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1. Introduction

Digital Twin approach
requires fine-grained
modeling

Car modeling is the results
of different application
domains interacting with
each other

Is the Co-simulation an enabler technology for car Digital Twin?
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2. The INTO-CPS tool-chain

Model Descriptions
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2. Car platooning co-simulation

1. Modeling a car platoon with Simulink

2. Including network communication inside an FMI co-simulation
3. Improving the modeling of the network with a specific simulator
4

Analysis of the results
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2. Car Platooning

= The platooning is the technique/strategy by which two or more vehicles circulate
on the road in a joint and coordinated manner.

= A number of vehicles follows a leader, maintaining a safe inter-vehicle distance

=  Assumptions:
= All vehicles have same length and properties.
: Fixed size of the platoon.
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Platoon leader
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The coordination layer computes the platoon control law
using data read from on-board sensors and received from
vv___ other vehicles through V2V communication

communication

V2V communication options:

* IEEE802.11p

« LTEV2V (mode 3) = use base station scheduler

« LTEV2V (mode 4) - distributed scheduling (semi-
persistent scheduling)
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= CACC is a class of controllers that result in string-stable platoons
| perturbations at the head of the platoon propagate smoothly towards the tail

- Parameters: C,, dampingRatio &, controllerBandwidth w,, vehicle length | ,, targetDistance d

n InputS.' Xi’ X,'_l; x’; xi.j_r xO? 'i'i-l’ i0

= Output: X; 4o € = Ti — Ti—1
€i = Xi — Ti—1 + li—1 + ddes
1 = 1—01,Odz 201

a3

(25 — (£ + \/52—1))%
as = —C (f + \/527—1)(,%

a5 — —Wp

Tides = Q1Ti—1 + aado + a3€; + aa(Ti — To) + asE;
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2. Simulink Model of the leader car

= Pre-defined Acceleration
= 3 outputs

accel leader

Actual position ®

o Position_leader
n g

/\/ Py B Acceleratio

| ot

Actual velocity

Speed leader

Lead Carl
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2. Simulink Model of a following car

= Actuation lag, Low Pass Filter for realistic behavior of the acceleration
= 1 input, 3 outputs

|
Accel 2
Actual position ¢
— O Position_2
accetdtles:Ach;ération . »| Acceleration O e
Acceleration_2_car — L o
LPF2 Actual velocity
Speed 2
Ego Car2
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2. Simulink Model of the platoon

. Actual positon )
= 1 Leader R =Sl i
= 4 Followers — = =
= Qutputs the distances among the vehicles o =
(7))
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2. Delay FMU

State* tick(State* st) [
if (st->mode == X1 && ( st->time < st->delay )) {
st->time = st->time + st->tickSize;

} else if (st->mode == X1 && st->time >= st->delay )) {

— | de|ay st->output = st->memory;
st->memory = st->input;

st->delay = st->time +
st->tickSize * ran expo(st->expDelay) +
st->tickSize * st->detDelay;

Main parameters:
tick-size
detDelay
expDelay }

return st;

st->time = st->time + st->tickSize;
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2. V2V: System model architecture

= Delay FMUS used to include delays in the scenario

{a2 desired}

[l

Communicationw {(v1,a1),(x1,v1,a1),(x2,v2)}

delay J

— Z > T

Communicationw {(v1,a1),(x2,v2,a2),(x3,v3)}

{ CACC2

delay

omputational

delay J
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{ CACC3 | ‘Computatlona

delay
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2. V2V: Co-simulation architecture

Vehicle 2

Computational
Delay

A

Communication
Delay
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Vehicle 3

Vehicle 4

Vehicle 5
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2. V2V: Co-simulation results
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2. MEC/Edge

Multi-access Edge Computing (MEC) architecture by ETSI provides:

= Edge computing capabilities fully integrated with 5G Core network

=  Low-latency communication

= Virtualized computing and storage resources (limited compared to Cloud)
= Distributed computing architecture

= MEC is a suitable architecture for implementing CPS and supporting
the stringent delay requirements of Digital Twin Paradigm
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2. MEC assisted platooning

MEC host
4 MEC App (VNF) A
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2. MEC Platoon Python simulator
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2. MEC simulator as an FMU

=  FMU created using UniFMU
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ApP O
{X2,V2,32} Vehicle 2
Mobile On-board
< L APP (O
a2_disidered
{X3,V3,83} Vehicle 3
Mobile On-board
< L APP (O
a3 disidered -

MEC FMU
pF\;ﬁkNet )/ \ Backhaul ( ~
_____ Packet
RAN ) E DG E To control law
’ Control
Law
(ﬁ) Platoon ( From -
control law
_____ ) ( ) ) Controller
------ ()
( To control law
A
o] A contl
> (ﬁ) » = [ Fom W
_____ ( —— control law
______ L y (LT

