
Automatic Initial Load of Data Warehouses as a
Workflow Process

 - DRAFT -

Ignacio Larrañaga
Grupo de Concepción de Sistemas de Información (CSI)

Facultad de Ingeniería, Universidad de la Republica.
Montevideo, Uruguay.

ilarra@fing.edu.uy

Abstract
In Data Warehouses Load and Maintenance area, the main
line sees the Load and Maintenance as a View maintenance
problem. Other line says that the problem cannot be seen in
this way, but can be model as Workflow process. That is, a
process whose nodes performs activities that cover the
extraction, transformation, cleaning and integration.
Following the second line, we present a proposition to
automatically design a basic workflow process that performs
the load process.

Keywords: Data Warehouses, Initial Load, Workflow.

1. Introduction
In this paper we not try to explain if
the view of the problem focused on the
view maintenance problem is right or
wrong. Simply because this work is not
focused on this topic. But we must
note that some authors, that was study
the problem, present and explain other
line which is explored here.

Following this line, our intention is to
explore who the workflow view can be
exploited, and get easily, practical
results. In the followings paragraphs
we present some the authors that
present this line. After that we
introduce how we can make a
contribution.

In [MFM99], Mokrane, Fabret and
Maja explain that data refreshment in
data warehouses is generally confused

with data loading as done during the
initial phase or with update
propagation through a set of
materialized views. At this paper the
authors organized the refreshment
process as workflow.

In [GFSS00] Galhardas, Florescu,
Shasha and Simon present a
declarative SQL extension to solve the
cleaning problem. As we know this is a
part of data warehouse load and
refreshment process. According to our
proposal this is modeling as a graph of
transformations, which easily can be
viewed as a workflow process.

In [LWMG] the resumption of
interrupted warehouse loads is treated.
The first hypothesis taken for the
authors is that the load process is a
workflow, then they present an
algorithm that works over this
workflow.

Now that we introduce that the
problem can be see as a workflow
process, we try to show you, how in a
small problem much of the load
process can be designed automatically.
In this paper we only consider a small
part of the work that can be done (for
example, only the load process is
considered). The main intention is
show that the work can be done, and
the result can be useful.

The following section intend to present
some of whose are the elements, the
tools, that we can consider when we
are trying to design a process
automatically.

1.1. Integrity Constraints in
a Data Warehouse

Integrity constraints provide a
mechanism for ensuring that data
conforms to guidelines specified by the
designer. The most common types of
constraints include:

• UNIQUE constraints. To
ensure that a given column is
unique.

• NOT NULL constraints. To
ensure that a column has no
null values.

• DOMAIN constraints. To be
assure that the values of some
column are the desired values.

• FOREIGN KEY constraints.
To ensure that the values in a
table have the correct relation
with other table.

Constraints can be used for these
purposes in a data warehouse:

• Data integrity. Constraints
verify that the data in the data
warehouse conforms to a basic
level of data consistency and
correctness, avoiding the
introduction of dirty data.

• Load and Refreshment. The
constraints can be useful to
rewrite the load SQL sentences
to optimize those processes.

• Query optimization. Some
databases utilize constraints
when optimizing SQL queries.
Although constraints can be
particularly important for query
rewrite of materialized views.

For data warehousing, many users have
discovered that such constraints may
be prohibitively costly to build and
maintain. By example A UNIQUE
constraint is typically enforced using a
UNIQUE index. However, in a data
warehouse whose tables can be
extremely large (millions or even
billions of rows in a FAT table),
creating a unique index can be costly
both in processing time and in disk
space.

A common technique before modifying
this table was drops the constraint.
Then, make all necessary data
modifications. Finally, re-create the
constraint. However, this approach
does not guarantee that data added to
the table while the constraint has been
dropped is unique.

However we argument that taken they
carefully the associated cost must be
maintained under control. Moreover,
various techniques can be used to
reduce this cost. For example, all
constraints can be validated in parallel.
When validating constraints on very
large tables, parallelism is good for
performance goals. Partitioning also
can improve constraint management.

We can present other type of
constraints that can help us, for
example, OLAP constraints. If we
know that a table is a cube, and detect
another table/cube that have less
degree of granularity, then we can

consider if it is better to perform a
direct load from the source, or make a
drill up from the previous cube.
Because this work only introduce the
problem, we consider that the
presented elements are enough.

The rest of this work is organized as
follows. Section 2, present a the load
process, which is divided into an
insertion process (Section 2.1), an
deletion process (Section 2.2), and
finally, the full load process that can be
designed. Section 3, present the
conclusions and the future work.

