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Abstract

Text classification is one of the most important techniques within natural
language processing. Applications range from topic detection and intent
identification to sentiment analysis. Usually text classification is formu-
lated as a supervised learning problem, where a labeled training set is fed
into a machine learning algorithm. In practice, training supervised ma-
chine learning algorithms such as those present in deep learning, require
large training sets which involves a considerable amount of human labor
to manually tag the data. This constitutes a bottleneck in applied super-
vised learning, and as a result, it is desired to have supervised learning
models that require smaller amounts of tagged data.

In this work, we will research and compare supervised learning models
for text classification that are data efficient, that is, require small amounts
of tagged data to achieve state of the art performance levels. In particular,
we will study transfer learning techniques that reuse previous knowledge
to train supervised learning models. For the purpose of comparison, we
will focus on opinion polarity classification, a sub problem within senti-
ment analysis that assigns polarity to an opinion (positive or negative)
depending on the mood of the opinion holder.

Multiple deep learning models to learn representations of texts in-
cluding BERT, InferSent, Universal Sentence Encoder and the Sentiment
Neuron are compared in six datasets from different domains. Results
show that transfer learning dramatically improves data efficiency, obtain-
ing double digit improvements in F1 score just with under 100 supervised
training examples.

Keywords: Text classification, natural language processing, sentiment
analysis, deep learning, transfer learning.
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Chapter 1

Introduction

This chapter gives a brief introduction and motivation of this work. Fi-
nally the objectives and contributions of this thesis will be stated and a
general organization of the document will be provided.

1.1 Text Classification Overview and Motivation

Text classification is one of the most important techniques within Natu-
ral Language Processing (NLP). Applications range from topic detection,
intent identification to sentiment analysis. Usually text classification is
formulated as a supervised learning problem, where a labeled training set
is fed into a machine learning algorithm. The process of text classification
gets a text as input and returns a class as a result. The class value usually
belongs to a discrete and finite set of values that can represent a particular
topic of the text, intent or sentiment depending on the problem to solve.
Variations of this problem can return multiple classes as a result, known
as multi-label classification. The training and the prediction processes
involved in supervised text classification are summarized in Figure 3.1.

There has been a large body of research on text classification using
machine learning techniques. The typical approach consist in a two step
scheme of feature extraction (automatic or handcrafted) followed by a
classification step (Joachims 1997).

The most common feature extraction methods in text classification
have been bag-of-words or bag-of-n-grams with their frequency or tf-idf.
The objective of this step is to transform the text into a numeric repre-
sentation in the form of a vector. Usually each component of the vector
represents the frequency or tf-idf score of each word in a predefined dic-
tionary.
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Figure 1.1: Supervised Text Classification process. (a)
Training process where the feature extractor transfers the
text input into a feature vector. Pairs of feature vectors
and labels are fed into the machine learning algorithm
to generate a model. (b) Prediction process, where the
feature extractor is used to transform unseen text input
into feature vectors. These feature vectors are then fed
into the model, which generates predicted labels (Bird,

Klein, and Loper 2009).

The classification step usually involves a statistical model such as
Naive Bayes (Joachims 1997) or linear models such as Logistic Regres-
sion and Support Vector Machines (Joachims 1998). More details in this
implementation will be provided in Subsection 3.3.1: Bag of N-grams.

One of the known limitations of this approach resides in the fact that
the bag-of-words representation loses the sense of ordering between words,
that is, sequence and order in a sentence are important for meaning, but
bag-of-words completely loses this aspect.

The bag-of-n-grams approach tries to fix this issue by taking sequences
of 2 or 3 words (bigrams or trigrams) as features, instead of isolated words.
That way, it can add more context and the sense of ordering of words in
a sentence.

Even though both approaches have naive assumptions, they have proven
to work surprisingly well on many practical applications of text classifica-
tion (Wang and Manning 2012). However, there are various clear pitfalls
in these approaches of text representation, some of the most important
being that:

• Each component of the vector (word or n-gram) is equidistant in
the vector representation. That means that this method fails to
represent the fact that words with similar semantics should have
closer distance.
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• The representation space is sparse, which implies a large amount of
labeled training data (in the order of thousands for training exam-
ples to achieve reasonable classification performance).

More recently, after a few pioneer works on Neural Networks applied
to NLP (Collobert and Weston 2008; Collobert, Weston, et al. 2011),
new feature extraction techniques have been applied based on word em-
beddings also known as word vectors (Bengio et al. 2003; Mikolov, Chen,
et al. 2013) where words are projected from the sparse 1 of V encoding
(where V is the vocabulary size) into a low-dimensional vector space. This
representation is usually obtained through a hidden layer in a neural net-
work trained over a large corpus, with popular implementations such as
Word2Vec (Mikolov, Ilya Sutskever, et al. 2013) and GloVe (Pennington,
Socher, and Manning 2014). The advantage of this kind of representation
is the fact that semantically close words are also close in euclidean or
cosine distance in the lower dimensional vector space. The vector repre-
sentations of each word in a text can then be combined to obtain a fixed
size representation of the whole text, which then is used as input by the
classification step. Subsection 3.3.2: Word Embeddings will provide more
details of these methods.

Many works based on Deep Learning techniques such as Convolutional
Neural Neteworks (CNNs) (Lecun et al. 1998; Kim 2014) were trained on
top of pre-trained word embeddings with very good results in standard
text classification datasets. These architectures try to create hierarchical
representations of texts inspired by the success in their application to
computer vision.

Other related approaches are based on Temporal Convolutional Neu-
ral Networks (Zhang and LeCun 2015; Zhang, Zhao, and LeCun 2015;
Conneau, Schwenk, et al. 2016) have been trained from scratch without
any need of previous word representations, just from raw character or
word representations. This approach is based on the fundamental idea of
CNNs that consider feature extraction and classification as a one single
problem. Subsection 2.2.1: Convolutional Neural Networks will provide
an introduction to CNNs for text classification.

However it is still not clear what is the best way to combine the indi-
vidual word embeddings to obtain a representation of a whole text which
usually has complicated syntactic and semantic relations. Some works
such as Recursive Neural Networks (RNTNs) (Socher et al. 2013) propose
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to use external resources such as parsers to define the order in which the
word embeddings of a text are combined to obtain the whole represen-
tation. The disadvantage relies in the need of these kind of resources
for different languages and domains. Subsection 2.2.2: Recursive Neural
Tensor Networks will provide more detail about this implementation.

Finally, one of the most promising approaches in deep learning ap-
plied to NLP comes from the Recurrent Neural Networks (RNNs) (Elman
1990). The advantage of this approach is the fact that sentences can be
represented as a sequence of tokens (either characters or words) which
allows modeling the way text is written and read.

Some examples of this approach are presented in (Tang, Qin, and T.
Liu 2015) where word embeddings are first combined to form a sentence
embedding (either using CNNs or LSTMs (Hochreiter and Schmidhuber
1997)), then the sentence representation is fed into a recurrent neural net-
work using GRU units (KyungHyun Cho et al. 2014). Finally the recur-
rent network hidden state is used as a representation of a variable length
text which is fed into a softmax classifier. Xiao and Cho also provide
an implementation combining recurrent and convolutional networks but
this time, inputing the text at a character level (Y. Xiao and Kyunghyun
Cho 2016). Subsection 2.2.3: Recurrent Neural Networks will provide an
introduction to RNNs for text classification.

However, one big problem that all of these solutions (the classic ap-
proaches and deep learning approaches) have in common is that they re-
quire large amounts of labeled training sets which in practice constitutes
a bottleneck for practical applications. A considerable amount of human
labor is required to manually tag the training sets.

As a result, it is desirable to have supervised learning models that
require smaller amounts of tagged data. A lot of research has been done
pushing the boundaries of text classification accuracy on full training sets,
but few has been done on small datasets.

1.2 Objectives

In this work, we will research and compare supervised learning models
for text classification that are data efficient, i.e.: require small amounts
of tagged data to achieve state of the art performance levels. In partic-
ular, we will study Transfer Learning (Pan and Yang 2010), a method
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within machine learning that allows to reuse or transfer previous knowl-
edge learned on a task A to train supervised learning models on another
task B similar to A. Transfer learning has proven to be very effective in
computer vision (Oquab et al. 2014) to create supervised models that are
data efficient, that is, require lower amounts of tagged images.

Just for the purposes of comparison of different transfer learning ap-
proaches, we will focus on opinion polarity classification, a sub problem
within text classification, also known as Sentiment Analysis (Pang and Lee
2008b) that assigns polarity to an opinion (positive or negative) depend-
ing on the mood of the opinion holder about a particular topic. Polarity
classification is a very complex and well defined problem where multiple
tagged datasets in different domains exist, thus being a very good field of
research for our comparison in data efficient models for text classification.

The following are the objectives proposed in this thesis:

• Show that transfe r learning approaches can be used in text clas-
sification to obtain data efficient models, that is, models that re-
quire less tagged training examples than models that do not leverage
transfer learning (learn text representations from scratch).

• Compare different data efficient models for text classification par-
ticularly for polarity classification in sentiment analysis.

1.3 Contributions

The contributions of this work are the following:

1. A deep analysis of different transfer learning techniques for text clas-
sification applications have been performed. It includes an overview
of the evolution and state of the art of deep learning techniques,
presenting the fundamentals and practical implementations of text
classification that leverage deep learning and transfer learning tech-
niques.

2. We showed that transfer learning approaches can be used for text
classification in order to obtain models that are more data efficient
(require smaller training sets) than models that learn text represen-
tations from scratch.
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3. A set of 6 different datasets to train and test text classification mod-
els in different domains were gathered. This provides easy access to
other works that need to use datasets to reproduce this benchmark
or work on new implementations.

4. A Python 3 code base was generated1 with the benchmarks that
reproduce the implementations described. This is very important
to actually test and compare the implementations.

1.4 Document Organization

The document will be organized as the following:

Chapter 2: Deep Learning Background will provide a theoretical back-
ground to basic concepts of deep learning, applied in particular to text
classification. These concepts will be necessary to understand the partic-
ular implementations that will be compared in the rest of the document.

Chapter 3: Deep Learning for Text Classification will provide a de-
scription of the particular deep learning implementations that will be com-
pared to solve polarity classification in sentiment analysis. A classic su-
pervised machine learning model based on a logistic regression and bag of
n-grams will be used as baseline. Two important concepts will be also in-
troduced: text vectorization and transfer learning. The rest of the models
used are based on deep learning approaches with different architectures,
ways to represent text and transfer learning techniques.

Chapter 4: Datasets and Results will describe the datasets that will
be used for the experimentation. These datasets represent different do-
mains such as politics, product reviews, hotel reviews, restaurant reviews
between others. This way we will compare the performance of each model
in different situations. The results obtained in the benchmark will be then
analyzed both at a quantitative level based on classic machine learning
performance metrics and a qualitative level analyzing particular examples
and corresponding results. As mentioned before, the data efficiency of
each model will be the top metric of comparison.

Chapter 5: Conclusions will state conclusions obtained, challenges and
future paths of research.

1https://github.com/raulgarreta/data-efficient-text-classification
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Chapter 2

Deep Learning Background

In this chapter a brief introduction to neural networks and deep learning
will be provided. These concepts are then used as part of the implementa-
tions described in Chapter 3: Deep Learning for Text Classification. First
the basic concepts of neural networks will be introduced in Section 2.1:
Basic Concepts. Then the general architectures of neural networks will be
described in Section 2.2: Neural Architectures for Text Classification, with
the particular application for text classification and sentiment analysis.

2.1 Basic Concepts

In the last decade, deep learning has become the main Machine Learning
algorithm for many artificial intelligence problems, including computer
vision and natural language processing. This approach has pushed the
state of the art and obtained the best performance metrics in many fronts,
including text classification.

However, it is worth mentioning that the base theory behind it has
been developed decades ago, under the name of Artificial Neural Networks.
This new name is not just a rebranding, but a new rise in neural network
algorithms thanks to new research, architectures, tools, data and hardware
that now allow researchers to solve complex problems that previously have
been almost impossible.

A brief overview of the theory of deep learning will be provided. A
minimal knowledge in machine learning is required to understand the
concepts.
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2.1.1 Neural Networks Theory

Artificial Neural Networks (ANNs) theory was inspired by the human
brain, so it is important to have a little background on how the brain
works to understand how this theory started.

