are reported in Section 6. Finally, Section 7 summarizes the
conclusions of the research and formulates the main lines for future work.

2 Grid computing
In the last twenty years, distributed computing environments have been success-
fully employed to solve complex problems. The size and the computing power
of distributed computing environments have signi�cantly improved, mainly due
to the fast increase of the processing power of low-cost computers and the rapid
development of high-speed networking technologies. Nowadays, a common plat-
form for distributed computing usually comprises a heterogeneous collection
of computers able to work cooperatively for solving complex problems. At a
higher level of abstraction, the expression grid computing has become popular
to denote the set of distributed computing techniques that work over a large
loosely-coupled virtual supercomputer, formed by combining together many het-
erogeneous components of di�erent characteristics and computing power. This
infrastructure has made it feasible to provide pervasive and cost-e�ective ac-
cess to a collection of distributed computing resources for solving problems that
demand large computing power [4].

Grid computing applies some key concepts from parallel computing: the
workload distribution and the mechanisms used for the synchronizations/com-
munications between distributed processes are crucial aspects to achieve high
performance when using a loosely-coupled computing infrastructure. Other im-
portant features are the �ow of data and instructions, which often de�ne the
type of parallelism applied in the grid; and the portability issues, the speci�c
hardware requirements, and the run-time libraries and modules needed to ex-
ecution. These prerequisites have to be checked before implementing and/or
executing a parallel application in a grid infrastructure. The large availability
of computing resources in grid infrastructures also provides support to imple-
ment fault-tolerance mechanisms, such as checkpointing and restarting, multiple
data repositories, etc. Due to all these features, grid computing has emerged as
a powerful paradigm for solving complex problems in many application areas [1].

2

3 The GISELA grid infrastructure
GISELA [5] is a consortium of 19 partners -5 from Europe and 14 from Latin
America-, that aims at ensuring the long-term sustainability of the Latin Amer-
ican Grid Initiative (LGI) and providing virtual research communities (VRC)
with the e-Infrastructure and application-related services. The consortium part-
ners are organized in Virtual Organizations, which share information, computing
power, software, or other resources for collaborative problem-solving.

At April, 2011, GISELA has 1233 CPU and 63 TB of storage, in 21 centers.
The pledged computational power to be integrated is of 2660 CPU, 105 TB and
56 resource centers. GISELA is working the transition of the LGI sustainability
to the Latin American Cooperation of Advanced Networks (CLARA).

GISELA uses the gLite middleware stack [8] as the default software platform.
gLite was produced by the EGEE [2] project and it is used by a large number
of scienti�c groups in the world. The services on gLite are organized in �ve
groups: security, information and monitoring, job management, data storage,
and helper. The main components are the User Interface (UI), which provides
the users with the commands required to manage the jobs; the Computing
Element (CE), which provides the computing power; the Storage Element (SE),
which provides the data storage services; and the Workload Management System
(WMS), for the job scheduling. Figure 1 shows the main components of gLite.

Figure 1: Main components of gLite.
A CE is a set of computing resources (Worker Nodes - WNs), the computers

where the jobs are run.
The SE provides uniform access to data storage resources. All data in a SE

is considered read-only and must be replaced on change. A �le catalog service
(LFC) is used to locate �les or replicas in every SE in the grid. LFC maintains
a mapping between the logical �le name (LFN) and the physical storage URL
(SURL) of all of its replicas [7].

The WMS assigns the jobs to execute in the appropriate CE. Submitted jobs
are described using the Job Description Language (JDL), which speci�es which
executable to run and its parameters, hardware and software requirements, etc.

The ARDA Metadata Grid Application (AMGA) is a metadata service on
the grid that allows users to e�ciently maintain large results and application
data. A metadata catalog can be viewed as a simpli�ed database of non-�le
related data, too small or too volatile to be stored in data �les [6].

