
A Framework for Analysis of Data Freshness
Mokrane Bouzeghoub

Laboratoire PRISM, Université de Versailles
45, avenue des Etats-Unis

78000. Versailles, FRANCE
+33-1-39254051

Mokrane.Bouzeghoub@prism.uvsq.fr

Verónika Peralta
Laboratoire PRISM, Université de Versailles

45, avenue des Etats-Unis
78000. Versailles, FRANCE

+33-1-39254083

Veronika.Peralta@prism.uvsq.fr

ABSTRACT
Data freshness has been identified as one of the most important
data quality attributes in information systems. This importance
increases particularly in the context of distributed systems,
composed of a large set of autonomous data sources, where
integrating data having different freshness may lead to semantic
problems. There are various definitions of data freshness in the
literature, depending on the applications where they are used, as
well as different metrics to measure them. This paper presents an
analysis of these definitions and metrics and proposes a taxonomy
based upon the nature of the data, the type of application and the
synchronization policies underlying the multi-source information
system. We analyze, in terms of the taxonomy, the way freshness
is defined and used in several types of systems and we present
some open research problems in the field of data freshness
evaluation.

Keywords
Freshness, Quality evaluation, Multi-source information systems.

1. INTRODUCTION
Data freshness has been identified as one of the most important
attributes of data quality for data consumers [31]. Some surveys
and empirical studies have proved that data freshness is linked to
information system success [34][25][31]. Then, achieving
required data freshness is a challenge for the development of a
large variety of applications. Furthermore, the increasing need to
access to information that is available in several data sources
introduces the problem of choosing between alternative data
providers and of combining data having different freshness values.
This paper presents an analysis of data freshness and its various
underlying metrics within the context of a data integration system.
A Data Integration System (DIS) is an information system that
integrates data of different independent data sources and provides
the users with a uniform access to the data by the mean of a global
model, as sketched in Figure 1. User queries are posed to the
system over the global model.

Examples of DIS are Mediation systems, where data is extracted
from several sources, integrated and presented to the user;
wrapper-mediator architecture [36] is commonly used to perform
these tasks. Data Warehouse (DW) systems [19] also extract,
transform and integrate information from various, possibly
heterogeneous, sources and make it available for strategic analysis
to the decision makers. Other examples of DIS are federations of
databases [30] where a key characteristic is the preservation of
data source autonomy and Web Portals which provide access to
subject-oriented information acquired and synthesized from Web
sources, generally caching important amounts of data [5].

data integration
system

data sources

Figure 1 - Data Integration Systems

Several freshness definitions have been proposed for different
types of DIS. The traditional freshness definition is related to view
consistency when materializing source data at the integration level
or the user level. It is called currency [29] and describes how stale
is data with respect to the sources. Recent proposals incorporate
another notion of freshness, called timeliness [34], which
describes how old is data. Then, freshness represents a family of
quality factors, or a quality dimension, with different associated
metrics. Each factor best suites a particular problem or type of
system.
In this paper we analyze this quality dimension and we present a
taxonomy of its factors and metrics based upon the nature of the
data, upon the type of application and upon the synchronization
policies of the underlying management system. We analyze, in
terms of the taxonomy, the way freshness is defined and used in
several types of systems and we discuss some open research
related to data freshness evaluation in a DIS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IQIS 2004 Maison de la Chimie, Paris, France.
© 2004 ACM 1-58113-902-0/04/0006 $5.00.

The contribution of this paper is twofold. Firstly, we propose a
framework for the analysis of data freshness factors and metrics

mailto:Mokrane.Bouzeghoub@prism.uvsq.fr
mailto:Veronika.Peralta@prism.uvsq.fr

within a taxonomy. Secondly, we discuss some research problems
related to data freshness evaluation.
The rest of the document is organized as follows: Section 2
discusses the different definitions and metrics of the freshness
dimension. Section 3 presents the taxonomy which is used in
section 4 to describe some systems that evaluate data freshness.
Section 5 presents some open research problems related to data
freshness evaluation. Finally, section 6 concludes with our general
remarks.

2. DATA FRESHNESS
Intuitively, the concept of data freshness introduces the idea of
how old is the data: Is it fresh enough with respect to the user
expectations? Has a given data source the more recent data? Is the
extracted data stale? When was data produced?
Data freshness has then not a unique definition in the literature.
There are various definitions concerning different concepts and
metrics, which are mainly due to the different objectives of the
systems where they are used. For example, in a replication system
the number of refresh operations that have to be applied to a slave
relation in order to reflect the changes in a master relation is a
good freshness metric, but in a data warehousing system the time
passed from the update of an object can be more relevant. In this
section we present an analysis of data freshness definitions and
metrics.

2.1 Definitions
Data freshness comprises a family of quality factors each one
representing some freshness aspect and having its own metrics.
For that reason freshness is commonly mentioned as a quality
dimension [20].
From a user point of view, we distinguish two sub-dimensions of
this quality dimension:

 Currency factor [29]: It captures the gap between the
extraction of data from the sources and its delivery to the
users. For example, currency indicates how stale is the
account balance presented to the user with respect to the real
balance at the bank.

 Timeliness factor [34]: It captures how often data changes or
how often new data is created in a source. For example,
timeliness indicates how often the product prices change in
a store or how often new books are added to a library.

