
An idealized model of virtualization with stealth memory:
complete action semantics and non-interference

Gilles Barthe1, Gustavo Betarte2, Juan Diego Campo2, and Carlos Luna2

1 IMDEA Software Institute, Spain
2 InCo, Facultad de Ingenieŕıa, Universidad de la República, Uruguay

Abstract. We present the complete formal semantics of an idealized model of virtualization which
incorporates management of stealth memory (StealthCert). The paper provides a detailed account of
the basic components of the idealized model focusing on the memory model and the notion of state that
has been formalized as well as a formal axiomatic and executable semantics of an idealized hypervisor.
An isolation theorem for StealthCert is discussed and a sketch of its proof, which has been developed
using Coq, presented.

1 States

In this section we give an overview of the state of the idealized virtualization model, which includes the
main memory of the platform, various kinds of memory spaces, and the cache and TLB. The most important
component of the state is the memory model, which we proceed to describe.

In Figure 1 we show a high level diagram of the memory model, which involves three types of addressing
modes and two address mappings.

OS hypervisor
mapping

va1

va2

ma1

ma2

.

.

.

.

.

.

TLB AOS current
PT page
mapping

OS
Current Virtual

Memory

stealth_va

Cache

AOS
RW

OS3
RW

OS6
RW

OS2
RW

OS3
RW

OS2
RW

OS1
RW

OS3
RW

OS2
RW

OS1
RW

Machine
Memory

OS1
RW

OS3
RW

OS1
RW

OS1
RW

OS1
RW

OS2
RW

OS2
RW

Hyp

Hyp

OS4
PT

OS3
RW

OS1
RW

OS2
RW

OS2
RW

OS1
PT

Hyp

OS3
PT

OS Physical
Memory

...

Normal Page Stealth Page

Fig. 1. Memory model of the platform

The machine memory is the real machine memory. A mechanism of page classification was introduced in
order to cover concepts from virtualization platforms, in particular Xen [1]. The model considers that each

Va,Pa,Ma virtual, physical and machine address
OSId OS identifier
HC ::= new | del | lswitch| pin | unpin | none hyper calls
OSData ::= Pa× HC OS data
GuestOSs ::= OSId→ OSData guest OSs
OSActivity := running | waiting exec modes
ActiveOS ::= OSId× OSActivity active OS
PageContent := RW (Value) | PT (Va→ Ma) | none page content
PageOwner := Hyp | OS(OSId) | none page owner
Page := PageContent× PageOwner × Bool memory page
Memory ::= Ma→ Page memory map
HyperMap ::= OSId→ Pa→ Ma hypervisor map
CacheData := Va×Ma 7→ Page cache data
CacheIndex := Va→ Index cache index
CacheHistory := Index→ Hist cache history
Cache ::= CacheData× CacheIndex× CacheHistory VIPT cache
TLB ::= Va 7→ Ma TLB

SLST ::= GuestOSs× ActiveOS× HyperMap×Memory × Cache× TLB Stealth state

Fig. 2. Formal definition of the state

machine address that appears in a memory mapping corresponds to a memory page. Each page has at most
one unique owner, a particular OS or the hypervisor, and is classified either as a data page with read/write
access or as a page table, where the mappings between virtual and machine addresses reside. It is required
to register (and classify) a page before being able to use or map it. The machine addresses (written madd)
model real hardware memory on the host machine and are never directly accessed by the guest operating
systems. In usual architectures with paging the addresses are composed of two parts: a page identifier and
an offset inside the page. We will make an abstraction on this behaviour, not distinguishing between accesses
at different offsets inside the page. All machine addresses will therefore refer to a different page, and we
will only record the access to the memory page, not the specific data inside it. This gives us a good level of
abstraction to reason about memory accesses, while still capturing the behaviour of actual implementations.

The physical memory is the one addressed by the kernel of the guest OS. In the Xen platform this is the
type of addresses that the hypervisor exposes to the domains (the guest OSs in our model). The physical
addresses (whose type is written padd) are provided by the hypervisor, in order for the guest operating
systems to use a contiguous memory space when dealing with its memory pages. The mapping between
physical and machine addresses is managed exclusively by the hypervisor, and it is transparent to the guest
operating systems.

The virtual addresses are used by applications running on guest operating systems. The hypervisor main-
tains page tables that map virtual addresses to machine addresses in special memory pages. The operating
systems must call the hypervisor to modify these mappings. Moreover, each OS has a designated portion
of its virtual address space that is reserved for the hypervisor to attend hypercalls. We say that a virtual
address va is accessible by the OS (os accessible(va)) if it belongs to the virtual address space of the OS
which is not reserved for the hypervisor. We denote the type of virtual addresses by vadd.

In Figure 2 we give the formalization of the platform state, which consists of a collection of components
that we now proceed to describe.

Operating systems We define a type os ident of identifiers for guest operating systems. The state contains
information about each guest OS current page table, which is a physical address, and information on whether
it has a hypercall pending to be resolved. A hypercall is a privileged functionality exported by the hypervisor
to the guest OSs.

2

Formally the information is captured by a mapping oss that associates OS identifiers with objects of type
os data.