3

4 Two scienti�c computing applications
This section describes the scienti�c applications to parallelize in GISELA.

4.1 Digi-Clima
Digi-Clima is an Octave/Matlab application for the semi-automatic processing
of historical graphical rain records. In our country, historical rain records are
kept from the early 1900's, most of them in paper. All this data is of great
value, but its use is limited due to its paper-format storage, and its preserva-
tion is in danger. Digi-clima aims at digitalizing the pluviographic records to
preserve the data and to allow an easier access to it. The records are stored in
paper data bands, such as the one showed in Figure 2. 20000 data bands are
available, from the last 30 years of the national �ooding and the stormwater
management systems. Digitalizing one band takes about ten minutes. Thus,
parallel computing is critical to reduce the total processing time.

Figure 2: Original 3-band image example.

General program description. Digi-clima performs the following tasks: (1)
color separation: separates the rain traces from the background and other in-
formation by color tagging, getting a black and white image which the active
pixels from the rain traces; (2) individual band identi�cation: the frame infor-
mation layer is analyzed to separate and scale the individual bands; (3) trace
identi�cation: for each band, identi�es the traces of rain records are as contin-
uous lines; (4) trace analysis: analyzes each trace to obtain its x(t) footprint in
pixel scaling, by using a simple median estimator in Octave, or by using a spline
�tting in Matlab; (5) trace grouping : orders the separate traces in each band,
since these records should be monotonic. (6) rain intensity computing : obtains
the rain intensity data from the discrete time derivative of the grouped traces.

Digi-Clima can be executed as: interpreted Octave, requires Octave 3.x and
ImageMagick (both open source); interpreted Matlab, requires Matlab 7.x or
higher with the curve �tting toolbox (licensed product); and compiled Matlab,
without requirements, but the CE must match the compiled binary architecture.

The disk space required is about 3 MB per image. The required RAM
depends on the records and the size of the image (usually, less than 1GB).

4

Parallel model. The gridi�cation of Digi-Clima is based on data parallelism,
which splits the whole data domain into smaller subdomains, and executes a
single algorithm in parallel in each of them, as it is presented in Figure 3.

Figure 3: Data parallelism model.

Applying data parallelism to Digi-clima is straightforward, because the par-
allel processes are independent. Also, as the �nal job output consists only of
the union of each parallel process output, no post-processing is needed.

A master/slave parallel model was applied to Digi-clima (see Figure 4). The
master process launches and assigns the work to several slave processes that
executes Digi-clima on a set of images. Once a slave �nishes its work, the
master process collects the output data to include it in the �nal job output.

Figure 4: Master/slave parallel model in Digi-clima.

4.2 ca�a3d: 3D Navier-Stokes solver
ca�a3d.MB implements a fully implicit �nite volume method to solve the 3D
Navier-Stokes equations, in complex geometry, extending the 2D ca�a.f by
Ferziger and Peric [3]. The next subsections introduces the mathematical model
and the solver in ca�a3d.MB, and the parallel method proposed to explore the
parameters space of the model.

5

General program description. The mathematical model in ca�a3d.MB
considers the mass balance equations and mass momentum equations for a New-
tonian incompressible �ow in a gravitational �eld, using the Boussinesq approx-
imation. The solver in ca�a3d.MB includes block-structured, non-orthogonal,
body �tted, collocated meshes for the spatial discretization and several other fea-
tures to deal with complex geometries. For the time discretization, implicit two-
level �rst order and three-level second order schemes are available. ca�a3d.MB
is implemented in FORTRAN 77, including some FORTRAN 95/90 extensions.

ca�a3d.MB usually demands a large execution time, due to three main
groups of time consuming tasks: i) updating the coe�cient matrix for each
equation (momentum, mass balance, etc); ii) computing the gradients of each
�eld through Gauss theorem; iii) solving the systems of equations using the ILU
SIP solver [9]. Routines in i) and ii) imply visiting each cell interface in an
ordered fashion and computing the �ux contributions. Routines in iii) mainly
involve backward and forward substitutions to solve tridiagonal systems of equa-
tions. In fact, SIPSOL is the most time consuming routine in the code (up to
30% of the total computing time).

ca�a3d.MB can be compiled with GNU gFORTRAN, Intel ifort, and Port-
land Group gf90. No libraries are required for the compilation or the execution.
RAM requirements vary according to the mesh size, in the range of 0.5 to 6 GB.

