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Is the Co-simulation an enabler technology for car Digital Twin?
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2. The INTO-CPS tool-chain
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2. Car Platooning

 The platooning is the technique/strategy by which two or more vehicles circulate 

on the road in a joint and coordinated manner.

 A number of vehicles follows a leader, maintaining a safe inter-vehicle distance

 Assumptions: 

 All vehicles have same length and properties.

 Fixed size of the platoon.
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2. Vehicle to Vehicle Approach

The coordination layer computes the platoon control law 

using data read from on-board sensors and received from 

other vehicles through V2V communication

V2V communication options:

• IEEE 802.11p

• LTE V2V (mode 3)  use base station scheduler

• LTE V2V (mode 4)  distributed scheduling (semi-

persistent scheduling)

Maurizio Palmieri                           Co-simulation of Automotive Cyber-Physical Systems                             WSCF 2022                             Montevideo, 10 November 2022 7



2. Cooperative Adaptive Cruise Control

 CACC is a class of controllers that result in string-stable platoons 

 perturbations at the head of the platoon propagate smoothly towards the tail

 Parameters: C1, dampingRatio ξ, controllerBandwidth ωn, vehicle length li-1, targetDistance ddes

 Inputs: xi , xi-1 ,  𝒙I ,  𝒙i-1 ,  𝒙0 ,  𝒙𝒊-1 ,  𝒙0

 Output:  𝒙𝒊_des
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2. Simulink Model of the leader car

 Pre-defined Acceleration

 3 outputs
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2. Simulink Model of a following car

 Actuation lag, Low Pass Filter for realistic behavior of the acceleration

 1 input, 3 outputs
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2. Simulink Model of the platoon

 1 Leader

 4 Followers

 Outputs the distances among the vehicles

Parameter Value

Platoon size 5 cars

Target distance 10 meters

C1 0.5

ξ 1

ωn 0.2

li-1 4 meters
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2. Delay FMU

Main parameters:

tick-size

detDelay

expDelay
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2. V2V: System model architecture

 Delay FMUS used to include delays in the scenario
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2. V2V: Co-simulation architecture

Master Algorithm

CACC 2 Computational 

Delay

Simulink plant

Communication 

Delay

Vehicle 2
Vehicle 3 Vehicle 4 Vehicle 5
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2. V2V: Co-simulation results
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2. MEC/Edge

Multi-access Edge Computing (MEC) architecture by ETSI provides:

 Edge computing capabilities fully integrated with 5G Core network

 Low-latency communication

 Virtualized computing and storage resources (limited compared to Cloud)

 Distributed computing architecture

 MEC is a suitable architecture for implementing CPS and supporting 

the stringent delay requirements of Digital Twin Paradigm
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2. MEC assisted platooning

Vehicle data 

updates

Control 

instructions
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2. MEC Platoon Python simulator
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2. MEC simulator as an FMU

 FMU created using UniFMU

MEC FMU
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2. MEC: System model architecture

 Delays embedded in the MEC model
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2. MEC: Co-simulation architecture

Master Algorithm

CACC 2

Simulink plantMEC

CACC 3 CACC 4 CACC 5
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2. MEC: Co-simulation results
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2. Comparison MEC and V2V

 Smooth propagation.  

 MEC is more stable.
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2. Platoon conclusions

 Platoon that includes an Edge based communication is co-simulated.

 Co-simulation enabled the analysis of different scenarios, MEC and V2V.

 CACC algorithm has performed in a correct manner, in both scenarios.

 The MEC scenario exhibits a more stable behavior.

Future work

 Modeling sensor components and longitudinal dynamics.

 Enhancing the channel behavior modeling with OMNeT++ and Simu5G.

 Investigating on Design Space Exploration (DSE).

 Studying threats related to cyber-attacks.
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3. Model Predictive Control

 Use a prediction model to optimize the control value in a prediction horizon
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3. Formal Model

 Mathematical formulation of the optimization problem
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3. Prediction Horizon

 MPC optimizes the sequence of Predicted controls to produce the Predicted 

output that minimizes the error with the reference 

 The control value provided to the controlled plant is the first of the sequence
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3. GRAMPC C library

 Problem formulation in C code

 Data visualization on Matlab
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3. GRAMPC as an FMU

 Main idea: GRAMPC model into an FMU written in C

 Initialization of GRAMPC called during the FMI initialization phase

 Semi-Automatic generation of the FMU based on templating system
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3. Automotive ADAS case study

 Car following a reference trajectory

 Reduce the error of the trajectory w.r.t. the reference 

 Avoid obstacles

 Minimize GRAMPC execution time
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3. Plant Model

 Bicycle model of a car modeled with Simulink

 Simulink allows the automatic generation of the FMU
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3. Co-simulation Architecture

 COE: Co-simulation Orchestration Engine

 The INTO-CPS master algorithm

 Fixed step co-simulation algorithm

 step-size = 1 ms

Maurizio Palmieri                           Co-simulation of Automotive Cyber-Physical Systems                             WSCF 2022                             Montevideo, 10 November 2022 33



3. Results: Nominal Co-simulation

 GRAMPC maximum execution time: < 1 ms

 Average error: 0.08 m

Executed on 

Intel i7-7700 CPU @ 3.60GHz x8
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3. Results: Parameter Variation

 INTO-CPS Design Space Exploration: measurement error in the car dimensions

 5% variation of the front track or rear track length

 Small impact on the average error
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3. Results: Towards robustness analysis

 What happens with noisy sensors?

 Variance on y : 0.1 ( 10 cm)

 Variance on ψ: 0.01 ( 1°)

 average error: 0.240 m

 maximum error: 1.58 m
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3. SESAM-VPSim

 Virtual prototyping Environment

 Early Software development

 Performance profiling and debug

 Obtain fine-grained statistics

 Platform Composition

 Rich model library

 Load software binaries

 High-level description with Python

 Rapid simulation able to run full software stacks

 Inter-operability with external models and tools

 SystemC/TLM Interface

 AXI-compatible RTL designs Interface

 FMI 2.0 Co-Simulation
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2. GRAMPC with SESAM-VPSim

 HW Platform Description

 Quad-core ARMv8 64-bit processor architecture using QEMU

 Each core has private L1 & L2 caches

 The cores share four slices of LLC banks, which are connected to the NoC and peripheral 

devices

 The deployment of GRAMPC on a simulated architecture with VPSim

 Evaluate the behavior of GRAMPC on the target hardware architecture
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3. Results with SESAM-VPsim

 GRAMPC average execution time: 2.4 ms

 Mean error : 0.262 m
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3. GRAMPC Conclusions

 The co-simulation of GRAMPC on a simulated architecture with VPSim

 Comparison with the nominal co-simulation

 Identify the impact of the processor architecture

 More realistic case study

 add more obstacles

 refine the vehicle model 

 add vision system

This work has been partially supported by the European Processor Initiative (EPI) project, which has received funding from the European Union’s 

Horizon 2020 research and innovation program under Grant Agreement n°826647, and by the Italian Ministry of Education and Research (MIUR) in 

the framework of the CrossLab project (Department of Excellence).
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4. Conclusions

Including network behavior and hardware components in the models

is a key feature for enabling the usage of the Digital Twin paradigm.

Standard FMI co-simulation has allowed the integration of these features and 

simplifies their combination.

Many other features can be easily included, for example:

 Real-time monitoring of the real data

 Including control algorithms based on Artificial Intelligence

Co-simulation will play a relevant role in the modeling of the Digital Twin
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