By the end of the nineteenth century, the existence of nerve cells and
their interconnection in functional structures was widely accepted. Nerve
fibers were known to conduct electrical impulses and by the end of 1930,
excitation and inhibition of individual cells was demonstrated. McCullock
and Pitts (McCulloch and Pitts 1943) made the observation that, like
propositional logic can be true or false, neurons can be on or off, either
if they are firing a signal or not.

The brain works based on billions of neural cells (neurons) that are
interconnected to form higher level structures. Back in 1943, Warren
McCulloch and Walter Pitts (McCulloch and Pitts 1943) created the first
computational model of an artificial neural network. This work was an
important landmark in science that drafted the initial theory not only for
artificial intelligence, but also for neuro science and cognitive science. It
described a model that found common elements between how animals and
machines work.

The theory basically states that small units of processing (neurons)
activate, that is, return an output based on their inputs. These outputs
can then be inputs (excitatory or inhibitory) to other neurons.

There are two key elements in the McCullock and Pitts work:

• The neurons are interconnected in networks to build higher com-
plexity structures.

• The logical model of activation of neurons.

The result is a symbiosis of elements retrieved from mathematics and
physiology, inspired by computational theory (Turing 1936), where a com-
putation can be described as a set of units of computation that are indi-
visible.

2.1.2 Biological Neurons

The theory of McCullock and Pitts assumes that first, the nervous sys-
tem is a network of neurons, each having a soma and an axon, and that
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synapses (connections) are always between the axon of one neuron and
the soma of another. Their second assumption was that at any instant
the neuron has some threshold, which excitation must exceed to initiate an
impulse. A third important assumption was that excitation occurs mainly
from axonal terminations to somata, and inhibition involves the preven-
tion of the activity of one group of neurons by concurrent or antecedent
activity of a second group. See Figure 2.1 for a reference on the general
structure of a biological neuron. These were all generally accepted as-
sumptions about neurons gained from decades of empirical investigation.

The theory presupposed that the activity of a neuron is an all-or-none
process: a neuron either fires or it does not. McCulloch and Pitts initially
presupposed that the structure of the net does not change with time.
Then the authors admitted that these were both abstractions: that the
activity of neurons could empirically be shown to be more continuous than
discrete, and that phenomena such as learning could alter the structure of
a net permanently, so that a stimulus which would previously have been
inadequate is now adequate.

Figure 2.1: Graphical representation of a biological
neuron.

It is worth mentioning the following facts (Mitchell 1997) to have a
reference of the order of magnitude in which the human brain works:

• The human brain is estimated to have approximately 1011 neurons
densely interconnected (on average, each neuron is connected with
104 neurons).
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• The fastest neuron activation times are around 10−3 seconds, (quite
slow compared with computer times (10−10 seconds).

• Humans are able to make complex decisions surprisingly quickly.
For example, it is estimated that a person can recognize the face of
his mother in around 10−1 seconds.

All the previous facts can be useful to provide raw conclusions that can
be helpful in how to model problems with artificial neural networks. For
example, if we divide the average time required by a human to recognize
a familiar image by the average activation time of a neuron, that means
that there must be at most a few hundred steps or layers of neurons to do
all the processing. From this observation, we can conclude that the bio-
logical neural system must have high parallel processing and distributed
representations. These simple but powerful observations have been one
of the many guidelines used in artificial neural networks to try to build
architectures that can solve complex problems like image processing or
natural language processing.

2.1.3 Artificial Neurons

As we have described in the previous section, biological neurons can be
roughly viewed as small units that receive inputs into their dendrites,
and depending on that particular input (which of them are activated and
which are not) and their internal state, they can activate their output by
triggering a signal on their axon.

Artificial neurons were conceived (initially) as a mathematical struc-
ture to model this behavior of biological neurons. As with biological
neurons, there are different types of artificial neurons which are modeled
by different mathematical functions. But in general, an artificial neuron
takes a set of inputs and produces an output depending on the particular
mathematical transformation that it implements.

The usual transformation in an artificial neuron takes the inputs and
performs a weighted sum which is then passed through a nonlinear func-
tion commonly known as the activation function:

y = φ(
m∑
j=0

wjxj)
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where w is a vector of weights, x the input vector and φ the activation
function.

Here is a simple example: if we have a neuron that has 3 inputs and
has only one output, then we will have 3 weights (one for each input, i.e.
m = 3). If the input values are x0 = 2, x1 = 0, x3 = 5, with weights
w0 = 1, w1 = 7 and w2 = −3 respectively, then the linear combination
would be:

x.w =

x0 × w0 + x1 × w1 + x2 × w2 =

2× 1 + 0× 7 + 5×−3 =

2 + 0− 15 =

−13

Then the activation function φ would be evaluated over the result of
the linear combination (in our example −13). The output of the neuron
would be φ(−13).

This function can be represented using linear algebra as the dot prod-
uct of vectors:

y = φ(w · x)

Where vectors w and x which contain the components of the weights
and inputs respectively are combined with the dot product and then passed
through the activation function.

There are many ways to graphically represent artificial neurons as
pictured in Figure 2.2 and Figure 2.3.

The activation function φ usually has the following properties:

• Monotonically increasing: the magnitude of the output increases
as the magnitude of the input increases.

• Continuous: roughly speaking, small changes in the input produce
small changes in the output.
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Figure 2.2: Graphical representation of a artificial neu-
ron.

Figure 2.3: Simplified graphical representation of a ar-
tificial neuron.
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• Differentiable: that way its derivative can be calculated. In par-
ticular with ANNs we want functions where the derivative not only
exists, but it is also easy to compute.

• Bounded: a function that returns an output that can be bounded,
like squashing all the input in a bounded range, e.g.: Sigmoid func-
tion takes all the real number space into a number between 0 and
1. Tanh function does the same but between −1 and 1.

There are a handful of activation functions that meet most of the
above properties and are commonly used in neural networks:

• Linear

• Sigmoid

• HardTanh

• Sign

• Hyperbolic Tangent (Tanh)

• ReLU (Rectified Linear Unit)

Figure 2.4 shows a graphical representation of each one.

Figure 2.4: Activation functions commonly used for ar-
tificial neural networks.
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2.1.4 Artificial Neural Networks (ANN)

Individual neurons can represent certain basic functions, and training an
artificial neuron is equivalent to a logistic regression, a model widely used
in machine learning. But when combining artificial neurons (connecting
outputs of neurons to inputs of others) we can represent a large variety
of functions.

Figure 2.5 shows the graphical representation of a neural network with
a very popular architecture known as feedforward, also known as dense
network.

Figure 2.5: Graphical representation of an artificial
neural network.

This particular network has:

• An input vector x of three components (the input layer).

• Two hidden units: neurons that are positioned in a hidden layer after
the input layer and before the output layer. The hidden neurons are
fed by the outputs of the input layer (the three inputs).

• A single output neuron (the output layer) which is fed by the outputs
of the hidden layer (the outputs of the two hidden neurons).

To picture how this network could be used in practice, supposed we
wanted to detect sentiment in text, we could use this network in the
following manner:
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• The inputs could model if a particular word appears or not in a text.
So we may have one input for each possible word in the dictionary,
where 1 means that the word is present and 0 that it is not. That
is the classical implementation of the bag of words representation of
texts.

• The output could model if the text has a positive (the network
returns 1) or negative sentiment (the network returns 0).

Even though this kind of implementation have a very naive assumption
(the text is represented as a bag of words when clearly semantics in text
has a sequential and ordering nature), it has been very useful in practice
as it works surprisingly well. One of the reasons is that, since the model
is very simple, it requires few parameters to be adjusted and as a result,
few training examples.

In the following sections more complex architectures and models will
be presented. But before diving in more complex architectures, the basic
notions of the learning algorithms for neural networks will be introduced.

2.1.5 Machine Learning and Neural Networks

Until now, the structure of neurons and neural networks have been re-
viewed, but technically nothing used machine learning. The initial models
proposed by McCulloch and Pitts, where just to explain their structure, a
static structure that does not change over time. But as with real biologi-
cal neural networks, the interesting part comes when connections between
neurons can dynamically change, adapt and improve to create the desired
output given a particular input. And that is when machine learning comes
into the show.

The objective now is to describe the process in which the learning
algorithm will adjust the weights of the network (the w vectors) so that for
every particular input in the training set, the desired output is obtained.

Before diving into how to do that with neural networks, first under-
standing a simpler case is important: adjusting the weights of a single
artificial neuron. After that, describing how to generalize the process
with a complete network will be easier.
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Learning weights of a single neuron

There are many ways to implement a learning algorithm that, starting
from a set of training examples, adjust the weights of an artificial neuron
to get the desired output. The basics of most of them consist in the
following steps:

1. Begin with an initial set of weights (e.g.: start with random weights).

2. Input an example into the unit and obtain the resulted prediction.

3. Adjust weights appropriately whenever the output is different to the
expected result.

4. Repeat steps 2 and 3 as many times with all the training set (one
epoch) as many times as necessary until the outputs for every train-
ing example are correct.

The variations of the learning algorithms mainly differ in how they
adjust the weights to correct the output of the neuron:

w ← w + dw

Perceptron Training Rule

The Perceptron Training Rule is a very simple rule to adjust the weights
to obtain the desired result given a particular input. This rule makes the
weight learning with the following equation:

δw = α(t− y)x

Where t is the desired output (target output) and y is the current
output generated by the neuron when the vector x is used as input and
the vector w as weights. The α parameter is a constant known as the
learning rate, which is used to adjust the magnitude of the changes made
to the weights. Usually it is a small number and typically decays as the
process iterates over new more training examples.

This rule adjusts the weights in the correct direction in order to correct
the errors in the outputs that the unit produces comparing to the desired
output. It is pretty intuitive and it is demonstrated to converge in a
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finite number of iterations to a set of weights that make the unit correctly
classify all the training examples, provided that the instances are linearly
separable.

The problem with this rule is that it may not converge when the
training examples are not linearly separable, which is a very common
situation. This is where the gradient descent method comes in.

Gradient Descent

The advantage of gradient descent is that if the training examples are
not linearly separable, the rule still converges to the best possible approx-
imation to the desired output. The basic concept behind the gradient
descent is that it searches the best combination of weights in the possible
combination space (hypothesis space) by using the gradient of a function.

Gradient descend is basically a method that searches for the minimum
in a function. In our case, the minimum in the error of the output of an
artificial neuron by minimizing the squared error between the returned
and the desired output for every example in the training set. This can be
represented with the following equation:

J(w) =
1

2

∑
d∈D

(td − yd)2

Where D is the set of training examples, td and yd are the target and
obtained outputs for the d-th training example. The way to find the min-
imum of a function (in our case the minimum of the error function) is to
calculate the gradient (the derivative in each dimension). After having
the gradient, the steepest descent along the error surface towards to the
minimum can be found. This is why the rule’s name is gradient descent.

The updating rule thus would be:

w = w − α∇J(w)

∇J is a vector whose components are the partial derivatives of the
error function J respect to each of the vector w (weights) components. α
is again the learning rate and plays the same role as with the perceptron
rule, it moderates the modifications made to the weight vector.
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Figure 2.6: Graphical representation of gradient de-
scent algorithm with a single scalar weight parameter w.
The updates made to w are made in the opposite direc-
tion of the gradient, thus minimizing the error function

J

The reason why the activation function must be differentiable (i.e. the
derivative can be calculated) is mainly to be able to calculate the error
derivative with the chain rule. Besides being able to get the derivative
of the activation function, it is desired also that it can be calculated effi-
ciently because of practical reasons. It will be computed on every example
and every iteration (and every unit when working with networks) of the
training process. That means a large amount of time, so optimizations in
this calculation, have a lot of impact on the total training time.

Learning weights of a Network: Backpropagation

As stated before, single units can only represent linear decision surfaces:
they can perfectly separate only linearly separable training sets. However,
multilayer neural networks can represent nonlinear functions (provided
that nonlinear units are used) and this is why usually networks of artifi-
cial neurons are used. Nonlinear functions can solve much more complex
problems, e.g.: detect sentiment in text.

