

FRANCE

Data Quality Evaluation in Data Integration Systems

Verónika Peralta

AMW'2007, Punta del Este, October 26th 2007

Joint work with Raúl Ruggia & Mokrane Bouzeghoub

Agenda

Motivations

Quality evaluation problem

Quality evaluation framework

- Illustrated for data freshness

Conclusions

Data Quality

Context: Querying multiple, distributed, autonomous and heterogeneous data sources

Multitude of quality factors

Intrinsic	Accuracy Objectivity Credibility Reputation Access Precision, Correction, level of de Objectivity, Non ambiguity, Fact Impartiality Credibility System availability, source avail Transaction availability, Ease of Localization, Assistance	ətail. uality, lability, use,
	Security — Security, Privileges Pertinence, Relevance, Utility	
Contextual	PertinenceImportance, Added value, ConteAdded valueCurrency, Age, VolatilityFreshnessDensity, Coverage, SuffisanceCompletenessVolume, Data quantityData quantityInterpretation, Modifiability, Reasonable, Traceability, Appea Presentation	∍nts… arance,
Representational	Interpretation Comprehension Concise repr. Consistent repr. Consistent repr. Consistent repr. Consistent repr. Consistent repr. Consistent repr. Consistent repr. Consistency, Format, Syntax, A Semantics, Control of versions.	ər, e .lias,
AMW'2007 – 26/10/2007	Verónika Peralta	4

Difficulty of quality evaluation

- **Open domain:** multitude of criteria, multitude of perceptions
- Disparate state of the art, ranging from empiric estimation methods to formal and complex evaluation models
- Data quality may rarely be evaluated 'de visu',
 - Either we characterize the processes that produce data
 - Or we analyze the correlations among data

• Quality evaluation tools are:

- Either embedded into IS (compilation, execution, correction)
 - Automatic decisions / actions
- Or external to IS (observation, inspection, diagnosis)
 - Aid to the designer

Two main approaches

Data-oriented approach:

- Data inspection (detection of anomalies)
- Data cleaning (corrective actions)

Process-oriented approach:

- Analysis of activities and detection of critical paths
- System improvement (evolution, maintenance)
- Both approaches may be combined but in practice they are rarely considered together:
 - Complexity of systems
 - Cost vs. immediate needs

AMW'2007 - 26/10/2007

Problems (query evaluation time)

Evaluation Problem

Verónika Peralta

Problems (design time)

AMW'2007 - 26/10/2007

Verónika Peralta

Approach

• Develop a framework for:

- Providing a formal base for quality evaluation
- Analyzing quality factors and metrics
- Identifying DIS properties that influence quality factors
- Developing quality evaluation algorithms

For each quality factor:

- Analyze definitions, metrics, properties
- Model DIS properties
- Evaluate data quality
- Analyze critical paths
- Identify improvement actions

illustration for data freshness

Freshness

Several freshness definitions:

- Currency: distance extraction delivery
 - Example: banc balance
 - Example of metric: time passed since data extraction
- Extraction frequency

- Timeliness: distance creation/update delivery
 - Example: Top 10 CDs
 - Example of metric: time passed since data creation/update

Update frequency

Dimensions that influence freshness

- Several parameters influence freshness evaluation
- We classify them in 3 dimensions:
 - Nature of data
 - Architecture types
 - Synchronization policies

Dimension 1: Nature of data

- Data does not change with the same rhythm. The update frequency is a determinant element for freshness evaluation
 - Stable data: ex. city names, postal codes
 - Long-term-changing data: ex. customer addresses
 - Frequently-changing data: ex. stock, real-time info
- Sometimes, we can anticipate data freshness by correlating DB current state and data update cycle:
 - Change events
 - Ex. Marital status (married, divorced, ...)
 - Change frequency
 - Ex. Cinema billboards (every Wednesday)

Dimension 2: Architecture Types

- DIS extraction, integration and delivery processes may introduce delays
 - Important delays: influencing data freshness
 - Negligible delays: compared to data lifecycle

Data freshness also depends on replication mode:

- Virtual systems (execution and communication costs)
- Caching systems (time to live)
- Materialized systems (refreshment period)

Dimension 3: Synchronization policies

• 2 levels of synchronization:

- Sources \leftrightarrow DIS \leftrightarrow users (pull / push)

• Categories :

- Synchronous policies:
 - Pull-pull, push-push
- Asynchronous policies:
 - Pull/pull, pull/push, push/pull, push/push

Asynchronous policies introduce additional delays (refreshment frequencies)

15

Reasoning support

Freshness evaluation bases on an abstract representation of DIS processes

- Process graph
 - Nodes: sources, activities, queries
 - Edges: synchronization, data flow
- Quality graph (same topology than process graph)
 - Nodes: parameters of sources, activities and queries
 - Edges: synchronization delays, freshness of data flows

Labels associated to freshness

Expected freshness for an activity

Construction of the quality graph

Input: process graph

- Identification of activities (processes)
- Identification of sources

Definition of the quality graph

- Definition of user expectations (expected freshness)
- Instantiation of graph properties (bounds / statistics / actual values)
- Calculation of data freshness
 - Calculation by forward propagation
 - Calculation by backward propagation

Forward propagation

Allows:

- Fixing freshness bounds
- Verifying graph conformity for user expectations

Mechanism:

- Propagate freshness values along the graph (topological order)
- Calculate the freshness produced by each node
 - combining properties of the node and its predecessors

Backward propagation

Allows:

- Fixing freshness constraints for sources
- Verifying graph conformity for source freshness

• Mechanism :

- Propagate freshness values along the graph (inverse topological order)
- Calculate freshness constraints for each node
 - Decomposing freshness constraints of successor nodes

Analysis of the quality graph

A graph is satisfactory if for every user, it satisfies his freshness expectations If an expectation is not satisfied we should find the critical paths determining the sub-graphs to restructure

Refining and restructuring approach

Hierarchy of activities + browsing operations + restructuring operations

Verónika Peralta

Browsing and restructuring operations

Browsing primitives:

- Focus+, focus-
- Zoom+, zoom-

Restructuring primitives:

- Add node / edge / labels
- Delete node / edge / labels

Restructuring macro-operations:

- Decompose node
- Parallelize node
- Fusion nodes
- Replace node / sub-graph

- ...

Possibility of defining new macro-operations

Summary of the proposal

• Build a quality graph:

- Identify the topology (activities, sources)
- Fix labels for each node and edge
- Define combine functions for each node
- Execute propagation algorithms
- Verify the conformity of results to user expectations / source constraints
- For each non-conforming result:
 - Determine critical paths
 - Analyze critical paths
 - Propose restructuring actions

Conclusions

• A framework for quality evaluation, analysis and improvement

- Analysis of quality factors
- Quality graphs
- Parametric evaluation algorithms
- Analysis of critical paths
- Improvement actions

• The framework may be adapted to other quality factors

- Proposed for data freshness. Extended for data accuracy.
- Currently studying consistency, completeness and uniqueness (Quadris project).

The approach was prototyped

- Currently using it in several application domains (Quadris project).

Thanks

PhD manuscript:

http://www.prism.uvsq.fr/~vepe/pubs/2006/phd-vp.zip

SAINT-QUENTIN-EN-YVELINES