Active OS and execution modes One of the operating systems is active at any given time (active os).
For this OS, in addition to its identifier, we register whether it is currently running or waiting for a hypercall
to be resolved. Active OS execution mode is formalized by the typeos activity.

Most hardware architectures distinguish at least two execution modes, namely user mode (usr) and
supervisor mode (svc). These modes are used as a protection mechanism, where privileged instructions are
only allowed to be executed in supervisor mode. In our model, (untrusted) guest OSs execute in user mode
while the hypervisor execute in supervisor mode. When an untrusted OS needs to execute a privileged
operation, it requests the hypervisor to do it on its behalf. After requesting the hypervisor to execute some
service, the active guest OS will turn to processor execution mode waiting until the service is completed and
the execution control returned, switching then its execution mode to running.

Mappings The mapping that associates, for each OS, machine addresses to physical ones is, in our model,
managed by the hypervisor. This mapping, which is formalized as the component hypervisor of the state,
might be treated differently by each specific virtualization platform. There are platforms in which this
mapping is public and the OS is allowed to use machine addresses. The physical-to-machine address mapping
is modified by the actions page pin and page unpin, as shall be described in Section 2.

The memory is formalized as a mapping from machine addresses to pages. A memory page consists of
a page content and a page metadata. The content is either a readable/writable value, an OS page table (a
mapping from virtual to machine addresses), or nothing. Each OS has an associated collection of page tables
(one for each application executing on the OS) that map virtual addresses into machine addresses. When
executed, the applications use virtual addresses, therefore on context switch the current page table of the
OS must change so that the currently executing application may be able to refer to its own address space.
Neither applications nor guest OSs have permission to read or write page tables, because these actions can
only be performed in supervisor mode. Every memory address accessed by an OS needs to be associated to
a virtual address. The model must guarantee the correctness of those mappings, namely, that every machine
address mapped in a page table of an OS is owned by it. We consider an abstract type of values equipped
with an equality relation, and we assume given a distinguished value ⊥ when the value is undefined. In
particular we abstract away implementation details such as encoding, size, etc.

The metadata contains a reference to the page owner (the hypervisor, an OS, or none) and a flag indicating
whether the page can be cached or not.

Cache The figure also shows the cache, which is accessed by a pair of virtual and machine addresses
(modeling a VIPT cache) and holds a subset of the memory pages. The size of the cache is bounded by a
positive fixed constant Kc.

We also model historic access information as an abstract component of the cache. This is used by the
replacement policy to decide the entry to be evicted from the cache.

In VIPT caches indices of the cache are derived from the virtual addresses, but each entry is tagged
with the machine address. This avoids the need of flushing the cache on every context switch, and therefore
requires less software management.

The cache can be seen as a collection of data blocks or cache lines (which are pages in our model) that
are accessed by cache indices. There is a mapping va2index from virtual addresses to cache indices. Since
caches are usually set associative, there are many virtual addresses that map to the same index. All data
that is accessed using the same index is called a cache line set. As defined in [2] we assume that the inertia
property holds for the cache. This property states that after adding an entry to the cache in a virtual address
va and replacing some entry, the evicted address is in the same cache line set as va.

We select one cache index and one particular virtual address (stealth va) in its cache line set for stealth
use. All other virtual addresses in that cache line set are reserved and cannot be used either by the guest

3

operating systems or the hypervisor. Note that the use of only one stealth page is usually not an important
restriction, given the intended usage of the stealth memory mechanism: the amount of information that is
usually stored in stealth pages is small. Furthermore, it is relatively straightforward to extend the definitions
to use a set of stealth addresses.

TLB The TLB is used in conjunction with the current page table of the active OS to speed up translation
of virtual to machine addresses. The TLB is flushed on context switch and updates are done simultaneously
in the page table, so its management is simpler than the cache. Therefore we do not record the TLB access
history, as it is not necessary to write back evicted TLB entries. The size of the TLB is bounded by a positive
fixed constant Kt.

1.1 Access functions

We use some helper functions to manipulate the components of the state. There is, for example, a function
cache add that is used to add entries in the cache. It returns the new cache and an optional entry selected
for replacement. The function cache add is parameterized by an abstract replacement policy that determines
which elements are evicted from a full cache, and guarantees that the inertia property, as defined in [2],
holds for the cache: when adding an entry to the cache in a virtual address va, if an eviction occurs, the
evicted address is in the same cache line set as va.

1.2 Valid state

We define a notion of valid state that captures essential properties of the platform. Formally, the predicate
valid state holds on state s if s satisfies the following properties:

1. if the active OS is in running mode then no hypercall requested by it is pending;

2. if the hypervisor is running, the processor must be in supervisor mode, and if an OS is running, the
processor must be in user mode;

3. the hypervisor maps an OS physical address to a machine address owned by that same OS. This mapping
is also injective;

4. all page tables of an OS o map accessible virtual addresses to pages owned by o and not accessible ones
to pages owned by the hypervisor;

5. the current page table of any OS is owned by that OS;

6. any machine address ma which is associated to a virtual address in a page table has a corresponding
pre-image, which is a physical address, in the hypervisor mapping;

7. memory pages from different virtual addresses mapped to the same machine address (synonym problem)
are marked as non-cacheables;

8. all cache keys are related in a page table mapping of the memory;

9. all cache pages have the same owner and type (readable/writable) than those in machine memory;

10. if va is translated into ma according to the TLB, then the machine address ma is associated to va in
the active memory mapping;

11. the current stealth page of the active OS (which is a readable/writable page) is always cached;

12. if an entry is cached in the stealth page line (which is unique), it must be the stealth page of the active
OS.