Exploration of the ca�a3d.MB parameter space. In engineering practice
is often not enough to run a single simulation with a speci�c set of parameters
values. The user usually needs to scan a large phase space for a given number
of parameters. For example, a given �ow problem might exhibit critical behav-
iors at di�erent values of the Reynolds number (RN), and the user might be
interested in simulations with a given range, incrementing its value in steps. To
perform this experimental analysis, a large number of independent executions
are needed. Afterward, the user might want to re�ne some interesting region
of the parameter space at smaller intervals of RN values. Thus, an e�cient
way of organizing and distributing the parameters exploration is a useful tool in
practice. This is the basis of the speci�c proposal to implement using parallel
computing techniques in a grid environment.

5 Implementation
This section presents the parallel implementations of Digi-clima and ca�a3d.MB.

5.1 Digi-Clima
The main issues to solve when executing Digi-Clima on the grid are: i) to
distribute the images; ii) to avoid processing the same image by two Digi-Clima
instances; and iii) to retrieve the results and know to which image they belong.

The time to set up the CE workspace to run Digi-clima is not negligible, and
a large number of images are to be processed, so pilot jobs are used. Once on a
CE, the pilot job runs a loop, executing Digi-clima on each iteration to process
multiple images without the delay due to job submission and CE setup. Grid
�le services are used to distribute the images and to get the results. AMGA is
used for accounting on the images metadata (status and name-results mapping).

6

The image uploading script. The image uploading script (Figure 5) creates
the Digi-clima directory on AMGA and adds the attributes for image accounting
information: the image id on the SE, the image status, the original_name for
the image �le, the timestamp of the last_update, and the job_identi�er for the
last update. After that, the lcg-cr command is used to upload the images.

1 mdcli createdir /schooldir/valparaiso/Digi−clima/images
2 mdcli " addattr $wPath/ images id_in_se varchar (200) "
3 mdcli " addattr $wPath/ images s t a tu s varchar (1) "
4 mdcli " addattr $wPath/ images original_name varchar (200) "
5 mdcli " addattr $wPath/ images last_update i n t "
6 mdcli " addattr $wPath/ images j o b_ i d e n t i f i e r varchar (200) "
7 image_count=$1
8 for image_name in `ls * . JPG ` ; do
9 image_count=$ (expr $image_count + 1)

10 lcg−cr −−verbose −−vo prod . vo . eu−eela . eu \
11 −l /grid/prod . vo . eu−eela . eu/Digi−clima/images/"$image_count" \
12 −d se01−tic . ciemat . es $image_name

Figure 5: Shell script to upload images and initialize AMGA.

Pilot job. The pilot job has two components: the JDL �le to submit the job
to the WMS, and the loop script that runs on a CE, launching on each step
the script to set up and run Digi-clima for each image. Figure 6 presents the
execution sequence of the pilot job.

Figure 6: Pilot job sequence diagram.

Pilot job descriptor. Figure 7 presents the JDL �le for the submission of the
pilot job. The shell script is run with the pilot job script as parameter. The
InputSandbox rule indicates the WMS to send the scripts needed within the pilot
job to the CE, and the Requirements indicates that the job demands the x86_64

architecture to run.
1 [Executable = "/bin / sh" ;
2 Arguments = "Digi−c l ima . p i l o t . sh" ;
3 StdError = " s td e r r . e r r " ;
4 StdOutput = " stdout . out" ;
5 InputSandbox={"Digi−c l ima . sh" , " p i l o t . sh" , "mdcl ient . c on f i g " } ;
6 OutputSandbox = {" s td e r r . e r r " , " stdout . out" } ;
7 RetryCount = 3 ;
8 Requirements = (other . GlueHostArchitecturePlatformType == "x86_64") ;]

Figure 7: Pilot job descriptor.

7

Pilot job bash script. First, it locates the best replicas to download the
�les needed to run Digi-clima (specially the Matlab Compiler Runtime, which is
about 200 MB, one of the main reasons for using pilot jobs). When the runtime,
the code, and the libraries are ready, it executes a loop running Digi-clima.sh

for each image, until there are no images left (see a sketch in Figure 8).

