
1

Managing source schema evolution in relational data

warehouses ‡

DRAFT

Adriana Marotta

Instituto de Computación, Facultad de Ingenieria, Universidad de la República, Montevideo, Uruguay

December 2001

Abstract

Schema evolution in a DW can be generated by two different causes: (i) a change in the source schema or

(ii) a change in the DW requirements. In this work we address the problem of source schema evolution.

We separate this problem into two phases: (1) determination of the changes that must be done to the DW

schema and to the trace, and (2) application of evolution to the DW. For solving (1) we use the

transformation trace that was generated in the design. In order to solve (2) we propose an adaptation of

the existing models and techniques for database schema evolution, to DW schema evolution, taking into

account the features that differentiates the DWs from traditional operational databases.

Keywords

Data Warehouse (DW), DW evolution, Relational DW, DW design trace

‡ This work was supported by Comisión Sectorial de Investigación Científica from Universidad de la

República, Montevideo, Uruguay

2

1. Introduction

Source database schema may change, i.e. evolve. This invalidates the links between the source structures

and the DW ones. Besides, the evolved database may have new data available that could be exploited by

the DW. Therefore it is necessary to propagate source schema evolution to the DW.

The trivial solution for this problem would be re-designing all the DW. This implies starting from scratch,

studying the problem and making design decisions again. However, the existence of the trace, which

contains the design decisions, gives us the possibility of applying evolution to the DW.

In fact, the whole structure, composed by: trace, loading processes, DW schema and DW instance, has to

evolve. However, we will see that evolution can involve changes over only one or some of these

components.

In the cases where DW schema is changed, DW schema invariants have to be verified. In case these

invariants are not satisfied, corrections to the schema have to be done (Consistency Corrections). After

these corrections, the DW schema will be again in a consistent state. In addition, it will exist forward and

backward conversion functions (f.c.f. and b.c.f.) (described in Chapter 2, Section 5) that are needed to

transform data between old and new DW schema structures.

In Figure 4.1 we show a global architecture of the evolution scenario in our context.

Source
DB

DW

Source
DB’

DW’

DB E

T E

DW E

T T ‘

f.c.f.

b.c.f.

Consistency
Corrections

 Figure 4.1

Data loading processes are generated from the trace, thus when we apply changes to the trace the

associated data loading processes have to be re-generated.

The problem of propagating to the DW source schema evolution includes two main sub-problems: (1)

determining the changes that must be done to the DW and to the trace, and (2) applying the

corresponding changes to the DW and to the trace.

3

In Section 2 we present the Evolution Taxonomy of the source database, in Section 3 we present a

solution for problem (1), in Section 4 we present a solution for problem (2), and in Section 5 we present

the conclusion of this chapter. In Figure 4.2 we show the structure of the chapter.

Managing Source Schema Evolution

Introduction Source
Evolution
Taxonomy

Determining the
changes to the DW

Applying Evolution
to the DW

Obtaining DW-Source
DB dependencies

Evolution
Propagation

Consistency
corrections

Model for DW
evolution

Instance Conversion
Functions

Figure 4.2

4

2. Source Evolution Taxonomy

In this section we define the taxonomy of changes that can happen to the source schema.

As we mentioned in Chapter 1, this work can be seen as a module of the project [CSI99] that is being

developed in our research group. Figure 4.3 shows the global architecture of the project. As can be seen,

this work focuses on a part of the total process considered in the project. This part takes as input an

integrated database. One of the other modules of the project [DoC00] solves the problem of propagation

of source databases evolution to the integrated database.

Figure 4.3

When there is evolution in one of the source databases, this is propagated to the integrated database, and

then it must be propagated to the DW that was constructed from it. In the whole process considered in the

project, the module that solves the problem of evolution of the integrated database would pass to our

system the changes suffered by the integrated database and our system should propagate them to the DW.

Therefore, our work should consider as the evolution taxonomy the set of schema changes that is

managed by the mentioned module.

The taxonomy we use in this work covers the changes managed by the mentioned module of the project,

presented in [DoC00]. However, it also includes some changes that are not considered in that module:

rename attribute, rename relation, and change the key of a relation. These changes are added because

they allow distinguishing more cases of change and provide more semantic to the evolution operations

set. On the other hand, this taxonomy presents basically the same operations that are presented in

taxonomies of the consulted bibliography [Zic91][Fer96][Ska86][Ban87].

DW

Integrated DB

Web pages

Local DBs

INTEGRATION

TRANSFORMATION

5

The selected taxonomy for representing the possible changes to the source schema is the following:

1) Rename attribute

2) Add attribute

3) Remove attribute (the attribute cannot be a primary key)

4) Change the key of a relation

5) Rename relation

6) Add relation

7) Remove relation

3. Determining the changes to the DW

In this section we concentrate on the problem of determining the changes that must be applied to the DW

and to the trace in order to propagate source schema evolution.

In this problem we have as input the trace and the change that has been applied to the source schema, and

we have to give as solution the changes that must be applied to the DW and to the trace. The trace gives

us the dependencies that exist between the source schema elements and the DW schema ones. We have to

process the trace in order to deduce these dependencies.

The steps we follow for solving this problem are:

(a) definition of a mechanism for obtaining the dependencies between DW elements and source

database elements

(b) analysis of the possible combinations of schema element dependencies and changes of the

taxonomy

(c) definition of a set of Propagation Rules for each combination considered

(d) definition of a set of Correction Rules to be applied to the evolved schema for assuring its

consistency

3.1. Obtaining DW-Source DB dependencies

The DW-Source DB dependencies we are most interested in are the ones between basic elements of the

schemas, i.e. between attributes. Therefore, the first step we will perform in order to give a mechanism to

deduce these dependencies is to express the primitives in terms of basic operations (operations that apply

over basic elements of schemas).

6

Once we have de-composed the primitives into basic operations, we can process the trace by refining it,

and obtaining the corresponding detailed trace. This is the trace in function of basic operations. After

that, we can deduce the dependency expressions of a source schema element. A dependency expression

gives the information of how an element of the DW schema depends on the selected element of the source

schema. For example, an attribute of the DW schema could be a calculation from an attribute of the

source schema.

In following sub-sections we present the set of basic operations, the primitives expressed in function of

them, and the processing of the trace that is applied for obtaining the dependency expressions of the

elements.

3.1.1. Basic operations

The transformation primitives can be de-composed into smaller operations that apply over basic elements

of the sub-schemas. We define a set of Basic Operations that apply over basic elements of the data model

we use, and that cover all the changes the primitives may do over these elements. Therefore, the

primitives defined can be expressed in terms of these basic operations.

We classify the operations according to what object they are modifying.

During the schema transformation process, a set of relational elements (relations with all their properties)

is maintained. This set is the intermediate result corresponding to each step of the process. We call the

current intermediate result, the context.

The set of Basic Operations is shown in Figure 4.4.

Applied to Operations Description

The Context Rel_add Add a relation.

Rel_del Remove a relation.

A Relation Att_add Add a set of attributes.

Att_rem Remove a set of attributes.

Att_cpy Copy a set of attributes from a relation.

Att_calc Add a derived attribute.

A set of keys Key_add Add a key.

Key_del Remove a key.

A set of foreign keys Fkey_add Add a foreign key.