Analogously, other factors can be defined. For example, consider
a source that is frequently updated but continues having old data
that is never updated (sometimes not representing real-world
phenomena). The oldest data may introduce some noise on query
evaluation. A freshness factor that captures how old is the oldest
data in a source can be useful for this example.
In the next section we analyze freshness metrics.

2.2 Freshness Measurement
A metric is a specific instrument that can be used to measure a
given quality factor. There might be several metrics for the same
quality factor. We describe the metrics proposed in the literature
for measuring data freshness, classified by sub-dimension:

 Metrics for the currency factor:
 Currency metric: It measures the time elapsed since the
source data changed without being reflected in the
materialized view (if changes are propagated

immediately then currency is 0) [29]. In practice, as the
precise change time can be difficult to obtain, currency
is estimated as the difference between data extraction
time and data delivery time. This estimation is used in
data warehousing systems [33]. In caching systems it
has been defined as recency or age, representing
respectively the time elapsed since an object was cached
[5] and the time elapsed since an object became stale
[7]. In replication systems it is called age and measures
the time since the oldest tuple of a relation has been
waiting for the first refresh transaction [11].

 Obsolescence metric: It measures the number of updates
to a source since the data extraction time. It can be
measured from source logs or delta files or using change
detection techniques [15]. Knowing the obsolescence of
a source relation, the update frequency can be estimated
and vice versa. Obsolescence is often called age in
caching systems, meaning the number of times an object
has been updated at the remote server since it was
cached [17]. In query processing systems, it is defined
as the number of insertions, deletions and modifications
since the data materialization time [9]. In replication
systems it is called order and measures the number of
refresh transactions that have been committed in the
master node but have not yet been propagated to the
slave node [11].

 Freshness-rate metric: It measures the percentage of
extracted elements (tuples or attributes) that are up-to-
date, i.e. their values equal the source relation ones. It
can be estimated from the knowledge one has about data
sources and from the way data is updated [7]. It was
defined as freshness in caching systems, meaning the
number of elements of the cache that are up-to-date over
the total number of elements [7]. In [22], freshness is
measured as the percentage of web pages that are fresh
(not stale) in the cache but considering that the pages
can have portions that are fresh and proportions that are
not.

 Metrics for the timeliness factor:
 Timeliness metric: It measures the extent to which the
age of the data is appropriate for the task on hand [34].
It is generally estimated as time elapsed from the last
update to a source and bounded using the update
frequency of the source data [26]. It is also related to
data volatility that identifies the time interval in which
data remain valid [2]. It was defined as timeliness in
mediation systems [26] and web systems [12].

Table 1 summarizes freshness factors and corresponding metrics.

3. DIMENSIONS FOR FRESHNESS
ANALYSIS

In this section we analyze some dimensions that impact the
analysis and enforcement of data freshness. We analyze the nature
of data, the type of applications and the synchronization policies
of the system. Finally, we present a taxonomy that summarizes
this discussion and allows comparing different proposals for
freshness evaluation.

Table 1 – Summary of freshness factors and metrics

Factor Metric Definition
Currency The time elapsed since data was

extracted from the source (The
difference between query time and
extraction time).

Obsolescence The number of updates transactions/
operations to a source since the data
extraction time.

Currency

Freshness
rate

The percentage of tuples in the view
that are up-to-date (have not been
updated since extraction time).

Timeliness Timeliness The time elapsed from the last update
to a source (the difference between
query time and last update time).

3.1 Nature of Data
According to its change frequency, we can classify source data in
three categories:

 Stable data: It is data that is improbable to change.
Examples are scientific publications; although new
publications can be added to the source, older publications
remain unchanged. Other examples are person names, postal
codes and country names.

 Long-term-changing data: It is data that has a very low
change frequency. Examples are the addresses of
employees, country currencies and hotel price lists in a
tourist center. The concept of “low frequency” is domain
dependent; in an e-commerce application, if the stock of a
product changes once a week it is considered to be low-
frequency change while a cinema that changes its playbills
weekly has a high-frequency change for spectators.

 Frequently-changing data: It is data that has intensive
change, such as real-time traffic information, temperature
sensor measures and sales quantities. The changes can occur
with a defined frequency or they can be random. For
example, restaurant menus which are updated every
morning have a defined change frequency, but the account
balances which are updated with every account movement
have not got a defined frequency.

When working with frequently changing data, it is interesting to
measure how long data can remain unchanged and minimize the
delivery of expired data. However, when working with stable or
long-term changing data, these questions have no sense since data
does not change very often. It is more interesting to measure how
often new data is created or how old is the data.
Certain types of data have a lifecycle which describes explicitly
its states and changing events. Some examples are the marital
status of a person, the moon phases or the status of a semaphore.
Sometimes, the events that make the states change are well known
and can be predicted (as the semaphore). The fact that states are
known in advance may allow the development of specialized
techniques and treatments.
Analogously, when data has a defined change frequency,
applications can be synchronized to extract data at the best
moment.