1 export vo=prod . vo . eu−eela . eu # Set enviroment f o r LFC and LCG commands
2 export LCG_LOCATION=/opt/grid/ui/ lcg
3 export LCG_GFAL_INFOSYS=bdii−eela . ceta−ciemat . es : 2170
4 for each file do # Download needed f i l e s from best r e p l i c a
5 SEL_REPL= file_uri
6 # Try to get best r e p l i c a
7 REPL=$ (lcg−l r file_uri | grep "${$VO_PROD_VO_EU_EELA_EU_DEFAULT_SE}")
8 i f ["$REPL" != ""] ; then # found r e p l i c a at DEFAULT_SE −> use i t .
9 SEL_REPL=$REPL

10 else # Try to use " se01−t i c . ciemat . es " .
11 REPL=$ (lcg−l r file_uri | grep " se01−t i c . ciemat . es ")
12 i f ["$REPL" != ""] ; then # se01−t i c . ciemat . es f a i l s too , t ry LFN.
13 SEL_REPL=$REPL
14 lcg−cp −−checksum −−checksum−type md5 −−verbose $SEL_REPL file_name
15 END_EXECUTION=0 # Run Digi−c l ima
16 while [$END_EXECUTION −eq 0] ; do
17 /bin/sh ${JOB_DIRECTORY}/Digi−clima . sh ${JOB_DIRECTORY}
18 i f [$? == $ERROR_ON_ASSIGN −o $EXIT_STATUS == $OK] ; then
19 END_EXECUTION= 0 # Image proces sed by other , cont inue with next .
20 else
21 END_EXECUTION= 1 # Error in execut ion , end p i l o t job .

Figure 8: Pilot job bash script.

Digi-clima.sh. The Digi-clima.sh shell script checks AMGA for an unpro-
cessed image, retrieves the image from the nearest SE, and launches the Matlab
script. After the processing, it uploads the results to a SE and sets the image
as processed (see a sketch in Figure 9).

1 query_result=$ (mdcli −c mdclient . config "SELECT FILE FROM $path/ images
WHERE sta tu s = '$AVAILABLE ' LIMIT 1") # Get an unprocessed image .

2 i f [" $query_result " != ""] ; then
3 mdcli −c mdclient . config " updateattr ${path}/ images /${ query_result }

s t a tu s $ASSIGNED last_update $ (date +%s) last_update_job \"
$JOB_ID\" ' s t a tu s=$AVAILABLE ' " # Set image s t a tu s as a s s i gned

4 i f [$? != 0] ; then # Rare case , other job got the image f i r s t .
5 exit $ERROR_ON_ASSIGN
6 # Find best r e p l i c a and download image (as in p i l o t job bash s c r i p t)
7 lcg−cp −−verbose −−checksum −−checksum−type md5 $BEST_REPLICA ${

image_local_path}
8 . / digi−clima $image_local_path # Process image and upload r e s u l t s
9 lcg−cr −−verbose −−checksum −−checksum−type md5 −−vo prod . vo . eu−eela .

eu −l ${path_LFN}/results/$query_result −d $DEFAULT_SE $RESULT
10 mdcli −c mdclient . config " updateattr ${path}/ images /${ query_result }

s t a tu s $PROCESSED last_update $ (date +%s) last_update_job \"
$JOB_ID\" ' s t a tu s=$ASSIGNED ' " # Set image s t a tu s as proces sed

11 else # No more images to process , end .
12 exit $END

Figure 9: Digi clima launcher bash script.

5.2 ca�a3d.MB: exploration of parameters space
The grid parameter exploration of ca�a3d.MB is conceived as a master/slave
parallel program. The master process controls the search by performing the
domain decomposition, assigning each slave the parameters values to execute
ca�a3d.MB, and also deciding when to re�ne a promising region of the parameter
space, depending on the results obtained for any single execution.

8

The parametric exploration could be implemented using parametric jobs, but
that is not the best choice to assure a correct load balancing when executing on
heterogeneous environments. Then, a dynamic model is proposed for the appli-
cation: the slave processes execute ca�a3d.MB on demand, with the parameter
values sent by the master. Load balancing strategies are applied by the master
to deal with di�erent simulation times. This model is well suited for a grid
system, since the slave processes run independent non-communicating tasks.

