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Abstract. Data Warehouse (DW) logical design techniques often start from a conceptual schema and then gener-
ate the relational structures. Applying this approach involves to cope with two main aspects: (i) mapping the con-
ceptual model structures to the logical model ones, and (ii) taking into account implementation issues, which are 
not included in the conceptual schema. Existing work in this area has mainly focused in the first aspect and pro-
poses inter-model mapping strategies that lead to different relational structures. The second aspect has been less 
studied. This paper presents a set of design guidelines to state such implementation issues. These guidelines en-
able to cope with several design problems, for example: managing complex and big dimensions, dimension ver-
sioning, different user profiles accessing to different attributes, high summarized data, horizontal partitions of his-
torical data, generic dimensionality and non-additive measures. This work is part of a DW logical design envi-
ronment, where the design guidelines are specified through a graphical editor and then automatically processed in 
order to build the logical schema.  
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1 Introduction 

It is widely accepted that Data Warehouse logical design is significantly different to OLTP database design 
[17][18][2][8][9]. Relational DWs are designed to optimize the execution of queries and to provide simple and ex-
pressive meanings to express these queries [18][2]. Such requirements have lead to the proposition of specific design 
techniques and patterns, like the well-known Star, Snowflake and Star Cluster Schemas [18][23].  

Many of the existing DW design techniques propose the construction of a DW conceptual schema and the 
generation of the DW logical schema from the conceptual one [13][6][3][15][29]. This is a traditional database de-
sign strategy [4][21] and presents two main aspects: (i) mapping the conceptual model structures to the logical model 
ones, and (ii) taking into account implementation issues, which are not included in the conceptual schema. While the 
first aspect copes with defining the relational structures to be created, the second one enables to obtain a schema that 
satisfies performance and maintenance requirements as well as the information retrieval ones.  

Most of the previously referenced techniques take into account the first aspect, and propose inter-model mapping 
strategies that lead to different DW-oriented relational structures. The second aspect has been less studied. In [13] the 
authors propose to take as input DW workload information (the data volumes of tables, a set of user queries and their 
execution frequency). This information is used to complement a mapping strategy in order to obtain a better logical 
DW schema.  

It is important to note that dealing with additional, implementation issues is not straightforward. Firstly, it is not 
possible to formalize all the real world implementation-related aspects. Second, if these specifications are intended to 
be automatically treatable, then they have to be simpler enough to do not rely in undecidable problems. Finally, it 
should be practical to obtain and manage such specifications.  

This paper addresses the problem of obtaining a DW logical schema from a conceptual one, and presents a set of 
design guidelines to declare such implementation issues. It follows a similar approach to [13], but proposes to use 
implementation-related guidelines instead of workload information in order to obtain a more accurate logical 
schema. 

The proposed design guidelines enable to state: (i) the desired degree of fragmentation for dimension tables, sup-
porting different DW styles and strategies like managing big dimensions, versioning and considering using user pro-
files, (ii) the degree of fragmentation of fact tables, allowing to manage tables with fewer records and improve query 
performance and considering user profiles and strategies to manage historical data, and (iii) the aggregated data to 
materialize, considering addtivity issues and trying to obtain a balance between performance and storage. 

We believe that they constitute a well-balanced mechanism, because includes very synthetic implementation-
related information that enables to obtain accurate logical schemas in several design cases, and it is automatically 
treatable as well as practical to be specified by a designer. 



The design guidelines are part of a more general DW design environment, which automates most of the DW logi-
cal schema generation [27][28][7].  

The main contribution of this paper is the proposition of a set of design guidelines, which allow expressing im-
plementation-related information in a simple way and are used to generate accurate DW relational schemas through a 
semi-automated process. 

The rest of this paper is organized as follows: Section 2 studies related work and discusses some problems in the 
mappings between multidimentional and relational models. Section 3 presents the design guidelines and discusses 
criteria for their definition. Section 4 present the DW logical design environment and section 5 concludes. 

2 Relational Representations for Multidimensional Structures  

This section presents a brief state of the art of relational DW design proposals that start from conceptual multidimen-
sional schemas, and discusses some problematic cases that would arise in pure mapping techniques. 