3.2 Application Types
The freshness of the data returned to the user depends on the
freshness of extracted data but also on the processes that extract,
integrate and deliver this data. These processes are very important
because they can introduce additional delays. We distinguish three
main families of applications: those that calculate data when a
new query is posted, those that cache the data most frequently
used, and those that materialize the data needed to answer user
queries. When using materialization, data is stored for some time
in the data integration system repositories, which decreases its
freshness. The features of these three categories of DIS are
summarized below:

 Virtual systems: The system does not materialize any data so
all queries are calculated when they are posed. The users
send their queries to the system and wait the response. The
system re-writes user queries in terms of the sources, sends
the correspondent queries to the relevant sources and merges
their answers in a global answer that is delivered to the user.
Examples are pure virtual mediation systems and query
systems in database federations.

 Caching systems: The system caches some information,
typically some source relations that are frequently accessed
or the result of some frequent queries. The system estimates
the time during which the data will be up to date, and
invalidates it when passed this time. The users pose their
queries to the system and if the information required to
answer the queries is stored in the cache, the system delivers
it to the user. If the information is not stored in the cache or
it is invalidated, the system queries the sources as in the
virtual systems and possibly refreshes cache data. Examples
are caching and replication systems.

 Materialized systems: The system materializes large
volumes of data which is refreshed with respect to a certain
scenario. The users pose their queries and the system
answers them almost using the materialized data. Examples
are data warehousing systems and web portals that support
materialization.

Virtual systems are conceived to retrieve data as current as
possible, returning a current state of the source data. In caching
systems, some level of staleness is allowed but the gap between
source states and the integration system state should be relatively
small. In materialized systems that gap can be greater, but its
magnitude depends on the concrete applications.

3.3 Synchronization Policies
The way DIS are implemented influences the freshness of the data
delivered to the users. Particularly, the synchronization between
the sources, the DIS and the users has impact in data freshness
because it introduces delays. For example, a DIS that
synchronizes updates each end of the day may provide data which
is not fresh enough with respect to the expectations of a given
user.
According to the interaction between the DIS and the sources, the
extraction processes can have pull or push policies. With pull
policy, the DIS queries the sources to obtain data and with push
policy, the source sends data to the DIS. The notification of new
available data can come from an active source, for example
initiated by a trigger, or can be determined by the DIS
continuously polling the source. Active sources can have their
own policies as sending each updated tuple, or sending sets of

tuples every regular periods of time or when changes surpass a
threshold. Push policies can also be driven by temporal or non-
temporal events.
According to the interaction between the DIS and the users, the
query processes can also have pull or push policies. With pull
policy, users directly pose queries to the DIS. With push policy
users subscribe to certain queries and the DIS regularly conveys
response data to the users. Push policies can also be driven by
temporal or non-temporal events.
Combining the previous interactions between users, DIS and data
sources leads to six possible configurations which are shown in
Figure 2. We name each configuration with the user-DIS policy
followed by the DIS-source policy. Asynchronism is represented
by a slash (/), synchronism by (-):

 Pull-pull: The interaction is fully synchronized. When a user
poses a query (pull), it is decomposed and sent by the DIS to
the sources (pull). The configuration is represented by arrow
(a) of Figure 2. It is common in virtual mediation systems.

 Pull / pull: When a user poses a query (pull) the DIS
answers it using materialized data. Asynchronously, the DIS
queries the sources to refresh materialized data (pull). It is
represented by arrows (b) and (c) of Figure 2. It is common
in data warehousing systems.

 Pull / push: When a user poses a query (pull) the DIS
answers it using materialized data. Asynchronously, the
sources send data to refresh materializations (push). It is
represented by arrows (b) and (e) of Figure 2. It is also used
in data warehousing systems.

 Push / push: When sources send data to the DIS (push), it is
used to refresh the materializations. Asynchronously, the
DIS conveys data to the users (push). It is represented by
arrows (d) and (e) of Figure 2. It is used in publish/subscribe
environments.

 Push / pull: Materialized data is conveyed asynchronously to
the users (push) and also asynchronously, the DIS queries
the sources to refresh the materialized data (pull). It is
represented by arrows (d) and (c) of Figure 2. It represents
certain user applications (e.g. data marts) that are regularly
fed from warehouse data.

 Push-push: The interaction is synchronized. When sources
send data to the DIS (push), the DIS conveys it to the users
(push). It is represented by arrow (f) of Figure 2. This
configuration is specific to some real time systems (alert
systems) which capture events from sensors and conveys
them to users but maintain also a history of these events.
This policy is not usually implemented in the three
application types described in the previous subsection.

In systems where there are heterogeneous data sources with
different access constraints and users with different freshness
expectations, it is important to support and combine several kinds
of policies.
Asynchronous policies introduce delays. The refresh frequency of
the DIS repository is important to evaluate the freshness of
retrieved data. When pushing data to the user, the push frequency
is also important.

Users

Sources

pull

pull push

push

(a)

(b)

(c)

(d)

(e)

(f)

Data Integration
System

Figure 2 – Combination of synchronization policies

3.4 A Taxonomy of Freshness Works
The proposed taxonomy is composed of the previously described
dimensions: (i) nature of data, (ii) application types and (iii)
synchronization policies.
Nature of data is a user-oriented dimension which qualifies the
properties of source data from a user point of view. But not all the
combinations of nature of data and freshness factors are
interesting. On the one hand, when data changes very frequently,
there is no interest in measuring timelines, which captures stable
data behavior. On the other hand, there is no sense to evaluate the
currency of long-term and stable data because they are almost
always current as they do not change very often. In the latter case,
the system can assure currency even without explicit evaluation.
The other combinations need evaluation to determine the
freshness level. For them, the development of evaluation tools is
interesting. Table 2 shows the relation, indicating when data
freshness can be assured without evaluation and when it is
interesting to evaluate it () or not ().