Fkey_del Remove a foreign key.

Figure 4.4

When we substitute a primitive by the sequence of basic operations, we lose the abstraction of the

primitive. This abstraction is essential at the moment of design, but it is not important when considering

the trace of the design made.

In Appendix 2 we provide the list of the basic operations with their descriptions.

Notation: Basic_operation_Name is the set of the names of the Basic Operations.

7

3.1.2. The Primitives expressed in terms of basic operations

We expressed the transformation primitives in terms of the basic operations that were previously defined.

The set of primitives specified through these operations is presented in Appendix 3.

3.1.3. Processing the transformation trace

The design trace of the DW schema provides a mapping between original and final schema elements. It

allows us to identify certain elements of the source schema and know the transformation they suffered

during the DW schema design.

Using the trace we can identify certain element in the source schema and know all the operations that

were applied to it during the schema transformation process, obtaining the transformation trace of the

element. Then, starting from this trace we can obtain the dependency expressions of the element (defined

later in this section), where elements of the DW schema are expressed in function of the source schema

element.

In this section we concentrate in defining a mechanism to process the design trace, with the ultimate goal

of obtaining the dependency expressions of the source elements.

Given an element of the source schema that has changed, we have to follow three steps with respect to the

design trace:

1) Extract from the design trace the transformation trace of the element in terms of primitives.

The transformation trace of the element in terms of primitives contains the set of the sequences of

primitives that were applied to the element. We consider that a sequence of primitives was applied to

an element if this element was part of the input of the first primitive of the sequence.

It does not matter if the considered element is a relation or a part of one, the extracted trace will

always be the trace of a relation, since the input schema of the primitives is always a set of relations.

2) Obtain the detailed trace of the element.

Express the trace obtained in (1), in terms of basic operations. Extract an expression that shows only

the sequence of basic operations that were applied to the considered element.

3) Obtain the dependency expressions of the element.

From the detailed trace of the element we deduce its dependency expressions.

Following subsections present the used notation and mechanisms to obtain: the detailed trace and the

dependency expressions of an element.

8

Detailed trace of an element

In order to obtain the detailed trace of an element from its trace, we have to do an “explosion” of the

primitives that appear in the trace, de-composing them into the basic operations they perform.

With respect to the graphical representation of this trace, the idea is to explode each circular node

(circular nodes represent primitives) into a set of nodes that represent the basic operations performed by

the primitive. At the same time the rectangular nodes (corresponding to relations) must be exploded into

sets of nodes that represent the sets of attributes of the relations. The obtained diagram is the graphic

representation of the detailed trace of the element.

We can apply the same idea to the textual representation of the trace. The textual representation of the

trace in terms of primitives consists of functional expressions. When we explode the primitives into the

corresponding basic operations, we do not preserve this “functional format” of the expressions. We

express the detailed trace of each relation as a sequence of basic operations applications.

Definition: Detailed Trace of a relation TD(R)

Given a set of relations, a set of attributes, a set of functions and a set of basic operations, the

Detailed Trace of a relation is represented by the following grammar:

TD(R) ::= <opapp_seq>

<opapp_seq> ::= <op_app> | <op_app>

 <opapp_seq>

<op_app> ::= <operation> “(” <arg_list> “)”

<operation> ::= Basic_operation_Name

<arg_list> ::= <argument> | <argument> ‘,’ <arg_list>

<argument> ::= <relation> | <att_set> | <att_set_set> | <function>

<relation> ::= Rel_Name

<att_set_set> ::= ‘{’ <att_sets> ‘}’

<att_sets> ::= <att_set> | <att_set> ‘,’ <att_sets>

<att_set> ::= ‘{’ <attributes> ‘}’

<attributes> ::= <attribute> | <attribute> ‘,’ <attributes>

<attribute> ::= Att_Name

<function> ::= Fun_Name

Note that this grammar does not control the validity of the arguments (quantity and types) passed to each

basic operation. We complement it with the following restriction expressed in natural language:

The <op_app> expression must respect the format of the input of the basic operation, which is stated

in the specification of the basic operation.

♦

9

The textual representation of the detailed trace of a relation is the representation that best allows us to

deduce the detailed trace of an attribute of the relation. Exploring this trace we can extract exactly the

sequence of basic operations that were applied to the attribute.

For the representation of the detailed trace of an attribute we define a graph G(Tatt).

Definition: Detailed Trace of an attribute. Graph G(Tatt).

Given a set of relations, a set of attributes, a set of functions and a set of basic operations, the

Detailed Trace of an attribute is represented by the graph G(Tatt), with the following characteristics:

The nodes represent attributes or the null value. The edges represent the application of a basic

operation that transforms one attribute into the other. The edges have labels that are the names of the

corresponding operation. It exists a path between two attributes when it is possible to reach one

from the other going through the edges.

G(Tatt) = < Nodes, Edges, Paths >

- ∀ n ∈ Nodes, Att(n) returns the attribute represented by the node.

- Let n1, n2 / n1, n2 ∈ Nodes, ∃ e(n1, n2) ∈ Edges ⇔ Att(n2) = bop(Att(n1)),

bop ∈ Basic_Operations,

- Let n1, n2 / n1, n2 ∈ Nodes, ∃ p(n1, n2) ∈ Paths ⇔

∃ e(n1, m1), e(m1, m2), e(m2, m3), …, e(mN, n2) ∈ Edges

♦

The general format of the graph is as follows:

 <op1> <op2> <op3>
<attribute1> <attribute2> <attributen>

We illustrate the proposed mechanisms through an example.

Example:

Consider the example trace presented in Chapter 3, Section 7.1. Suppose we are interested in the trace of

the attribute quantity of the relation SALES. The detailed trace of the relation SALES is obtained from

its transformation trace, decomposing the primitives that are part of this trace into the basic operations

they perform.

The trace of SALES:

Graphical and textual representations are shown in Figure 4.5 and Figure 4.6.

10

SALES

TIME

P 8 P 9 CMP_SALES

TIME_MONTH

MONTH_SALES

param1 param2

SALES (customer, salesman, date, prod, city, quantity)
TIME (date, week, month, trimester, year)

MONTH_SALES (customer, salesman, month, prod, city, quantity)

CMP_SALES (customer, month, prod, quantity)
TIME_MONTH (month, trimester, year)

param1 =
{quantity}, month, {sum(quantity)}, ∅, {date, week}, true

param2 = {quantity}, {sum(quantity)}, {salesman, city}

Figure 4.5

{TIME_MONTH, MONTH_SALES} = P8 ({SALES, TIME}, {quantity}, month,

{sum(quantity)}, ∅, {date, week}, true)

CMP_SALES = P9 (MONTH_SALES, {quantity_m}, {sum(quantity_m)}, {salesman, city})

Relation schemas:

SALES (customer, salesman, date, prod, city, quantity)
TIME (date, week, month, trimester, year)
MONTH_SALES (customer, salesman, month, prod, city, quantity_m)
CMP_SALES (customer, month, prod, quantity_cmp)
TIME_MONTH (month, trimester, year)

 Figure 4.6

The detailed trace of relation SALES:

Graphical and textual representations are shown in Figure 4.7 and Figure 4.8.

As can be seen, graphical representation for detailed traces does not seem to be so practical; it becomes

difficult to manage because of the large amount of elements it has to represent. This representation may

be more manageable if it is restricted to a small portion of the whole trace.