2.1 Existing techniques to relational DW design  
There are several proposals concerning the generation of DW relational schemas from conceptual ones 
[13][6][3][15][29]. They mainly deal with DW conceptual design, but present mapping strategies (conceptual Æ 
logical), and generate DW relational schemas following fixed design strategies.  

In [6], the MD conceptual model is presented and two algorithms are proposed in order to show that conceptual 
schemas can be mapped to relational or multidimensional logical models. The mapping to a relational schema is 
straightforward and generates a star schema.  

In [13] a methodological framework, based in the DF conceptual model is proposed. Starting from a conceptual 
model, they propose to generate relational or multidimensional schemas. Despite not suggesting any particular 
model, the star schema is taken as example. They also present a design strategy based on a cost model that takes as 
input the DW query workload and data volumes, and determine how to vertically fragment fact tables to materialize 
them [14][20]. Query workload is stated as pairs <query, frequency> and it is based on the conceptual structures. 
Although it is a powerful approach, it does not cover table maintenance considerations (e.g. related to manage ver-
sioned monster dimensions [18]) , and does not state how to determine the most relevant query workload pairs.  

Other proposals [3][15][29] generate fixed star schemas. As these proposals do not aim at generating complex 
DW structures, they do not offer flexibility to apply different design strategies.  

 
Other works in DW logical design do not take a conceptual schema as input to design the logical schema 

[23][5][18]. They directly build logical models either from requirements or from source databases.  
In [18] the author proposes to build star schemas from user requirements and presents logical design techniques 

to solve frequent DW design problems.  
In [23], the logical schema is built from an Entity-Relationship (E/R) schema of the source database. It describes 

several logical models, as star, snowflake and star-cluster, and presents the main characteristics of each one. The 
paper proposes two operators: collapse hierarchy and aggregation, and states how to derive the different logical mod-
els applying the operators. The designer has to decide when to apply each operator and which model to obtain.  

The proposition of [5] also builds a logical schema starting from a source database. 

2.2 Motivating examples  
In this section we present an example and several situations to show some limitations of existing approaches. This 
motivates the use of additional information to take into account implementation issues, which are not specified in the 
conceptual schema.  

Along the paper we use the following conceptual schema to illustrate the examples. 

Example 1. Consider the case of a company that brings phone support to its customers and wants to analyze the 
amount of time spent in call attentions. 

In the conceptual design phase, the DW analyst has identified two dimensions: customers and dates. The custom-
ers dimension has four levels: state, city, customer and department, organized in two hierarchies. The dates dimen-



sion has two levels: year and month. The designer also identified a fact: support that crosses customers and dates 
dimensions and takes the call duration as measure.  

Figure 1 sketches the conceptual schema using CMDM graphical notation [7]. We use the CMDM conceptual 
model, but the examples can be stated with other conceptual models. � 

customercustomer
customer_id #
customer_name
income
version #

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

monthmonth
month #

yearyear
year #

dates

departmentdepartment
department

customerscustomers

datesdates

durationdurationsupport

 
Figure 1. Conceptual schema. Dimension representation consists of levels in hierarchies, which are stated as boxes with their 
names in bold followed by the items. The items followed by a sharp (#) identify the level. Arrows between levels represent di-
mension hierarchies. Facts are represented by ovals linked to the dimensions, which are stated as boxes. Measures are distin-
guished with arrows. 

The proposals for generating a DW relational schema from a conceptual schema mainly focus on the generation 
of star schemas [13][6][15]. Although Star Schema is the most popular DW relational pattern, it does not adequately 
model relevant situations that lead to fragment dimension and fact tables. As a consequence, other alternatives have 
been proposed, for example normalizing part of the dimensions [23], materializing aggregates [18] and fragmenting 
fact schemas [14].  

