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Alternating Current (AC) generation

Converts rotational motion to sinusoidal voltage
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A sinusoid is caracterized by: 

 Frequency e.g., 

 Amplitude 

 Phase 

"Phasor": complex number 
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Interconnecting generators
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Requirements:  

 Same frequency 

 Same amplitude 

 Same phase . 
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One generator: 
(focus on one of 3 phases)

Parallel connection
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Connection through transmission line 
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Equilibrium conditions:  

 Necessarily, same frequency 

 Typically, very similar amplitude: 

 Phase may be different: 
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Equilibrium conditions:  

  frequency 

 Approx. 

Same

Different

same amplitude: 

 phases , :  

 

 

Finding these phases: "power flow" equations. 

Non-trivial to solve, even if the total generation covers the total load. 



What happens at imbalance
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System moves out of equilibrium:  

 Generator at node 2 slows down: 

 This "opens" the angle 

  helps balance node 2. 
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Result: disturbance that affects the entire network.

During this transient, frequency  differs from node to node.

To re-ba controlance we need to or  l 
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• Loss of load in Florida, affects in seconds the entire continent.

• Oscillations of frequecy observed in both directions. 

• Equilibrium is reestablished, with a slightly different frequency.

• How was this achieved? 

Real world example
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Power balancing actions

Watt’s Centrifugal Governor 1788

: D d    Passive effect  some loads vary with frequency.  
1G R     Active "droop control" of generation:  

Old technology! 
Flyball converts speed to 
position of turbine valve.

1900s Murray Alternator with Belt-driven Exciter Generator

, .

 Effect on power is not immediate  responds in ~ seconds

 I inertn the meantime: rotating  plays a stabilizing roia le. 



Analogy
• Equal-arm balance, pendulum attached to the axis.

• Initially: system in equilibrium at nominal frequency.
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Re-balanced with:

 Passive response : torque proportional to deviation. 

 Active "Droop Control" :  provides additional torque.

 Intertia plays a role in trans  ient.

Imbalance alters frequency

D  
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Standards  

B. Steady state

• Characterize response, 
define actions.

Slope = RoCoF
(Rate of Change of Freq)

C: Nadir

UFLS (Under Freq. Load Shedding) 
Threshold

But response varies from node to node! More later…
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Source: Renewable Energy
Global Status Report, 2010

Source: M. Jacobson, 2011

Wind power over land 
70 – 170 TW

Solar power over land
340 TW

Worldwide

energy demand:
16 TW

electricity demand:
2.2 TW

wind capacity (2009):
159 GW

grid-tied PV capacity 

(2009):
21 GW

Renewable
Energy Potential



Connecting renewables to AC grid

.


Basic components: 

 Electronic switch generates square-type wave of frequency 

 Filter to "smooth out" the edges. 

Feature: flexibility to control amplitude, phase. 

Solar PhotoVoltaic: 

 Solar panel produces DC (constant) voltage

 Converted to AC by a power electro invernic .  ter






Connecting renewables to AC grid

conversion

Wind Turbine: 

 Rotating blades induce AC voltage.

 Variable wind speed makes frequency  necessary.

 Again implemented by power electronics. 

   Doubly-Fed Induction Generat  or:





, ,V 

Here as well, electronics 

provides flexibility to

con l  ro  t .



Operational issue: matching with demand 
cycle requires backup and/or storage  

Renewable Challenge I:                                  
variable, non-dispatchable sources



Challenge II: dynamic degradation
• Loss of rotating inertia: in renewable generation connected 

by power electronics. 

• Diminishing frequency dependent loads. 

• Larger frequency deviations: Protections may misfire, lead 
to cascading failure events. 



“Energiewende”

Challenge II: dynamic degradation



How to respond to the dynamic challenge
• One option is to emulate traditional behavior: 

– add real inertia (e.g. flywheels), or 

– “Virtual inertia”:  power electronics controlled to respond 
like a synchronous generator.

• A control engineer should ask, however:               
isn’t a heavier system harder to control?
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Dynamic model: synchronous machine
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Linearize around the equilibrium point
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Linearized model in vector form
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Linearized model in Laplace Transforms
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Swing equation model
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With 1st order tur

    

bine droop control 
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How do we measure frequency response?
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Robust Control approach                
[Tegling-Bamieh-Gayme ’15, Simpson-Porco et al ’17,…]
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  view of synchronization performance. 

 Use of vector  or other coherency measure 

e.g.,  for specific classes of disturbances (noise, sinusoids,...
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How do we measure frequency response?
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Homogeneous  swing mode

Limitations. Restrictive assumptions: 

  machines, :

 

l

  

 Reconcile with power engineering metrics?  