In order to train a multilayer network some generalization of the gra-
dient descent rule must be made, that is exactly what Backpropagation
algorithm (Rumelhart, Hinton, and R. J. Williams 1988) is about.

The backpropagation algorithm adjusts the weights in a neural net-
work in order to minimize the error between the obtained output and the
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target output of the network when feeding the network with its inputs.

The main differences are:

• As neural networks can have multiple outputs, the minimization can
be calculated, for example, by taking the sum of the errors of all the
outputs of the network.

• Weights of all the units in the network must be adjusted (it is a
much larger search space).

• The error surface can have multiple local minima, so it is not guar-
anteed that the algorithm converges to the global minima.

However, despite these difficulties, backpropagation obtains very good
results in many practical applications, and it is the base of all neural
network learning algorithms.

The process is similar as with a single unit:

1. Initialize the weights of all the units in the network (e.g.: with
random values).

2. Iteratively input every training example to the network, get the
result, calculate the error and compute the gradients (with back-
propagation) to update the weights in all the units of the network.

3. Repeat the step 2 until the error reduces and you obtain the desired
outputs.

The algorithm works very similar to the gradient descent, but has some
differences. The output units are the only where the error can be directly
calculated. In the case of hidden units, the errors in the network’s output
must be propagated to the outputs in the internal units. Intuitively, the
error in the hidden unit output is calculating by summing the error for
each of the output units that the hidden input influences (the output units
that have as input the output of the hidden unit). That error is weighted
by the weight between the connection of the hidden and the output unit.
The same process as before can be repeated with lower hidden units,
this time the error in an upper hidden unit will be used to propagate
the error to a lower hidden unit. This is the rationale behind the name
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“backpropagation”, we propagate the error from the output through the
hidden layers back to the input units.

2.2 Neural Architectures for Text Classification

So far the basic principles of artificial neural networks and the most classi-
cal feedforward architecture have been shown. Part of the success in new
approaches in deep learning are related to the use of new advanced ar-
chitectures: the Recurrent Neural Networks and the Convolutional Neural
Networks. In the following subsections the most important architectures
will be described in the context of text classification.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (Lecun et al. 1998) are one of the
most popular deep learning architectures, very frequently used in image
processing, but also very useful for NLP tasks.

The most representative approach to sentence classification, in partic-
ular for sentiment analysis using convolutional networks is shown in the
Figure 2.7 by (Kim 2014):

Figure 2.7: Graphical representation of a convolutional
neural network for text classification.

This architecture is a variant of (Collobert, Weston, et al. 2011) where,
each word is represented as a k-dimensional vector. Then a sentence of
length n words is encoded as the concatenation of n word vectors.
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One layer of convolution is trained on top of word vectors previously
obtained with unsupervised techniques (Mikolov, Ilya Sutskever, et al.
2013). The vectors are a result of a neural network trained over a large
dataset (100 billion words from Google News).

This approach reinforces the idea that pre-trained vectors can be
reused as feature extractors for various classification tasks in order to
reduce the amount of labeled training examples, which is one of the ob-
jectives of this thesis.

The model obtains further improvements in performance by learning
“task specific” vectors: word vectors that are adjusted as part of the su-
pervised learning process, besides the static word vectors obtained by
(Mikolov, Ilya Sutskever, et al. 2013). Thus the name multichannel CNN.

Convolution operations are then applied to windows of h words to
produce a feature map. For example, ci is a feature created that takes
xi : i+ h− 1 word vectors from the input:

ci = f(w · xi:i+h−1 + b)

where w are the weights, b the bias and f the activation function.
This filter is applied to each possible window of words in the sentence to
produce the feature map:

c = [c1, c2, ..., cn−h+1]

with c ∈ Rn−h+1.

Then a max over time pooling operation is applied over the feature
maps. Basically it takes the maximum value of c from a particular set of
filters. This way the max pool captures the feature with the highest value
for each feature map. It also deals with the variable sentence length: a
variable length input is transformed to a variable size feature map with
the convolutional filters and then the max pooling transforms the variable
size feature map into a fixed size vector.

Multiple filters (with varying window sizes) are calculated to form
multiple feature maps. The result of the max pooling layer (which returns
a fixed size vector) is finally connected with a fully connected softmax
layer to produce a probability distributed set of labels (in our case, the
sentiment labels).
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The model also employs regularization by adding a dropout layer just
after the feature maps. This prevents co-adaptation of hidden units, also
known as overfitting.

2.2.2 Recursive Neural Tensor Networks

(Socher et al. 2013) presented a work that is one of the most important
references in modern sentiment analysis with machine learning. The paper
is important for two reasons: designing an advanced deep learning method
for sentiment analysis and also creating a sentiment dataset frequently
used by other research papers.

It proposes an advanced way to represent meaning in sentences, the
Recursive Neural Tensor Networks (RNTNs). The motivation starts on
the fact that even though word embeddings have been very useful in rep-
resenting the semantics of words, they cannot express the meaning of
sentences an their compositionally.

This work creates a dataset, the Sentiment Treebank that will be used
in this thesis as part of the benchmark. It has sentences with their cor-
responding parse tree labeled with the partial sentiment. This dataset
has been very useful to do compositionally analysis: how the sentiment
of each part of the structure of a sentence affects the overall sentiment of
the sentence.

The model first uses a parser to obtain the structure of the sentence.
The nodes of the sentences are vectors that represent words (leaves of the
tree) and partial representations of the sentence (internal nodes). Then
a neural network is trained to compose two vectors (inputs) that could
be a single word or an internal node into a new vector (internal node).
The learning system then has to transform the last internal representation
vector into the sentence sentiment with a softmax classifier. Besides, each
node is trained with a softmax classifier as the sentiment of each of the
subtrees was also labeled. Figure 2.8 shows a graphical representation of
this model.

The RNTN tries to model the compositionally of sentiment based on
the parsing trees. In the moment of publication, it outperformed all pre-
vious methods.

No further details on the implementation will be provided, since it can
be conclude that the model has some practical drawbacks:
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Figure 2.8: Graphical representation of a Recursive
Neural Tensor Network. A parser is used to establish
the order in which the word vectors are combined for the

whole sentence (Socher et al. 2013).

• Requires the text to be parsed, which means that it requires extra
resources: a parser for the particular language, which is usually
something expensive to create.

• Requires a labeled training set not only with the sentiment at the
sentence level, but on each of if subtrees obtained in the parsing
tree. Again, something expensive for practical purposes.

2.2.3 Recurrent Neural Networks

One of the main constrains of the dense feedforward networks and the
convolutional neural networks is that they operate over a fixed size input.
If a variable size input, such as, for example, text, has to be processed,
first some kind of transformation must be made before in order to turn it
into a fixed size vector.

Moreover, these kind of networks have a fixed set of computations on
the input, which intuitively would be a constraint for variable length in-
puts that may require a variable amount of computations to be processed.

Lastly, intuitively when a person reads a text, it does it in sequence,
where previous words (or characters) affect the meaning of the following
elements in the sequence: the reader has memory of the sequence and
ordering affects the result. This is another point where dense feedforward
and convolutional networks are not able or struggle to represent.
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At the end of the day, using these kind of architectures particularly
in text processing, where the nature is to have a variable length sequence
implies a large limitation. These limitations are then translated in naive
assumptions like bag of word representations to name a very known im-
plementation.

Recurrent Neural Networks (RNNs) (Elman 1990) overcome all these
restrictions and this is probably the reason why they are having significant
success in NLP applications.

The fundamental property that RNNs have is the possibility to have
a network with loops Figure 2.9. These loops connect the state of the
current sequence input with the state of the same network obtained after
consuming all the previous elements in the sequence.

Figure 2.9: Graphical representation of RNN with a
loop (Olah 2015).

The unrolled version of this graphical representation is the following:

Figure 2.10: Unrolled graphical representation of a
RNN. Blue circles are input vectors, green rectangles are
RNN hidden states and purple circles are output vectors

(Olah 2015).

In the notation showed in Figure 2.10, t represents the timestep; in the
case of text, if we consume characters, the first character x0 will be the
input at t = 0 (the first character in the sequence), x1 the input at t = 1

(the second character), etc. In the same way, the network will produce an
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output ht at each timestep t and have an internal state at each timestep
t.

Figure 2.11 shows a toy application of a RNN that could be trained
as a character level language model: a model that given a sequence for
characters returns a probability distribution of the next character.

Figure 2.11: Graphical representation of a RNN for
character level language model (Karpathy 2015).

In this example (Karpathy 2015) the RNN observes the first character
in the sequence h represented by the column vector (1, 0, 0, 0). The output
of the network at that timestep produces an output vector that represents
the probability distribution of the next character in the sequence. In
this example assigns 2.2 to letter e, −3.0 to l, and 4.1 to o. Since the
training examples is the sequence hello, the correct character output in
this timestemp should be e. The learning algorithm then would adjust
the weights in order to increase the probability of this output.

The process is repeated after inputing every character in the sequence:
from the current state (after inputing the first n characters) output the
next character.

The RNN network is composed of the same artificial neurons as de-
scribed in previous sections, so the same bakpropagation algorithm can
be used to adjust the corresponding weights to obtain the desired outputs
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given a training set.

In the previous example, after training the RNN model, a higher num-
ber in the component associated to the letter e should be seen after in-
putting the letter h.

Another important advantage of RNNs is the fact that they are able to
map variable length inputs into variable or fixed length outputs as shown
in Figure 2.12, thus the reason they are very useful for NLP applications.

Figure 2.12: Graphical representation of RNNs. Red
rectangles are input vectors, green rectangles are RNN
hidden states and blue rectangles are output vectors

(Karpathy 2015).

LSTMs

The Long Short Term Memory networks (LSTMs) (Hochreiter and Schmid-
huber 1997) are a special kind of RNN that is shown to be more efficient
in practical applications. Almost all the current state of the art results
that involve RNNs are implemented using LSTMs.

The main advantages of standard RNN model are their capability of
connecting previous elements in the sequence to output the correct pre-
diction in the current element. Sometimes the connections are made with
elements close to the current timestep, for example, in the sentence:

The monitor has a good brightness.

The word birghtness would be predicted because of the previous inputs in
the sequence, the words monitor and good would give the context that the
writer is talking about a feature of a monitor. These words are relatively
close to the current timestep.
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Sometimes the connections must be made with longer distance depen-
dencies, e.g.:

Last week I bought a monitor at BestBuy store, it’s a little bit expensive
but it has good brightness.

Here for example, the last word can be inferred to be a feature/characteristic
since the previous words has a good suggest it. But in order to predict
that it is a feature of a monitor, a connection with an element longer be-
fore that word must be made (the word monitor at the beginning of the
sentence). Unfortunately in practice, this connections with long gaps are
difficult for vanilla RNNs to learn.

This is where LSTMs can help since they were particularly designed to
overcome the long-term dependency problem. LSTMs have the capability
of remembering information for longer periods of timesteps.

The LSTM has the same loop recurrency, but it substitutes the single
layer of tanh units with a more sophisticated 4-layer structure that gives
the ability to remember or forget previous features of elements in the
sequence.

Figure 2.13: Internal structure of a RNN (Olah 2015).

The core structure within an LSTM is the cell state, a vector that
stores a numeric representation of the current state of the network. In
the last example, one of the components of the cell state could store if the
subject is a monitor or not.

The four internal layers, are in charge of learning how to modify the
cell state based on the current state, the previous output and the current
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Figure 2.14: Internal structure of an LSTM (Olah
2015).

input. This is made with:

1. A forget gate layer that learns how to decide which components
of the current cell state are kept and which are forgotten. This is
implemented with a sigmoid layer that returns a number between 0
(forget) and 1 (keep) for each component of the cell state based on
the previous output and the current input.

ft = σ(Wf · ht−1, xt + bf )

2. An input gate layer that learns to decide which components of
the cell state will be updated:

it = σ(Wi · ht−1, xt + bi)

3. A tanh layer that learns to create a new values to be added to the
cell state:

Cst = tanh(WC · ht−1, xt + bC)

With these new values, the cell state is updated:

Ct = ft ∗ Ct−1 + it ∗ Cst

4. Finally the output layer that learns to decide which will be the
output: which of the current cell state components will be used as
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outputs. A tanh function is applied in order to get values between
-1 and 1:

ot = σ(Wo · ht−1, xt + bo)ht = ot ∗ tanh(Ct)

GRUs

There are many variations of the LSTM, one of the most notable are the
Gated Recurrent Units (GRUs) (KyungHyun Cho et al. 2014). The most
dramatic changes are the fact that they combine the forget and input gate
layers into a single update gate layer. That means that the unit forgets
only when it is going to input new values to the cell state. This has also
the advantage that only one layer needs to be learned instead of two. The
GRU also merges the cell state and the hidden state (output) between
other modifications. This model is a simpler version of the LSTM an
recently has gained a lot of popularity.