It is interesting to note that, although existing proposals are strongly based in particular conceptual models, the 
resulting tables are quite similar. They consist of a fact table for each conceptual fact and a dimension table for each 
conceptual dimension. The following tables (S1) are generated from the conceptual schema of Example 1 in order to 
build a star schema: 

 
(S1) CUSTOMERS (customer_id, department, city_id, state_id, customer_name, 

income, version, city_name, state_name, country) 
DATES (month, year) 
SUPPORT (month, customer_id, minutes)  

 
We identify several problems when following a fixed strategy that always builds stars schemas: 
Firstly, in the case of complex or big dimensions (monster dimensions [18]), denormalization can cause great re-

dundancy, and therefore maintenance, problems. Partially normalizing the dimension can be a trade-off between per-
formance and redundancy. Consider that the CUSTOMERS table has hundreds of thousands customers, but only one 
hundred different cities. Data about cities and states is extremely redundant and causes maintainability problems. The 
following tables can be more appropriate: 

 
(S2) CUSTOMERS (customer_id, department, city_id, customer_name, income,version) 

CITIES (city_id, state_id, city_name, state_name, country)  
 
If the dimension data has to be versioned (to keep track of the changes), denormalization can cause great main-

tainability problems. It is useful to maintain different tables for attributes that do not change, attributes that slowly 
change and attributes that change more frequently. For example, if we want to trace the history of the cities where a 
customer has lived, we can add additional tuples to the CUSTOMERS table and generalize the key (we can use the ver-
sion attribute to do it). Table will increase size and degrade unnecessarily the performance of other queries, e.g. by 



the department attribute. To avoid this, we can store the current city in the CUSTOMERS table and the historical values 
in a separate table with generalized key, as in S3:   

 
(S3) CUSTOMERS (customer_id, department, city_id, customer_name, income,version) 

CUSTOMER_HISTORY (customer_id, version,city_id) 
CITIES (city_id, state_id, city_name, state_name, country)  
SUPPORT (month, customer_id, version, minutes) 

 
Furthermore, when there are requirements to access different subsets of dimension attributes, it is not necessary 

to design large and complex dimension tables. Consider that there are two user profiles: those who are mainly inter-
ested in the geographical distribution of calls, and those who supervise customers by their departments. The 
fragmentation of the customer dimension in two tables: CUSTOMERS and CITIES as in (S2) or (S3) is recommended. 

 
Another problem arises when frequent queries require high-summarized data. Query execution time is generally 

not satisfactory and we need to materialize aggregated data. Consider for example these two types of requirements: 
(i) analyze calls of the last months, filtering by customers, their cities and departments, and (ii) analyze annual totals 
of previous years calls for each city. To solve these requirements the schema should materialize the following aggre-
gation:  

 
(S4) SUPPORT_YEAR_CITY (year, city_id, minutes) 

 
In addition, when materializing an aggregate, additional dimension tables (with the appropriate granularity) must 

be generated to assure correct results. These can be an additional reason to partially normalize a dimension table. 
E.g. to join the SUPPORT_YEAR_CITY table with city and state information we need the CITIES table of schema S2. If 
city and state data is also stored in the denormalized CUSTOMERS table of schema S1, we have excessive duplication 
of data. In this situation, schema S2 is more suitable.   

Sometimes, some dimension attributes can be more frequently accessed than others. Consider that the state_name 
attribute is queried in most of the queries, but the country attribute is only queried in some specific ones. We can 
store different degrees of redundancy for the different attributes, storing some of them in several tables, for example, 
storing the state_name attribute in both dimension tables: 

 
(S5) CUSTOMERS (customer_id, department, city_id, customer_name, income, 

version, state_name) 
CITIES (city_id, state_id, city_name, state_name, country) 

 
Usually, the most frequent queries access the most recent data, and other queries access older data. In such cases, 

fact tables can be horizontally fragmented (and eventually aggregated) according to the user queries. Consider that 
calls of the last months are queried grouped by customer, and calls of previous years are queried grouped by year and 
city. We can build two tables: a fact table only with calls of previous years and aggregated by year and city; and an-
other fact table with the current year calls without aggregation. 

