Data Warehouse Design: A schema-transfor mation approach

Adriana Marotta, Raul Ruggia
Instituto de Computacién, Facultad de Ingenieria
Universidad de la Republica, Montevideo, Uruguay
adriana@fing.edu.uy

Abstract

This paper addresses DW design problems, with the goal of improving the DW
logical design process. Some of the existing work in transformation oriented
methodologies for DW design construct the DW starting from an Entity-
Relationship model of the source database, and arrive to a conceptua or high-
level-logical dimensiond model of the DW. We propose a mechanism for
obtaining the DW logica schema through pre-defined transformations applied to
the source logical schema, which can be used as a complement to the existing DW
design methodologies. The transformations alow a refined logical design of the
DW and provide a trace of the design and a mapping between the source and DW
logical structures.

1. Introduction

A Data Warehouse (DW for short) is a Database that stores information in order to satisfy
decision-making requests. This kind of Database has the following particular features. It
contains data that is the result of transformations, quality improvement, and integration of data
that comes from operational bases, also including indicators that give it additional value. The
DWs have to support complex queries (summarisation, aggregates, crossing of data), however
its maintenance does not suppose transactional load. These features cause the design techniques
and the used strategies to be different from the traditional ones.

In this paper we address DW design issues. Our goal isto improve the logical design process by
providing a transformation-oriented mechanism for constructing complex DW schema
structures, which leaves a mapping between source logical schemaand DW logical schema.

Database design methodol ogies based on transformations are those where the desired schemais
constructed through successive application of transformations to sub-schemas. Such schema
transformations may be applied from conceptua to logical schemas or from logical to logical
schemas. We think this is an interesting approach for the case of DWSs, which have a
dependence on the source databases and may be constructed starting from them.

Some of the existing work in transformation oriented methodologies for DW design [6], [7], [2],
construct the DW starting from an Entity-Relationship model of the source database, and arrive
to a conceptual or high-level-logical dimensional model of the DW. In [6] they describe a
method where the first step involves classifying entities of the ER-enterprise model in a number
of categories, the second step involves identifying hierarchies that exist in the model and the
fina step involves collapsing these hierarchies and aggregating transaction data. In [7] they
propose a method that starts applying transformations to the ER-enterprise model until they
obtain a representation of the corporate dimensions, then, basing mainly in the gathered user
requirements, they design the dimensional model. The methodology proposed in [2] starts from
an ER-enterprise model. It re-structures this model, transforming it until they obtain a
conceptual schema in MD (a conceptual model they define). Then, they provide a method to
pass from this model to a logical dimensional model (in particular the star schema in the
relational model).

We believe that some main aspects related to DW design are not covered by these proposals. the
generation of mappings between source and DW logical structures, and the construction of

complex DW structures. The former is necessary for solving the problems of data loading,
source schema evolution, and error detecting [5]. With the latter we refer, for example, to
explicit structures for historical data management, dimension versioning, calculated data, key
generalizations. In [8] logical design techniques for this kind of problems are presented by
means of examples.

In our work we propose a mechanism for DW logical design that intends to provide: (1) design
traceability, (2) a mapping between source logical schema and DW logical schema, and (3)
facilities for designing complex DW structures. It is supposed to be used as a complement to the
previoudy commented existing methodologies. The mechanism is based on a set of pre-defined
schema transformations that enables to build the DW logical schema from the source logica
schema. The mechanism includes, for the utilisation of the proposed transformation set, two
types of guidelines: consistency rules, which are applied in order to ensure the consistency of
the obtained schema, and design strategies, which provide different solutions to typical DW
design problems, by application of the transformations.

The proposed mechanism may be applied in different DW design scenarios. We following
describe which may be a typical one. The design process consists of two steps: (1) apply one of
the existing methodologies for designing the DW schema starting from the source conceptual
schema, (2) having the DW schema designed in the previous step as the target schema, build it
through application of transformations to the logical source schema, and (3) apply other
necessary transformations so that the DW schema is refined (or optimised) according to the
regquirements. Figure 1 presents the DW design process showing the aternative paths that can be
followed.