In the proposed application, the parameter to study is the RN. Figure 10
describes the master-slave grid application for the parameter exploration of
ca�a3d.MB.

Figure 10: Master-slave grid application for ca�a3d.MB parametrization.

The master process is implemented as the bash script presented in Figure 11.

1 INI=$1 , STEP=$2 , END=$3 ; par = $INI ; apps = ()
2 whi le par <= END # Submit the jobs (par in INI :STEP:END)
3 apps = add (${apps [@] } $par) # Add app l i c a t i on to array
4 sed " s /PAR/$par/g" caffa . jdl .TEMPLATE > caffa . jdl . $par # Create j d l
5 mkdir output_d . $par # Create output d i r
6 echo "" > status . $par # Create l o c a l f i l e (s t a tu s)
7 l cg−cr −v −−vo prod . vo . eu−eela . eu file : status . $par −l lfn : /grid/prod . vo . eu−

eela . eu/caffa/status . $par −d se01−tic . ciemat . es # Reg i s t e r s t a tu s LFC
8 l f c −setcomment /grid/prod . vo . eu−eela . eu/caffa/status . $par 0 # Set s t a tu s
9 glite−wms−job−submit −o id_caffa . $par −a caffa . jdl .$par # Submit the job

10 i f [$? == 0]
11 echo " e r r o r $? in submit job $par" ; e x i t 2
12 par=`expr "$par" + "$STEP" `
13 whi le [length(apps [@]) −gt 0] ; do
14 f o r i in ${ !apps [*] } ; do # Check the job s ta tu s and proce s s r e s u l t s
15 i f [` l f c −ls −−comment /grid/prod . vo . eu−eela . eu/caffa/status . $apps [$i] |

awk '{ print $2 } ' ` −eq 1] ; then
16 unset apps [$i] # Appl i cat ion f i n i s h ed , d e l e t e from the array
17 # Process r e s u l t s
18 glite−wms−job−output −−dir . /output_d . $apps [$i] −i id_caffa .$apps [$i]
19 # Check i f a re f inement i s r equ i r ed (i . e . i f max_w>0.01)
20 process_output . /output_d . \$apps [$i] /*/caffa*out
21 i f [result −eq 1] ; then # Execute the re f inements
22 NEW_STEP=`expr "$STEP" / 10 `
23 INI=`expr "$apps [$ i] " + "$NEW_STEP" `
24 END=`expr $apps [$i] + 10 * $NEW_STEP − 10`
25 . /master . sh ${INI} ${NEW_STEP} ${END} &
26 i f [length(apps [@]) −gt 0] ; then
27 wait 100 # Wait 100 seconds

Figure 11: Master for ca�a3D.MB parametrization.

9

The master spawns several slave processes (from INI to END, with step
STEP), and keeps an identi�cation for each of them in the application array.
After that, a JDL �le with the speci�cation of the job is created, using the
template in Figure 12. Then, the output directory and the status �le are created.
The status is registered in LFC, the un�nished value is set, and the job is
submitted. After spawning all the slave processes, the master checks for the
status of each process. When a slave �nishes its execution, the master process
the results and it determines is a re�nement is required. In this case, a recursive
invocation is performed, after computing the new values for INI, FIN, and STEP.

1 Type = "Job" ;
2 JobType = "Normal" ;
3 Executable = " s c r i p t_ca f f a . sh" ;
4 StdOutput = " ca f f a . out" ;
5 StdError = " ca f f a . e r r " ;
6 InputSandbox = {" s c r i p t_ca f f a . sh" , " tar_del_caf fa . ta r " } ;
7 OutputSandbox = {" c a f f a . e r r " , " c a f f a . out" } ;
8 Arguments = "cavc41 PAR" ;
9 Requirements = (other . GlueHostArchitecturePlatformType == "x86_64")

Figure 12: Template for ca�a3D.MB JDL �le.