 
(S6) CURRENT_SUPPORT (month, customer_id, version, minutes) 

HISTORICAL_SUPPORT (year, city_id, minutes) 
 
Other aggregates may be necessaries because of complex requirements. Consider the analysis of the quantity of 

customers that make long calls, classifying call durations in different ranges. In this case, the duration measure is 
used as dimension, and the customer dimension is studied as a measure. This is a case of generic dimensionality [9] 
and is a hard query. It may be necessarily to materialize the aggregation:  

 
(S7) CUSTOMER_QUANTITY (month, city_id, duration_range, quantity) 

 
In the generated schema (S7), the customer quantity measure is not additive, for example for the dates dimension. 

If we have the customer quantity for the different months of a year, we cannot sum these quantities to obtain the 
value corresponding to the year because some customers can be counted several times. We have basically two types 
of solutions: querying the detailed fact table asking for distinct customers (with possible performance problems), and 
materializing several aggregates for the most important crossings. For example, we can materialize annual totals 



(S8). Queries with additivity problems are generally not considered when selecting which aggregates to materialize. 
But they must be taken into account because they must be correctly solved even if they are not the most frequently 
executed. Additivity issues are discussed in [19]. 

 
(S8) ANUUAL_CUSTOMER_QUANTITY (year, city_id, duration_range, quantity) 

 
Finally, taking into account all the presented implementation-oriented considerations, a DW designer should 

build the following relational schema: 
 

(S) DATES (month, year) 
CUSTOMERS (customer_id, department, city_id, customer_name, income, 

version, state_name) 
CUSTOMER_HISTORY (customer_id, version,city_id) 
CITIES (city_id, state_id, city_name, state_name, country)  
CURRENT_SUPPORT (month, customer_id, version, minutes) 
HISTORICAL_SUPPORT (year, city_id, minutes) 
CUSTOMERQUANTITY (month, city_id, duration_range, quantity) 
ANNUALCUSTOMERQUANTITY (year, city_id, duration_range, quantity) 

 
There are notorious differences between schema S and the one generated by the Star Schema based methodology 

(S1). The differences are a consequence of taking into account more information than the pure mapping methodol-
ogy. 

Then, it can be concluded that implementation related information is required to obtain accurate relational DW 
schemas. Design methods need this kind of information in order to generate schemas that provide efficient access to 
data, easy maintenance of data, and efficient use of storage resources. 

At this point arise some questions: 
- What kind of implementation-related information has to be stated to obtain an accurate relational DW 

schema? 
- How do DW design techniques should make use of these statements? 

The next sections address these issues. 

3 Design Guidelines 

We propose a set of design guidelines to expresses design decisions related to non-functional requirements as per-
formance, storage constraints and use of the system.  

The use of guidelines constitutes a flexible way to express design strategies and properties of the DW in a high-
level way. This allows the application of different design styles and techniques, generating the DW logical schema 
following the designer approach.  

We propose guidelines related to Aggregate Materialization, Horizontal Fragmentation of Facts and Vertical 
Fragmentation of Dimensions. We think that with these three guidelines we achieve a trade-off between the expres-
siveness and simplicity of the mechanism. 

3.1 Aggregate materialization 
During conceptual design, the analyst identifies the desired facts, which leads to the implementation of fact tables at 
logical design. These fact tables can be stored with different degrees of detail, i.e. maximum detail tables and aggre-
gate tables. In the example, for the support fact of Example 1 we can store a fact table with detail by customers and 
months, and another table with totals by departments and years. 

Giving a set of levels of the dimensions that conform the fact, we specify the desired degree of detail to material-
ize it. 

We define a structure called cube that basically specifies the set of levels of the dimensions that conform the fact. 
These levels indicate the desired degree of detail for the materialization of the cube.  

Sometimes, they do not contain any level of a certain dimension, representing that this dimension is totally sum-
marized in the cube. However, the set can contain several levels of a dimension, representing that the data can be 



summarized by different criteria from the same dimension. A cube may have no measure, representing only the 
crossing between dimensions (factless fact tables [18]).  

 
A cube is a 4-uple <Cname, R, Ls, M> where Cname is the cube name that identifies it, R is a conceptual schema 

fact, Ls is a subset of the levels of the fact dimensions and M is an optional measure that can be either an element of 
Ls or null. 