Y/
:% i
| O o, : .
DW conceptual 9n =-==—= refinement (======] refinement
shema Soianay JSoiooogy 4

conceptual

design] ‘
\09’\00\/ logical
& @d&“g”
source ER schema loading

source DB

Figure1: DW design process

The remainder of paper is organized as follows. Section 2 presents the proposed environment
for DW design from the logica source schema, Section 3 presents a simple example that
illustrates the design process and Section 4 presents the conclusions.

2. Theproposed DW design environment

In this section we present the environment that supports the process of DW logica design,
starting from the source logical schema. The DW schema is generated by application of
transformations to the source schema and to the intermediate sub-schemas that are generated
through the process, i.e. during the design the transformations are composed to obtain the target
schema. Figure 2 shows the basic architecture of the transformation.

rﬂelations
RLEL Q/D | ow
primitives %é} % Application of
A transformations
rd&.onsﬁ d ﬁ h [] | sourceDB

Figure 2: Architecture of the transformation

The transformations take as input a relational sub-schema and their output is another relationa
sub-schema. They aso give as output an outline of the corresponding instance transformation.
Some of them are grouped into families. Transformations belonging to the same family
correspond to different aternatives or different design stylesfor solving the same problem.

2.1. Basic Definitions

The underlying model for the proposed transformations is the Relational Model. However, we
classify the relationa elements (relations and attributes) into different sets, according to
dimensional concepts (e.g.: dimension relations, measure relations, descriptive attributes,
measure attributes). This classification enables the transformations to perform a more refined
treatment of the different situationsin DW design.

The Sets defined over the Relational Modél

Rel ati on'! sets:

Rel - Set of all the relations (any kind of relation).

Rel p - Set of “dinmension” relations. These are the relations that represent
descriptive information about real world subjects.

Rel ¢ - Set of “crossing” relations. These are the relations that represent

relationships or conmbinations anobng the elenents of a group of
di nensions. Usually, they contain attributes that represent neasures
for the conbinations.

Rel v - Set of “measure” relations. These are the crossing relations that
have one or nore neasure attributes.

Rel ; - Set of “hierarchy” relations. These are the dinmension relations that
contain a set of attributes that constitute a hierarchy.

Rel (R) - Set of “history” relations. These are the relations that have

hi storical information that correspond to information in relation R

These sets verify: Rely O Relg, Rel; O Relp, ORRely(R O (Relp O Rel)
Attribute sets:

Att (R Set of all attributes of relation R

Att (R) — Set of neasure attributes of relation R

Att(R) — Set of descriptive attributes of relation R

Att (R — Set of derived (calculated) attributes of relation R

Att, — Set of sets of attributes that represent a hierarchy.

Att (R — Set of sets of attributes that are key in relation R

Att (R - Set of sets of attributes that are foreign key in relation R

Att (R, R) — Set of attributes that are foreign key in relation R, with
respect to relation R,

These sets verify: - Atty(R 0O Atty(R) O Att (R = Att(R

! In this work, we use the word relation as a synonym of relation schema.

- 0O X/ XDAttJ, X O DRDReI AttD(R), AttFK(R) :{el e :AttFK(R, R)}, i:]...n,
where n is the nunber of relations with respect to which R has a foreign key.

- OA/ AOXand XO (At(R O Ate(R), ADO AttyR

- 1f XOAtR and Y O Att(R), it may be: X n Y # 0O

We aso define a set of Schema Invariants. Thisis a set of properties that must be satisfied by a
relational DW schema for being consistent. They concern: referential integrity, hierarchies
between attributes, the relationship between a relation and its corresponding history relation,
and the dependencies between attributes of a measure relation. Due to space limitations we
present only one of the invariants (for the whole set refer to [9]).