11

SALES

customer
salesman
date
prod
city
quantity

Att_cpy

MONTH_SALES

customer
salesman
date
prod
city
quantity

Att_calc

MONTH_SALES

Att_rem

MONTH_SALES

customer
salesman
month
prod
city
quantity

Att_calc

CMP_SALES

Att_calc

CMP_SALES

customer
month
prod
quantity_m
quantity_cmp

sum

TIME

date
week
month
trimester
year

=

customer
salesman
date
prod
city
quantity
month

sum

MONTH_SALES

customer
salesman
month
prod
city
quantity
quantity_m

Att_rem

MONTH_SALES

customer
salesman
month
prod
city
quantity_m

Att_cpy

customer
month
prod
quantity_m

Att_rem

CMP_SALES

customer
month
prod
quantity_cmp

 Figure 4.7

MONTH_SALES trace = Att_cpy ({customer, salesman, date, prod, city, quantity}, SALES,

MONTH_SALES)

Att_calc ({TIME.month}, =, {TIME.date, MONTH_SALES.date},

MONTH_SALES.month)

Att_rem ({date}, MONTH_SALES)

Att_calc ({MONTH_SALES.quantity}, sum, {},

MONTH_SALES.quantity_m)

Att_rem ({quantity}, MONTH_SALES)

CMP_SALES trace = Att_cpy ({customer, month, prod, quantity_m}, MONTH_SALES,

CMP_SALES)

Att_calc (CMP_SALES.quantity_m, sum, {},

CMP_SALES.quantity_cmp)

Att_rem ({quantity_m, CMP_SALES)

 Figure 4.8

12

From the textual representation of the detailed trace of SALES we can easily extract the detailed trace

of the attribute SALES.quantity:

Att_cpy Att_calc
SALES.quantity MONTH_SALES.quantity MONTH_SALES.quantity_m

 Att_rem

 //
Att_cpy Att_calc

 CMP_SALES.quantity_m CMP_SALES.quantity_cmp

 Att_rem

 //

Other examples are the traces of the attributes customer and date:

Att_cpy Att_cpy
SALES.customer MONTH_SALES.customer CMP_SALES.customer

 Att_cpy Att_calc
SALES.date MONTH_SALES.date MONTH_SALES.month

 Att_rem

 //
Att_cpy

 CMP_SALES.month

Note: In this representation, when the operation is Att_calc we also specify the calculation function that is

used. We use the word “ req” when the attribute is required for the calculation although it does not

participate directly in the function.

♦

Dependency expressions of an element

The last step we have to follow in the processing of the trace of an element is to obtain the dependency

expression of the element. This is an expression of the final element in function of the original one.

The dependencies information required for the management of source schema evolution vary according to

the type of element considered (attribute or relation). Therefore, the dependency expressions that are

constructed for each type of element will have different formats.

If the element is an attribute, the possible operations that can have been applied to it are: a copy, a

calculation, and a remove. The dependency expression of an attribute will be deduced from its trace,

considering the combination of copies and calculations. The removes do not participate in the generation

of the dependency expressions.

sum

sum

req

13

If the element is a relation, the information needed about its dependencies is related to the dependencies

of its attributes. Thus, a dependency expression of a relation with respect to a final relation, should

specify the number of attributes that are copied to the final relation, and the number of attributes that

participate in derivations of attributes of the final relation.

First we will present the dependency expressions for attributes and then the dependency expressions for

relations.

Dependency expression of an attribute:

Simple dependency expressions:

Trace Dep. expression

 Att_cpy
R1.A1 R2.A2

R2.A2 = R1.A1

 Att_calc
R1.A1 R2.A2

 F

R2.A2 = f (R1.A1)

In most cases the trace of an attribute will consist of a sequence of operation applications, causing the

generation of a complex dependency expression. In these cases the dependency expression for the

attribute must be constructed composing the operation applications.

Mechanism to construct a complex dependency expression:

<left_part> = <right_part>

1) <left_part>: Left part of the expression: Last element of the trace. This element belongs to the

final schema.

2) <right_part>: Right part of the expression: Follow the trace starting from the final element.

Substitute each attribute of the trace by the corresponding expression according to the simple

dependency expressions presented below, until an expression in function of the first attribute of

the trace is obtained.

Note that in the case of calculation dependencies this expression shows how a final element depends on a

source element, but it does not mean that the final element depends exclusively on this source element; it

may depend also on other attributes.

14

Examples:

Trace of attribute SALES.quantity:

Att_cpy Att_calc
SALES.quantity MONTH_SALES.quantity MONTH_SALES.quantity_m

 Att_rem

 //
Att_cpy Att_calc

 CMP_SALES.quantity_m CMP_SALES.quantity_cmp

 Att_rem

 //

Dependency expression of attribute SALES.quantity:

CMP_SALES.quantity_cmp = sum (sum (SALES.quantity))

Trace of attribute SALES.customer:

Att_cpy Att_cpy
SALES.customer MONTH_SALES.customer CMP_SALES.customer

Dependency expressions of attribute SALES.customer:

CMP_SALES.customer = SALES.customer

Trace of attribute SALES.date:

 Att_cpy Att_calc
SALES.date MONTH_SALES.date MONTH_SALES.month

 Att_rem

 //
Att_cpy

 CMP_SALES.month

Dependency expressions of attribute SALES.date:

CMP_SALES.month = req (SALES.date)

Note: Looking at the detailed trace of SALES we can see that the attribute CMP_SALES.month also

depends on other attributes: TIME.date and TIME.month.

♦

sum

sum

req

15

Dependency expression of a relation:

Mechanism to construct a dependency expression between a source and a final relation:

1) Make a list containing all the dependency expressions of all the attributes of the source relation

with respect to the final relation.

2) Deduce from this list the number of attributes that are copied to the final relation and the number

of attributes that are needed for the calculation of an attribute of the final relation.

3) Construct the dependency expression of the relation with the following format:

<final_rel> = dep_cpy (<source_rel>, n) ∧ dep_calc (<source_rel>, m)

where dep_cpy is an expression that indicates that n attributes are copied from <source_rel>, and

dep_calc is an expression that indicates that m attributes of <source_rel> are used for the

derivation of attributes of <final_rel>.

Obtain a reduced dependency expression with the following format:

<final_rel> = dep (<source_rel>, n+m)

Example:

Dependency expressions of the attributes of SALES:

CMP_SALES.customer = SALES.customer

CMP_SALES.month = req (SALES.date)

CMP_SALES.prod = SALES.prod

CMP_SALES.quantity_cmp = sum (sum (SALES.quantity))

Dependency expression of the relation SALES with respect to the relation CMP_SALES:

CMP_SALES = dep_cpy (SALES, 2) ∧ dep_calc (SALES, 2)

Reduced expression:

CMP_SALES = dep (SALES, 4)

♦

16

3.2. Evolution Propagation

Now that we have proposed a solution to the problem of determining the dependencies between final and

initial schema elements (DW and source schema elements), we can focus on the problem of how changes

on the source may be propagated to the DW schema.

In this Section our goal is to provide a set of Propagation Rules that state the modifications that should be

applied to the DW schema after source schema evolution.

