
Object Relational Mapping for
Database Integration

Erico Neves, Ms.C.
(enevesita@yahoo.com.br)

State University of Amazonas – UEA

Laurindo Campos, Ph.D.
 (lcampos@inpa.gov.br)

National Institute of Research of Amazonia –
INPA

Brazil

mailto:enevesita@yahoo.com.br
mailto:lcampos@inpa.gov.br

Presentation Scope

 Introduction
 Objectives
 Previous works
 ORM Models
 Simulations Results
 Conclusions

Introduction
 Data integration is the problem of combining data

residing at different sources, and providing the
user with a unified view of this data;

 An old problem, but still not solved;

 Integration is divided into two main approaches:

− Schema integration reconciles schema elements;
− Instance integration matches tuples and attribute

values.

Introduction
 Developers have many difficulties to integrate

data from different sources in their applications:

− Usually, the computer languages offer a basic
support to execute queries;

− Most part of work is left to developer hands;
− Relational databases must be “translated” to Object

Oriented applications;
− Data type conversion;
− Possible solution with XML.

 One approach is use database views are used
to create integration.

Objectives

 Present an API to create data integration on
Instance level;

− The API will be used in application program;
− Two requisites to execute this are:

 No temporary views from databases will be used;
 Databases will be used just to retrieve and store

data no requisites to know other databases;

− This API will also offer an approach to allow
Object materialization.

Previous Works
 In 1986, Frank, Madnick and Wang proposed

the following problem:

Previous Works

 There are some implementations of Object to
Relational Mapping (ORM) for Java:

 All base their Schema Mappings using XML;
− Developer creates a XML file that informs how

the application will “see” the tables in database;
− This XML file also informs the relations between

the table's attributes and the application's object
attributes.

 Examples:
− Hibernate;
− Java Data Objects (JDO); etc...

Previous Works
 Example Hibernate:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class name="someclass" table="tableindatabase">
 <id name="classattribute" column="columnNameInDatabase"/>
 <property name="date" type="timestamp"
column="EVENT_DATE"/> (OPTIONAL)
 </class>
</hibernate-mapping>

Previous Works
 Disadvantages:

− All application classes, that reflect informations
from database's tables, must have a information
reflecting in this XML;

− Any changes in the database, implies in change
in application XML file;

− Developer may use different names to represent
attributes in databases and objects;

− Main focus is Object to Relational Mapping, not
data integration.

ORM Models

 Java offers a standard access to SQL
databases, using JDBC;

 JDBC does not implement any ORM;

 JDBC is a flexible tool to create new
approaches to ORM;

ORM Models

 As Java offers tools to create objects
dynamically in application, we can use any
object created by user;

 In this Application, we wish to follow the
steps:

− After query execution, a view in application is
created, representing the query's result;

− These “application views” can be integrated in
application.

ORM Model

 Architecture

ORM Model

 Structure to access data:

ORM Model

 DBConnection class in detail:

ORM Model

 A Class Join is used to create and
manipulate the index;

 The Joins between tables from different
datasources is implemented using the
classes BlackRed and BlackRedNode;

 These classes implements a Black-Red tree;

ORM Model

 Developer chooses one field from each table,
and an index will be created;

 The functions allowed to relate data are:
− Join,
− Not Join,
− Left Join and
− Right Join.

ORM Model

 Join class used to create and use the index:

ORM Model

 The Index relationship:

ORM Model

 Comparator used to implement Object type
conversion:

ORM Model
 The Data Types problem:

− Developers execute a query, and a DataModel
object is created;

− In this object, the types described in database
are transformed to Objects;

− If the each column from both tables are numeric
− The Numeric Objects are transformed to
java.math.BigDecimal;

− If one Object is numeric and the other is a
String object, both are converted to
java.math.BigDecimal;

− If both are Strings, no conversion is required.

ORM Model

 This API also works with LOB data types;

 If the selection brings an information, which
data type is a CLOB or BLOB type, two
Objects are created:

− CLOBType
− BLOBType

 The CLOBType also implements a “like”
search, that implements the same function as
SQL “like” command.

Simulations

 Four situations where tested using the
following network structure:

Client
Machine

Linux
Pentium III
700 Mhz

Oracle Server
NetFinity 7100 –
2 Pentiun III 700

Mhz
DataBase 1

Postgres
Server

mobile AMD
Athlon 1.8

Ghz
DataBase 2

Ehternet Network

Simulations
 The simulations were divided in 4 types:

− Situation 1 - Only one column and one row from
a table in DataBase 1 (Oracle) was related with
one column from DataBase 2;

− Situation 2 - Only one column and one row from
table in DataBase 1 was related with all columns
from DataBase 2;

− Situation 3 - All columns and one row from table
in DataBase 1 related with all columns from
DataBase 2;

− Situation 4 - All columns and rows from
Database 1 related with all rows and columns
from Database 2.

Simulations
 Results for Simulation 1:

Simulations
 Result for Simulation 2:

Simulations
 Results for Situation 3:

Simulations

 The results for Situation 4 were not analysed,
because memory failures;

 Main reason is the high number of objects
allocated in memory

− Possible solution: Create a cache system to
store in hard drive data not used.

 If queries do not require a high number of
columns, the system does not get any error.

Conclusion

 This presentation showed a API to execute a
ORM using JDBC;

 Tests were executed with two different
databases;

 This program does not identify homonyms or
synonyms;

Conclusion

 This API still demands the presence of
manufacturer's driver to access database;

 This API executes the data integration in
application environment – no overload to
database servers;

 This presentation did not present the Object
materialization;

Conclusion

 It is necessary implement a cache to
DataModel Objects;

− Avoid memory limitations
 This API needs an approach to work with

XML databases;
 This program has been in use to integrate

data from different databases for almost 1,5
year at State University of Amazonas - Brazil.

 This program also was used to access LDAP
servers and integrate their informations with
our Academic system – 6 months.