Figure 2.15: Internal structure of a GRU (Olah 2015).

Encoder-Decoder Models

Encoder-Decoder models (Ilya Sutskever, Vinyals, and Le 2014; Kyunghyun
Cho et al. 2014) for RNNs is a particular architecture designed to address
sequence to sequence problems such as language translation, i.e.: how
to translated an arbitrary length input sequence into an arbitrary length
output sequence. As a result they are of particular interest for this work
since they are a very useful representation to model text sequences.

Figure Figure 2.16 shows a graphical representation. At a higher level
the encoder-decoder model is composed by two sub-models: the encoder
model which is in charge of encoding the input sequence X into a vector
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C called context and a decoder model that takes the context vector C and
decodes it into an output sequence y. Note that the input sequence X
could be an arbitrary length sequence of size T (for example: the sequence
of words in the sentence "I like oranges", T = 3) and the output sequence
y of size T ′ (for example: the sequence of words in the sentence "Me
gustan las naranjas", T ′ = 4), where T can be different from T ′. Note
also that the vector C is a fixed length vector, that is, the encoder is
able to encode a variable length sequence into a fixed length vector as
described in (Kyunghyun Cho et al. 2014).

Figure 2.16: Graphical representation of an Encoder-
Decoder model (Kyunghyun Cho et al. 2014).

There are different flavors on how to implement the encoders and
decoders, in the one from (Kyunghyun Cho et al. 2014) both y(t) (the
output at step t) and h(t) (the hidden state at step t) are conditioned on
y(t − 1) (the output of the previous step), h(t − 1) (the hidden state at
the previous step) and the context vector C of the input sequence.
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Attention Models

Attention Models (Bahdanau, Kyunghyun Cho, and Bengio 2014) are an
extension of Encoder-Decoder models that were proposed to try to over-
come an inherent limitation of the encoder-decoder: they have to encode
a variable length sequence into a fixed size vector. Intuitively, if the se-
quence is very long (e.g.: long sentences, paragraphs or entire documents),
it will be very hard for the encoder to compress the representation of the
input sequence.

Another problem of recurrent models (even using LSTMs and GRUs
optimizations) is the fact that it has a hard time to remember useful
inputs that are needed at long range distances in the output. Figure 2.17
shows an example where the last word in the output has its translation
far away in the second word of the input. This dependency is very hard
to remember.

Figure 2.17: Example of long-range dependency that is
hard for the classical RNN, even with LSTMs or GRUs

to remember.

The attention model was developed in the context of machine transla-
tion where the authors were interested in solving the alignment problem:
identify which parts of the input are relevant to each of the words of the
output. The model then learns to jointly translate and align at the same
time. It learns the output sequences but also learns to search in the input
sequence. As a result, a particular word in the output is predicted from
the previous predicted words and also the entire input sequence.

Intuitively, the attention mechanism allows the decoder to "look back"
at the entire sentence and selectively extract the information it needs
during decoding.

In the paper from (Bahdanau, Kyunghyun Cho, and Bengio 2014)
shown in the graphical representation in Figure 2.18, the attention model
has a bidirectional recurrent network to process the input sequence. This
gives an additional advantage where the input is processed both forward
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Figure 2.18: Graphical representation of an Attention
Model (Bahdanau, Kyunghyun Cho, and Bengio 2014).
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and backwards, which intuitively is an advantage in cases where not only
the last words in a sequence are more important than the first words in
order to start predicting the output sequence.

The attention model does not just send the last hidden states of the
input sequence into the decoder as a context for the decoder (as in the
classic encoder-decoder model), but it also sends a weighted combination
of all the hidden states in the input sequence. Those weights are calculated
based on scores e learned jointly as part of the model learning process. It
basically learns a weighting function a (alignment function) that gives a
score for each of the pairs of output steps and input steps.

et′t = a(ot′ , ht)

For example et′t would be the score or attention weight for the input
at step t in order to predict the output at step t′. The alignment function
a can be modeled in multiple ways, but originally it was modeled with
a one-layer feedfordward neural network with a tanh transfer function.
Then a softmax function is used on top of the scores in order to normalize
and be treated as probabilities. The result is the actual attention weights
at′t:

at′t =
et

′t∑T
i=1 e

t′i

Finally the particular context vector c for an output step t′ is calcu-
lated as the weighted sum of hidden input states:

ct′ =
T∑
i=1

at′ihi

At each output step t′, the decoder will take the corresponding context
vector ct′ and the output hidden state st′−1 at the previous step in order
to predict the output yt′ .

It is interesting to visualize the attention matrix to introspect how the
model pays more attention on particular input words to predict particular
output words. Figure 2.19 shows an example of the generated attention
matrix for a model that translates an input sequence (a sentence in En-
glish) into an output sequence (a sentence in French).
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Figure 2.19: Example of the values of the attention
matrix of the translation between a sentence in English
(x axis) into a sentence in French (y axis) (Bahdanau,

Kyunghyun Cho, and Bengio 2014).
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2.3 Conclusions

In this chapter a brief introduction to neural networks and deep learning
has been provided. The most important concepts of neural networks were
introduced and general architectures applied to text classification were
reviewed. This will be helpful when reviewing the particular implementa-
tions introduced in Chapter 3: Deep Learning for Text Classification.
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Chapter 3

Deep Learning for Text
Classification

In this chapter the particular implementations for text classification that
are used in this thesis will be described. The way the different imple-
mentations differ are basically in the way they do the text vectorization,
while the classification stage implementation is exactly the same and will
be described in Section 3.5: Classification Model.

The different text classification implementations will be then com-
pared in Chapter 4: Datasets and Results.

As stated in Chapter 1: Introduction, the motivations and objectives
of this thesis are to compare different text classification models that are
data efficient, i.e.: that require small amounts of labeled training examples
to achieve state of the art performance. In particular, the models will be
compared for polarity classification in sentiment analysis.

This chapter is organized in the following way:

Section 3.1: Text Classification Modeling presents how the text clas-
sification problem is modeled, introducing the two fundamental stages of
text classification: text vectorization stage and the supervised machine
learning classification stage.

Section 3.2: Transfer Learning introduces a formal definition of trans-
fer learning that will be used to inject previous learned knowledge into
the system.

Section 3.3: Text Vectorization provides an introduction to the clas-
sical text vectorization techniques, including Subsection 3.3.1: Bag of N-
grams, Subsection 3.3.2: Word Embeddings. In particular bag of n-grams
will be used as the baseline for the comparisons.
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Section 3.4: Text Vectorization implementations to be evaluated pro-
vides a description of the different transfer learning based text vector-
ization models and implementations that will be compared in this the-
sis: Subsection 3.3.2: Word Embeddings, Subsection 3.4.2: InferSent,
Subsection 3.4.3: Universal Sentence Encoder (USE), Subsection 3.4.4:
Bidirectional Encoder Representations from Transformers (BERT) and
Subsection 3.4.5: Sentiment Neuron

Since there are multiple deep learning models in the state of the art
to choose from, this thesis will focus on the implementations that:

• Are good representations of the underlying deep learning methods,
e.g.: CNN, RNNs, etc.

• Use representations of text (vectorizations) that could be trained
independently with unsupervised or supervised learning techniques,
thus allowing transfer learning techniques which is one of the moti-
vations of this thesis.

• Have an implementation publicly available, this is necessary to re-
produce the results obtained in the corresponding papers and also
can be reused as part of the benchmark comparison in this thesis.

Finally Section 3.5: Classification Model introduces the machine learn-
ing classification model that will be used on top of the text vectorizations
in order to implement the full text classification model.

It is worth mentioning that all the text classification models compared
(including the baseline) will use the same supervised learning classification
model: a simple linear regression.

3.1 Text Classification Modeling

Typically text classification problems are modeled with two clear stages:

1. Text vectorization stage is in charge of taking the input text and
transform it into a feature vector. This vector is expected to be a
good representation of the text, where each feature should encode
particular and relevant syntactic and semantic characteristics of the
input text. It is usually also desired that the vectorization returns
a fixed length vector, independently of the length of the input text.
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This is very useful for practical purposes (and usually required) for
the classification stage to use as input.

2. Classification stage takes the vector obtained from the text vec-
torization stage and transforms it into the desired output. The
output usually is a finite set of labels that must be assigned to the
text. The output could be single-label when the output should be
just a single label for each input text, or multi-label when the out-
put could return multiple labels for a particular input text. In our
case (polarity classification for sentiment analysis), the problem is
a single-label one: for a particular text, we require the output be
either positive or negative, but not both at the same time.

Figure 3.1 shows a graphical representation.

Figure 3.1: Supervised Text Classification process. (a)
Training process where the feature extractor transfers the
text input into a feature vector. Pairs of feature vectors
and labels are fed into the machine learning algorithm
to generate a model. (b) Prediction process, where the
feature extractor is used to transform unseen text input
into feature vectors. These feature vectors are then fed

into the model, which generates predicted labels.

The way to incorporate previous knowledge into this setup is by using
transfer learning techniques to obtain text vectorizations that add previ-
ous knowledge into the system, the text classification task (target task)
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by transferring a text vectorization learned from another problem (source
task).

Then the classification stage will learn the downstream task (target
task) with a supervised machine learning model that leans from a training
set vectorized with the text vectorization model. The classification will
learn to transform the text vectorization into the sentiment labels (positive
or negative).

By using a text vectorization model that was previously trained in a
source task, the classification stage requires significantly less training ex-
amples to learn the downstream task. Intuitively, the system will use pre-
existing knowledge from the world (encoded in the feature rich text vec-
torization model) thus not requiring to learn that knowledge from scratch.

The reader should take into account that a pre-trained vectorization
model could have been trained with potentially millions of training ex-
amples which could have involved tagging large amounts of training ex-
amples, using large untagged corpuses, and consuming large computation
resources.

On the other end, in a practical setup where we want to train data
efficient models, the order of magnitude of training examples used to train
the downstream task ranges from a just few tens to a few hundreds of
training examples.

The beauty of transfer learning then resides in the fact that the expen-
sive task of training a feature rich text vectorization with large training
costs is made just one time (and will be reused), while the much more
cheaper stage of adjusting the downstream tasks of the classification stage
is done for every time for the particular domain.

3.2 Transfer Learning

Transfer learning also known as domain adaptation is a technique that
has been successfully applied to supervised classification tasks where a
small training set is available (Pan and Yang 2010; Yosinski et al. 2014).
It basically consists in transferring or adapting knowledge from a source
task S into a target task T where a small training set is available, see
Figure 3.2.

In particular, with deep learning applications, transfer learning has
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a direct and intuitive use. If tasks T and S are similar, the knowledge
acquired and represented by network S parameters can be useful for the
task T .

Figure 3.2: Graphic representation of transfer learning
processes (Pan and Yang 2010).

The most common implementation consists in initializing the parame-
ters of the lower layers of a neural network model for the target task with
the parameters of the lower layers of the source neural network. That can
be accomplished if both networks have the same topology.

One of the most successful applications have been in image classifica-
tion where training a network on a large image dataset has been useful
to be transferred to more specific image classification tasks (Krizhevsky,
Ilya Sutskever, and Hinton 2012).

Transfer knowledge usually is performed between two tasks that are
semantically similar, but trained with different datasets. Sometimes the
transfer can also be performed between two semantically different tasks,
but that share the same network topology.

Two main approaches of transfer learning have been developed:

• Transfer learning by parameter initialization: the knowledge
between two tasks S and T is transferred by initializing parameters
in task T with those learned in task S.