*
--------------------------------------------------------------------------------------------------------------

Communication delay

Maurizio Palmieri

Co-simulation of Automotive Cyber-Physical Systems

WSCF 2022

Montevideo, 10 November 2022



2. MEC: System model architecture

=  Delays embedded in the MEC model

( ) —{(v1, a1),(x1,v1,a1),(x2,v2)}
P {(x1,v1,a1),(x2,v2,a2),(x3,v3,a3)} . {a2 desired) T CACC2 }
L > M N
A E
N {a2_desired, a3_desired} c [{(v1,a1),(x2,v2,a2),(x3,v3)}

T o— -
{a3_desired} CACC3 }

— k< \
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2. MEC: Co-simulation architecture

v v

[ MEC } [ Simulink plant }
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2. MEC: Co-simulation results
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2. Comparison MEC and V2V

= Smooth propagation.
p p g —— Distance 1_2 MEC
Distance 1_2 V2V
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2. Platoon conclusions

=  Platoon that includes an Edge based communication is co-simulated.

=  Co-simulation enabled the analysis of different scenarios, MEC and V2V.
=  CACC algorithm has performed in a correct manner, in both scenarios.

= The MEC scenario exhibits a more stable behavior.

Future work

=  Modeling sensor components and longitudinal dynamics.

= Enhancing the channel behavior modeling with OMNeT++ and Simu5G.
= |nvestigating on Design Space Exploration (DSE).

= Studying threats related to cyber-attacks.
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3. ADAS co-simulation with Model Predictive Control
1. Brief introduction to Model Predictive Control
2. Extending a library for MPC to cope with FMI standard
3. ADAS case study: following a trajectory while avoiding obstacles
4

Analysis of the results

Maurizio Palmieri Co-simulation of Automotive Cyber-Physical Systems WSCF 2022 Montevideo, 10 November 2022



3. Model Predictive Control

= Use a prediction model to optimize the control value in a prediction horizon

A J

References
Setpoints
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3. Formal Model

= Mathematical formulation of the optimization problem

7 &
Cost function i 321} J(u,p,T;xo) = V(x(T),p,T) + i [(x(t), u(t). p,t)dt
System evolution »s.t. Mzx(t) = f(x(t),u(t),p,to+1t), x(to) = xo

0, gr(x(T),p,T)=
hiz(t),uX).p,1) <0, hrle(l);pT)<0

U(f) = [umin- umax]

Constraints e

— P cC [pmin'pmax] y A € []jmin-,trmax]
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3. Prediction Horizon

=  MPC optimizes the sequence of Predicted controls to produce the Predicted
output that minimizes the error with the reference

= The control value provided to the controlled plant is the first of the sequence

._Ppastt future,

/ reference

Measured output \ \ Predicted output

_ Predicted controls

Past controls —,

[

1 o) 3 " time

r N
A J

Control horizon
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3. GRAMPC C library

=  Problem formulation in C code
= Data visualization on Matlab

C code lMatlab
< >

Problem

: Parameters/options
( i o i SRAMPG ) formulation
grampc init.c: initialize ‘L ¢ ¢
\ N
grampc setopt.c: set algorithmin options — grampc_init<€=——=lgrampc_init_ Cmex
~~ grampc_setoptg=———=grampc_setopt_ Cmex
\ . grampc_setparam|e__grampc_setparam_Cmex
[gmpc setparam.c: set problem specific parameters €= grampc_run (_grampc_run_Cmex
/ N J
{gmpc run.c: run 1 step of GRAMPC l l
[ Executable }
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3. GRAMPC as an FMU

=  Main idea: GRAMPC model into an FMU written in C

FMI Master GRAMPC
Algorithm FMU
fmi2SetX XX

»l----- stores new state values in FMU buffer

fmi2DoStep moves new state values from FMU buffer to grampc
invokes grampc_run
moves new command values from grampc to FMU buffer

fmi2GetX XX

< B ELE provides new command values to the master

= |nitialization of GRAMPC called during the FMI initialization phase
= Semi-Automatic generation of the FMU based on templating system
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3. Automotive ADAS case study

= Car following a reference trajectory
- Reduce the error of the trajectory w.r.t. the reference
=  Avoid obstacles
=  Minimize GRAMPC execution time

trajectory
reference
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3. Plant Model

= Bicycle model of a car modeled with Simulink

=  Simulink allows the automatic generation of the FMU

T WA .
* s 1) .