Table 2 – Interesting combinations of freshness factors and
nature of data

 Frequently
changing

Long-term
changing

Stable

Timeliness
Currency assured assured

Application type and synchronization policy are system-oriented
dimensions which describe the system relation with data
freshness. Not all the combinations between application types and
synchronization policies are valid. Virtual systems only support
the pull-pull configuration. Materialized systems support the
configurations having an internal repository to store materialized
data. Caching systems support the configurations that pull source
data (synchronous and asynchronous). Table 3 shows the
interrelations between them, indicating the valid combinations.

Table 3 – Valid combinations of application types and
synchronization policies

 pull-
pull

pull/
pull

pull/
push

push/
pull

push/
push

Materialized
Caching
Virtual

The user-oriented and the system-oriented dimensions are
orthogonal. Virtual, caching or materialized systems (with their
valid combinations of synchronization policies) can be built to
query different types of data.
The system-oriented dimensions are also orthogonal to the
freshness factors, because user interest in freshness is independent
to the way the system is implemented. However, the metrics for
the currency factor are related to the system implementation. In
virtual systems the main interest is the response time, so the
currency metric is appropriate. In caching systems all the metrics
have been identified as interesting, as different existent
applications evaluate them [5][17][7]. In materialized systems,
currency and obsolescence have been used [33][9]. Table 4 shows
the co-relation of all the taxonomy dimensions:

Table 4 – Co-relation of all the taxonomy dimensions

Frequently
changing

Long-term
changing

Stable

Virtual

 Pull-pull
Currency Timeliness Timeliness

Caching

 Pull-pull
Pull/pull
Pull/push

Currency
Obsolescence
Freshness-rate

Timeliness Timeliness

Materialized

 Pull/pull
Pull/push
Push/pull
Push/push

Currency
Obsolescence Timeliness Timeliness

The technical problems to solve for each combination are quite
different. For example, enforcing currency in a materialized
system implies developing efficient update propagation
algorithms to deal with consistency problems, while evaluating
timeliness in virtual systems is quite independent on the query
rewriting algorithms and is dominated by source data timeliness.
In section 5 we discuss the freshness evaluation problems.

4. SOME SYSTEMS THAT CONSIDER
FRESHNESS

In this section we analyze several types of systems that evaluate
freshness and we describe the goals and problems that they
present. Table 5 summarizes the proposals in terms of the
taxonomy presented before.

4.1 Data Warehousing Systems
In data warehousing systems, freshness is studied through the
currency factor in the context of view materialization.
The materialization of some views over source databases allows
speeding up OLAP queries and reduces the overload of the
sources. Traditional query optimization algorithms are extended to
take into account the materialized views. In [9], a cost model has
been proposed for analyzing and comparing query plans, which
can access to virtual and materialized data. The cost model strikes
a balance between the query generation and data transmission cost
on the one hand, and the obsolescence cost on the other hand.
Materialization introduces potential inconsistencies with the
sources and warehouse data may become out-of-date [15]. The
notion of consistency means that the DW state reflects an actual
source state at some “recent time” [38]. The view maintenance
problem consists in updating a materialized view in response to
changes arisen at source data. Most of the work concentrates in
assuring DW consistency for different types of views and refresh
strategies. A classification of view maintenance algorithms is
presented in [13]. A key problem in the last years has been the
selection of a set of views to materialize in order to optimize the
query evaluation and/or the maintenance cost, possibly in the
presence of some constraints (commonly storage constraints).
There are several works in this area [16][14][32][37][24][3].
Data freshness is implicitly considered when defining the update
propagation processes. Changes can be notified by active sources
or can be monitored by the system accessing logs, querying the
sources or comparing successive source snapshots [35]. In most
works, the update propagation processes are triggered by sources
when the amount of changes is greater than a threshold or are
executed periodically [18][32][3] (pull/push and pull/pull
policies). In [33], data currency is introduced as a quality factor in
DW design. They propose an algorithm that takes as input the user
expectations for data currency and determines the minimal update
frequencies that allow achieving these values (pull/push policy).

4.2 Mediation Systems
In classical mediation systems, freshness is also studied through
the currency factor. In [18], they formally define the concept of
guaranteed freshness. A view is guaranteed fresh within a time
vector, if it always corresponds to recent states of the source
databases, that is, the difference between actual time and the time
the view was calculated is always lower than the given time
vector. Authors propose the construction of Squirrel mediators,
which combine virtual and materialized data, and formally proof
that they satisfy guaranteed freshness. Squirrel mediators combine
pull-pull and pull/pull policies.
New proposals take into account the timeliness factor. It is used as
a quality metric to compare among sources and to filter the data
returned to the user. In [26], they introduce quality factors in a
mediation system, which include timelines. They study how to
propagate a set of quality factors from several heterogeneous
sources to the mediator. The propagation consists basically of
merge functions that combine actual values of two sources
through a relational operator. They propose a virtual scenario with
pull-pull policy.