3.2.1. Deducing the Propagation Rules

Our goal in this section is to provide a set of Propagation Rules that give the modifications that have to

be done to the trace and, when necessary, to the DW schema, when a change has occurred to the source

schema. These modifications are stated according to: (i) the changes occurred to the source schema, and

(ii) the dependencies between elements of the source schema and elements of the DW schema.

We will start by analysing the possible combinations change-dependency, determining in each case if the

DW should be affected by the change or not. Each time the DW is affected by a change the trace will also

be affected. However, sometimes the trace will be able to make the change to the source schema

transparent to the DW. In these cases we will say that the trace “ absorbs” the changes.

Afterwards, we will present the rules that will specify the actions to be performed for each combination

change-dependency.

Analysing the “combinations change-dependency”

In the table in Figure 4.9 we show the possible combinations between changes of the source schema and

type of dependency of the involved source element with respect to the DW schema, pointing out whether

the trace and/or the DW should be modified or not. At this stage, only the changes at attribute level are

considered.

 Dependency

Change to source att.

No dependency Copied Used in Calc. Req. for Calc.

Rename attribute T T T

Add attribute T
DW

Remove attribute T
DW

T
DW ?

T
DW

Change key of a relation T ?
DW

T
DW ?

 Figure 4.9

?

17

Note: In Figure 4.9, T represents the trace, a “ ?” symbol means that only in some cases the DW/trace

must be modified.

If an attribute is renamed in the source schema, the trace should absorb this change. The attributes of the

DW that depends on the renamed attribute of the source schema do not need to be changed in any case of

dependency. Only the mapping between these DW attributes and the renamed attribute should be

changed.

In the case of adding an attribute to the source schema, the repercussion to the DW schema cannot be

decided automatically. The designer should participate in the decision and in the process of repercussion

in case it exists. In order to allow this, the following questions should be made to the designer: (i) Do you

want to add one (or more than one) corresponding attribute to the DW schema? (ii) Where and how do

you want to add them? (iii) Do any of the new structures substitute any structure in the DW schema?

Which one/s?

In case the answer of question (i) is “ No” , nothing has to be done to the DW nor to the trace, and

questions (ii) and (iii) are not necessary. But if the answer is “ Yes” , then the designer has to answer

questions (ii) and (iii). The mechanism we offer him for answering question (ii), is to apply

transformations through application of primitives to the new attribute (and, if necessary, to other

structures of the source schema), directly generating the new structures of the DW. Finally, answering

question (iii), he has to specify if the new structures are substituting any structure of the DW and in this

case which of them. If some structure is being substituted it is automatically eliminated. Obviously, if the

answer of question (i) is “ Yes” both the trace and the DW are modified.

When an attribute is removed from the source schema the three different cases of dependency have to be

considered for deciding the repercussion this change will have. (a) If the attribute has a copy in the DW,

this attribute of the DW has to be eliminated. This elimination can be implemented in different ways, for

example not physically removing the attribute and stating a fixed null value for all its instances. Besides

the trace has to be modified, removing the connections existing between the two eliminated attributes. (b)

If the attribute is used in the calculation function of a derived attribute of the DW, then we propose two

alternatives. One is to eliminate the derived attribute from the DW, and the other is to modify the

calculation function of the derived attribute so that the removed source attribute does not participate any

more in this function. In both cases the trace is modified and only in the first case the DW is modified. (c)

If the attribute is required for the calculation of an attribute of the DW, the derived attribute must be

eliminated. This is because an attribute is defined (in the trace) as required when it behaves as a “ join

attribute” , i.e. it allows two relations to join in order to derive an attribute of one relation from attributes

of the other relation. If this “ join attribute” is lost, the calculation will no longer be able to be done. In this

case both the trace and the DW must be modified.

18

Now we will consider the case of changing the key of a relation, combining it with some of the possible

existing dependencies between source and DW attributes. (A) When the source attribute that is the “ old”

key has a dependency of copy in the DW, there are two possibilities for the corresponding DW attribute:

(i) it is key in a DW relation, and (ii) it is foreign key in a DW relation. In case (i) the DW must be

modified changing the key so that it agrees with the “ new” key defined in the source schema. If the

attribute defined as “ new” key does not exist in the DW relation, then it must be added. Only in case of

adding an attribute the trace must be modified. In case (ii), the attribute corresponding to the “ old” key

defined as foreign key in the DW relation, must be substituted by the attribute that corresponds to the

“ new” key in the source. In the trace we have to delete the path corresponding to the substituted DW

attribute and add the path corresponding to the added DW attribute. Both DW and trace must be modified.

(B) When the source attribute that corresponds to the “ old” key is used in the calculation function of a

DW derived attribute, no action has to be performed, since the change should not affect the DW or the

trace. (C) When the source attribute that corresponds to the “ old” key is required for the calculation of a

DW derived attribute, user participation is needed for deciding the repercussion the change will have. As

said below, an attribute is defined (in the trace) as required when it behaves as a “ join attribute” with

respect to other relation. Therefore, we give two alternatives to the user: (i) eliminate the derived attribute

in the DW, and (ii) substitute in the trace the required attribute by the “ new” key attribute, paying

attention to also changing the corresponding join attribute of the other relation. In (i) both the trace and

the DW are modified, while in (ii) only the trace is modified.

Dependencies between relations

When we consider the changes of the taxonomy that affect a whole relation instead of an attribute, we can

take into account the dependency that exists between a source relation and the DW relations. The

dependency expression between two relations tells “ how much” the DW relation is derived from the

source one. This information can be useful for deciding if it is worthwhile to maintain a DW relation

when the corresponding source relation was removed.

The dependency between a DW relation and a source relation is reduced to how many attributes of the

DW relation depend on the source relation. We define a parameter t, to be set by the user, that states a

threshold for this quantity. This value will be used in the corresponding Propagation Rules.

19

Propagation Rules

These rules state the actions that must be performed in each case of change to the source Database and

dependency between source and DW elements.

For specifying the actions that affect the DW we use the Basic Operations defined in Section 3.1.1, since

these operations work over a database schema and at a level that is suitable for the actions that must be

performed. In addition, the use of the Basic Operations facilitates the specification of the Consistency

Corrections for satisfying the invariants, which will be presented in next section.

R1) CHANGE: Rename attribute: A1 -> A2, where A1, A2 ∈ Att_Name

DEPENDENCY: Copied, Used in calculation, or Required for calculation

ACTION: - substitute in G(Tatt) A1 by A2.

R2) CHANGE: Add attribute

DEPENDENCY: None

ACTION: - if user wants to add sub-schema DWSS to the DW schema

- user applies primitives adding DWSS

- if user wants to remove an existing DW sub-schema, DWSS’

- for each R ∈ DWSS’

- Rel_del (R) // remove from DW relation R

- remove path(_,A) from G(Tatt), where A ∈ R // Remove form

trace all paths that finish on an R’ s attribute.

R3) CHANGE: Remove attribute R.A

DEPENDENCY: Copied. R’ .B = R.A

ACTION: - Att_rem ({B}, R’) // remove from DW schema attribute B

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

R4) CHANGE: Remove attribute R.A

DEPENDENCY: Used in calculation function. R’ .B = f(R.A)

ACTION: - if user wants to remove attribute R’ .B

- Att_rem ({B}, R’) // remove from DW schema attribute B

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

- else

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

- user modifies the calculation function of B in the trace.