The script that executes the ca�a3D.MB in each slave is shown in Figure 13.
1 export vo=prod . vo . eu−eela . eu
2 export LFC_HOST= l f c .eela . ufrj . br
3 export LCG_GFAL_INFOSYS=bdii . eela . ufrj . br : 2170 ,bdii−eela . ceta−ciemat . es : 2170
4 export LCG_LOCATION=/opt/grid/ui/ l c g
5 tar −xvf tar_caffa . tar > /dev/null # Extract f i l e s
6 f o r i in `ls cav*gin` ; do # Generate meshes
7 echo $i | cut −d " . " −f 1 > ./temp_grid
8 . /grid3d . MB . 9 . 0 0 2 1 . lnx < ./temp_grid > /dev/null
9 echo $1 > ./problem_name # Generate b locks

10 . /block3d . MB . 8 . 4 0 0 5 . lnx < ./problem_name > /dev/null
11 . /caffa3d . MB . 8 . 5 0 0 2 . lnx $2 # Execute ca f f a3d .MB
12 tar −cvf output$2 .tar $1 . out > /dev/null # Pack output
13 l f c −setcomment /grid/prod .vo .eu−eela . eu/caffa/status . $2 1 # Set s t a tu s
14 l cg−cr −d $VO_PROD_VO_EU_EELA_EU_DEFAULT_SE −l lfn : /grid/prod . vo .eu−eela . eu/

caffa/output$2 .tar −−vo prod . vo . eu−eela . eu file : $PWD/output$2 . tar

Figure 13: Script for executing ca�a3d.MB.

6 Experimental analysis
Digi-Clima and ca�a3d.MB were gridi�ed during the CHAIN/GISELA/EPIKH
School for Application Porting held in Valparaiso, Chile, 2010. The development
and grid execution environments were provided as part of the school.

6.1 Digi-clima
A lightweight version of Digi-clima (using a simpli�ed image processing algo-
rithm) was used in the experimental analysis to process a test bank including
150 images (nearly 500 MB). The experimental analysis was performed on the
resources provided by CIEMAT-TIC (90 CPUs and 35 TB of storage). Digi-
Clima is a data intensive application, so it requires a fast access to the processing
data. The application was stored and executed in the CIEMAT-TIC resource
centre, thus locally accessing the data. This is not a limitation for executing in
a distributed environment: gLite supports replicating data in multiple storage
elements, guaranteeing an e�cient access regardless of the resource centre used
as long as adequate replicas are created.

10

Two test cases using 4 and 20 pilot jobs were used for the gridi�ed lightweight
Digi-clima. In the experimental evaluation, the pilot jobs waited 9 minutes (av-
erage) on the job queue before beginning execution. Furthermore, although the
images are stored locally in the computing resource centre, the data download
and result upload of each image takes 11 seconds on average. Table 1 summa-
rizes the e�ciency analysis of the lightweight Digi-clima. An estimation of the
required execution time for the full Digi-Clima application (using the complete
version of the image processing algorithm) is also included: the execution time
should be reduced from about 20 hs.to 1.3 hs. using only 20 pilot jobs.

Scenario #images pilot jobs time est. time est. speedup
Sequential 150 1 73.0 m. 20.0 hs. 1.00
Gridi�ed4 150 4 32.0 m. 5.3 hs. 3.77
Gridi�ed20 150 20 12.0 m. 1.3 hs. 15.05

Table 1: Digi-Clima application performance analysis.
The estimations show a promising nearly linear speedup. With this perfor-

mance gain, the gridi�ed Digi-clima should be able to process 20000 images in
135 hs. using 20 pilot jobs, compared to the 2665 hs. for the sequential time.

6.2 ca�a3d.MB parameter exploration
The experimental evaluation used two test cases, considering the RN parameter
in the intervals [50,1000] and [50,5000]. In both cases the �ow behavior is
initially studied for RN varying in steps of 50 units. Those regions identi�ed as
promising are explored considering smaller intervals for RN (varying in steps of
10 units)- The meshes and blocks requires below 1 GB RAM, and the sequential
execution of ca�a3d.MB for a given RN value takes about 20-30 minutes. The
experiments were performed using the CIEMAT-TIC resource center (90 CPUs).