The SchCubes set, defined by extension, indicates all the cubes that will be materialized (see Definition 1). 
 

� SCHCUBES ⊆ { <CNAME, R, LS, M> /  
CNAME ∈ STRINGS ∧  
R ∈ SCHFACTS ∧  
LS ⊆ { L ∈ GETLEVELS(D)  / D ∈ GETDIMENSIONS(R) } ∧  
M ∈ (LS  ∪ ⊥) 

}1 

Definition 1 – Cubes. A cube is formed by a name, a fact, a set of levels of the fact dimensions and an optional measure. 
SCHCUBES is the set of cubes to be materialized. 

Figure 2 shows the graphical notation for cubes. There are two cubes: detail and summary of the support fact of 
Example 1. Their levels are: month, customer and duration, and year, city and duration, respectively. Both of them 
have duration as measure. 

customermonth

duration

detail
(support)

cityyear

duration

summary
(support)

 
Figure 2. Cubes. They are represented by cubes, linked to several levels (text boxes) that indicate the degree of detail. An op-
tional arrow indicates the measure. Inside the cube are its name and the fact name (between brackets). 

3.2 Horizontal fragmentation of facts 
A cube can be represented in the relational model by one or more tables, depending on the desired degree of frag-
mentation.  

To horizontally fragment a relational table is to build several tables with the same structure and distribute the tu-
ples between them. In this way, we can store together the tuples that are queried together and have smallest tables, 
which improve query performance. 

As an example, consider the detail cube of Figure 2 and suppose that most frequent queries correspond to calls 
performed after year 2002. We can fragment the cube in two parts, one to store tuples from calls after year 2002 and 
the other to store tuples from previous calls. The tuples of each fragment must verify respectively: 

− month ≥ January-2002 
− month < January-2002 

The horizontal fragmentation in distributed databases has been studied in [24]. They define two properties (com-
pleteness and disjointness) that must be verified by a horizontal fragmentation in order to assure completeness while 
minimizing the redundancy. A fragmentation is complete if each tuple of the original table belongs to one of the 

                                                           
1 SCHFACTS is the set of facts of the conceptual schema. The functions GETLEVELS and GETDIMENSIONS return the set of levels of 
a dimension and the set of dimensions of a fact respectively. 



fragments, and it is disjoint if each tuple belongs to only one fragment. As an example, consider the following frag-
mentation:   

− month ≥ January-2002 
− month ≥ January-1999 ∧ month < January-2001 
− month < January-2000 

The fragmentation is not complete because tuples corresponding to calls of year 2001 do not belong to any frag-
ment, and it is not disjoint because tuples corresponding to calls of year 1999 belongs to two fragments. 

 
In a DW context, these properties are important to be considered but they are not necessarily verified. If a frag-

mentation is not disjoint we will have redundancy that is not a problem for a DW system. For example, we can store 
a fact table with all the history and a fact table with the calls of the last year. Completeness is generally desired at a 
global level, but not necessarily for each cube. Consider, for example, the two cubes of Figure 2. We define a unique 
fragment of the detail cube (with all the history) and a fragment of the summary cube with the tuples after year 2002. 
Although the summary cube fragmentation is not complete, the history tuples can be obtained from the detail cube 
performing a roll-up, and there is no loose of information. 

We define a fragmentation as a set of strips, each one represented by a predicate over the cube instances. 
 

� SCHSTRIPS ⊆ { <SNAME, C, PRED> /  
SNAME ∈ STRINGS ∧  
C ∈ SCHCUBES ∧  
PRED ∈ PREDICATES(GETITEMS(C))  

}2 

Definition 2 – Strips.  A strip is formed by a name, a cube and a boolean predicate expressed over the items of the cube levels. 

Figure 3 shows the graphical notation for strips. There are two strips for the detail cube: current and history, for 
calls posteriors and previous to 2002, respectively. 

customermonth

duration

detail
(support)

• current: month ≥ Jan-2002
• history: month < Jan-2002

 
Figure 3 – Strips. The strip set for a cube is represented by a callout containing the strip names followed by their predicates. 