R5) CHANGE: Remove attribute R.A

DEPENDENCY: Required for calculation. R’ .B = req(R.A)

ACTION: - Att_rem ({B}, R’) // remove from DW schema attribute B

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

20

R6) CHANGE: Change the key of a relation R. old key = A, new key = A’ .

DEPENDENCY: Copied. R’ .B = R.A.

ACTION: - if B is key in DW relation R’

- if ∃ B’ ∈ R’ , R’ .B’ = R.A’

- Key_del ({B}, AttK(R’))

- Key_add ({B’ }, AttK(R’)) // set B’ as the key of R’ in the DW

- else

- Att_add ({B’ }, R’) // add attribute B’ to relation R’ in the DW

- Key_del ({B}, AttK(R’))

- Key_add ({B’ }, AttK(R’)) // set B’ as the key of R’ in the DW

- add path(A’ ,B’) to G(Tatt) // add path(A’ ,B’) to the trace

- else if B is foreign key in DW relation R’ , with respect to DW relation R’ ’

- Att_add ({B’ }, R’) // add attribute B’ to relation R’ in the DW

- FKey_add ({B’ }, AttFK(R’,R’’), AttFK(R’)) // set B’ as foreign key to R’ ’ in

the DW

- Att_rem ({B}, R’) // remove attribute B from R’ in the DW

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

- add path(A’ ,B’) to G(Tatt) // add path(A’ ,B’) to the trace

R7) CHANGE: Change the key of a relation R. old key = A, new key = A’ .

DEPENDENCY: Required for calculation. R’ .B = req(R.A)

ACTION: - if user wants to eliminate attribute B from DW

- Att_rem ({B}, R’) // remove attribute B from R’ in the DW

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

- else if user wants to change the required attribute in the trace

- substitute path(A,B) by path(A’ ,B) in G(Tatt)

- user corrects path(_,B), updating the other required attributes.

With rules R1 to R7 we cover the changes of the Taxonomy that affect an attribute (the first four

changes). Rules R8 to R10 cover the changes over a whole relation (the last three changes of the

Taxonomy).

R8) CHANGE: Rename relation: R1 -> R2, where R1, R2 ∈ Rel_Name

DEPENDENCY: R = dep (R1, n), ∀ n

ACTION: - substitute in G(Tatt) R1 by R2

21

R9) CHANGE: Add relation: R

DEPENDENCY: None

ACTION: - if user wants to add sub-schema DWSS to the DW schema

- user applies primitives adding DWSS

- if user wants to remove an existing DW sub-schema, DWSS’

- for each R ∈ DWSS’

- Rel_del (R) // remove from DW relation R

- remove path(_,A) from G(Tatt), where A ∈ R // Remove form

trace all paths that finish on an R’ s attribute.

R10) CHANGE: Remove relation: R

DEPENDENCY: R’ = dep (R, n), where n > t

ACTION: - Rel_del (R’) // remove from DW relation R’

- remove path(_,A) from G(Tatt), where A ∈ R’ // Remove form trace all paths that

finish on an attribute of R’ .

R11) CHANGE: Remove relation: R

DEPENDENCY: R’ = dep (R, n), where n <= t

ACTION: - for each A / A ∈ Att(R) ∧ A ∈ Att(R’)

- if R’ .A = R.A

- apply R3

- else if R’ .A = f(R.A)

- apply R4

- else if R’ .A = req(R.A)

- apply R5

22

3.3. Consistency corrections

When a Database schema is modified it may happen that some property that was satisfied by the schema

before the change, is not satisfied after the change. In Chapter 3, Section 3 we have defined a set of

consistency properties that must be satisfied by a DW schema, which we called invariants.

In the previous section we proposed the Schema Propagation Rules for propagating source schema

evolution to the DW schema. However, once changes to the source schema were propagated to the DW

schema, an important task has to be carried out yet: the verification of DW schema consistency and, if

necessary, its correction. Figure 4.10 shows an example, which is explained following. In a) Sales is a

source relation, Sales_DW is a DW relation (a measure relation), and T is the trace that relates them. In b)

the schema of Sales changes. Attribute city_id is removed. In c) schema evolution is propagated to the

DW. Attribute city_id is removed form relation Sales_DW and T is modified. However, relation

Sales_DW still contains an attribute, city_name, that makes it inconsistent according to the “ measure

relations invariant” . In d) city_name is removed and T is modified, so that Sales_DW satisfy the

invariants.

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

sale_date
customer_id
presentation_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

modify trace

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

modify trace

!!

T

T

T

T a)

b)

c)

d)

Figure 4.10

23

In this section we propose a mechanism to correct the DW schema in case the changes applied to it have

left it in an inconsistent state, i.e. in case the DW schema does not satisfy the DW schema invariants any

more. We provide a set of rules that intend to cover all the inconsistencies that may be generated by the

DW evolution, and give the actions that should be performed in each case.

In this case we must consider the DW schema type of each element being changed. It will be relevant if,

for example, a relation is of “ measure” or of “ dimension” type.

R1 – Foreign key updates

R1.1 - ON APPLICATION OF: Key_del ({A}, AttK(R)) and Key_add ({A’ }, AttK(R)), where A =

old key and A’ = new key

APPLY: FKey_add ({A’ }, AttFK(Ri,R), AttFK(Ri)) to all Ri / AttFK(Ri,R) = A

R1.2 - ON APPLICATION OF: Rel_del (R), where R ∈ RelD

WHEN: ∃ R’ ∈ RelM / AttFK(R’ , R) ≠ ∅

APPLY: Primitive Aggregate Generation to R’ , removing X,

where X = { A / A ∈ Att(R) ∧ A ∈ Att(R’) }

R2 – Measure relations correction

ON APPLICATION OF: Att_rem ({A}, R) / R ∈ RelM

WHEN: ∃ S ∈ RelD / AttFK(R, S) = ∅ ∧ ∃ B / B ∈ Att(R) ∧ B ∈ Att(S)

APPLY: Att_rem ({B}, R)

remove path(_,B) from G(Tatt) // remove from trace the path that finishes in B

R3 – History relations update1

ON APPLICATION OF: Att_add ({A}, R), obtaining A ∈ Att(R)

WHEN: ∃ R’ / R’ ∈ RelH(R)

APPLY: Att_add ({A}, R’), obtaining A ∈ Att(R’)

1 This rule is optional. The user chooses if the rule is active or not.

24

4. Applying evolution to the DW

In this section we focus on the problem of applying the corresponding changes to the DW and to the

trace.

In order to solve this problem we have to: (a) define the model we will follow for the management of DW

schema evolution, and (b) provide the Conversion Functions to be applied to the instance of the DW

schema to transform it to an instance of the evolved DW schema.

4.1. Model for DW Evolution

In this section we define which strategy we would implement to apply evolution to the DW.

In Chapter 2, Section 5 we present an overview of the existing knowledge about schema evolution. In our

proposal we extract some techniques from this existing work, and we adapt, combine and apply them for

the resolution of our problem.

4.1.1. Previous considerations

We start enumerating the particular features of DWs, specially in the context of this work, that affect the

treatment of evolution. Afterwards, we discuss how these elements affect the possible models or

approaches considered in our work for applying evolution to the DW.