Table 5 – Summary of proposals

Works Measurement Nature of data Application type Synchronization policy

Materialization for query processing [9] Obsolescence Frequently changing Virtual,
materialized

Pull-pull, pull/pull

View maintenance [13][18][15][38] Currency Frequently changing Materialized Pull/pull, pull/push

View maintenance policy [33] Currency Not specified Materialized Pull/pull
Selection of views to materialize
[16][14][32][37][24][3]

Currency Frequently changing Materialized Pull/pull, pull/push

Mediation design combining virtual and
materialized approaches [18]

Currency Not specified Virtual,
materialized

Pull-pull, pull/pull

Source selection in virtual mediation
[26]

Timeliness Not specified Virtual Pull-pull

Cache refreshment [5][17][7][23] Currency,
obsolescence,
freshness-rate

Frequently changing
/ Long-term
changing

Caching Pull-pull, pull/pull,
Pull/push

Cache refreshment [22] Freshness-rate Frequently changing Caching,
materialized

Pull-pull, pull/push

Replica refreshment [11] Currency,
obsolescence

Frequently changing Caching Pull-pull, pull/pull

4.3 Caching Systems
In caching systems, data is considered fresh when it is identical to
data in the sources, so freshness is represented by the currency
factor, and measured with the metrics (currency, obsolescence,
freshness-rate).
An important problem is keeping cache data up-to-date.
Traditional cache proposals manage the idea of invalidation. The
system estimates the time-to-live (TTL) of an object as the time
the object is supposed to be up to date, so the cache can store
frequently changing data as well as long-term changing data.
When the TTL has expired the object is invalidated in the cache,
so the next access to the object will be directly read from the
source and the cache will be refreshed (pull-pull and pull/pull
policies). In some contexts the source can send invalidation
information to the cache.
In [7], they study the synchronization policies for cache
refreshment and experimentally verify their behavior. They
measure freshness with two metrics: currency (called age in the
paper) and freshness-rate. In [23], they focus in the fine tuning of
the caching policy of a dynamic content page cache, balancing
response time and invalidation cycles for assuring data currency.
In [5], they propose the use of latency-recency profiles to adapt
caching algorithms to user currency requirements, that is, if users
demand more current data it will be extracted from the remote site
paying communication times, but if currency of cached data is
enough for user needs the user has an immediate response from
the cache.
Newer proposals combine caching and materialization techniques.
In [22], an adaptive algorithm has been proposed to combine view
materialization and caching, balancing performance and data
freshness. They combine a cache with server-side invalidation and
a set of materialized WebViews (html fragments derived from a
database) which are updated following a pull/push policy. As
materialization degrades currency, the proposed algorithm selects

which WebViews to materialize without exceeding a given
currency threshold.

4.4 Replication Systems
In a replication context, data at a slave node is totally fresh if it
has the same value as the same data at the master node, i.e. all the
refresh transactions for that data have been propagated to the slave
node [11]. Freshness is studied by means of the currency factor
for frequently changing data.
A freshness model in a mono-master replication environment that
supports OLTP transactions and OLAP queries has been presented
in [11]. Their goal is determining the minimum set of refresh
transactions needed to guarantee that a node is fresh enough with
respect to the user freshness requirements for a given query. If
data is not fresh enough, some refresh transactions are applied,
then we can consider the mechanism as a cache invalidation
method. The proposal consists in the evaluation of the freshness of
slave nodes and the proposition of a load-balancing algorithm that
takes freshness into account to decide when to refresh a replica.
They follow pull-pull and pull/pull policies.

5. RESEARCH PROBLEMS
With the development of DIS which provide alternative data
sources and alternative answers to user queries, data freshness is
becoming a first class quality dimension whose factors and
metrics are more and more required by end-users.
Although data freshness has been studied in various ways in many
papers, the analysis of the state of the art has shown that many
problems remain unsolved or insufficiently treated. This section
summarizes these problems and mentions, when they exist, the
references which have done significant contributions in each class
of problems.
The freshness evaluation process needs to know about (i) the users
and source profiles, i.e. metadata about users’ expectations and
source properties, and (ii) the cost models used to extract source

data, to maintain cached or materialized data and to evaluate
query answers in different architectural configurations.
The freshness evaluation process can be used at two different
times: (i) at exploitation time to predict or report the data
freshness provided by an existing system or (ii) at design time to
engineer a new system under data freshness constraints.

5.1 Defining Users’ and Source Profiles
Evaluating data freshness implies testing whether user’s
expectations can be satisfied from source data freshness. One of
the first problems is how and where to specify user expectations
and how to define data source properties which impact data
freshness.

5.1.1 Specification of Freshness Expectations
Users have freshness expectations for their applications which
should be formulated according to some freshness factors and
metrics among those we have seen in section 2. The specification
of these factors and metrics pose a number of questions:

 Which language or formalism to use: Alternatives can vary
from the simple specification of <property-value> pair
[5][33][23] associated to each object type, to the definition
of a specialized language if a preference order is introduced
between freshness of different object types.

 At what level freshness expectations should be specified:
We distinguish four levels: (i) for the whole system (for all
users and data sources), (ii) for each data source (for all
users), (iii) for each user or group of users, and (iv) for each
user query. Each level implies different technical problems.
When defining freshness expectations for the whole system
or per source, individual user expectations should be
reconciled. The expectations per user can be specified in a
user quality profile. The definition of accurate profiles that
allow users to understand the different freshness metrics and
to express their expectations is an open problem. A first
approach for introducing freshness in a user profile was
presented in [5]. Query languages such as Preference SQL
[21] can be extended to express freshness expectations in
each user query.