If a neasure relation has an attribute that also belongs to a dinension
relation, then it must have a foreign key relative to this relation.

let Ry, Ry / Ry O Relp O RyO Rely
if OA/ AOAt(R) OADAt(R) O OX/ X = Atte(RuR)

2.2. Thetransformations

We dtart presenting some example-transformations in order to illustrate their usefulness.

Many relations in operational systems do not maintain a temporal notion. For example, stock
relations use to have the current stock data, updating it with each product movement. However,
in DWs most relations need to include a temporal element so that they can maintain historical
information. For this purpose, there is a transformation called Temporalization that adds an
element of time to the set of attributes of arelation.

In operational systems, usually, data is calculated from other data at the moment of the queries,
in spite of the complexity of some calculation functions, in order to prevent any kind of
redundancy. For example, the product prices expressed in dollars are calculated from the
product prices expressed in some other currency and a table containing the dollar values. In a
DW system, sometimesit is convenient to maintain this kind of data calculated, for performance
reasons. We have a group of transformations, which name is DD-Adding, that add to a relation
an attribute that is derived from others.

Figure 3 shows a table containing the whole set of transformations proposed. The
transformation names marked with a“*” symbol correspond to transformation families.

Transf ormati on Descri ption
e
T1 ldentity Gven a relation, it generates another that is exactly the

same as the source one.

T2 Data Filter Gven a relation, it generates another one where only sone
attributes are preserved. Its goal is to elimnate purely
operational attributes.

T3 | Tenporalization It adds an element of time to the set of attributes of a
rel ation.
T4 Key Generalization * They generalize the primary key of a dinension relation, so

that nore than one tuple representing the sane real-world
subj ect, can be stored.

T5 Forei gn Key Update A foreign key and its references can be changed in a
relation. This is useful when primary keys are nodified.

T6 DD- Addi ng * They add to a relation an attribute that is derived from
ot hers.

T7 Attribute Adding It adds attributes to a dinension relation. It is useful

for namintaining nore than one version of an attribute in
the sane tuple.

T8 H erarchy Roll Up It does the roll up by one of the attributes of a relation
following a hierarchy. Besides, it can generate another
hi erarchy relation with the correspondi ng grain.

T9 Aggregat e Ceneration Gven a neasure relation, it generates another neasure
relation, where data is resuned by a given set of

attributes.

T10 |Data Array Creation Gven a relation that contains a neasure attribute and an
attribute that represents a pre-deternined set of values,
it generates a relation with a data array structure.

T11 |Partition by Stability* |They partition a relation in order to organize its history
data storage. Vertical Partition or Horizontal Partition
can be appli ed.

T12 | H erarchy Generation * They generate hierarchy relations, having as input
relations that include a hierarchy or a part of one.

T13 |Mnidinmension Break off |It elimnates a set of attributes from a dinension
relation, constructing a newrelation with them

T14 | New Di nmensi on Crossing It allows materialising a dinmension data crossing in a new
relation.

Figure 3: Thetransformations

We have not addressed the demonstration of the completeness of the set of transformations.
However we believe that the usefulness of this set is supported by the following facts: (i) it was
designed basing in general DW design techniques existing in the bibliography [8,10,11,12,13],
(i) it has been tried on many different study cases, and (iii) the proposed design strategies show
how a wide spectrum of DW design problems can be solved through application of the
transformations.

Figure 4 shows the specification of one of the transformations (whole set can be found in[9]).