3.3 Vertical fragmentation of dimensions 
Through this guideline, the designer specifies the level of normalization he wants to obtain in relational structures for 
each dimension. In particular, he may be interested in a star schema, denormalizing all the dimensions, or conversely 
he may prefer a snowflake schema, normalizing all the dimensions [23]. This decision can be made globally, regard-
ing all the dimensions, or specifically for each dimension. An intermediate strategy is still possible by indicating the 
levels to be stored in the same table, allowing more flexibility for the designer. To sum up, for specifying this guide-
line, the designer must indicate which levels of each dimension he wishes to store together. Each set of levels is 
called a fragment.  

Given two levels of a fragment (A and B) we say that they are hierarchically related if they belong to the same 
hierarchy or if there exists a level C that belongs to two hierarchies: one containing A and the other containing B. A 

                                                           
2 PREDICATES(A) is the set of all possible boolean predicates that can be written using elements of the set A. The GETITEMS func-
tion returns the set of items of the cube levels. 



fragment is valid only if all its levels are hierarchically related. For example, consider a fragment of the customers 
dimension of Example 1 containing only city and department levels. As the levels do not belong to the same hierar-
chy, storing them in the same table would generate the cartesian product of the levels’ instances. However, if we 
include the customer level to the fragment, we can relate all levels, and thus the fragment is valid. 

In addition, the fragmentation must be complete, i.e. all the dimension levels must belong to at least one fragment 
to avoid losing information. If we do not want to duplicate the information storage for each level, the fragments must 
be disjoint, but this is not a requirement. The designer decides when to duplicate information according to his design 
strategy.  

 

� SCHFRAGMENTS  ⊆ { <FNAME, D, LS> /  
FNAME ∈ STRINGS ∧  
D ∈ SCHDIMENSIONS ∧  
LS ⊆ GETLEVELS(D) ∧  
∀A,B ∈ LS . ( 

<A,B> ∈ GETHIERARCHIES(D) ∨ 
<B,A> ∈ GETHIERARCHIES (D) ∨ 
∃ C ∈ LS . (<A,C> ∈ GETHIERARCHIES (D) ∧ <B,C> ∈ GETHIERARCHIES (D))  )  

}3 

Definition 3 – Fragments.  A fragment is formed by a name, a dimension and a sub-set of the dimension levels that are hierarchi-
cally related. 

Graphically, a fragmentation is represented as a coloration of the dimension levels. The levels that belong to the 
same fragment are bordered with the same color. Figure 4 shows three alternatives to fragment the customers dimen-
sion.  

a) b) c)
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Figure 4. Alternative fragmentations of customers dimension. The first one has only one fragment with all the levels. The sec-
ond alternative has two fragments, one including state and city levels (continuous line), and the other including the customer and 
department levels (dotted line). The last alternative keeps the customer level in two fragments (dotted and continuous line). 

3.4 Criteria for the definition of guidelines  
By means of the guidelines, the designer defines:  

- A set of cubes for each fact. 
- A set of strips for each cube. 
- A set of fragments for each dimension. 

                                                           
3 SCHDIMENSIONS is the set of dimensions of the conceptual schema. The GETHIERARCHIES function returns the pairs of levels that 
conform the dimension hierarchies [7]. 



 
In order to specify the guidelines, the designer should consider performance and storage constraints as well as use 

and maintenance requirements. 
As for each fact, a set of cubes is specified, then, it is reasonable to materialize the cube with lower granularity to 

do not loose information, and the cubes that improve performance for the most frequent or complex queries. It is not 
feasible to materialize all possible cubes, then, the decision is a trade-off between storage and performance. Queries 
with additivity problems must be also considered, despite of the query access frequencies, because sometimes, sum-
mary data cannot be obtained from detailed data. 

To perform horizontal fragmentations of a cube, the designer has to study two factors: table size and the subset of 
tuples that are frequently queried together. The more strips the designer defines, the lower size they will have, and 
there will be better response time for querying them, but queries that involve several strips are worsen. The decision 
must be based on the requirements, looking at which data is queried together.  