5.1.2 Acquisition of Source Freshness
The evaluation of data freshness at source level implies the
selection of a freshness factor and the definition of metrics and
measurement processes for it. The definition of new factors and
metrics is an interesting area. Most existing works concentrate in
the currency factor, but new types of DIS applications require the
evaluation of other aspects of data freshness such as timeliness.
Furthermore, several surveys have demonstrated the user interest
in the age of data [34][25][31].

 A first question is which source metadata is necessary to
represent freshness in a source profile? In order to
characterize source actual freshness some metadata should
be obtained, for example the source update frequency.

 Another important related question is how to acquire such
metadata from sources? Some sources can provide useful
information as the last update time or the update frequency,
but for other sources these values must be learned or
estimated from statistics elaborated during the data source
exploitation. Existing techniques as comparing successive

snapshots or executing sampling queries can be adapted for
freshness metadata acquisition. Techniques for specific
metadata should be developed as in [8].

5.2 Cost Models
The freshness of the data delivered to the users depends on source
actual freshness but also on the propagation delay from the
sources to the user. Two main costs constitute this delay: the
query evaluation cost and the update propagation cost. Depending
on the taxonomy defined in section 3.4, these costs can be
modeled differently.

5.2.1 Modeling Query Evaluation Cost
Query evaluation cost models for classical and distributed
databases have been studied for a while and are well understood.
Some proposals also model queries to cached or materialized data
[23][1][9] and hybrid systems that combine materialization
techniques in virtual or caching contexts [22][18]. Despite the
existence of several proposals for specific systems, putting such
capabilities to use in complex heterogeneous systems still requires
modeling effort.
Furthermore, existing cost models do not represent the cost of
complex data processing involving ad hoc transformations and
cleaning procedures such as in data warehousing systems. Several
specialized tools, e.g. Ajax [10] and Potter’s Wheel [27], require
user interaction whose cost, although hard to estimate, should also
be integrated.

5.2.2 Modeling the Update Propagation Cost
Several cost models have been proposed to evaluate update
propagation into materialized views [6][37][18]. But as for query
evaluation cost models, the update propagation cost models
should be extended to represent complex workflow contexts with
long transaction or interactive processes.
The challenge is the combination of all relevant parameters in a
unified cost model in order to represent complex and hybrid
architectures. Examples of such architectures are systems that
extract data from heterogeneous sources with different
synchronization policies and constraints. Some existing works
combine several synchronization strategies [29][33] and temporal
storage [22], but the land of hybrid systems is almost unexplored.

5.3 Auditing Freshness of Existing Systems
Having users and source profiles and having cost models, one of
the challenging problems is to provide support tools to evaluate
data freshness. Among the tools we distinguish those only
concerned by the evaluation of data freshness (called quality
auditing tools) and those concerned by the design of a system
under freshness constraints (called quality-driven engineering
tools). This section deals with the former ones while the next
section deals with the latter ones.
Several kinds of auditing tools can be conceived, for example:

 Prediction tools, for predicting the freshness of data that can
be returned in response to a query, without executing the
query.

 Integrated evaluation tools, for measuring data freshness
during query execution and labeling delivered data with its
freshness levels. These tools can be integrated to the query
evaluation process.

 Statistical tools, for taking samples of data freshness during

query execution and storing statistics. These tools can serve
the first two categories.

The tools should use the query execution cost model and metadata
describing the sources, the integration system and user
expectations. They can be used at design time to evaluate the
system, for example to test if user expectations can be achieved,
or they can be used at run time for example, to predict the
freshness of the data delivered by alternative processes in order to
choose the process that best suites the user freshness expectations.
Auditing techniques should answer to the following questions:
How should the different parameters of the source profile be
combined in order to evaluate freshness? What is the impact of
update propagation cost and query cost in the freshness of data?
An additional question is how to combine several source actual
values to obtain a global freshness estimation. There are proposals
for combining currency values within a materialized system
periodically refreshed [18][33] and for combining timeliness
values within a virtual system [26]. But there are stills many
combinations of freshness factors and types of systems for which
there are no proposals. In particular, the combination of freshness
values in hybrids systems, that manage data of different nature,
different types of storage and synchronization policies is an open
problem.

5.4 Quality-driven Engineering
Quality-driven engineering tools support the design of a DIS
under freshness constraints. These tools may help in the selection
among several design choices:

 Selection between alternative query plans that access
alternative data sources.

 Specific optimization techniques as indexing and
materialization.

 Optimization of extraction and transformation algorithms.
Although several kinds of techniques have been explored in depth
for specific systems, adapting their capabilities to heterogeneous
systems requires addressing additional problems, as the
combination of source data with different freshness values, or
even the comparison of data source profiles.
Obviously, quality-driven engineering tools are based on quality
auditing tools, but the use of the latter ones may differ from
evaluating an existing system and evaluating design alternatives.
The challenge in quality-driven engineering is in the identification
of the variables that influence freshness and the proposition of
techniques to achieve such improvements. There is a few work
done in this line, mostly concerning the study of synchronization
policies [7][23][29] or performance [22].