T9 — Aggregate Generation

Descri pti on:

G ven a neasure relation, the transformation generates another
nmeasure relation, where data is sunmarised (or grouped) by a
gi ven set of attributes.

| nput :

L] source schema: R(A; ..., A) O Rely

= Z, set of attributes / card(Z)= k (measures)

= {e1,...,eg, aggregate expressions

= Y/Y O (Aty(R O Att(R)), attributes to be renoved
= source instance: r

Resul ti ng schena:
R(A.,...,ApORely/{A....,. A ={A,...,A} —YDOZ

Gener at ed i nstance:

r’ = select ({A4 ..., A3 —2) 0O{eq...,el
fromR
group by {Ay,..., Ay} - Z

Figure 4: Specification of transformation T9

2.3. Consistency Rulesand Design Strategies

Basing on the Invariants, we define some rules that should be applied aways, when a DW
schema is being constructed through application of the transformations. The rules consider the
different cases of inconsistencies that can be generated by application of the transformations and
state the actions that must be performed to correct them. The following is one of these rules (the
rest can befoundin[9]):

Rl — Forei gn key updates

R1.1 — ON APPLI CATI ON OF: Tenporalization (adding the tine attribute to
the key) or Key Generalization to R where X = old key and Y =
new key

APPLY: Foreign Key Update to all R / Attg(R,R = X, obtaining
Attg(R,R =Y

Strategies for application of the transformations were designed taking into account some typical
problems of Data Warehousing. The strategies proposed address design problems relative to:
dimension versioning, versioning of N:1 relationships between dimensions, data summarisation
and data crossing, hierarchies management, and derived data. We following show part of one
of the proposed strategies (refer to [9] for the whole):

Sl - Di nensi on versi oni ng

A usual problem DW designers have to face is how to nmnage dinension
versioning. This refers to how dinmension infornmation nmust be structured when
its history needs to be maintained. The idea is to maintain versions of each
real -world subject infornation.

Several alternatives are provided:

S1) Apply Tenporalization (T3), such that the time attribute belongs to the
key of the relation.
S2) Generalise the key of the dinension relation through one of the
transformati ons of Key Generalization family (T4). The two options are:
2.1) Apply Version Digits (T4.1), so that version digits are added to the
key.
2.2) Apply Key Extension (T4.2). In this case new attributes of the
relation are included in the key.

3. Presenting the mechanism through an example

In this section we present an exampl e that shows when and how the schema transformations can
be applied.

3.1. Introduction

Thisis asmplified case of a product distribution company who wants to construct a DW. The
most important requirements are related to: (i) sales evolution by product families and
geographic regions, (ii) product cost analysis, (iii) market analysis (by types of customers), and
(iv) geographic distribution of the sales.

The source database schemais shown in Figure 5.

SUBTYPES

subtype id
subtype name
type id

CUSTOMERS

customer_id
customer_name
customer_address
subtype id
city_id

PRESENTATIONS

presentation_id
presentation_name
product_id

size

sale date
customer_id
presentation_id
city_id
sale_amount

PRODUCTS

product_id
product_name
family

expiration

CITY

city_id
city_name
region_id

REGION
region_id
region_name

Figure 5: The source database schema

We suppose that, following one of the existing DW design methodologies [6,7,2], we arrive to
the design presented in Figure 6. It is a star schema’, where the dimensions are Time,
Customers DW, Products DW, and Geography, and the fact table is Saes DW, where
sale_amount, sale_cost and sale_gty are the measures.

CUSTOMERS DW

subtype_id
subtype_name
type_id

type_name

SALES DW

sale_month
subtype id
presentation_id
city_id
sale_amount
sale_cost
sdle_qty

PRODUCTS DW

GEOGRAPHY presentation_id
presentation_name

city_id ;
city_name pr%ud_ld
region_id product_name

size
family
expiration

region_name

Figure 6: Thetarget DW schema

3.2. Generation of the DW schema through schema transfor mations

Now, we apply the transformations to the source schema generating the desired DW relational
schema.

First, we de-normalise the relations that correspond to the dimensions.

We apply T6.2 DD Addi ng-1N to Presentations and Products, obtaining:
PRODUCTS _DW (presentation_id, presentation_name, product_id,
product _nane, size, famly, expiration)

We apply T6.2 to Custoners, Subtypes and Types, obtai ning:
CUSTOVERS_DW 01 (custoner_id, custoner_nane, custoner_address,
subtype_id, city_id, subtype_nane, type_id, type_nane)

We apply T6.2 to relations City and Regi on, obtaining:
GEOGRAPHY (city_id, city_nane, region_id, region_nane)

CUSTOMERS DW_01 has some attributes that are not relevant for this case.