• Transfer learning by multi-task learning: the knowledge be-
tween two tasks S and T is transferred by training both tasks simul-
taneously and sharing a common set of network layers (multi-task
learning).



42 Chapter 3. Deep Learning for Text Classification

While in image classification tasks, transfer learning has proven to
show good results, its application to text classification was initially uncer-
tain. Some previous works have tried to apply transfer learning techniques
in the domain of NLP (Semwal et al. 2018; Mou et al. 2016).

Some relevant conclusions have been stated that are relevant to this
thesis:

• The effectiveness of transfer learning in neural networks depends
largely on the semantic similarity between the source and target
tasks.

• Usually the output layers are specific to the task and dataset, and
as a result they are not transferable.

• Word embeddings have been successful transferred between seman-
tically different tasks.

• Transfer learning by parameter initialization and multi-task learning
have both produced comparable results. The combination of both
approaches does not appear to produce additional improvements.

3.3 Text Vectorization

As it was described before, the typical model of text classification is com-
posed by two steps, being the first step the transformation of a text into
a vector, also known as feature extraction or in the particular case of
text classification, text vectorization. The following sub-sections give an
introduction to the typical text vectorization techniques.

3.3.1 Bag of N-grams

The classical way to implement text vectorization is through bag of words.
This algorithm is very simple, efficient and has a surprisingly good accu-
racy in practice.

The bag of words vectorization describes a text by counting the oc-
currences of words in the text. First a finite set of words (dictionary)
is defined. The size of the dictionary will be the size of the vector rep-
resentation of a text where each component of the vector represents the
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frequency of a particular word in the text. Figure 3.3 pictures the bag of
word text vectorization with an example.

Figure 3.3: Bag of words representation (Joachims
1997).

Using the term frequency alone has an important disadvantage: com-
mon words such as a, the, and, etc. will be very frequent but will not add
meaningful information that can be helpful to classify the sentiment of a
text. In order to remove those irrelevant terms, we can use two techniques:

• Stopword filtering: a list of common English words or even the
particular domain of the problem can be defined such us articles or
connectors. Those words are then not considered for the construc-
tion of the vectorization dictionary.

• IDF weighting: the term frequency TF is multiplied by the inverse
document frequency of the term IDF which counts the number of
different texts where the term is present. This intuitively penalizes
a term if it’s too frequent across the text dataset, thus being little
useful to differentiate texts into different classes. This technique
is commonly known as TF-IDF (term frequency inverse document
frequency).

Another important problem with just using isolated words (unigrams)
in bag of words is that words alone do not capture multi-word expressions
since the frequencies are counted not taking into account the word order-
ing. This representation completely ignores the relative position of the
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words within the texts. A very common approach to reduce this problem
is to use n-grams instead of just unigrams. This vectorization method is
know as bag of n-grams. Instead of building a dictionary of words, the
bag of n-grams algorithm builds a dictionary of unigrams, bigrams and
trigrams thus capturing expressions such as “not good”, “very useful”, etc.
It’s a very simple but effective way to provide word ordering and context
on the vectorization stage.

The baseline model used in this thesis will be a bag of n-grams vector-
izer. The model vectorizes the text input with the bag of ngrams algorithm
with an n-gram range between 1 and 3 (unigrams, bigrams and trigrams).
The vectorizer constructs a dictionary with the top 20,000 n-grams with
highest TF-IDF score in the training set. Then each component in a fea-
ture vector is obtained by calculating the TF-IDF score of the particular
n-gram in the text. The TF-IDF dictionary will be calculate on top of
the entire training set.

3.3.2 Word Embeddings

The typical vectorization with bag of ngrams has important drawbacks.
Some of them can be reduced by using the techniques described in the
previous section, but still there are other disadvantages. One of them is
that each of the words are represented as a discrete and arbitrary set of
indexes, each one at the same distance of the rest (Bengio et al. 2003).

This encoding does not provide useful information about the relation
that exists between words. For example, in a text vectorization dictionary
composed by four words: cat, dog, car and bus, if the words are represented
with the vectors:

cat = (1, 0, 0, 0)

dog = (0, 1, 0, 0)

car = (0, 0, 1, 0)

bus = (0, 0, 0, 1)

Also known as one-hot-encoder, the distance between any pair of words
in the euclidean vector space would be the same. This means that the
classification step that will work on top of this representation does not
have any information about the relation between words. In this example,
the words cat and dog are related since both represent concepts that are
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somehow similar (both are animals, four-legged, pets, similar size, etc).
The same with the words car and bus (both are vehicles, four wheels,
have combustion motors, etc). It would be desirable that the words cat
and dog have less distance between them than with the word car or bus.

The one-hot-encoder representation also has the disadvantage that the
vector space is sparse which usually means that more training examples
will be needed in order to train a text classifier on top of it. In this
representation, one new component in the vector is needed for each word
that the model needs to index. For example, if the dictionary contains
10,000 words, then the vector representation will have 10,000 components.
This makes a large sparse vector space, which in turns means that the
classification model that works on top of it will have to adjust the same
order of parameters, a problem known in machine learning as the curse
of dimensionality (Mitchell 1997).

Word embeddings (Bengio et al. 2003; Mikolov, Chen, et al. 2013;
Mikolov, Ilya Sutskever, et al. 2013; Mikolov, Yih, and Zweig 2013; Pen-
nington, Socher, and Manning 2014) try to overcome these problems by
learning word vector representations where distance has a semantic mean-
ing and the vector space is more dense by reducing sparsity and vector
dimensions. Semantic similar words will be mapped to nearby points in
the vector space.

The methods used to create word embeddings use the distributional
hypothesis, which means that words that are used in the same context
would have similar vector representations. Historically two approaches
have been used to calculate the embeddings. The most recent ones have
been those based on neural networks which will be described and used in
this thesis.

One of the most popular and efficient implementations for calculation
of word embeddings is the Word2Vec (Mikolov, Ilya Sutskever, et al. 2013;
Mikolov, Chen, et al. 2013). Besides being efficient, the paper shows that
algebraic operations in the vector space map to semantic and syntactic
relations between words. Figure 3.4 shows some common examples:

• Gender: If we subtract the vector representing the word man to
the vector representing the word woman, we obtain a vector g repre-
senting the gender transformation Male → Female. If we add the
vector g to the vector representing the word king, we should obtain
a word vector representing the word queen.
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• Verb tense: If we subtract the vector representing the word walk-
ing to the vector representing the word walked, we obtain a vector
v representing the syntactic verb tense transformation Gerund →
PastTense. If we add the vector v to the vector representing the
word swiming, we should obtain a word vector representing the word
swam.

• Semantic relations: If we subtract the vector representing the
word Spain to the vector representing the word Madrid, we obtain
a vector c representing the semantic transformation Country →
Capital. If we add the vector c to the vector representing the word
Italy, we should obtain a word vector representing the word Rome.

Figure 3.4: Semantic relationships in word vectors
like male/female, gerund/past tense and country/capital

(Mikolov, Yih, and Zweig 2013).

3.4 Text Vectorization implementations to be eval-
uated

The following subsections will provide a brief overview of the text vector-
ization implementations that will be used and compared in this thesis.

3.4.1 FastText

FastText (Joulin et al. 2016) is a library for learning word embeddings and
text classification created by Facebook’s AI Research lab. It has a similar
implementation to Word2Vec to obtain word vectors. The most important
difference resides in the fact that Word2Vec uses a single word as the
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smallest unit, while FastText uses morphological information, modeled as
n-grams of characters. Then a word is represented with a vector that is
obtained as the sum of the vectors of all the character n-grams contained
within the word.

For example, the word sunny would be formed by n-grams:

sun, sunn, sunny, unny, nny

This way of representing word vectors has several advantages:

• Rare words (words that appear infrequently) have better representa-
tions since they have chances to share character n-grams with other
frequent words.

• It can obtain a vector representation even for unknown words (out
of vocabulary words). For example the word:

fantaboulouslovelyevent

Probably would not appear in a text, and as a result, implementa-
tions like Word2Vec or GloVe would return a zero vector. However,
FastText would probably return a vector similar to the vectors of
the words faboulous, lovely and event.

Besides learning word representations with this novel approach. Fast-
Text implements a simple linear neural network that can be trained as
a text classifier using the word representations as features. FastText av-
erages the word vectors within a text and uses that as the input for the
supervised text classifier. As a result, FastText can leverage transfer learn-
ing techniques by reusing the word vectors. In particular, we will perform
the benchmarks with FastText by reusing the pre-trained word vectors in
English.

3.4.2 InferSent

InferSent (Conneau, Kiela, et al. 2017) is a sentence embeddings method
that provides semantic representations for English sentences, also devel-
oped by Facebook’s AI Research Lab. The authors mentioned that the
research community has agreed that word vectors were without doubt
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useful for different NLP problems, but still there were no sentence vectors
(sentence representations) that can be successfully used in different NLP
problems such as text classification.

Most of the approaches that obtain a fixed size vector representation
of a sentence are based on unsupervised approaches like SkipThought vec-
tors (Kiros et al. 2015) (in a similar fashion to word vectors). In this
paper, the authors work on a sentence representation that is based on a
supervised learning method. The inspiration comes from the image pro-
cessing field, where generic low level representations of images have been
successfully created based on a supervised learning approach using the
ImageNet dataset.

This work tries to do a similar approach for NLP to encode sen-
tences. The dataset used is the Stanford Natural Language Inference
(SNLI) (Bowman et al. 2015) which consists of 570,000 human gener-
ated English sentence pairs, manually labeled with one of three categories:
entailment, contradiction and neutral. The hypothesis stated by the au-
thors is that the semantic nature of Natural Language Inference (NLI) is
a good candidate for learning universal sentence representations (sentence
embeddings), useful for transfer learning, through a supervised method.

First, sentences are encoded with a recurrent neural network shown in
Figure 3.5.

The words are first transformed into vectors with a word embed-
ding, potentially pretrained with a unsupervised method like Word2Vec
or GloVe. Then the word vectors of a sentence are processed in a sequence
by a bidirectional LSTM. For a sentence of T words, it generates T hid-
den vectors. Each hidden vector is composed by the concatenation of the
forward LSTM and the backward LSTM:

−→
ht =

−−−−−→
LSTMt(w1, ..., wT )

←−
ht =

←−−−−−
LSTMt(w1, ..., wT )

ht = [
−→
ht ,
←−
ht ]

Then these T hidden vectors are combined to generate a fixed size
representation. Two possible ways exist: a max pooling (which take the
maximum value of each dimension of the hidden units) or themean pooling
(which makes an average of all the hidden vectors).
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Figure 3.5: Bidirectional LSTM max pooling neural
network encoder from InferSent (Conneau, Kiela, et al.

2017).
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Then the encoder is used to obtain representations u and v for each of
the pairs of sentences of the SNLI dataset. The two representations are
then combined with different methods to get relations between them:

1. Concatenation of the two representations: (u, v).

2. Element wise product: u ∗ v.

3. Absolute element wise difference: |u− v|.

The resulting vector captures the information from both representa-
tions, the premise u and the hypothesis v which are feed into a 3-class
classifier (which will learn the three labeled NLI relations entailment, con-
tradiction and neutral). This neural network is composed by multiple fully
connected layers followed by a softmax layer.

Figure 3.6: Neural network architecture for the NLI
learning (Conneau, Kiela, et al. 2017).

The model is trained as a supervised model using the SNLI dataset.
The authors describe the usage of a stochastic gradient descent algorithm
with a learning rate of 0.1 with a weight decay of 0.99. At each epoch they
divide the learning rate by 5 when the accuracy on the development set
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decreases. The word vectors used have 300 components and are obtained
with the GloVe implementation trained on the Common Crawl dataset.

This model, after trained can be used as a feature extractor for a
standard supervised machine learning model.