5.5 Link With Other Quality Factors
As improving freshness is not the unique quality goal for a given
system, the relationship with other quality properties becomes a
major challenge in information system design.
Research described in [26] has introduced quality factors to drive
the design of virtual mediation systems. But quality factors are
treated independently and only combined by means of a weighted
sum.
The relationship between freshness and other quality properties
has been only partially studied.There are two main lines: (i) tuning

other properties in order to optimize freshness, and (ii) relaxing
freshness in order to optimize other quality factors. In the former,
the challenge is in the identification of related quality properties
and the proposition of techniques that take advantages from these
relationships in order to improve the global quality of data.
Existing works in this line mainly concern the balance of
freshness and performance [22][29][23]. In the latter, the expected
freshness level is taken as a constraint. The main interest of
existing works is performance or maintenance cost improvement
[5][11][33] but the relation with other quality factors is still
unexplored.

6. CONCLUSION
Data freshness represents a family of quality factors and metrics.
In this paper we have analyzed these factors and metrics and the
features that influence the data freshness evaluation, namely the
type of application, the synchronization policy and the nature of
data.
The analysis of existing works in terms of a taxonomy suggested
open problems in the specification of user expectations, the
acquisition of source freshness measures and the formulation of
cost models for the query evaluation and update propagation
processes of heterogeneous systems. This knowledge can be used
both for developing auditing tools that estimate the freshness of an
existing system and for designing a system driven by freshness
expectations.
Data freshness is a first class quality dimension which is more and
more required by end-users. Solving the problems listed in this
paper opens a door to consider data production as any other item
production.

7. REFERENCES
[1] Abiteboul, S.; Duschka, O.: “Complexity of answering

queries using materialized views”. In Proc. of the 1998 ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’98), USA, 1998.

[2] Ballow, D.; Wang, R.; Pazer, H.; Tayi, G.: “Modelling
Information Manufacturing Systems to Determine
Information Product Quality”. Management Science, Vol. 44
(4), April 1998.

[3] Baralis, E.; Paraboschi, S.; Teniente, E.: “Materialized view
selection in a multidimensional database”. In Proc. of the
23rd Int. Conf. on Very Large Data Bases (VLDB’97),
Greece, 1997.

[4] Bouzeghoub, M.; Fabret, F.; Matulovic-Broqué, M.:
“Modeling Data Warehouse Refreshment Process as a
Workflow Application”. In Proc. of the Int. Workshop on
Design and Management of Data Warehouses (DMDW’99),
Germany, 1999.

[5] Bright, L.; Raschid, L.: "Using Latency-Recency Profiles for
Data Delivery on the Web". In Proc. of the 28th Int. Conf. on
Very Large Databases (VLDB'02), China, 2002.

[6] Chirkova, R.; Halevy, A.; Suciu, D.: "A formal perspective
on the view selection problem". In Proc. of 27th Int. Conf. on
Very Large Databases (VLDB'01), Italy, 2001.

[7] Cho, J.; Garcia-Molina, H.: "Synchronizing a database to
improve freshness". In Proc. of the 2000 ACM Int. Conf. on
Management of Data (SIGMOD'00), USA, 2000.

[8] Cho, J.; Garcia-Molina, H.: "Estimating frequency of

change”. ACM Trans. on Internet Technology (TOIT), Vol.
3 (3): 256-290, 2003.

[9] Gal, A.: "Obsolescent materialized views in query processing
of enterprise information systems". In Proc. of the 1999
ACM Int. Conf. on Information and Knowledge Management
(CIKM'99), USA, 1999.

[10] Galardas, H.; Florescu, D.; Shasha, D.: Simon, E.: “AJAX:
An Extensible Data Cleaning Tool”. In Proc. of the 2000
ACM Int. Conf. on Management of Data (SIGMOD'00),
USA, 2000.

[11] Gancarski, S.; Le Pape, C.; Valduriez, P.: "Relaxing
Freshness to Improve Load Balancing in a Cluster of
Autonomous Replicated Databases". In Proc. of the 5th
Workshop on Distributed Data and Structures (WDAS),
Greece, 2003.

[12] Gertz, M.; Tamer Ozsu, M.; Saake, G.; Sattler, K.: “Report
on the Dagstuhl Seminar: Data Quality on the Web”.
SIGMOD Record Vol. 33(1), March 2004.

[13] Gupta, A.; Mumick, I.: “Maintenance of Materialized Views:
Problems, Techniques, and Applications”. Data Engineering
Bulletin, Vol. 18 (2): 3-18, June 1995.

[14] Gupta, H.: “Selection of Views to Materialize in a Data
Warehouse”. In Proc. of the 6th Int. Conf. on Database
Theory (ICDT’97), Greece, 1997.

[15] Hammer, J.; Garcia-Molina, H.; Widom, J.; Labio, W.;
Zhuge, Y.: “The Stanford Data Warehousing Project“. IEEE
Data Engineering Bulletin, Vol. 18 (2): 41-48, June 1995.

[16] Harinarayan, V.; Rajaraman, A.; Ullman, J.: “Implementing
Data Cubes Efficiently”. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’96), Canada, 1996.

[17] Huang, Y.; Sloan, R.; Wolfson, O.: "Divergence caching in
client-server architectures". In Proc. of the 3rd Int. Conf. on
Parallel and Distributed Information Systems (PDIS 94),
USA, 1994.