We apply T2 Data Filter to relation Custonmers_DWO01, obtaining:
CUSTOVERS_DW 02 (custoner_id, subtype_id, subtype_nane, type_id,
t ype_nane)

For the Time dimension we obtain the date attribute from the Sales relation. Then we calculate
the attributes month and year from the date.
We apply T12.1 Hierarchy Generation to Sales, obtaining: TIME_01 (date)
and we apply twice T6.1 DD Adding-11to TIME 01 for adding atts nonth and
year:

TI ME_02 (date, nonth)
TI ME_03 (date, nonth, year)

We generate the fact table (measure relation) Sales with the desired granularity, which is
subtype for Customer dimension and month for Time dimension.

We apply T8 Hierarchy Roll-Up to Sal es and Custoners_DW 02, obtaining:

2 Star Schemai's defined in [Kim96]

SALES DW 01 (sal e_date, subtype_id, presentation_id, city_id,
sal e_anmobunt, sale_cost, sale_qty)

and

CUSTOVERS_DW (subtype_i d, subtype_nane, type_id, type_nane)

We apply T8 to Sal es_DWO01 and Ti ne_03, obtaining:

SALES DW (sal e_nonth, subtype_id, presentation_id, city_id, sale_anount,
sal e_cost, sale_qty)

and

TI ME (nont h, year)

Through the applied transformations we generated the desired schema, showed in Figure 6.
Now we will refine the design. One of our requirements is about products history. For query
performance reasons, we decide to maintain this history data in a separate relation.

We apply T11.2 Horizontal Partition to Products_DW obtaining:
PRODUCTS DWH' S 01 (presentation_id, presentation_name, product_id,
product _nane, size, famly, expiration)

We apply T3 Tenporalization to Products_DWHi s_01, obtaining:
PRODUCTS DWHI' S (presentation_id, change_date, presentation_naneg,
product _id, product_name, size, famly, expiration)

Finally, also for performance reasons, we want to add to Geography relation a calculated
attribute cust_qty, which represents the quantity of customers that belongs to each city.

We apply T6.3 DD _Addi ng-NN t o Geography and Custoners, obtaining:
GEOGRAPHY_CUST (city_id, city_name, region_id, region_nane, cust_qty)

The final DW schemais shownin Figure 7.

CUSTOMERS DW

subtype id
subtype_name
type id

type_name

SALES DW

sale_month

subtype id

presentation_id

city_id

sale_amount

sale_cost PRODUCTS DW

sal -
eay presentation_id

presentation_name
product id PRODUCTS DW_HIS
product_name presentation_id

city_id size_ change_date

city_name family presentation_name
region_id expiration product_id

GEOGRAPHY_CUST

region_name product_name

cust_qty size
family
expiration

Figure 7: Thefinal DW schema

3.3. Thegenerated trace

The applied transformations generate a trace of the design, which is shown in Figure 8.

CUSTOMERS

Soes

TIME

REGION

GEOGRAPHY _
CcusT

PRODUCTS DW
PRODUCTS /

PRODUCTS DW_
HIS

Figure 8: The generated trace

For each element of the final schema (relation or attribute) there is a transformation trace that
can be seen as the path that was followed for obtaining this element starting from a source
element. This trace provides the information about the sequences of primitives that were applied
to the element, as well as the sub-schemas and other arguments the primitives received in each
case.

We specify the trace of the design through a set of expressions in the form of function
applications [9] and also through a graphic representation (Figure 8). The latter is a directed
acyclic graph G(T), which main goa is to show a global perspective of the process, while
facilitating the comprehension and localisation of each element’s trace.