2. Load Workflow
Process

Suppose the following problem, a data
warehouse associated with the
university student’s information and
you course inscriptions. There are four
tables. From the student’s we know the
name, sex, address, phone and where
they come from (PLACEID). The
student’s come from different places,
which is represented in the PLACES
table.
Also we know the courses of the
university (COURSES table), which
have, course identification and name.
The students make inscriptions for
different courses; the inscription is
represented as an association between
one student and one course
(INSCRIPTIONS table).

STUDENTS

PK STUDENTID

NAME
FK2 PLACEID

SEX
ADDRESS
PHONE

PLACES

PK PLACEID

NAME

COURSES

PK COURSEID

NAME

INSCRIPTIONS

PK,FK1 COURSEID
PK,FK2 STUDENTID

Figure 1: University student’ s inscriptions
problem.

Then consider a load process for this
database, it must get data from the

operational databases and put into this
tables.

Suppose the most simple situation, the
operational database have the same
scheme as the data warehouse, the load
process is the initial load and the data
warehouses tables are empty. Then the
process is a massive insert of data from
the operational tables to the data
warehouse tables.

As definition of massive insert we will
denote this as a task that take all data
from the source and put it into one data
warehouse table.
The data structure that is taken from
the source databases is represented as
one extraction SQL sentence.
The schema of the target table defines
the schema data that is putting into the
database.
The only restriction that we impose is
that the SQL instruction data schema is
the same as the target database table.

In the example of the Figure 1 (taking
into account that the source and data
warehouse schema is the same) the
massive insert task for PLACES data
warehouse table is described by a SQL
sentence over the source data “select *
from PLACES” and the target table
PLACES of the data warehouse.
Over STUDENTS table is described by
the SQL “select * from STUDENTS”
and the STUDENTS table as target,
and so on.

But the massive insert must assure
some constraints, particularly the
foreign key constraints of the data
warehouse, because if not, the insertion
fails.
Suppose that you try to insert the data
from the STUDENTS table before the
PLACES table. Easily you can see that
the foreign key between the
STUDENTS and PLACES will be

broken, because the PLACES table is
empty.

Extending this observation over all
tables we have some dependencies
between the massive insert tasks of the
load process. The load process can
look like as Figure 2, where the nodes
are the massive insert tasks (as defined
before), and the lines defines the
dependencies between the tasks.
Notice, this is an extremely basic
workflow definition.

PLACES STUDENTS INSCRIPTIONS

COURSES

Figure 2: University data warehouse load
process.

A partial result that will be
demonstrated is that if the foreign key
between two tables is from A to B
(Figure 3), then the task dependency
between the massive insertion for A
and B is in the opposite direction and
must exist.

STUDENTS

PK STUDENTID

NAME
FK2 PLACEID

SEX
ADDRESS
PHONE

PLACES

PK PLACEID

NAME

Figure 3: A is STUDENTS and B is PLACES.

The probe is quite simple, suppose that
the dependency not exists (Figure 4),
then the insertion can fail if the tuple of
A try to be inserted before the
referenced tuple of B, but the tuple of
A exists, then the process must not fail.

PLACES STUDENTS

Figure 4: The dependency between the tasks
not exists.

Now suppose that the dependency
exists, but in the same direction of the
foreign key (Figure 5). That is the
same case considered before, any tuple
of A will be inserted before the tuples
of B, then the referenced tuple of B
never exists when the tuple of A is
inserted, then the foreign key fails. As
before the insertion process must not
fail because the referenced tuple exists
in B.

PLACES STUDENTS

Figure 5: The dependency between the tasks is
in the foreign key direction.

This little example shows a more
general assertion that we can make
over all load process.

2.1. Insertion Workflow
Process

Proposition 1: A relational data
warehouse and a group of the
extraction SQL sentences for all data
warehouse tables define a workflow
process called “Insertion”. In this
process, the tasks are massive
insertion tasks, defined by the target
table and the SQL sentence associated.
The dependencies between tasks are in
the opposite direction of the foreign
keys for the target data warehouse
tables associated to the process tasks.
Also are not other dependencies
between tasks (except by un-benefit
dependencies, which are not
considered)(1).

1 That is a necessary and sufficient condition.
This is, this process must have those

Demonstration: By definition of the
massive insertion nodes they are
defined by one extraction SQL
sentence and the associated table. The
hypothesis says that this element
exists, and then the massive insertion
tasks are defined.