[18] Hull, R.; Zhou, G.: "A Framework for Supporting Data
Integration Using the Materialized and Virtual Approaches".
In Proc. of the 1996 ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD'96), Canada, 1996.

[19] Inmon, W.: “Building the Data Warehouse”. John Wiley &
Sons Inc., 1996.

[20] Jarke, M.; Jeusfeld, M.; Quix, C.; Vassiliadis, P.:
“Architecture and Quality in Data Warehouses: An Extended
Repository Approach”. Info Systems, Vol. 24(3): 229-253,
1999.

[21] Kieβling, W.; Kôstler, G.: “Preference SQL - Design,
Implementation, Experiences”. In Proc. of the 28th Int. Conf.
on Very Large Databases (VLDB'02), China, 2002.

[22] Labrinidis, A.; Roussopoulos, N.: “Balancing Performance
and Data Freshness in Web Database Servers”. In Proc. of
the 29th Int. Conf. on Very Large Data Bases (VLDB’03),
Germany, 2003.

[23] Li, W.S.; Po, O.; Hsiung, W.P.; Selçuk Candan, K.; Agrawal,
D.: “Freshness-driven adaptive caching for dynamic content
Web sites”. Data & Knowledge Engineering (DKE), Vol.
47(2):269-296, 2003.

[24] Ligoudistianos, S.; Sellis, T.; Theodoratos, D.; Vassiliou, Y.:
“Heuristic Algorithms for Designing a Data Warehouse with
SPJ Views”. In Proc. of 1st Int. Conf. on Data Warehousing
and Knowledge Discovery (DaWaK ’99), Italy, 1999.

[25] Mannino, M.; Walter, Z.: “A Framework for Data
Warehouse Refresh Policies”. Technical report CSIS-2004-
001, University of Colorado at Denver, 2004.

[26] Naumann, F.; Leser, U.: "Quality-driven Integration of
Heterogeneous Information Systems". In Proc. of the 25th Int.
Conf. on Very Large Databases (VLDB'99), Scotland, 1999.

[27] Raman, V.; Hellerstein, J.: “Potter's Wheel: An Interactive
Data Cleaning System”. In Proc. of the 27th Int. Conf. on
Very Large Data Bases (VLDB’01), Italy, 2001.

[28] Redman, T.: “Data Quality for the Information Age”. Artech
House, 1996.

[29] Segev, A.; Weiping, F.: “Currency-Based Updates to
Distributed Materialized Views”. In Proc. of the 6th Int. Conf.
on Data Engineering (ICDE’90), USA, 1990.

[30] Sheth, A.; Larson, J.: “Federated Database Systems for
Managing Distributed, Heterogeneous and Autonomous
Databases”. ACM Computing Surveys, Vol. 22(3): 186-236,
September 1990.

[31] Shin, B.: “An exploratory Investigation of System Success
Factors in Data Warehousing”. Journal of the Association
for Information Systems, Vol. 4(2003): 141-170, 2003.

[32] Theodoratos, D.; Sellis, T.: "Data Warehouse
Configuration". In Proc. of the 23rd Int. Conf. on Very Large
DataBases (VLDB’1997), Greece, 1997.

[33] Theodoratos, D.; Bouzeghoub, M.: "Data Currency Quality
Factors in Data Warehouse Design". In Proc. of the Int.
Workshop on Design and Management of Data Warehouses
(DMDW'99), Germany, 1999.

[34] Wang, R.; Strong, D.: "Beyond accuracy: What data quality
means to data consumers". Journal on Management of
Information Systems, Vol. 12 (4):5-34, 1996.

[35] Widom, J.: “Research Problems in Data Warehousing”. In
Proc. of the 4th Int. Conf. on Information and Knowledge
Management (CIKM’95), USA, 1995.

[36] Wiederhold, G.: “Mediators in the architecture of future
information systems”. IEEE Computer, Vol. 25(3):38-49,
1992.

[37] Yang, J.; Karlapalem, K.; Li, Q.: “Algorithms for
materialized view design in data warehousing environment”.
In Proc. of the 23rd Int. Conf. on Very Large DataBases
(VLDB’1997), Greece, 1997.

[38] Zhuge, Y.; Garcia-Molina, H.; Wiener, J.: “Multiple View
Consistency for Data Warehousing”. In Proc. of the 13th Int.
Conf. on Data Engineering (ICDE'97), UK,1997.

	INTRODUCTION
	DATA FRESHNESS
	Definitions
	Freshness Measurement

	DIMENSIONS FOR FRESHNESS ANALYSIS
	Nature of Data
	Application Types
	Synchronization Policies
	A Taxonomy of Freshness Works

	SOME SYSTEMS THAT CONSIDER FRESHNESS
	Data Warehousing Systems
	Mediation Systems
	Caching Systems
	Replication Systems

	RESEARCH PROBLEMS
	Defining Users’ and Source Profiles
	Specification of Freshness Expectations
	Acquisition of Source Freshness

	Cost Models
	Modeling Query Evaluation Cost
	Modeling the Update Propagation Cost

	Auditing Freshness of Existing Systems
	Quality-driven Engineering
	Link With Other Quality Factors

	CONCLUSION
	REFERENCES