All properties have a straightforward interpretation in our model. Valid states are invariant under exe-
cution, as shall be shown later.

4

2 Action Semantics

The operational semantics of the platform is modelled as a labelled transition system:

s ↪
a−→ s′

where s, s′ range over StealthCert states and a ranges over actions. Informally, such a transition indicates
that the execution of the action a in an initial state s leads to a new state s′.

Actions can be classified as follows: i) access, from an OS or the hypervisor, to memory pages (read,
read hyper, write and write hyper); ii) update of page tables by the hypervisor on demand of an OS (new,
new sm and del); iii) context switches, or change of the active OS or the current page table of an OS by the
hypervisor (switch and lswitch); iv) hypervisor call (hcall); v) changes of the execution mode (chmod and
ret ctrl); and vi) changes in the hypervisor memory mapping, which are performed by the hypervisor on
demand of an OS (pin and unpin); vii) a silent action (silent), that models behaviour that does not affect
the state.

Actions performed by a guest operating system can be classified as stealth or non-stealth, depending on
the type of virtual addresses they access. The set of stealth actions include memory accesses to the stealth
page (reads and writes), and memory allocation (with the new sm action) or de-allocation of pages that are
pointed by stealth va. All other actions are considered non-stealth.

We define the effect of actions to classify the observations that can be drawn from an action execution.
Stealth action have no effect, and non stealth actions have as effect the same action, except for the write,
which only has as the effect parameter the virtual address and not the value. Note that two actions have the
same effect if and only if, the actions are either two arbitrary stealth actions, the same non strealth action,
or two writes to the same address but with arbitrary values. In section 3.3 this notion of effects is used to
express the isolation property.

Figure 3 presents the platform actions and indicates their effect.

In what follows the semantics of actions shall be presented using the following layout:

Action name args

Informal description of the action behavior

Rule

Formal description of the behavior using natural semantics.

Precondition

Informal description of the conditions that must be satisfied for a correct execution of the action.

Postcondition

Informal description of the effect of the action execution

Notes

Remarks concerning the action

2.1 Memory accesses

Action read va

Guest OS reads the data in va

Rule

5

Action Informal description Effect

read va Guest OS reads virtual address va ∅ if va is Stealth
read va otherwise

read hyper va The hypervisor reads virtual address va ∅ if va is Stealth
read hyper va otherwise

write va val Guest OS writes value val in va ∅ if va is Stealth
write va otherwise

write hyper va val The hypervisor writes value val in va ∅ if va is Stealth
write va otherwise

new va pa Hypervisor extends the non stealth memory of the active OS new va pa
with va 7→ ma

new sm stealth va pa Hypervisor extends the stealth memory of the active OS with ∅
stealth va 7→ ma

del va Hypervisor deletes mapping for va from the current memory ∅ if va is Stealth
mapping of the active OS del va otherwise

switch o Hypervisor sets o to be the active OS switch o

lswitch pa Hypervisor changes the current memory mapping of the lswitch pa
active OS to be pa

hcall hc An OS requires privileged service hc to be executed by the hcall hc
hypervisor

ret ctrl Returns the execution control to the hypervisor ret ctrl

chmod The hypervisor gives the execution control to the active OS chmod

page pin pa t The memory page that corresponds to pa is registered and page pin pa t
classified with type t for the active OS

page unpin pa The memory page of the active OS that corresponds to pa is page unpin pa
un-registered

silent Represents the silent action (no effects on the system) silent

Fig. 3. Actions and their effects

6

aos act = (aos, running) os accessible(va)
get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)

cache add(cache, va,ma, pg) = (cache′, (ma′, pg′))
mem[ma′ := pg′][ma := pg] = mem′ tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
read va−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

aos act = (aos, running) os accessible(va)
get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)

cache add(cache, va,ma, pg) = (cache′,⊥) tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
read va−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

Precondition

The action read va requires that the active OS aos is running, that va is accessible by aos, and that the
current page table of aos maps the virtual address va to a machine address ma and a page pg. Moreover,
pg is readable/writable.

Postcondition

After the execution of the action, the cache is updated with the entry associated to the pair (va,ma). The
TLB is updated with the pair (va,ma).

If an entry is evicted from the cache (first rule), then this entry is written to the corresponding address in
the new memory. Otherwise (second rule), the memory does not change.