The previous result assures that if a
foreign key exists between two of
those tasks, the task dependency must
exists and in the opposite direction of
the foreign key.

Now suppose that there is not the case
that exists a foreign key between two
tables, and suppose that we make a
dependency between the associated
tasks. Because there are no constraints
between them, the process will get the
same result in any case (that is, if the
dependency exists in some direction, or
not), then the dependency does not
benefit the workflow in any case, then
it must not exist.

Now if it is considered as a simple
workflow process definition the result
is confirmed.

Now we will try to raise the
assumption that the source relational
database has the same schema as the
data warehouse. This makes no effects
over our last proposition.

Suppose that the schema is not the
same, obviously this affect the
extraction SQL sentences, but if the
structure of the SQL result tuple is the
same of the data warehouse tuple the
Proposition 1 is not affected, because
the hypothesis remains and the massive
insertion nodes can be created.

dependencies, and is enough that have those
dependencies.

The assumption that the data
warehouse is empty can be raise too,
maintaining that the process is a initial
load process (later in this document we
treat other load processes).

To raise this assumption we will
introduce another kind of tasks, the
massive delete tasks. The massive
delete tasks are defined by a data
warehouse table, then its have an
associated SQL sentence to be
executed that is (supposing that the
table name is A): “ delete from A” .

The massive delete tasks for example
at Figure 1 have associated the
followings SQL instruction that gives
your semantic:
• PLACES: “delete from PLACES”
• STUDENTS: “delete from

STUDENTS”
• COURSES: “ delete from COURSES”
• INSCRIPTIONS: “ delete from

INSCRIPTIONS”

Now we show partial results much
similar to the massive insert tasks. If
the foreign key between two tables is
from A to B (Figure 3), then the task
dependency between the massive
delete for A and B is in the same
direction and must exist.

The probe is equal to the previous one.
Suppose that there is no dependency,
then the delete can fail if the tuple of B
try to be deleted before the referenced
tuple of A. But if the tuple of A is
deleted first the process success. Then,
the process must not fail.

Now suppose that the dependency
exists, but in the opposite direction of
the foreign key. Any tuple of B will be
deleted before the tuples of A, then the
foreign key fails, because the tuple of
B is referenced by tuples of A. As
before the delete process must not fail,
then this option is not valid.

In conclusion, the partial result is true
because the other available options can
fail, then the other options are not
correct.

Now as before this example shows a
more general assertion that we can
make over all load process.

2.2. Deletion Workflow
Process

Proposition 2: A relational data
warehouse define a workflow process
called “Deletion”. In this process, the
tasks are massive delete tasks, defined
by the target table. The dependencies
between tasks are in the same direction
of the foreign keys for the target data
warehouse tables associated to the
process tasks. Also are not other
dependencies between tasks (except by
un-benefit dependencies, which are not
considered)(2).

Demonstration: By definition of the
massive delete tasks they are defined
by the associated table. The hypothesis
says that this element exists, and then
the massive delete tasks are defined.

The previous result assures that if a
foreign key exists between two of
those tasks, the task dependency must
exists and in the same direction of the
foreign key.

Now suppose that there is not a foreign
key between two tables, and suppose
that we make a dependency between
the associated tasks. Because there are
no constraints between them, the
process will get the same result in any
case (that is, if the dependency exists
in some direction, or not), then the

2 That is a necessary and sufficient condition.
This is, this process must have those
dependencies, and is enough that have those
dependencies.

dependency does not benefit the
workflow in any case, then it must not
exist.

Now if it is considered as a simple
workflow process definition the result
is confirmed.

At this moment our load process for an
non empty data warehouse look like
this:

Massive Insert Task

PLACES

Massive Insert Task

STUDENTS

Massive Insert Task

INSCRIPTIONS

Massive Insert Task

COURSES

Massive Delete Task

PLACES

Massive Delete Task

STUDENTS

Massive Delete Task

INSCRIPTIONS

Massive Delete Task

COURSES

Figure 6: The Insertion process (at right) and
the Deletion process (at left).

In Figure 6 all is coherent except that
Insertion and Deletion processes are
not connected. That is correct with the
actual status because they are studied
separately. The following step in our
study is the connection of this two
process to make the global process.

The first consideration that we must
take into account is that the connection
between those two processes could be
focus by two different approaches,
inter-process or intra-process.

As inter-process we mean that the
connection is of the type Insertion
process and it must be executed before
Deletion process, or Deletion process

will be the first or they have no order
to be executed.