Some particular features of DWs:

� History data is stored in a DW.

� Applications that run over the DW only query the data. They do not modify it.

� Some evolution operations that in the context of operational databases are considered that do not

corrupt existing applications using an adaptational approach [Fer96], in the context of DWs can lead

to unexpected results.

� Most of the queries that are submitted to a DW require a big range of the history of the data existing

in the DW.

� Due to the meta-information that our system manages, some of the conversion functions for the

instances can be provided by it.

In a DW history data is relevant and it is maintained for a long time. Therefore, it would not be

reasonable to transform this data to other formats perhaps loosing some of it or some of its semantic.

Considering this aspect, a versioning approach would be a suitable solution.

25

We assume that modifications over the data only are applied in the context of loading data to the DW. For

this reason, if we use the solution of schema versioning, only the last version will be updated. It will

never exist updates over the data of other versions; this data will only be queried. This situation is

favourable for the application of versioning approach, because it will not be necessary to convert updates

to the new format of the data into updates to the old format of the data, which seems to be a nontrivial

problem.

In [Fer96] some schema update operations are classified as schema extending, and they are stated as not

affecting existing applications in the context of an adaptational approach. These operations include, for

example, “ Create an attribute” . Considering the DW evolution taxonomy we define in Section 4.2, the

corresponding operation (doing a mapping between OODBs and RDBs) would be “ Add attribute” . We

can show that in the specific case of adding a foreign key to a measure relation, this operation can lead to

unexpected results of queries that run on the old schema. We show an example in Figure 4.11. Taking

into account this difference, the proposal of integrating the two approaches [Fer96] does not seem to be so

applicable to DW schemas.

SALES

prod_cod cust_cod date quantity

p1 c1 1/1/00 10
p2 c2 1/1/00 20
p2 c2 2/1/00 10

select prod_cod, cust_cod, date, quantity
from SALES

prod_cod cust_cod date quantity
p1 c1 1/1/00 10
p2 c2 1/1/00 20
p2 c2 2/1/00 10

SALES

prod_cod cust_cod date empl_cod quantity

p1 c1 1/1/00 e1 2
p1 c1 1/1/00 e2 8
p2 c2 1/1/00 e3 20
p2 c2 2/1/00 e3 10

select prod_cod, cust_cod, date, quantity
from SALES

prod_cod cust_cod date quantity
p1 c1 1/1/00 2
p1 c1 1/1/00 8
p2 c2 1/1/00 20
p2 c2 2/1/00 10

Add attribute: empl_cod

For obtaining the same result the query should be modified: select prod_cod, cust_cod, date, quantity
from SALES
group by prod_cod, cust_cod, date

Q1:

Q1:

Q2:

Figure 4.11

In general, queries that are submitted to a DW refer to data across a long time period. Therefore, if we

work in a context of schema versioning, probably most of queries will require data of many different

versions. In these cases the use of instance conversion functions will be necessary.

In this work we propose a context where a considerable amount of information about schemas and

instances is maintained. This meta-information allows us to decide, in some cases, how data should be

transformed in case of DW schema evolution. This is specified in Section 4.2 by the instance conversion

functions.

26

4.1.2. The proposed mechanism

Considering the characteristics of the solutions extracted from the consulted bibliography, and the

particular features studied in the previous section, we propose the following solution for applying

evolution to a DW in our context:

Management of DW evolution is based on the versioning approach. We maintain a list of schema

versions, as proposed in [Fer96]. We apply the same strategy for trace evolution.

The queries over the DW will behave according to the following guidelines:

� Queries that were already running over any version can continue running over the same version

without any modification. These queries will not have access to information stored in subversions of

that version.

� When a query is submitted to the actual (last) version, data stored in superversions is transformed

through the f.c.f., which in some cases are provided by the system and in other ones are asked to the

user. The mechanic is shown in Figure 4.12. The f.c.f are presented in Section 4.2 as i.c.f (instance

conversion functions).

DW vers.1

DW vers.2

DW vers.3

DW vers.n

Q

f.c.f.3→4 o f.c.f. 4→5 ... o f.c.f. n-1→n

transformed
instance

Example:

Query Q needs data from
version n and from version 3.

Figure 4.12

Note: If there are some queries to a version that need to access data of a newer version, it will be

necessary to implement the b.c.f. for transforming this data.

27

4.2. Instance Conversion Functions

When an evolution operation has been applied to the DW schema, a conversion function can be applied to

the instance of the old DW schema so that it can be seen as an instance of the evolved DW schema (see

Figure 4.13).

In this section we provide the queries that have to be done to the data existing in the old DW in order to

obtain the same data structured according to the new DW schema. We call these queries instance

conversion functions (i.c.f.).

Source
DB

Evolved
Source DB

DW
Schema

DW
Instance

Evolved
DW Schema

Converted
DW Instance

PR
O

PA
G

ATIO
N

DB E Propagation Rules
and
Consistency Corrections

i.c.f.

Figure 4.13

In some cases of change it is not possible to determine the i.c.f. automatically. For these cases we need

the designer participation. Sometimes it is enough to ask the designer some questions, but other times is

the designer who has to give the complete conversion function. The latter case happens when the change

involves adding of information.

For determining the i.c.f. corresponding to each case of change, we must consider the type of the DW

schema element that is being affected. In some cases, for example, the transformation of a relation

instance will be different if the relation is a dimension or a measure one.

We define another taxonomy: a DW evolution taxonomy, which includes the possible changes that can be

applied to the DW schema in our context. The changes are sub-classified according to the type of DW

schema element, only in the cases that it is necessary to deduce the i.c.f.

28

DW Evolution Taxonomy

1) Add attribute

2) Remove attribute

a) from Measure Relation

a1) descriptive attribute

- foreign key

- not foreign key

a2) measure attribute

b) from Dimension Relation

b1) descriptive attribute

b2) hierarchical attribute

3) Change key of a relation

4) Change foreign key of a relation

Instance Conversion Functions

1) Add attribute

i.c.f. 1: user-defined function

2) Remove attribute

c) from Measure Relation

a1) descriptive attribute

- foreign key

i.c.f. 2: - R ∈ RelM, A = AttFK(R,R’), B1, ..., Bn ∈ AttM(R)

- provided by the user: list of f1(B1), ..., fn(Bn) , where f1, ..., fn are

aggregation functions

 - select {AttD(R) – A}, f1(B1), ..., fn(Bn)

 from R

 group by { AttD(R) – A}

- not foreign key

i.c.f. 3: - R ∈ RelM, A ∈ AttD(R)

 - select Att(R) - A

 from R

29

a2) measure attribute

 i.c.f. 4: - R ∈ RelM, A ∈ AttM(R)

 - select Att(R) - A

 from R

d) from Dimension Relation

b1) descriptive attribute

 i.c.f. 5: - R ∈ RelD, A = AttD(R)

 - select Att(R) - A

 from R

b2) hierarchical attribute

 i.c.f. 6: - R ∈ RelD, A = AttJ(R)

 - select Att(R) - A

 from R

3) Change key of a relation

i.c.f. 7: - R ∈ Rel, {A} ∈ AttK(R) old key, B ∈ Att(R) new key

- The instance must not be transformed

Note: It is not possible to define a conversion at this step. However, at the moment of query, the

difference with respect to the keys should be considered.