Action read hyper va

The hypervisor reads virtual address va

Rule

aos act = (aos, waiting) get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)
cache add(cache, va,ma, pg) = (cache′, (ma′, pg′))

mem[ma′ := pg′][ma := pg] = mem′ tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
read hyper va
−−−−−−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

aos act = (aos, waiting) get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)
cache add(cache, va,ma, pg) = (cache′,⊥) tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
read hyper va
−−−−−−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

Precondition

The action read hyper va requires that the active OS aos is in waiting mode (or equivalently, that the
hypervisor is running). The current page table of the active OS aos maps the virtual address va to a
machine address ma and a page pg. Moreover, pg is readable/writable.

Postcondition

After the execution of the action, the cache is updated with the entry associated to the pair (va,ma). The
TLB is updated with the pair (va,ma). If an entry is evicted from the cache (first rule), then this entry is
written to the corresponding address in the new memory. Otherwise (second rule), the memory does not
change.

Action write va val

Guest OS writes value val in va

7

Rule

aos act = (aos, running) get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)
cache add(cache, va,ma, (RW val,OS aos, b)) = (cache′, (ma′, pg′))

mem[ma′ := pg′][ma := (RW val,OS aos, b)]pol = mem′ tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
write va val−−−−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

aos act = (aos, running) get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)
cache add(cache, va,ma, (RW val,OS aos, b)) = (cache′,⊥)

mem[ma := (RW val,OS aos, b)]]pol = mem′ tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
write va val−−−−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

Precondition

The action write va val requires that the active OS aos is running. Furthermore, the virtual address va is
mapped to a machine address ma and a readable/writable page pg in the current page table of the active
OS (get page mem).

Postcondition

There are two rules for the write action, one in which an entry is evicted from the cache when the written
page is added, and the other in which no entry is evicted. In both cases the resulting state differs in the
value val of the page associated to the pair (va,ma) in the cache cache, and in the TLB tlb. If cache add
returns an entry (ma′, pg′) that was evicted from the cache, the memory in ma′ is updated with pg′. The
final value in memory of the page in ma is dependent on the write policy in use (mem[ma := page]pol
updates the page in ma with page in write-through policies, and it leaves it unchanged in write-back
ones).

Action write hyper va val

The hypervisor writes value val in va

Rule

aos act = (aos, waiting) get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)
cache add(cache, va,ma, (RW val,OS aos, b)) = (cache′, (ma′, pg′))

mem[ma′ := pg′][ma := (RW val,OS aos, b)]pol = mem′ tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
write hyper va val
−−−−−−−−−−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

aos act = (aos, waiting) get page mem(s, va) = (ma, pg) pg = (RW ,OS aos, b)
cache add(cache, va,ma, (RW val,OS aos, b)) = (cache′,⊥)

mem[ma := (RW val,OS aos, b)]]pol = mem′ tlb[va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
write hyper va val
−−−−−−−−−−−−−−−→ (oss, aos act, hyp,mem′, cache′, tlb′)

Precondition

The action write hyper va val requires that the hypervisor is running. Furthermore, the virtual address
va is mapped to a machine address ma and a readable/writable page pg in the current page table of the
active OS (get page mem).

Postcondition

The postcondition of this action is the same as the postcondition of the write action.

8

2.2 Page table updates

Action new va pa

Hypervisor extends the non stealth memory of the activew OS with va 7→ ma

Rule

aos act = (aos, waiting) os accessible(va) oss[aos] = (pa′, New va pa)
get page hyp(s, aos, pa) = (ma, pg) non stealth cache line(va)

¬memory alias(mem, va,ma)
get page hyp(s, aos, pa′) = (ma′, cpt) cpt[va := ma] = cpt′

oss[aos := (pa′, None)] = oss′ mem[ma′ := cpt′] = mem′

remove cache va(cache, cpt, va) = cache′ tlb[va := ⊥] = tlb′

(oss, aos act, hyp,mem, cache, tlb) ↪
new va pa−−−−−−−→ (oss′, aos act, hyp,mem′, cache′, tlb′)

aos act = (aos, waiting) os accessible(va) oss[aos] = (pa′, New va pa)
get page hyp(s, aos, pa) = (ma, pg) non stealth cache line(va)

memory alias(mem, va,ma)
get page hyp(s, aos, pa′) = (ma′, cpt) cpt[va := ma] = cpt′

oss[aos := (pa′, None)] = oss′

pg = (t, o, b) mem[ma := (t, o, false)][ma′ := cpt′] = mem′

remove cache va(cache, cpt, va) = cache′ remove cache ma cache′ ma = cache′′

tlb[va := ⊥] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
new va pa−−−−−−−→ (oss′, aos act, hyp,mem′, cache′′, tlb′)

Precondition

The action new va pa requires that the hypervisor is running, that va is accessible by the active OS, and
that aos has a pending new hypercall. Furthermore, pa should be mapped to some machine address ma
and page pg.

Postcondition

In the state after the execution the current page table cpt is updated with the mapping of va to ma. If va
appeared mapped to to some machine address in the current page table, this entry is removed from the
cache by the remove new va function, and the old cached page value is written to memory.

If the new address is an alias, in addition to the above, the cache entry with ma as its address is removed
from the cache (and written to memory). Additionally, the page in ma is marked as non cacheable.

Furthermore, the mapping of va to ma is removed from the TLB.