3.4.3 Universal Sentence Encoder (USE)

The Universal Sentence Encoder (USE) (Cer et al. 2018) is a model de-
veloped by Google Research that presents a way to encode sentences into
embedding vectors specifically targeted to be used for transfer learning
in NLP tasks. They propose two variants for the encoding model which
have a trade-off between accuracy and computing resources needed. In
the paper, they show a benchmark comparing different approaches, in-
cluding baselines with models that use word level transfer learning via
pre-trained word embeddings and other baselines with models that do
not use any transfer learning. The models are trained with a multi-task
transfer learning approach:

The two model implementations are:

• Transformer model (T): A model that creates a sentence en-
coder using the transformer architecture (Vaswani et al. 2017) This
model obtains higher accuracy at the cost of greater model complex-
ity and resource requirements (compute time is quadratical, O(n2)

in the length fo the input sequence). The sentence embedding is
constructed by using the encoding sub-model from the transformer
architecture. It uses multi-headed attention to compute context
aware representations of words in a sentence that take into account
both the order and the identity of all the words. Word represen-
tations are then used to obtain the fixed length sentence encoding
vector by computing the element-wise sum of the words.

• DAN model (D): A model that creates a sentence encoder using
deep averaging networks (DAN) (Iyyer et al. 2015). This is a sim-
pler model that obtains slightly less accuracy with less computation
requirements (compute time is linear, O(n) in the length fo the in-
put sequence). The sentence embeddings is constructed by inputing
word and bigram embeddings that are first averaged together and
then passed through a feedforward deep neural network to produce
the output vectors.
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Both models generate sentence embeddings taking as input an En-
glish sentence and producing as output a fixed dimensional embedding of
dimension 512.

Figure 3.7 shows an example of a practical use of the computed em-
beddings: computing the sentence level semantic similarity score between
two sentences.

Figure 3.7: Similarity matrix between pairs of sentences
by computing the similarity sore using universal sentence

encoders (Cer et al. 2018).

Both models are trained to obtain general purpose encodings. This is
accomplished by using multi-task learning where a single encoding model
is used as the input for downstream learning tasks that include:

• Skip-Thought task (Kiros et al. 2015) to learn unsupervised rep-
resentations of sentences.

• A conversational input-response task (Henderson et al. 2017)
to learn the desired sentence response for an input sentence.

• Supervised classification task to learn the desired classification
of an input sentence.
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3.4.4 Bidirectional Encoder Representations from Trans-
formers (BERT)

The Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al. 2018) is a model based on the new architecture named
Transformers (Vaswani et al. 2017).

A transformer is a new architecture that takes the attention architec-
ture that was described in Figure 2.2.3: Attention Models, and removes
the recurrence of the RNNs. The authors highlight an important practi-
cal drawback from the RNNs: they require sequential computation that
grows with the length of the input and output sequences to be processed.
This is not only expensive in practical computations but precludes the
parallelized computation which in practice means that it can not take the
advantage of parallel computation from GPUs.

The authors mention previous works that attempt to get improvements
in this process such as factorization tricks and conditional computation,
but those do not fix the constrain of the sequential computation.

The transformer removes the recurrence and instead relies completely
on the attention mechanism which obtains significant improvements in the
paralellization and achieves new state of the art results with a fraction of
computing time compared to previous recurrent approaches.

This means that the dependencies between the input and output (in-
cluding the long-range dependencies which are a weakness of recurrent
models (even with LSTMs, GRUs and attention), are implemented just
with attention.

Another problem detected by the authors is the fact that the words in
the input may have different meaning depending on the context, that is,
the meaning depends on the words in the input that appear before and
after. The same happens to the dependencies of the words within the
output. So for a sequence translation problem there are three types of
dependencies:

1. Dependencies between the input and output tokens.

2. Dependencies between input tokens.

3. Dependencies between output tokens.
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The classical attention mechanism solves the first type of the depen-
dencies. The Transformer model generalizes that mechanism to model the
dependencies on the second and third types.

The transformers introduce the concept of multi-headed attention.
First, the attention mechanism can be generalized with the following no-
tation:

A(q,K, V ) =
∑
i

exp(eqki)∑
j exp(eqkj )

vi

Given a query q and a set of key-value pairs (K,V ) the query deter-
mines which values V to focus (attend) on.

The transformer instead of relying just on a single attention pass over
the input values (as with the classic attention model), computes multiple
attentions. This gives the model the ability to focus on multiple parts of
the input at the same time. Figure 3.8 shows a graphical representation.

Figure 3.8: Graphical representation of a multi-headed
attention (Vaswani et al. 2017).

The transformer keeps the encoder-decoder design. The embeddings
of the input sequence are the inputs to the encoder (left) and the em-
beddings of the output sequence so far are inputed to the decoder. Both
for the input embeddings and the output embeddings, the positional en-
coding is incorporated in order to give the model the sense of ordering
in the sequences. This is necessary as the transformer does not use the
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recurrency that the traditional encoder-decoder model has.

Both the encoder and the decoder are composed of N layers of blocks.
Each of the blocks are composed of two sub-layers , the first sub-layer is a
multi-headed attention and the second sub-layer is a feedforward network.

BERT’s model architecture is basically a multi-layer bidirectional trans-
former encoder based on (Vaswani et al. 2017). The authors use different
hyperparameters: L: the number of layers of transformer blocks, H: the
hidden size and A: the number of attention heads. The report includes
two model sizes, a base and a large with L=12, H=768, A=12 and L=24,
H=1024, A=16 respectively.

The overall architecture is show in Figure 3.9

Figure 3.9: Graphical representation of the Trans-
former architecture (Vaswani et al. 2017).
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For the purposes of the benchmarks Bert service (H. Xiao 2018) im-
plementation will be used. This implementation uses BERT models de-
veloped by Google. In particular a BERT-Base model is used with dimen-
sions L=12, H=768, A=12. The model was trained in an unsupervised
approach, meaning, it was trained only on a plain text corpus (not anno-
tated), which has the advantage of not requiring human labeling and can
leverage large amounts of plain text data publicly available on the web.
The training approach is done with two approaches:

Masked language modeling (MLM). The model will be trained
by masking 15% of the words and learning to predict the masked words
based on the rest of the words in the sentence. For example:

Input: the man went to the [MASK1] . he bought a [MASK2] of milk.

Labels: [MASK1] = store; [MASK2] = gallon

Next sentence prediction (NSP). Learn relationships between sen-
tences by training a simple task where given two sentences A and B, pre-
dict if B is the actual next sentence that comes after A or if it’s just a
random sentence from the corpus. For example:

Sentence A: the man went to the store .

Sentence B: he bought a gallon of milk .

Label: IsNextSentence

Sentence A: the man went to the store .

Sentence B: penguins are flightless .

Label: NotNextSentence

One particular interesting feature about BERT is the fact that the
model represents a a word with a deep bi-directional approach. As we
described en previous sections, word embedding implementations such
as word2vec and Glove generate a word embedding representation in a
context-free approach, meaning for example that the word bank would
have the same representation both for bank deposit and river bank.

The contextual models, on the other hand, will generate a representa-
tion of a word based on the other words in the sentence where the word
appears. The contextual approach might have two further sub-approaches:
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unidirectional or bidirectional. For example, in the sentence I made a bank
deposit, the unidirectional approach would represent the word bank based
on the left-context I made. On the other hand, the bidirectional approach
will use both, the left and the right context, in this case the left context
I made and the right context deposit.

BERT uses a bidirectional approach (compared to other models such
as ELMo (Peters et al. 2018), Generative Pre-Training (GPT) (A. Radford
2018) and ULMFit (Howard and Ruder 2018).

Finally, in order to obtain a fixed length representation of a variable
length sentence, Bert service uses an average pooling of the second to last
hidden layer of the tokens in the sentence.

3.4.5 Sentiment Neuron

The last implementation used in this thesis is the one described in the pa-
per from (A. Radford, Jozefowicz, and I. Sutskever 2017). The approach
is to learn unsupervised representations of texts for sentiment analysis.
The authors train a character level language model using an RNN, in
particular, a multiplicative LSTM (mLSTM) over a very large corpus of
product reviews (83 million product reviews from Amazon). The hypoth-
esis is that these models can create good low level representations of text
that could be useful to learn higher level concepts like sentiment.

An important hypothesis of the authors is that previous research on
creating unsupervised representations may have had low performance be-
cause of two main combined problems:

1. First, often the unsupervised models are trained over a corpus that
has a completely different domain than the one where the model
is then used and tested. For example, a model trained over the
Wikipedia corpus may have few overlapping with a corpus about
e-commerce product opinions.

2. Second, the previous designs based on distributed sentence repre-
sentations may have limited capacity to capture important syntactic
and semantic concepts. This is why exploring a recurrent network
at a character level could improve results.

The model processes a text sequence as characters. After processing
a character of the sequence, it updates the hidden state and returns a



58 Chapter 3. Deep Learning for Text Classification

probability distribution to predict the next character in the sequence, very
similiar to the character level model described previously in Figure 2.11,
Subsection 2.2.3: Recurrent Neural Networks. Then the hidden states of
the network should encode a meaningful representation of the sequence
that then could be used as features for a supervised algorithm.

After various configurations, an mLSTM network of 4,096 units is
trained. The authors observed that the mLSTM converged faster than
the LSTM. The model was trained with minibatches of 128 examples of
256 characters each.

The dataset that the authors selected was a very large dataset about
Amazon product reviews introduced by (McAuley, Pandey, and Leskovec
2015). The authors selected this dataset as it has various expressions on
sentiment in opinions about products. The dataset has 82 million product
reviews in total from May 1996 to July 2014 for a total of 28 billion bytes.

This kind of models (big recurrent networks on long sequences) require
a large amount of computations, thus being very time consuming for its
training. Adding the fact that will be trained over a very large dataset, the
authors used four GPUs to parallelize the computation and speed up the
training process. Even with all these optimizations, the authors declared
that the training process of 1 epoch with 4 GPUs on the full corpus took
approximately 1 month.

The model generated by the authors were tested with various datasets
and compared with other top state of the art models outperforms the rest
in two datasets, achieving competitive results in the rest. But the most
interesting result that will be used in this thesis is its data efficiency, that
is, how the model achieves high performance metrics (equal or higher to
other algorithms) but with a few dozens of examples (while the rest of the
algorithms require thousands of training examples).

The results are shown in Figure 3.10. This is a particularly interesting
approach since it solves one of the motivations in this thesis: how to
reduce the amount of labeled training data to create supervised sentiment
models.

The model used in this thesis will be created using the character level
mLSTM language model as feature extractor to vectorize the text ex-
amples and training a supervised logistic regression as the classification
model. The logistic regression is adjusted using an L1 penalty which was
reported by the authors to perform better in low volume training sets.
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Figure 3.10: Performance of the Sentiment Neuron
model compared with state of the art sentiment analysis
on the Stanford Treebank dataset. The performance of
each model is plotted as a function of the labeled training
examples used (A. Radford, Jozefowicz, and I. Sutskever
2017). It can be seen that the L2 regularized version
outperforms all the state of the art models with just 232
training examples, while the rest of the models use in the

order of thousands of them.



60 Chapter 3. Deep Learning for Text Classification

3.5 Classification Model

It is worth mentioning that all the text classification models compared
(including the baseline) will use the same supervised learning classification
model: a simple linear regression.

The reason why that particular model was selected is that because
of being a very simple model: the speed at which it can learn (both
in terms of computing time and accuracy improvement) makes it a good
choice compared to more complex models. This decision is inspired by the
results shown in (A. Radford, Jozefowicz, and I. Sutskever 2017) where
the same model was used to run the benchmarks.

3.6 Conclusions

In this chapter a baseline model for text classification and five different
implementations that leverage transfer learning text vectorization tech-
niques have been described.

In the next chapter, these models will be reproduced and compared.
The goal will be, as stated in Chapter 1: Introduction, to measure and
compare their data efficiency, that is, how fast they learn (performance
improvement) as a function of the number of training examples used.
A particular set of datasets from different domains will be used for this
purpose.
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Chapter 4

Datasets and Results

Chapter 3: Deep Learning for Text Classification described the six models
that will be used in this thesis for a comparison of data efficient text
classification methods for sentiment analysis. The first one is a classic
baseline model (bag of n-grams). The remaining five use state of the art
machine learning methods that leverage transfer learning techniques.

This chapter will compare those implementations over different datasets.

First, the particular text classification problem is defined: polarity
classification in sentiment analysis. Polarity classification for sentiment
analysis was selected as a good field to test data efficient text classification
models.

Second, the six different datasets that will be used to run the bench-
marks are introduced.