4. Conclusion

This paper presents a set of schema transformations as well as some strategies and rules for their
practical application. These pre-defined transformations enable to design a DW from a
relational source schema acting as design building blocks that embed DW design knowledge in
their semantics.

The proposed transformations are methodologically neutral, and may be applied in different
scenarios with other design strategies.

The use of these transformations enables to obtain a DW schema as well as to keep the design
trace and mapping between the source schema structures and the DW schema ones. In addition,
the proposed transformations enable to easily obtain complex DW structures.

Design traceability, which allows documentation of the design and can be useful for design
process reuse, is obtained through the transformation application trace. This trace is of great
importance also for DW management, since it provides the mapping between source and DW
schema elements. This mapping is necessary at least for solving the problems of data loading
processes, source schema evolution, and error detecting. In [14] we present a proposal for DW
evolution in the context of Web Warehouses where the DW is designed through the
transformations and the trace is used for propagating source evolution.

We have implemented the transformations in a DW design tool that enables the designer to
apply them through a graphica interface [15,16]. The tool also counts with the consistency
rules, which are triggered when inconsistencies are generated in the DW schema, and with
schema evolution facilities.

We are currently working on DW evolution generated by source schema evolution, and on
including integration functionalities to the set of transformations.

References

(4
(2]
(3]
[4]

(5]

6]

[7]
8]
(9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

L. Cabbibo, R. Torlone. A Logical Approach to Multidimensional Databases. EDBT’ 98. Springer-
Verlag, 1998.

M. Golfarelli, S. Rizzi. A Methodological Framework for Data Warehouse Design. DOLAP, ACM
1998.

C. Sapia, M. Blaschka, G. Hofling, B. Dinter. Extending the E/R Model for the Multidimensional
Paradigm. LNCS Vol 1552, Springer-Verlag, 1999.

F. Carpani, R. Ruggia. An Integrity Constraints Language for a Conceptual Multidimensional
Data Model. XIII International Conference on Software Engineering & Knowledge Engineering.
SEKE'OL. Bs. As. Argentina.

Mokrane Bouzeghoub, Zoubida Kedad. A quality-based framework for physical data
warehouse design. Proc. CAISE ‘00 Workshop on Design and Management of Data Warehouses
(DMDW *00).

D. L. Moody, M. A. R. Kortink. From Enterprise Models to Dimensional Models: A Methodology
for Data Warehouse and Data Mart Design. Proc. CAISE ‘00 Workshop on Design and
Management of Data Warehouses (DMDW ‘00).

Chuck Ballard. Data Modeling Techniques for Data Warehousing. SG24-2238-00. IBM Red Book.
ISBN number 0738402451.

R. Kimball. The Data Warehouse Toolkit. J. Wiley & Sons, Inc. 1996

A. Marotta. Data Warehouse Design and Maintenance through Schema Transformations. Master
Thesis - 2000. Instituto de Computacién, Facultad de Ingenieria, Universidad de la Republica.
Montevideo — Uruguay.

R. Kimball. The Data Warehouse Lifecycle Toolkit. J. Wiley & Sons, Inc. 1998

R. Kimball. Data Warehouse Architect. Column in DBMS online magazine. 1997

C. Adamson, M. Venerable. Data Warehouse Desigh Solutions. J. Wiley & Sons, Inc. 1998

L. Silverston, W. H. Inmon, K. Graziano. The Data Model Resource Book. J. Wiley & Sons, Inc.
1997.

A. Marotta, R. Motz, R. Ruggia. Managing Source Schema Evolution in Web Warehouses.
International Workshop on Information Integration on the Web, WIIW '2001.

P. Garbusi, F. Piedrabuena, G. Vazquez. Design and Implementation of a schema transformation
based DW design tool. Graduate Project of the Engineering Faculty — Montevideo — Uruguay.
2000.

A. Alcarraz, M. Ayala, P. Gatto. Design and Implementation of a Data Warehouse evolution tool.
Graduate Project of the Engineering Faculty — Montevideo — Uruguay. 2001.

10