Notes

In order to achieve non-leakage of stealth data, it is necessary that accesses to the stealth va do not replace
any entry in the cache. The hypervisor ensures that this is the case by enforcing the exclusion property:
it only allows operating systems to allocate virtual addresses that are not in the same cache line set as
stealth va.

Action new sm stealth va pa

Hypervisor extends the stealth memory of the active OS with stealth va 7→ ma

Rule

9

aos act = (aos, waiting) oss[aos] = (pa′, New stealth va pa)
get page hyp(s, aos, pa) = (ma, pg) pg = (RW ,OS aos, true)

¬memory alias(mem, stealth va,ma) get page hyp(s, aos, pa′) = (ma′, cpt) cpt[stealth va] = ⊥
oss[aos := (pa′, None)] = oss′ cpt[stealth va := ma] = cpt′ mem[ma′ := cpt′] = mem′

cache add(cache, stealth va,ma, pg) = (cache′,) tlb[stealth va := ma] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
new sm stealth va pa−−−−−−−−−−−−−−−→ (oss′, aos act, hyp,mem′, cache′, tlb′)

Precondition

The action new sm stealth va pa requires that the active OS aos is waiting for the hypervisor to extend
its current page table cpt with stealth va. The physical address pa maps to the machine address ma and
page pg in the hypervisor mapping of aos (get page hyp). This page pg must be readable/writable and
cacheable. Also, no page table can map a virtual address to ma (no memory alias), and stealth va is not
mapped in cpt. This is needed in order to guarantee that the stealth page pg in ma is always cached and
that no aliased pages are cached.

Postcondition

In the resulting state, the pending hypercall of aos is removed. The current page table cpt and tlb are
updated with the mapping of stealth va to ma. Furthermore, the new stealth page is immediately stored
in cache.

Notes

The allocation of stealth pages requires that the new stealth va is not aliased, in order to ensure that it
is cacheable.

Action del va

Hypervisor deletes mapping for va from the current memory mapping of the active OS

Rule

aos act = (aos, waiting) os accessible(va) oss[aos] = (pa′, Del va)
get page hyp(s, aos, pa′) = (ma′, cpt)

oss[aos := (pa′, None)] = oss′ cpt[va := ⊥] = cpt′ mem[ma′ := cpt′] = mem′

remove cache va(cache, cpt, va) = cache′ tlb[va := ⊥] = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
del va−−−−−→ (oss′, aos act, hyp,mem′, cache′, tlb′)

Precondition

The action del va requires that the hypervisor is running, that va is accessible by the active OS aos, and
that aos has a pending del hypercall. Furthermore, va should be mapped to some machine address ma in
the current page table of the active OS.

Postcondition

In the resulting state, the current page table cpt of aos is updated by deleting the mapping of va to ma.
Additionally, if there exists a page in the cache for va in the current page table of aos, it is eliminated.
Similarly, the mapping of va to ma is removed from the TLB.

Notes

The semantics of the del action is the same if the deleted virtual address is stealth or not. In both cases,
the entry is removed from the cache and the mapping from the current page table of the operating system.

10

2.3 Context switches

Action switch o

Hypervisor sets o to be the active OS

Rule

aos act = (aos, waiting) oss[o] = (pa,None) get page hyp(s, o, pa) = (, cpt)
(o, waiting) = aos act′ stealth save(mem, cache) = mem′

stealth add(stealth drop(cache),mem, o, cpt) = cache′ tlb flush(tlb) = tlb′

(oss, aos act, hyp,mem, cache, tlb) ↪
switch o−−−−−−−→ (oss, aos act′, hyp,mem′, cache′, tlb′)

Precondition

The context switch o action requires that the hypervisor is running, and that there is no hypercall pending
for the OS o.

Postcondition

In the resulting state, o is the new active OS, its stealth pages, if any, are cached after saving the stealth
cache pages into (stealth) memory, and the TLB tlb is (fully) flushed–the effect of tlb flush is to return
an empty TLB.

Notes

The semantics of this action reflects a distinguishing characteristic of VIPT caches, i.e. the cache is not
flushed on context switches. As a consequence, the execution of one process of an OS may result in the
eviction from the cache of the entries belonging to another concurrent OS; this behaviour can be exploited
by an attacker to gain information on the execution of a victim OS. The fact that the stealth page of the
active OS is always cached is what guarantees that these attacks cannot be performed on stealth pages.

Action lswitch pa

Hypervisor changes the current memory mapping of the active OS to be pa

Rule

aos act = (aos, waiting) oss[aos] = (pa′, LSwitch pa)
get page hyp(s, aos, pa) = (ma, pg) pg = (PT ,OS aos,) get page hyp(s, aos, pa′) = (, cpt)

oss[aos := (pa,None)] = oss′ stealth save(mem, cache) = mem′

stealth add(stealth drop(cache),mem, aos, cpt) = cache′ tlb flush(tlb) = tlb′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
lswitch pa−−−−−−−−−→ (oss′, aos act, hyp,mem′, cache′, tlb′)

Precondition

The action lswitch pa requires that the hypervisor is running, and that the active OS must be waiting for
an hypercall to change its current memory mapping to be pa. Additionally, there exists a machine address
ma, associated by the hypervisor mapping to the physical address pa, which is the address of a PT page
owned by the active OS.