Y s =< Coordinates
-' sin -" ) dot_y 1_ - 5 \I Of ‘th e Ce nter
) B s -z

X
) - 1? | -(3)
'\;FI:/ = dot_psi[ .
e 1 R
e :x -2 N psi 6min -0.5 rad
[+ —
M \_ N
(2 )— | I -  tan —{l _}}D '""""W | beta | Gmax 05 rad
delta L ' - psi+beta I I 67 -
f -
X > Plant
| [.394 m
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3. Co-simulation Architecture

= COE: Co-simulation Orchestration Engine
=  The INTO-CPS master algorithm

= Fixed step co-simulation algorithm |
X
= step-size =1 ms ,/ Y y __»_\\\
f ) \V ; \
()
GRAMPC 5 , LL .
FMU g = PLANT
§ . delta | COE | delta
Time horizon | s (Plant model )
Solver Euler { T f\‘\ % A
- - / /’.
Ay 5.34 m/s? N : S
o i ~

g -11.2 m/s?

WSCF 2022 Montevideo, 10 November 2022
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3. Results: Nominal Co-simulation

=  GRAMPC maximum execution time: < 1. ms Executed on
=  Average error: 0.08 m Intel i7-7700 CPU @ 3.60GHz x8
15
10

y-coordinate (m)
o o

-5
10 trajectory
-reference (without obstacle)
-15
0 20 40 60 80 100 120 140

x-coordinate (m)
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3. Results: Parameter Variation

=  INTO-CPS Design Space Exploration: measurement error in the car dimensions

= B% variation of the front track or rear track length

m rear track Ir (m) Average error (m)

1.67 1.394 0.08
1.67 1.464 0.09
1.67 1.324 0.09
1.75 1.394 0.08
1.59 1.394 0.10

= Small impact on the average error
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3. Results: Towards robustness analysis

=  What happens with noisy sensors? o
X — 1)
: ° g - AWGN {

= Varianceony:0.1 (10 cm) Y
. o L2 elta ‘@

= Variance on y: 0.01 ( 1°) P ' S =l
i AWGN ?

Plant |
15

= average error:
= maximum error:

E
L
©
=
2
=]
D -
(&]
> :

-10 trajectory

reference (without obstacle)
-15
0 20 40 60 80 100 120 140

X-coordinate (m)
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3. SESAM-VPSim

Vplatform Eurapean
. . . Software xm C code FUCESSDr

= Virtual prototyping Environment binaries | N Frocessor

= Early Software development Epl

=  Performance profiling and debug m

=  Obtain fine-grained statistics I

g 5VPSim
= Platform Composition
I I

= Rich model library

n Load software binaries t 1 =||

u High-level description with Python -
= Rapid simulation able to run full software stacks Proey

Al | | Wi
n Inter-operability with external models and tools , Speci
Components statistics
u SystemC/TLM Interface : Standardr.]ebugtools:
- AXI-compatible RTL designs Interface HW design URET o 5 srenc y——
Builder imulator (Debug, Pr_oﬁling.
= FMI 2.0 Co-Simulation ] i
| hwei | e —
FMI System Components EVPSEm
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2. GRAMPC with SESAM-VPSIm

=  HW Platform Description
X Quad-core ARMvS8 64-bit processor architecture using QEMU
- Each core has private L1 & L2 caches

=  The cores share four slices of LLC banks, which are connected to the NoC and peripheral
devices

= The deployment of GRAMPC on a simulated architecture with VPSim

=  Evaluate the behavior of GRAMPC on the target hardware architecture

VPSim FMU
pr
Linux
Quad-core
Plant FMU oW Stack
(|  HW Platform |
CAN-FMI )
Proxy component
rF 3 g
v
‘ FMI Master
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3. Results with SESAM-VPsim

=  GRAMPC average execution time: 2.4 ms
= Mean error: 0.262 m

=
o

=
o

(9]

\

1
o

y-coordinate (m)

\__(_3\/ \
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N
(@)
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3. GRAMPC Conclusions

= The co-simulation of GRAMPC on a simulated architecture with VPSim
2 Comparison with the nominal co-simulation

= |dentify the impact of the processor architecture

=  More realistic case study
= add more obstacles
= refine the vehicle model
= add vision system

This work has been partially supported by the European Processor Initiative (EPI) project, which has received funding from the European Union’s
Horizon 2020 research and innovation program under Grant Agreement n° 826647, and by the Italian Ministry of Education and Research (MIUR) in
the framework of the CrossLab project (Department of Excellence).
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4. Conclusions

Including network behavior and hardware components in the models
is a key feature for enabling the usage of the Digital Twin paradigm.

Standard FMI co-simulation has allowed the integration of these features and
simplifies their combination.

Many other features can be easily included, for example:
= Realtime monitoring of the real data

= Including control algorithms based on Artificial Intelligence

Co-simulation will play a relevant role in the modeling of the Digital Twin
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