4) Change foreign key of a relation

i.c.f. 8: - R ∈ Rel, {A} ∈ AttFK(R,R’) old foreign key, B ∈ Att(R) new foreign key

- The instance must not be transformed

Note: It is not possible to define a conversion at this step. However, at the moment of query, the

difference with respect to the keys should be considered.

30

5. Conclusion

This chapter focuses on the whole process that starts with evolution of the source schema and finishes

with evolution of the DW schema.

We present a strategy that solves how to propagate the changes occurred on the source schema to the DW

schema, and how to manage evolution in the context of the DW. The steps that should be performed in

case of a change in the source schema are the following: 1- Identify the dependencies that exist between

the changed element and elements in the DW. This is done using the trace (in Section 3.1). 2- Apply the

Propagation Rules. Choose the appropriate rule according to the change and the dependency (in Section

3.2). Create a new schema if it has to be changed and a new trace. Mark them as a new version. 3- Verify

the DW schema consistency and apply consistency corrections to the new schema if it is necessary (in

Section 3.3). 4- Implement the f.c.f. for the instance, if it is possible (in Section 4.2). 5- If there is a new

version of the schema or the trace, re-generate the loading processes. 6- Manage the queries as it is

proposed in Section 4.1.2.

With respect to the classification of schema elements into DW elements, in the propagation rules it was

not necessary to consider this classification, while in the instance conversion functions it had to be

considered.

In Section 3.1.3 we present the detailed trace of an element and we define the graph of an attribute’ s

detailed trace. We do not specify the procedure to pass from the detailed trace to this graph. We describe

it, and we illustrate it with examples.

The Propagation Rules we propose state the modifications that must be done to the DW and to the trace.

Another approach for this rules that seems to be more efficient for implementation is the following: The

rules state only the modifications that must be done to the trace. At the moment of applying evolution the

affected portion of the trace is re-applied (the operations of this portion of the trace are applied),

generating the modified portion of the DW schema, which must substitute the original portion.

31

BBiibblliiooggrraapphhyy

[Abe98] R. Abella, L. Coppola, D. Olave,. Un Datawarehouse para la Facultad de Ingenieria.

Universidad de la República del Uruguay. In.Co. Proyecto de Taller 5. 1998.

[Ada98] C. Adamson, M. Venerable. Data Warehouse Design Solutions. J. Wiley & Sons, Inc.

1998

[Agr97] R. Agrawal, A. Gupta, S. Sarawagi. Modeling Multidimensional Databases. ICDE 1997

[Alc00] A. Alcarraz, M. Ayala, P. Gatto. Diseño e Implementacion de una herramienta para

evolucion de Data Warehouses. Universidad de la República del Uruguay. In.Co. Proyecto

en curso de Taller 5. 2000.

[Arz99] G. Arzua, G. Gil, S. Sharoian. Manejador de Repositorio para Ambiente CASE. Facultad

de Ingenieria. Universidad de la República del Uruguay. In.Co. Proyecto de Taller 5. 1999.

[Bal98] C. Ballard. Data Modeling Techniques for Data Warehousing. SG24-2238-00. IBM Red

Book. ISBN number 0738402451. 1998.

[Ban87] J. Banerjee, W. Kim, H-J. Kim, H. F. Korth. Semantics and Implementation of Schema

Evolution in Object-Oriented Databases. In proc. of the ACM SIGMOD Int’ l Conf.

Management of Data, San Francisco, CA, May 1987.

[Bat92] Batini, Ceri, Navathe. Conceptual Database Design. An Entity-Relationship Approach. The

Benjamin/Cummings Publishing Company, Inc. 1992

[Bla99-1] M. Blaschka. FIESTA: A Framework for Schema Evolution in Multidimensional

Information Systems. Proc. of 6th. CAISE Doctoral Consortium, 1999, Heidelberg,

Germany.

[Bla99-2] M. Blaschka, C. Sapia, G. Hofling. On Schema Evolution in Multidimensional Databases.

Proc. DaWaK ’ 99, Florence, Italy.

[Cal99] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati. (DWQ project). A

Principled Approach to Data Integration and Reconciliation in Data Warehousing. Proc.

CAISE ‘99 Workshop on Design and Management of Data Warehouses (DMDW ‘99),

1999.

[Cha97] S. Chaudhuri, U. Dayal. An overview of Data Warehousing and OLAP Technology.

SIGMOD Record 26(1). 1997.

[CSI99] Grupo CSI. Diseño y mantenimiento dinámico de Data Warehouses – Aplicación en el

contexto de la Web. V Jornadas de Informática e Investigación Operativa y VIII Encuentro

del Laboratorio de Ciencias de la Computación . Facultad de Ingenieria. Universidad de la

República del Uruguay. In.Co. Marzo ‘99.

32

[DoC00] A. do Carmo. Aplicando Integración de Esquemas en un contexto DW-Web. Master’ s

Thesis. Pedeciba. Universidad de la República del Uruguay. 2000.

[Elm00] Elmasri, Navathe. Fundamentals of Database Systems. Addison-Wesley 2000.

[Fer93] F. Ferradina, R. Zicari. Object Database Schema Evolution: are Lazy Updates always

Equivalent to Immediate Updates? Technical Report n11/93, University of Frankfurt.

Presented at OOPSLA Workshop, September 1993, Washington D.C.

[Fer94] F. Ferradina, T. Meyer, R. Zicari. Implementing Lazy Database Updates for an Object

Database System. Proc. of the 20th. International Conference on VLDB, Santiago de Chile,

September 1994.

[Fer95] F. Ferradina, T. Meyer, R. Zicari. Measuring the Performance of Immediate and Deferred

Updates in Object Database Systems. OOPSLA Workshop on Object Database Behaviour,

Benchmarks and Performance. Austin, Texas, October 15, 1995.

[Fer96] F. Ferradina, S. Lautemann. An Integrated Approach to Schema Evolution for Object

Databases. OOIS 1996, London, U.K.

[Gar99] P. Garbusi, F. Piedrabuena, G. Vazquez. Diseño e implementación de una herramienta de

ayuda en el diseño de un Data Warehouse Relacional. Facultad de Ingenieria. Universidad

de la República del Uruguay. In.Co. Proyecto de Taller 5. 1999.

[Gol98] M. Golfarelli, Stefano Rizzi. A Methodological Framework for Data Warehouse Design.

DOLAP 1998.

[Hac97] M. S. Hacid, U. Sattler (DWQ project). An Object-Centered Multi-dimensional Data

Model with Hierarchically Structured Dimensions. Proc. of the IEEE Knowledge and Data

Engineering Workshop. 1997.

[Hai91] J. L. Hainaut. Entity-Generating schema transformations for Entity-Relationship models.

ER 1991: 643 – 670.

[Ham95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Yue Zhuge. The Stanford Data

Warehousing Project. Data Eng. Bulletin, 18(2), June 1995.

[Hull97] R. Hull. Managing Semantic Heterogeneity in Databases: A Theoretical Perspective.

PODS 1997.

[Hull96] R. Hull, G. Zhou. A Framework for Supporting Data Integration Using the Materialised

and Virtual Approaches. SIGMOD Conf., Montreal, 1996.