Positives: analytical results capture role of parameters, e.g. inertia.



Bridging the Theory-Practice gap

Bus frequency
 deviations
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Heterogeneous   olve analytically
   under a proportionalit  assumy ption.

[F. Paganini & E. Mallada, IEEE Transactions on Automatic Control, 
2020, published online in early access]
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Decompose response: 

 System-wide component, to which we apply power engineering metrics.

 Vector of deviations, to which we apply control theory metrics. 



Proportionality assumption
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 Not exactly satisfied in practice, but order of magnitude is correct. 

 Far more realistic than homogeneity. 

 Will later validate approach with real world data. 







Proportionality Diagonalization
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Step response decomposition
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Step response decomposition
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System frequency: swing equation model
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Independent of inertia



Maximal RoCoF: 

initial response.

Inertia appears directly

 



Model including turbine droop control
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Maximal RoCoF: 
can show that,
like in swing case, 

Nadir at overshoot.
Decreases (mildly) 
with inertia.

Steady state
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Depends on inertia, but limits indicate influence is mild. 

In swing dynamics.
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Simulation Study:   
Icelandic Grid

• Real network, sparse topology

• Heterogeneous ratings. 

• Parameters not proportional.
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Synthetic data with proportionality: 
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Swing dynamics
Step response and its decomposition, disturbance in bus 2
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Turbine dynamics

Nadir as a function of parameters

Step response



Turbine dynamics
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Validation with real Icelandic grid
Synthetic, proportional parameters

True, non-proportional parameters



• Reconciled power engineering metrics and standards  
with a global view of performance.

• Models matter! Swing model misses key features, 
important to include droop control lags. 

• Role of inertia less dramatic than in conventional wisdom. 
Lighter systems are also faster to control. 

• Short-term damping d is a more crucial parameter.  

• “Cyber-physical” options for a grid of less inertia: 

1. Control the inverters of renewable energy sources 
(e.g. iDroop, Jiang et al. ‘19.)

2. Load-side frequency regulation: demand response 
may provide regulation service (e.g. Zhao et al ’14).

Summary of our analysis
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Time scales of power balancing 

sec min 5-60 min Hours, day ahead

Primary
Frequency reg

Secondary 
frequency reg.

Reserves markets

• Frequency regulation classification:
– Primary FR or “droop control”. Decentralized feedback at each 
machine achieves power balance away from nominal frequency. 

– Secondary FR. Correct back to nominal frequency, through 
actions coordinated by the System Operator (SO). 

• Traditionally, SO generates “Area Control Error” signal.  

• Certain generators are dedicated to tracking these signals.  

• Alternative: can a smarter control of load provide regulation?  

Forward markets



Aggregates of deferrable loads

data: g2016mtv2000 

• Another use of controlled deferral:  tracking a reference
signal provided by the SO for frequency regulation. 

• Smart Grids enable 
deferring service for 
some kinds of loads. 

• e.g., peak shaving in an 
EV charging facility
[Low et al., ‘17]

Related work on load side secondary regulation:

• Model predictive control of deferral [Subramanian et al ‘13].

• Thermostatically controlled loads [Koch et al ’11, Hao- et al ’14].

• Building HVAC systems [Lin-Barooah-Meyn-Middlekoop’15]



Queueing model of deferrable loads
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[F. Bliman, F. Paganini, A. Ferragut, IEEE Trans. on Smart Grid, 2017]



Controlling a large population
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Least-Laxity-First scheduling: 

choose loads with smallest laxity. 

Helps enforce deadlines. 



Strategies with soft deadlines
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Models for laxity expiring case
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Control using diffusion model
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Distributed Implementation
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• Deferrable loads can play a role in frequency regulation.

• Aggregator entity manages the total consumption for a  
large number of loads. 

• Macroscopic fluid/diffusion model from queueing theory, 
used for H2 - optimal control design. 

• Distributed  implementation.

• Other uses of the queuieng model for deferrable loads:

– Minimal variance load scheduling [Nakahira-Ferragut-
Wierman, Performance Evaluation Review, 2018]

– Proportional fairness for EV charging in overload 
[Zeballos-Ferragut-Paganini, IEEE Transactions on Smart 
Grid 2019] 

Summary of the approach
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• The power grid has always relied on feedback 
control to achieve instantaneous power balance. 

• The integration of renewable sources poses new
challenges: lighter systems, faster control.

• Also, new opportunities: controlling inverters, or 
using  Smart Grids for load-side regulation. 

• Mathematical modeling remains essential. Many 
open research questions to address!

Conclusions

¡Gracias!