Third, the metrics that will be used to compare the implementations
are defined.

Finally, we will show and analyze the results obtained for each imple-
mentation over each of the datasets.

4.1 Problem definition: Polarity classification for
Sentiment Analysis

In this section a brief introduction to Sentiment Analysis is provided,
particularly, polarity classification will be used as the test field for our data
efficient text classification benchmarks. For a complete description, the
reader shall look at (Pang and Lee 2008b; B. Liu 2010). In the following
sections, the most useful definitions and concepts from the mentioned
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works are presented.

4.1.1 What is an opinion?

(B. Liu 2010) states that text information can be broadly categorized
into two main types: facts and opinions. Facts are objective expressions
about entities and their properties and opinions are usually subjective ex-
pressions that describe people’s sentiments, appraisals and feelings toward
entities, events and their properties.

Sentiment analysis as many NLP problems can be seen from the com-
putational point of view as a classification problem where two sub-topics
have been studied:

• Classifying a sentence as subjective or objective (subjectivity classi-
fication)

• Classifying a sentence as expressing a positive or negative opinion
(sentiment or polarity classification)

In an opinion, the targets can be: an object, their components, at-
tributes and features. An opinionated object could be a product, service,
individual, organization, event, topic, etc. For example, in the following
opinion:

"The battery life of this camera is too short."

A negative opinion is expressed about a feature (battery life) of an
object (camera).

Opinions can be done in two main ways: direct appraisal or compar-
ison opinion. A direct appraisal, also known as direct opinion gives an
opinion of an object directly, for example:

"The picture quality of this camera is poor."

In comparison opinions, the opinion is expressed by comparing an ob-
ject with another, for example:
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"The picture quality of this camera is better than that of Camera-x"

Usually comparative opinions express similarities or differences be-
tween two or more objects using comparative or superlative form of an
adjective or adverb.

4.1.2 Formal Definitions

The following are some definitions extracted from (B. Liu 2010), that
summarize useful concepts to understand the sentiment analysis polarity
classification problem.

Definition: Object. An object o is an entity which can be a prod-
uct, person, event, organization, or topic. An object may be composed by
a set of components (parts) and a set of attributes.

Definition: Opinion holder. The holder of an opinion is the person
or organization that expresses the opinion.

Definition: Opinion polarity. The orientation or polarity of an
opinion on a feature f indicates whether the opinion is positive, negative
or neutral.

Definition: Direct opinion. A direct opinion is a quintuple (o, f, oo, h, t),
where o is an object, f is a feature of the object o, oo is the orientation
or polarity of the opinion on feature f of object o, h is the opinion holder
and t is the time when the opinion is expressed by h.

Some works add another attribute that describes the strength of an
opinion. For example some opinions are very strong e.g.:

"This phone is a piece of junk."

and some are weak e.g.:
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"I think this phone is fine."

Definition: Sentence subjectivity. An objective sentence ex-
presses some factual information about the world, while a subjective sen-
tence expresses some personal feelings or beliefs.

Definition: Explicit and implicit opinion. An explicit opinion on
feature f is an opinion explicitly expressed on f in a subjective sentence.
An implicit opinion on feature f is an opinion on f implied in an objective
sentence. The following sentence expresses an explicit positive opinion:

“The voice quality of this phone is amazing.”

The following sentence expresses an implicit negative opinion:

“The earphone broke in two days.”

Within implicit opinions we could include metaphors that may be the
most difficult type of opinions to analyze since they include much seman-
tic information.

For the purposes of comparing different data efficient text classification
implementations, this thesis will focus on the opinion polarity classifica-
tion. The rationale is that this problem is a very good field to test data
efficient classification models:

1. The problem is complex. Detecting the polarity of a sentence is
not trivial since it requires both syntactic and semantic analysis of
the text.

2. The problem is well defined. As we reviewed in the previous
subsections, polarity classification is clearly defined.

3. A good amount of public datasets are available. These datasets
are composed of texts manually tagged by human annotators with
a consistent criteria. Besides, there is a good diversity of domains
including: product reviews, restaurant reviews, politic comments,
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airlines reviews, movies reviews. This will allow us to test the clas-
sification models with different domains and have a comparison be-
tween them.

The following section will describe the different datasets to be used,
all of them contain sentences or multiple sentences that are all subjective:
they express an opinion about a particular object with a polarity, either
positive or negative.

4.2 Datasets

In order to compare the different methods, a set of different datasets were
collected. Each dataset is composed by a set of opinions from different
domains. Each opinion is composed by a single or multiple sentences, and
is tagged with the corresponding polarity label (positive or negative).

Six sentiment analysis datasets from different domains were collected,
the goal was to have a wide spectrum of different domains where different
sentiment opinions are expressed:

1. Movie reviews (Stanford Treebank)

2. Product reviews

3. Restaurant reviews

4. Hotel reviews

5. Political Twitter comments (GOP Debate)

6. Airline Twitter comments

The goals for this selection are the following:

• Domain diversity: it is desired to have wide spectrum of different
domains where different sentiment opinions are expressed. This way
the analysis won’t be biased to obtain good metrics for transfer
learning vectorizations that were trained over a particular domain.

• Same number of labels: In order to have comparable results
between the different datasets, the same number of labels will be
enforced. In particular just the positive and negative labels will be
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used. Part of the reason was a practical limitation due to some of the
datasets been tagged with positive, negative and neutral, whereas
others just with positive and negative. The simplification keeps
only the samples tagged with positive or negative labels. It is worth
mentioning that each sample has exactly one tag, that means, the
comment or review is clearly positive or negative, and no multilabel
tagging was performed. As a result the problem is modeled as a
single label classification.

Each dataset has been partitioned into disjoint training and testing
subsets in a stratified approach to get the same ratio of positive/negative
examples in the training and testing sets. The following sections describe
each dataset.
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4.2.1 Movie Reviews (Stanford Treebank)

The Stanford Treebank corpus is based on the dataset introduced by (Pang
and Lee 2008a) and consists of 11,855 single sentences extracted from
movie reviews. It was parsed with the Stanford parser and tagged with
sentiment by humans as part of the work of (Socher et al. 2013), with
a total of 215,154 unique phrases from those parse trees, each annotated
by 3 human judges. Table 4.1: Number of training and testing examples
for Stanford Treebank dataset. shows the total amount of training and
testing examples by category.

Table 4.1: Number of training and testing examples for
Stanford Treebank dataset.

Label Training Examples Testing Examples

Negative 3,305 912
Positive 3,606 909
Total 6,911 1,821

Table 4.2: Examples of positive and negative reviews
in the corpus.

Label Example

Positive Reno himself can take credit for most of the movie ’s success
.

Positive Despite the film ’s shortcomings , the stories are quietly mov-
ing .

Negative The lead actors share no chemistry or engaging charisma .
Negative It all comes down to whether you can tolerate Leon Barlow

.

As we can see in Table 4.2: Examples of positive and negative reviews
in the corpus., the opinions are about movies, usually referencing to per-
formances of actors and directors in a movie. The corpus was originally
collected from a movie review site Rotten Tomatoes1.

1https://www.rottentomatoes.com/
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4.2.2 Product Reviews

This dataset was collected from different e-commerce sites on the Internet
where consumers post reviews about products.

Table 4.3: Number of training and testing examples for
Product Reviews dataset.

Label Training Examples Testing Examples

Negative 2393 798
Positive 5909 1970

Table 4.4: Examples of positive and negative reviews
in the corpus.

Label Example

Positive is the best buy I’ve made in my life. have a good sound and
good sharpness. I recommend it 1.00

Positive It replaces her nite-nite bedtime omega 3 that is no longer
available. Ruby had been using the omega 3 from 3 monts
on. She is now 3 years old. Switching this was worrisome to
me, but apparently not to her.Thanks for quick service.

Negative Arrived promptly but it is of poor quality. It does not hold
a charge very long.

Negative Consumer Reports must be loosing it. Why they recom-
mended the Plantronics 510 I will never understand. This
unit is not just heavy it is so big, one would have to have
Dumbo ears to use it. I would return it if I could.
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4.2.3 Hotel Reviews

This dataset was collected as part of this work by downloading hotel
reviews from users of TripAdvisor2 site. The reviews were labeled by
humans with sentiment polarity using Mechanical Turk3.

Table 4.5: Number of training and testing examples for
Hotel Reviews dataset.

Label Training Examples Testing Examples

Negative 3,893 1,298
Positive 8,475 2,825
Total 12,368 4,123

Table 4.6: Examples of positive and negative reviews
in the corpus.

Label Example

Positive Very nice, clean hotel! Staff were friendly and checking in
and out was easy.

Positive The hotel was a reasonable price for SF. The reception staff
were very welcoming and helpful. The room decore was a
little dated but clean and gave the hotel some character. I
liked the hotel which was close to a bus route to give you
access to the city. You could walk in to the city but was a
little too far to be practical. All in all Id be happy to stay
there again which is a good measure of a hotel in my book.

Negative Low quality facilities. Service was alright. Overpriced
though for small rooms and certainly not the cleanest.
"Breakfast" not even worth it. I suggest doing a little more
research and gliding over this one, you can certainly find a
more comfortable and less dingy hotel with a little effort.

Negative Was given a room that had not been serviced. Then got a
new room where the tub would not drain, towels had stains.
This is what you get when you go cheap.

As we can see in Table 4.6: Examples of positive and negative reviews
in the corpus. the opinions are from users that express their experience
during their stay in different hotels around the world. In particular, de-
scribing positive or negative sentiment about:

2https://www.tripadvisor.com/
3https://www.mturk.com/mturk/welcome
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• service (general staff performance).

• facilities (ambiance, room, cleanliness, amenities, etc).

• price (value per money).
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4.2.4 Restaurant Reviews

This corpus of restaurant reviews was collected as part of this work from
the Yelp4 site. The data was labeled with Mechanical Turk.

Table 4.7: Number of training and testing examples for
Restaurant Reviews dataset.

Label Training Examples Testing Examples

Negative 2,552 851
Positive 10,351 3,451
Total

Table 4.8: Examples of positive and negative reviews
in the corpus.

Label Example

Positive The clam sauce pasta was awesome. Great place for a ro-
mantic evening. Great service. It can get a little busy, but
totally worth the wait. I will be returning.

Positive Came in for happy hour. Suprisingly it wasn’t super busy.
I had an enjoyable experience and would come back for an-
other visit. Next time to try the lamb burger that I’ve heard
so much of! The roast pork sandwich was what I ordered
and it was very good! The also have daily specials so ask
them about it!

Negative Disgusting food that is saturated in salty sauce. Fried rice
was burnt with tons of soy sauce. Not a place I will go back
to. Too pricy & not worth the price. Also owner & waitress
were very rude. My advice go to rose garden on the west
side if not there chopstick on lomas.

Negative Tried the food for the first time and felt like it was mediocre
at best. I know Tucson is not the South, but I’ve had 100
times better in a dumpy BBQ joint in Memphis. I had the
Sticky Ribs, slaw, bread and corn on the cob. The ribs were
good. The slaw was OK. The bread and corn were flavor-
less and borderline disgusting. The ribs were worth it but
otherwise very over priced.

As we can see in Table 4.8: Examples of positive and negative reviews
in the corpus. opinions are from customers attending different restaurants.
The opinions usually involve sentiment about:

4https://www.yelp.com/
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• food (taste, quality, etc).

• service (waiter and general staff performance).

• facilities (ambiance, cleanliness).

• price (value per money).
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4.2.5 Airline Twitter Comments

This dataset was downloaded from CrowdFlower5 site. It contains tweets
from airlines users that mention experiences with major airlines from the
United States. It was scrapped from Twitter in 2015 and was tagged by
humans with the CrowdFlower platform. The dataset originally have also
the neutral tag, but for this work we only kept the examples with positive
or negative labels.

Table 4.9: Number of training and testing examples for
Airlines dataset.

Label Training Examples Testing Examples

Negative 6,884 2,294
Positive 1,772 591
Total 8,656 2,885

Table 4.10: Examples of positive and negative reviews
in the corpus.

Label Example

Positive @USAirways Thank you. And thanks for being so accom-
modating.

Positive @VirginAmerica , am I dreaming? Did you really just open
up a route between Dallas and Austin?! And does this mean
Houston might be next?