The manner to fragment the dimensions is related to the chosen design pattern. The definition of fragments with 
several levels (denormalization) achieves better query response time but increases redundancy. If dimension data 
changes slowly, redundancy is not a problem. But if dimension data changes frequently and we want to keep the dif-
ferent versions, the maintenance cost grows. This guideline tries to find a balance between query response time and 
redundancy. Data that is not queried together is a good indicator in order to fragment the dimension. 

4 The DW logical design environment 

In this section we present an environment for DW logical design.  
Our underlying design methodology for DW logical design takes as input the source database and a conceptual 

multidimensional schema.  
Then, the design process consists of three main tasks:  
(i) Refine the conceptual schema adding design guidelines and obtaining a "refined conceptual schema".  
(ii) Map the refined conceptual schema to the source database. The mapping indicates how to calculate each 

multidimensional structure from the source database [27]. 
(iii) Generate the relational DW schema according to the refined conceptual schema and the source database. 

For the generation we propose a rule-based mechanism in which the DW schema is built by successive 
application of transformations to the source schema [22]. Each rule determines which transformation must 
be applied according to the design conditions given by the refined conceptual schema, the source database 
and the mappings between them, i.e., when certain design condition is fulfilled, the rule applies certain 
transformation [28]. 

refined 
conceptual schema

source
relational
schema

DW
relational
schema

design
guidelines 

conceptual schema
rules 

REFINEMENT
(task 1)

MAPPING
(task 2)

GENERATION
(task 3)

 
Figure 5. DW logical design environment. Guidelines refine the conceptual schema (task 1). Mappings indicate how to calculate 
each conceptual structure from the source database (task 2). The refined conceptual schema, the source database and the mappings 
between them are the input to the automatic rule-based mechanism that generates the DW relational schema. 

For example, to generate an aggregation table several tasks are performed: the conceptual schema express the 
fact, guidelines specify the detail level for the aggregation, mappings indicate how to calculate each attribute of the 



aggregation from the source database, and the generation process applies the appropriate transformations to build the 
DW relational schema transforming the source database. 

Figure 5 shows the proposed environment. 
 
This framework has been prototyped [26]. The system applies the rules and automatically generates the logical 

schema by executing an algorithm that considers the most frequent design problems suggested in existing method-
ologies and complemented with practical experiences. The prototype also includes a user interface for the definition 
of guidelines and mappings, an environment for the interactive application of the rules and the schema transforma-
tions and a graphical editor for the CMDM conceptual model. All this work has been implemented in a CASE envi-
ronment for DW design.  

5 Conclusions  

Data Warehouse logical design involves defining relational structures that satisfy information requirements as well 
as implementation related ones (i.e. performance and maintainability). While the first kind of requirements is repre-
sented by means of the conceptual schema, the second one lack on most of existing methodologies.  

This paper presented a notation for specifying implementation related requirements (design guidelines), which 
enables to complement the conceptual schema with declarations of Aggregate Materializations, Horizontal Frag-
mentation of Facts and Vertical Fragmentation of Dimensions.  

The proposed guidelines enable to cope with several design problems, for example: managing complex and big 
dimensions, dimension versioning, different user profiles accessing to different attributes, high summarized data, 
horizontal partitions of dimensions with aggregates, generic dimensionality, non additive measures. The set of design 
guidelines does not intend to be complete, hence it should be extended and complemented with other proposals, like 
[13]. 

By using these guidelines, the design methodology can generate more accurate relational DW schemas than the 
ones generated applying only model mapping strategies. 

The presented design guidelines are used in the context of a CASE environment. They are specified through a 
graphical editor and then processed in order to build the logical schema. These tools are currently being developed in 
the context of projects of the CSI Group [10]. 

Current work consists in the extension of the framework to support multiple source databases, and to manage all 
the metadata with a CWM [24] repository. In the near future we intend to enhance the capabilities of our framework, 
integrating further design techniques and extending it to cover the design of loading and refreshment tasks.   
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