Postcondition

The effect of this action is to set pa as the address of the current page table of the active OS. Furthermore,
its stealth page, if any, is cached after saving the stealth cache page into (stealth) memory. The TLB tlb
is (fully) flushed.

11

2.4 Hypercall

Action hcall hc

The active OS requires privileged service hc to be executed by the hypervisor.

Rule

aos act = (aos, running) oss[aos] = (pa,)
oss[aos := (pa, hc)] = oss′ (aos, waiting) = aos act′

(oss, aos act, hyp,mem, cache, tlb) ↪
hcall hc−−−−−−−→ (oss′, aos act′, hyp,mem, cache, tlb)

Precondition

The action hcall hc requires that the active OS is running.

Postcondition

In the resulting state, the active OS requires the execution of hc to the hypervisor, which takes control of
the execution.

Notes

A hypercall interface allows OSs to perform a synchronous software trap into the hypervisor to perform a
privileged operation, analogous to the use of system calls in conventional operating systems. An example
use of a hypercall is to request a set of page table updates, in which the hypervisor validates and applies
a list of updates, returning control to the calling OS when this is completed.

2.5 Changes of execution mode

Action ret ctrl

The active OS returns the execution control to the hypervisor.

Rule

aos act = (aos, runnig)
(aos, waiting) = aos act′

(oss, aos act, hyp,mem, cache, tlb) ↪
ret ctrl−−−−−−−→ (oss, aos act′, hyp,mem, cache, tlb)

Precondition

The action ret ctrl requires that the active OS is running.

Postcondition

In the resulting state, the hypervisor is running.

Action chmod

The hypervisor gives to the active OS the execution control.

Rule

aos act = (aos, waiting) oss[aos] = (, None)
(aos, running) = aos act′

(oss, aos act, hyp,mem, cache, tlb) ↪
chmod−−−−−→ (oss, aos act′, hyp,mem, cache, tlb)

Precondition

12

The action chmod requires that the hypervisor is running, and that there is no hypercall pending for the
active OS.

Postcondition

In the resulting state, the active OS is running.

2.6 Hypervisor mapping updates

Action page pin pa t

The memory page that corresponds to physical address pa, for the active OS, is registered and classified
with type t.

Rule

aos act = (aos, waiting) oss[aos] = (pa′, P in pa t)
hyp[aos][pa] = ⊥ free madd(mem) = ma

oss[aos := (pa′, None)] = oss′ hyp[aos][pa := ma] = hyp′

mem[ma := (t, aos, true)] = mem′

(oss, aos act, hyp,mem, cache, tlb) ↪
page pin pa t
−−−−−−−−−−→ (oss′, aos act, hyp′,mem′, cache, tlb)

Precondition

The action page pin pa t requires that the hypervisor is running, that the active OS must be waiting
for an hypercall to pin the physical address pa of type t, and that pa must not be already allocated. In
addition to that, there must be machine memory (ma) available.

Postcondition

The effect of the action is to create and allocate at machine address ma a new page of type t whose owner
is the active OS and bind, in the hypervisor mapping, the physical address pa to ma. The rest of the state
remains unchanged.

Action page unpin pa

The memory page that corresponds to physical address pa, for the active OS, is un-registered.

Rule

aos act = (aos, waiting) oss[aos] = (pa′, UnPin pa) pa′ 6= pa
get page hyp(s, aos, pa) = (ma, pg) is empty(pg) no madd in PT (aos,ma,mem)

oss[aos := (pa′, None)] = oss′ hyp[aos][pa := ⊥] = hyp′

mem[ma := (Other,No Owner, true)] = mem′

s = (oss, aos act, hyp,mem, cache, tlb) ↪
unpin pa
−−−−−−−→ (oss′, aos act, hyp′,mem′, cache, tlb)

Precondition

The action page unpin pa requires that the hypervisor is running, that the active OS must be waiting
for an hypercall to unpin the physical address pa, that pa is not the current page physical address of the
active OS, and that a page associated with the machine address ma, mapped by pa in the hypervisor
mapping, is registered in the memory. Additionally, if pg is of type PT , it must be empty, and ma can not
appear in any page table of the active OS.

Postcondition

The action removes the mapping of pa to ma in the hypervisor mapping. In the resulting state, the page
pg is un-registered –pg is released.

13

2.7 Silent

Action silent

Represents the silent action –the system does not advertise any effects.

Rule

(oss, aos act, hyp,mem, cache, tlb) ↪
silent−−−−−−→ (oss, aos act, hyp,mem, cache, tlb)

Precondition

This operation has no restrictions for execution.

Postcondition

The state does not change.

2.8 Invariance of valid state

One-step execution preserves valid states, that is to say, the state resulting from the execution of an action
in a valid state is also a valid one.

Lemma 1 (Valid State Invariant).
∀ (s s′ : State) (a : Action) (o : os ident), valid state(s)→ s ↪

a−→ s′ → valid state(s′)

Platform state invariants, such as state validity, are useful to analyze other relevant properties of the model.
In particular, the results presented in the following sections are obtained from valid states of the platform.