Case 1: RN in [50,1000]. This test performed 20 ca�a3d.MB executions in
the initial exploration, and 15 re�nements in the 3 promising regions detected.
Thus, a sequential search take about 400 m. = 6.66 hs. (20 exec.×20 m.) for
the initial exploration, and 300 m. = 5 hs. (15 exec.×20 m.) to perform the
re�ned search., with a total execution time of about 700 m. = 11.66 hs.

The parallel execution in grid took a total time of 45 m. to perform the
initial exploration, and 35 m. to perform the re�nement, using 20 computing
resources. The scheduling in the WMS/CE took in average about 10 m., and
about 25-30 m. were spent in each execution of ca�a3d.MB on the distributed
WNs. The average overhead due to the asynchronous implementation, the time
needed to download the program, and the access to LFC was about 3 m. The
total execution time for the parallel search was 80 m. = 1.33 hs.

Case 2: RN in [50,5000]. This is a larger scenario that performed 100
executions in the initial exploration and 12 re�nements. The estimated time for
a sequential execution is 3200 m. = 53.33 hs. (160 exec×20 m.). The parallel
execution took a total time of 210 m. = 3.5 hs. to perform using the 90 computer
resources in CIEMAT-TIC.

Table 2 summarizes the execution times for the parameter exploration (se-
quential and parallel over the grid). Signi�cantly high speedup values were
obtained for the parallel application, specially for the largest test case, and the
computational e�ciency values were acceptable (the re�nements must be per-
formed after the initial search, thus the ideal computational e�ciency is 0.5).

11

Scenario #WN time (sequential) time (grid) speedup
RN ∈ [50,1000] 20 11.66 hs. 1.33 hs. 8.75
RN ∈ [50,5000] 90 (estimated) 53.33 hs. 3.50 hs. 15.22

Table 2: E�ciency analysis for the ca�a3d.MB parameter exploration.

7 Conclusions and future work
This work presented the application of parallel computing techniques to solve
two scienti�c applications over the GISELA European-Latin American grid com-
puting platform. The article described the digitalization of historical rain in-
tensity data in the Digi-clima application and the numerical solver for compu-
tational �uid dynamics in the ca�a3d.MB application.

The implementation details for the parallel Digi-clima and ca�a3d.MB over
the grid were presented, including a conceptual description of the parallel models
used and the tools to implement the solution and execution over the grid.

A preliminary e�ciency analysis was presented, demonstrating how the use
of the grid infrastructure signi�cantly help to reduce the execution times re-
quired to solve these two complex problems.

Two main lines are formulated for future work: i) to further improve the
e�ciency analysis of the proposed parallel implementations of Digi-clima and
ca�a3d.MB, by solving even more complex scenarios and ii) to extend the pro-
posed parallel grid techniques to other scienti�c computing applications. We
are currently working on these topics now.

References
[1] R. Buyya and K. Bubendorfer. Market-Oriented Grid and Utility Computing.

Wiley Publishing, 2009.
[2] EGEE. Enabling grids for e-science project. Available at http://www.eu-egee.org/.

Retrieved April 2011.
[3] J. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer,

Berlin, 2002.
[4] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing Infras-

tructure. Morgan Kaufmann Publishers, 1998.
[5] GISELA. Grid infrastructures for e-science virtual communities in europe and

latin-america. Available at http://www.gisela-grid.eu/. Retrieved April 2011.
[6] B. Koblitz, N. Santos, and V. Pose. The AMGA metadata service. Journal of Grid

Computing, 6:61�76, 2008. 10.1007/s10723-007-9084-6.
[7] P. Kunszt, P. Badino, A. Frohner, G. McCance, K. Nienartowicz, R. Rocha, and

D. Rodrigues. Data storage, access and catalogs in gLite. In Local to Global Data
Interoperability - Challenges and Technologies, 2005, pages 166 � 170, june 2005.

[8] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. Di Meglio,
and A. Edlund. Programming the grid with gLite. Computational Methods in
Science and Technology, 12(1):33�45, 2006.

[9] H. Stone. Iterative solution of implicit approximations of multidimensional partial
di�erential equations. SIAM Journal of Numerical Analysis, 5:530�538, 1968.

12