[Inm96] W. H. Inmon. Building the Operational Data Store. John Wiley & Sons Inc., 1996.

[Kim96-1] R. Kimball. The Data Warehouse Toolkit. J. Wiley & Sons, Inc. 1996

[Kim96-2] R. Kimball. Dangerous Preconceptions. The Data Warehouse Architect, DBMS Magazine,

August 1996, URL: http://www.dbmsmag.com

33

[Kim96-3] R. Kimball. Slowly Changing Dimensions. The Data Warehouse Architect, DBMS

Magazine, April 1996, URL: http://www.dbmsmag.com

[Kim98] R. Kimball. The Data Warehouse Lifecycle Toolkit. J. Wiley & Sons, Inc. 1998

[Kor99] M. A. R. Kortnik, D. L. Moody. From Entities to Stars, Snowflakes, Clusters,

Constellations and Galaxies: A Methodology for Data Warehouse Design. 18th.

International Conference on Conceptual Modelling. Industrial Track Proceedings. ER’ 99.

[Lab97] W. J. Labio, Y. Zhuge, J. N. Wiener, H. Gupta, H. Garcia-Molina, J. Widom. Stanford

University. The WHIPS Prototype for Data Warehouse Creation and Maintenance.

SIGMOD 1997.

[Lab96] W. Labio, H. Garcia-Molina. Efficient Snapshot Differential Algorithms for Data

Warehousing. VLDB Conf., Bombay, 1996.

[Lau96] S. Lautemann. An Introduction to Schema Versioning in OODBMS. In proc. of the 7th.

Int’ l. Conf. on Database and Expert Systems Applications (DEXA), Zurich, Switzerland,

September 1996. IEEE Computer Society. Workshop Proceedings.

[Lau97] S. Lautemann. Schema Versions in Object Oriented Database Systems. In proc. of the 5th.

Int’ l. Conf. On Database Systems for Advanced Applications (DASFAA), Melbourne,

Australia, April 1997.

[Lev96] A. Y. Levy, A. Rajaraman, J. J. Ordille. Querying Heterogeneous Information Sources

Using Source Descriptions. VLDB 1996.

[Lig99] S. Ligouditianos, T. Sellis, D. Theodoratos, Y. Vassiliou. (DWQ project). Heuristic

Algorithms for Designing a Data Warehouse with SPJ Views. Proc. DaWaK ’ 99, Florence,

Italy

[Ngu89] G. T. Nguyen, D. Rieu. Schema Evolution in Object-Oriented Database Systems. Data &

Knowledge Engineering (DKE) , Volume 4, 1989.

[Nic98] A. Nica, A. J. Lee, E. A. Rundensteiner. The CVS Algorithm for View Syncronization in

Evolvable Large-Scale Information Systems. In Proceedings of International Conference on

Extending Database Technology (EDBT’ 98), Spain 1998.

[Pap96] Y. Papakonstantinou, S. Abiteboul, H. Garcia-Molina. Object Fusion in Mediator Systems.

VLDB 1996.

[Per00] V. Peralta Sobre el pasaje del esquema conceptual al esquema lógico de un Data

Warehouse. Facultad de Ingenieria. Universidad de la República del Uruguay. In.Co.

Reporte Técnico. 2000.

[Per99] V. Peralta, A. Marotta, R. Ruggia. Designing Data Warehouses through schema

transformation primitives. 18th. International Conference on Conceptual Modelling. Posters

and Demonstrations. ER’ 99.

34

[Pic99] A. Picerno, M. Fontan. Un editor para CMDM. Facultad de Ingenieria. Universidad de la

República del Uruguay. In.Co. Proyecto de Taller 5. 1999.

[Qui99] C. Quix. Repository Support for Data Warehouse Evolution. Proc. CAISE ‘99 Workshop

on Design and Management of Data Warehouses (DMDW ‘99), 1999.

[Run97] E. A. Rundensteiner, A. J. Lee, A. Nica. On Preserving Views in Evolving Environments.

In Proceedings of 4th. Int. Workshop on Knowledge Representation Meets Databases

(KRDB’ 97). Greece 1997.

[Sil97] L. Silverston, W. H. Inmon, K. Graziano. The Data Model Resource Book. J. Wiley &

Sons, Inc. 1997

[Ska86] A. H. Skarra, S. B. Zdonik. The Management of Changing Types in an Object-Oriented

Database. OOP SLA 1986, Portland, Oregon.

[Sta90] B. Staudt Lerner, A. Nico Habermann. Beyond Schema Evolution to Database

Reorganization. ECOOP/OOPSLA 1990 Proceedings.

[Theo99-1] D. Theodoratos, T. Sellis (DWQ project). Designing Data Warehouses. DKE ‘99

[Theo99-2] D. Theodoratos, S. Ligoudistianos, T. Sellis. (DWQ project). Designing the Global Data

Warehouse with SPJ Views. Proc. CAISE ‘99, Heidelberg, Germany.

[Theo99-3] D. Theodoratos, T. Sellis. (DWQ project). Dynamic Data Warehouse Design. Proc.

DaWaK ’ 99, Florence, Italy

[Tho97] E. Thomsen. OLAP Solutions. Building Multidimensional Information. John Wiley & Sons,

Inc., 1997.

[Tork97] M. Tork Roth, P. Schwarz. Don’ t Scrap It, Wrap It! A Wrapper Architecture for Legacy

Data Sources. VLDB 1997.

[Vas99] P. Vassiliadis, M. Bouzeghoub, C. Quix. Towards Quality-oriented Data Warehouse

Usage and Evolution. Proc. of the 11th. Conference on Advanced Information Systems

Engineering (CAISE ‘99), Hiedelberg, Germany, 1999.

[Wid95] J. Widom. Research Problems in Data Warehousing. Int’ l Conf. On Info. And Knowledge

Management (CIKM), November 1995.

[Wie96] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina, J. Widom. A System

Prototype for Warehouse View Maintenance. Workshop on Materialised Views:

Techniques and Applications, June 1996.

[Wu97] Ming-Chuan Wu, Alejandro P. Buchmann. Research Issues in Data Warehousing. BTW

German Database Conference, 1997.

[Zha99] Xin Zhang. Data Warehouse Maintenance Under Interleaved Schema and Data Updates.

A master thesis submitted to the Faculty of the Worcester Polytechnic Institute. Thesis

Advisor: Professor E. A. Rundensteiner. May 1999.

35

[Zhou95] G. Zhou, R. Hull, R. King, J. Franchitti. Data Integration and Warehousing Using H2O.

Data Eng. Bulletin, 18(2), 1995.

[Zhu95] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom. View Maintenance in a Warehousing

Environment. SIGMOD Conf., San Jose, May 1995.

[Zhu96-1] Y. Zhuge, H. Garcia-Molina, J. Wiener. The Strobe Algorithms for Multi-source

Warehouse Consistency. PDIS, Miami Beach, 1996.

[Zhu96-2] Y. Zhuge, H. Garcia-Molina, J. Wiener. Consistency Algorithms for Multi-Source

Warehouse View Maintenance. Technical report, Stanford University, 1996.

[Zic91] R. Zicari. A Framework for Schema Updates In An Object-Oriented Database System. GIP

Altair, Politecnico di Milano, Milano, Italy, 1991.