3 Isolation

Isolation captures the idea that malicious guest operating systems cannot gain information about victim guest
operating systems, and is formally stated as an indistinguishability property between platform executions
that are suitably related. For concreteness, we consider a scenario with only two guest operating systems: a
victim operating system ov and an attacker operating system oa.

3.1 Adversary model

We consider a very strong adversary that is able to observe the layout of the non-stealth cache (but not its
contents), and the layout of the non-stealth memory.

We assume that the scheduler is adversarially controlled, i.e. at each step the adversary can decide
whether the victim operating system or itself will execute. We further give the adversary the power to
trigger the resolution of pending hypercalls. Formally, we model an adversary as a function A that takes a
partial trace and returns either ov, indicating that the victim operating system will execute next, or a next
action of its choice.

3.2 Equivalence of states

We define an equivalence relation ∼ between states to model the partial view of the attacker operating
system oa on the state; thus, two states s and s′ s.t. s ∼ s′ coincide on all parts of the state exposed to
the attacker. The fact that we allow dynamic memory allocation through the execution of the pin actions
complicates the definition of this relation. Since we cannot state it directly in terms of machine addresses,
we do it indirectly through the use of the hypervisor mapping physical addresses, which are the same in both
executions. The definition of this relation follows:

14

Definition 1 (Equivalence of OS information). The operating system information oss and oss′ are
equivalent for the attacker, if the attacker has the same current page table, and the same hypercall in both
states. Furthermore, the attacker must be either active in both states and have the same activity, or not
active in the states.

For the equivalence of the memory we consider two cases: the case a physical address is mapped to a
readable/writable page (Equivalence of hypervisor mappings), and the case it is mapped to a page table
(Equivalence of cache and memory mappings).

pa

ma

ma'

pgif RW

hyp

hyp'

mem

mem'

Fig. 4. Equivalence of hypervisor mappings

In the first (depicted in figure 4) we require that the attacker readable/writable pages are the same.
Furthermore, the layout of the non-stealth memory pages of the victim must be the same (non stealth pages
should have the same owner, and same cacheable flag, but arbitrary value).

pt_pa

pt_ma'

pt_ma

va

ma

ma'

pg

hyp

hyp'

mem

mem'

pt_page

pt_page'

mem

mem'

if RW

Fig. 5. Equivalence of cache and memory mappings

In the second, since machine addresses are arbitrary in both states, the page tables will be different. For
them to be related, all entries in one page table must be in the other. Furthermore, readable/writable pages
mapped by a virtual address should be the same, if the owner is the attacker, or have the same metadata if
it is a non stealth victim page (figure 5).

More formally, these two equivalence relations are as follows:

Definition 2 (Equivalence of hypervisor mappings). Two states s and s′ have equivalent hypervisor
mappings for the attacker (s ∼hyp s′) if for every physical address pa, readable/writable page pg and machine
address ma:

– if get page hyp(s, oa, pa) = (ma, pg), there exists ma′ such that get page hyp(s′, oa, pa) = (ma′, pg);
– if get page hyp(s, ov, pa) = (ma, pg), and no page table maps stealth va to ma, then there exists ma′

such that get page hyp(s′, ov, pa) = (ma′, pg′), where pg and pg′ are equal except in their contents;

and reciprocally for s′.

15

Definition 3 (Equivalence of cache and memory mappings). Two states s and s′ have equivalent
cache and memory mappings for the attacker (s ∼mem) if for every physical address pt pa, page table pt pg
and machine address pt ma, such that get page hyp(s, o, pt pa) = (pt ma, pt pg), there exists pt ma′ and
pt pg′ such that get page hyp(s′, o, pt pa) = (pt ma′, pt pg′) and for all virtual addresses va and machine
address ma such that pt pg[va] = ma and mem[ma] is readable/writable, then there exists ma′ such that
pt pg′[va] = ma′ and moreover:

– if o = oa then get page ma(s,ma) = get page ma(s,ma′);
– if o = ov and va is not stealth va, then get page ma(s,ma) and get page ma(s′,ma′) are equal except

in their contents;

and reciprocally for s′.

Definition 4 (Equivalence of cache histories). Two cache histories history and history′ are equivalent
for the attacker if for all non stealth cache index i history[i] = history′[i].

3.3 Unwinding lemmas

The equivalence relation ∼ is kept invariant by the execution of a victim stealth action. Furthermore, if the
same attacker action or two non stealth victim actions with the same effect are executed in two equivalent
states, the resulting states are also equivalent. These results are variations of standard non-interference
unwinding lemmas (locally preserves and step-consistent unwinding lemmas) [3]:

Lemma 2 (Locally preserves unwinding lemma). Let s and s′ such that s ↪
a,ov−−−→ s′ and eff(a) = ∅.

Then, s ∼ s′.

Lemma 3 (oa step-consistent unwinding lemma). Let s1, s2, s
′
1 and s′2 be states such that s1 ↪

a,oa−−−→ s2,
s′1 ↪

a,oa−−−→ s′2 and s1 ∼ s′1. Then, s2 ∼ s′2.