As intra-process we understand that the
connection is of type task A into
Insertion process must be executed
before task B into Deletion process, or
in the opposite way, or they have no
order.

The approach follows in this paper is
the second one. The main reasons are
that the second allows better
representation of the task relation and
also allows more degree of parallelism.
We not discard the first one we only
focus the second.

The results that we goes to show is that
the task dependencies between task of
both process are from the massive
delete task of target table A to the
massive insert task of target table B,
and no any one dependency is needed.
At our example it is show at Figure 7.

Massive Insert Task

PLACES

Massive Insert Task

STUDENTS

Massive Insert Task

INSCRIPTIONS

Massive Insert Task

COURSES

Massive Delete Task

PLACES

Massive Delete Task

STUDENTS

Massive Delete Task

INSCRIPTIONS

Massive Delete Task

COURSES

Figure 7: Full-Load Workflow Process for
Student’s inscription problem.

2.3. Full-Load Workflow
Process

Proposition 3: The intra-process
relation between an Insertion and

Deletion Workflow process defines a
workflow process called "Full-Load"
which have all tasks and dependencies
of both Insertion and Deletion
Workflow process moreover one task
dependency between each massive
delete task and massive insert task with
the same target table. That dependency
is from the delete task to the insert
task. Furthermore no any task
dependency is needed(3).

Before the demonstration we must note
that the hypothesis says that with the
dependencies proposed is sufficient to
perform a full load, but not necessarily
the dependencies will be those ones.

That is, can exist other processes (with
exactly the same tasks) that can get the
same result, and no necessarily the
proposed dependencies belongs to the
dependencies of those others
processes.

Before (at Insertion and Deletion
process definition), we say that there
are no others dependencies (except by
un-benefit dependencies). If the
process has not the dependencies
defined then the process cannot get the
same result.

Demonstration: By definition the
Insertion and Deletion are Workflow
processes, even if we stop here we
already have a Workflow process
defined by both but not with the
properties needed.

Now take two tasks A and B, where A
belongs to the Insertion process, B
belongs to the Deletion process and
both have the same target table. There
are three possibilities, the dependency
over those tasks is from A to B, B to A
or it not exist. There are not other

3 That is a sufficient but not necessary
condition as is explained in the following
paragraph.

possibilities because not exists other
dependencies inside the Insertion or
Deletion process, and the dependencies
between task with different target
tables are not considered.

By definition is obvious that the option
to chose is the dependency from B to
A, because we need to delete the target
table before and then put the new data.

Because those dependencies are made
over all data warehouse tables (there
are one insert and delete task for each
table in the data warehouse by
definition of Insertion and Deletion
process), all the tables are clear and the
fill with the new data and that is what
we ask.

3. Conclusions and
Future Work

In our point of view, this paper present
that a line of work, which follows the
load and refreshment process in the
workflow way, can be analyzed and
develop automatic basic processes
from existing information.
Those processes can be used by the
data warehouse designer as start point,
then the problem is not take from the
scratch. We think that is a contribution
for the designer.

We do not expect that the present ideas
are totally new, but it sounds estrange
that the simply idea which is presented
here, was not already in a basic
bibliography, may be as a little
comment. “ If you must design a load
process you must take into account the
foreign keys” , that is really a basic
idea. Some months ago when I was
designing a load process and I spent a
lot of hours developing this I stopped
and think: “ This is not right I must do
something” , this was the origin of this
work.

In the future, based on the experience
of develop this work, we plain to
extend the propose to manage
refreshment processes, cleaning
processes and other issues of the
design process. The main intention is,
if the designer do not spend time in
these things, that every time do, then a
contribution can be made.

In other way, if anything can be done, I
will happy to read a work that explain
why.

4. References
[GFSS00] Helena Galhardas, Daniela
Florescu, Dennis Shasha, Eric Simon.
Declaratively cleaning your data using
AJAX, 2000.

[LWMG] Wilburt Juan Labio, Janet L.
Wiener, Hector Garcia-Molina, Vlad
Gorelik. Efficient Resumption of
Interrupted Warehouses Loads.

[MFM99] Mokrane Bouzeghoub,
Françoise Fabert, Maja Matulovic-
Broqué. Modeling Data Warehouse
Refreshment Process as a Workflow
Application. Proceedings of the
International Workshop on Design and
Management of Data Warehouses,
Heidelberg, Germany, 14-15.6.1999.