Lemma 4 (ov step-consistent unwinding lemma). Let s1, s2, s
′
1 and s′2 be states such that s1 ↪

a,ov−−−→ s2,

s′1 ↪
a′,ov−−−→ s′2, eff(a) = eff(a′) and s1 ∼ s′1. Then, s2 ∼ s′2.

The proofs of these lemmas critically rely on the inertia property of cache [2]: upon adding a virtual
address to the cache, the evicted virtual address, if any, is in the same cache line set as the added one; and
on the exclusion property: the hypervisor ensures that guest operating systems can only allocate virtual
addresses that are not in the same cache line set as the stealth virtual addresses.

3.4 Execution traces

The isolation property is eventually expressed on execution traces, rather than execution steps. An execution
trace is defined as a stream (an infinite list) of states that are related by the transition relation ↪→, i.e. an
object of the form s0 ↪

a0,o−−→s1 ↪
a1,o−−→s2 ↪

a2,o−−→s3 . . . such that every execution step si ↪
ai,o−−→si+1 is valid. Formally,

an execution trace is defined as a stream Θ of pairs of states and actions, such that for every i ≥ 0,

s[i] ↪
a[i],o−−−→ s[i+ 1], where Θ[i].st = s[i], t[i].act = a[i], Θ[i+ 1].st = s[i+ 1] and Θ[i+ 1].act = a[i+ 1].

We lift the indistinguishability relation to execution traces Θ and Θ′ using the following co-inductive
rules:

eff(a) = ∅ Θ ∼ Θ′

s ↪
a,ov−−−→Θ ∼ Θ′

eff(a) = ∅ Θ ∼ Θ′

Θ ∼ s ↪a,ov−−−→Θ′
s ∼ s′ Θ ∼ Θ′

s ↪
a,oa−−−→Θ ∼ s′ ↪a

′,oa−−−→Θ′

The property of isolation in which we are interested is a non-interference result on execution traces of
the platform where the notion of indistinguishability amounts to equality of observations resulting from the
execution of stealth actions. We show that no attacker observing a victim execution can gain knowledge from
the behaviour induced by the execution of these kind of actions. More precisely, it can be proved that given

16

an operating system ov and two execution traces Θ and Θ′ such that in both traces the same non stealth
actions are executed by ov (Θ ≈ Θ′), those traces are indistinguishable for any oa that performs the same
probing actions (Θ ∼ Θ′). Notice that it must be required that the non stealth actions are the same in both
execution traces because the execution of one such action, a read to a non stealth va in Θ for instance, may
provoke a change in the cache that is otherwise unchanged if the action is not executed in Θ′, leading to
different observations for the attacker.

3.5 Interleaving

The main non leakage result on the model states that given two streams of victim actions executed in the
same context (from equivalent initial states and the same attacker behaviour) the attacker cannot distinguish
the two executions, provided both victim traces have the same sequence of non stealth actions.

We introduce the interleaving relation to characterize the merging of victim actions into a valid execution
trace. As mentioned in Section 3.1, the attacker has control not only on the actions it executes (as we are
modeling an adaptive attacker) but also on the scheduler, in the sense that it is the attacker who decides
what operating system will execute next at any given point of the execution.

We model the attacker as a function that given the partial trace executed up to that moment, returns
the next attacker action to execute, or handles control to the victim.

attacker sched : partial trace→ {V ictim | Attacker a}

the result of this function is the same when two partial traces are equivalent with respect to the ∼ relation.
The interleaving relation makes use of this scheduler to merge the victim execution with the actions

selected by the attacker:

attacker sched(pt) = V ictim s ↪
a,ov−−−→Θ[0].st interleave(Θ[0].st, pt ↪

a,oa−−−→ s, v str,Θ)

interleave(s, pt, a :: v str, s ↪
a,oa−−−→Θ)

attacker sched(pt) = Attacker a s ↪
a,oa−−−→Θ[0].st interleave(Θ[0].st, pt ↪

a,oa−−−→ s, v str,Θ)

interleave(s, pt, v str, s ↪
a,oa−−−→Θ)

Given these definitions, we state our main non leakage theorem:

Theorem 1. Let s0 and s′0 be two states such that s0 ∼ s′0; v str and v str′ two sequence of victim actions
such that v str ≈ v str′; and Θ and Θ′ be traces such that interleave(s0, v str, Θ) and interleave(s′0, v str

′, t′).
Then Θ ∼ Θ′.

This theorem provides a sufficient condition for non leakage of victim information that depends exclusively
on the victim behaviour. This will allow us to connect this result with an application level analysis, to give
formal guarantees of non leakage for programs (written in the C language) that make use of the StealthMem
primitives. This connection is explained in more detail in the paper.

References

1. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM Press.

2. T. Kim, M. Peinado, and G. Mainar-Ruiz. Stealthmem: system-level protection against cache-based side channel
attacks in the cloud. In USENIX Security 2012, pages 11–11, Berkeley, CA, USA, 2012. USENIX Association.

3. J. M. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies. Technical Report CSL-92-02,
SRI International, 1992.

17