Negative @SouthwestAir Why do airlines change ticket prices in the
middle of the day #annoyed

Negative @AmericanAir oh I did. All I received back was an email
saying " delays happen".. Uh huh..

As we can see in Table 4.10: Examples of positive and negative reviews
in the corpus. opinions are from customers expressing their experience
with an airline company. The opinions usually involve sentiment about:

• In flight experience (food, comfort, etc).

• Service (stewardess and general staff performance).

• Timelines (changes/delays in departure and arrival times, connec-
tions).

5https://www.crowdflower.com/data-for-everyone/
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• Price (value per money).
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4.2.6 Political Twitter Comments (GOP Debate)

This dataset was obtained from CrowdFlower6 site. It contains tens of
thousands of tweets about the early August GOP debate in Ohio. Con-
tributors were asked if the tweet was relevant, which candidate was men-
tioned, what subject was mentioned, and then what the sentiment was for
a given tweet. The dataset contains 14,000 tagged tweets in total.

Table 4.11: Number of training and testing examples
for GOP debate dataset.

Label Training Examples Testing Examples

Negative 6,370 2,123
Positive 1,677 559
Total 8,047 2,682

Table 4.12: Examples of positive and negative reviews
in the corpus.

Label Example

Positive RT @FrankLuntz: John Kasich got a louder applause from
the Q arena in Cleveland than LeBron James. #GOPDebate

Positive Loved watching the #GOPDebate last night! We need @re-
alDonaldTrump to #MakeAmericagreatagain. #inspiration

Negative RT @billmaher: Jesus, this is the worst production of Glen-
garry Glen Ross I’ve ever seen #GOPDebate

Negative Do you really think it’s a coincidence that so many Fox News
employees are defending Megyn Kelly right now? Orders.
#tcot #GOPDebate

As we can see in Table 4.12: Examples of positive and negative reviews
in the corpus. opinions are from general public expressing their observa-
tions during the debate. The opinions usually involve sentiment about:

• Opinions expressed by the candidates during the debate.

• General political opinions expressed by the author of the tweet.

• Opinions about the candidates.

• General opinions about the debate show and venue.
6https://www.crowdflower.com/data-for-everyone/
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4.3 Metrics and Objectives

It is critical to choose the right metrics to evaluate the models. The
design of the metrics will have a decisive impact on how the models are
measured in performance. Some of the key points to take into account
are summarized in the following sections.

4.3.1 Accounting for binary and imbalanced datasets

Because of the fact that the datasets are binary (labels can be either
positive or negative, it should be expected that the models to be obtained
should have high accuracy. For example, if we had a perfectly balanced
dataset, e.g.: 50% of the examples are positive and 50% are negative,
then if we just toss a coin, we should expect .50 accuracy on our random
model. If, on the other hand, the dataset is imbalanced, e.g.: 95% of
the examples are positive and 5% are negative. A random model should
also expect .50 accuracy. But if we build a naive model that just predicts
the positive label 100% of the time, then we would get a model with .95
accuracy!

That means that we have to choose a better metric than just the basic
accuracy, otherwise we could potentially be giving a high score to a very
poor model.

The usual option would be to use F1 score defined as:

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall)

Where precision and recall are the usual metrics:

• Precision is the ratio TP/(TP + FP ) where TP is the number
of true positives and FP the number of false positives. Precision
measures the ability of the classifier not to predict an example to be
part of a category when it is not.

• Recall is the ratio TP/(TP +FN) where TP is the number of true
positives and FN the number of false negatives. Recall measures
the ability of the classifier to correctly predict the examples that
belong to a particular category.
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The F1 score is a weighted average of the precision and recall, where
an F1 score reaches its best value at 1 and worst value at 0. The relative
contribution of precision and recall to the F1 score are equal. But when
we have a multiple labels and the dataset is imbalanced, the F1 score will
depend on the weighting that is provided to each class. Usually there are
three ways to weight each class:

• micro: Calculate metrics globally by counting the total true posi-
tives, false negatives and false positives.

• macro: Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.

• weighted: Calculate metrics for each label, and find their average
weighted by support (the number of true instances for each label).
This alters macro to account for label imbalance; it can result in an
F-score that is not between precision and recall.

Given the nature of binary and imbalanced datasets, it is desired to
give the same weight to each of the two classes, regardless of their support
(number of examples a particular label has). As a result, the macro
average seems to be the most appropriate for this thesis.

4.3.2 Accounting for imbalance in small subsets

The goal is to measure the performance of the models as a function of
the amount of training examples. That means that the models will be
trained with a growing amount of training data, starting with very small
training examples (in the order of a few tens of training examples). In an
imbalanced scenario (our case) it is important to use the right methods to
keep the same imbalance in the training and testing subsets. The typical
way is using a stratified sampling technique which will ensure that the
subsets are made by preserving the percentage of examples for each class.

Finally, in small subsets, a particular random stratified partition could
get much better performance than another random stratified partition,
that could happen because of the particular examples selected, the perfor-
mance of the model can be significantly higher or lower. This phenomenon
is particularly present in small subsets, and can affect the performance
metrics just by chance. In order to remediate this problem, besides per-
forming stratification as explained before, we will be also doing k-folding,
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training models for each stratified k-fold and get the average performance
between all folds. That means that for a particular subset size, k different
random stratified folds will be used to train k different models. Then the
performance (F1 score) will be tested on a fixed testing set. Finally, the
average F1 score is obtained, alongside its standard deviation. Figure 4.1
shows a graphical description of the process.

Figure 4.1: Graphical description of the training and
testing partitions. N is the growing number of training
examples. For each N, K=5 different stratified folds are
used to train 5 instances of the model that are tested
against the testing set. F1 scores for each N are obtained

by averaging the K different instances.

The initial dataset (All Data Set) is first partitioned into two stratified
and non-overlapping subsets: a training set with 75% of the examples and
a testing set with 25% of the examples. Then the training set is divided
into K stratified subsets (folds) with a growing size of N examples each.
Then the experiment runs as follows: for a particular training set size N,
5 different instances of the model are trained with each of the stratified
5 folds. Then, each of those models are tested against the testing set
to obtain their F1 score. Finally, the average F1 score and its standard
deviation is calculated for each particular N by averaging the F1 scores of
each of the folds. The process is repeated by growing N with the following
sequence: N = 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240,
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260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 750, 1000,
1250, 1500, 1750 and 2000.

4.4 Results and Analysis

This section defines the metrics to be used for a quantitative comparison
of the six implementations. Finally these metrics will be obtained of each
of the datasets and the six implementations.

The following notations will be used to reference the six benchmarked
implementations:

1. bag_ngrams: the baseline model which uses bag of ngrams as
vectorizer and a linear classification model. Described in Subsec-
tion 3.3.1: Bag of N-grams.

2. fasttext: the model that uses FastText word embeddings as vector-
izer and a linear classification model. Described in Subsection 3.4.1:
FastText.

3. infersent: the model that uses the InferSent representation as
vectorizer and a linear classification model. Described in Subsec-
tion 3.4.2: InferSent.

4. use: the model that uses the Universal Sentence Encoder represen-
tation as vectorizer and a linear classification model. Described in
Subsection 3.4.2: InferSent.

5. bert: the model that uses the BERT representation as vectorizer
and a linear classification model. Described in Subsection 3.4.4:
Bidirectional Encoder Representations from Transformers (BERT).

6. sentiment_neuron: the model that uses the Sentiment Neuron
character level RNN as vectorizer and a linear classification model.
Described in Subsection 3.4.5: Sentiment Neuron.



80 Chapter 4. Datasets and Results



4.4. Results and Analysis 81

4.4.1 Movie Reviews (Stanford Treebank)

The first corpus tested is the Stanford Treebank. This corpus has been
used by many research papers.

Table 4.13, and figures 4.2 and 4.3 show the F1 scores of the six mod-
els as a function of the number of training examples used to train the
supervised model.

The results obtained are coherent with those presented by (A. Rad-
ford, Jozefowicz, and I. Sutskever 2017). As we can see in the figure the
bag_ngrams model starts with an F1 score in the order of .50 with a few
tens of training examples (i.e.: it is incapable of learning with so few ex-
amples). On the other hand, the sentiment_neuron model starts with a
very good performance of around .65 with the same amount of labeled
training examples.

The F1 scores on the six models keep improving as the amount of
supervised training examples increases. The sentiment_neuron main-
tains a considerable higher F1 through the process ending with the full
training set with .72 of F1 for the bag_ngrams model and .88 for the
sentiment_neuron model. BERT is clearly the second best model, it
also achieves significant improvements compared to the bag_ngrams and
fasttext methods. At 100 training examples bert and sentiment_neuron
achieve 29 percentual points and 46 percentual points more than the base-
line. This clearly shows that both models leverages transfer learning ca-
pabilities to accelerate the learning process.
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Table 4.13: F1 scores for Stanford Treebank dataset.
The best performance is highlighted for milestones corre-

sponding to 100, 500 and 2,000 training examples.

# training
examples

bag of
n-grams bert fasttext infersent sentiment

neuron use

10 .50 .59 .55 .54 .65 .57
20 .54 .61 .50 .61 .77 .61
40 .55 .66 .58 .70 .83 .65
60 .56 .70 .65 .72 .85 .66
80 .56 .74 .66 .73 .86 .69
100 .58 .77 .71 .75 .86 .70
150 .60 .77 .71 .77 .86 .71
200 .60 .79 .71 .78 .88 .70
250 .61 .78 .70 .78 .89 .72
300 .61 .80 .76 .77 .88 .70
350 .63 .80 .76 .79 .89 .72
400 .63 .80 .76 .79 .88 .72
450 .64 .80 .77 .79 .88 .73
500 .65 .80 .76 .79 .88 .73
750 .67 .81 .80 .79 .88 .75
1000 .69 .82 .80 .78 .87 .76
1250 .70 .83 .80 .79 .88 .76
1500 .71 .82 .80 .79 .88 .78
1750 .71 .83 .81 .79 .88 .77
2000 .72 .83 .80 .79 .88 .78
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Figure 4.2: Stanford Treebank dataset F1 score results
with full dataset. The lines are the average F1 score for

the K folds, shade shows standard deviation.
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Figure 4.3: Stanford Treebank dataset F1 score results
zoomed first 500 samples. The lines are the average F1
score for the K folds, shade shows standard deviation.
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4.4.2 Product Reviews

Similar to the previous dataset, the sentiment_neuron achieves a consid-
erable better performance than the rest of the methods. infersent, use
and bert obtain very similar results getting the second best performance.

Table 4.14, and figures 4.4 and 4.5 show the F1 scores of the six mod-
els as a function of the number of training examples used to train the
supervised model.

All the models improve their performance at 100 training examples,
but clearly, the improvements are different: sentiment_neuron reaches
.89, 46 percentual points more than the baseline bag_ngrams. infersent,
use and bert reach similar F1 scores at around .70. fasttext reaches .60
while bag_ngrams does not obtain any improvements. At 1,000 training
examples the four best transfer learning models keep improving reaching
around .90. At 2,000 training examples, sentiment_neuron keeps the first
place with .93 of F1 score.

Table 4.14: F1 scores for Product Reviews dataset.
The best performance is highlighted for milestones corre-

sponding to 100, 500 and 2,000 training examples.

# training
examples

bag of
n-grams bert fasttext infersent sentiment

neuron use

10 .45 .51 .42 .48 .67 .55
20 .43 .53 .31 .58 .82 .60
40 .43 .61 .50 .64 .85 .68
60 .43 .71 .48 .70 .86 .68
80 .43 .72 .48 .70 .89 .70
100 .43 .75 .60 .72 .89 .72
150 .46 .75 .67 .75 .91 .75
200 .50 .78 .59 .76 .92 .76
250 .54 .79 .62 .77 .92 .77
300 .57 .79 .66 .78 .92 .76
350 .61 .79 .62 .79 .92 .77
400 .63 .79 .67 .79 .92 .78
450 .65 .80 .65 .79 .93 .78
500 .67 .81 .69 .79 .92 .79
750 .72 .81 .62 .79 .92 .80
1000 .73 .81 .67 .79 .92 .80
1250 .75 .82 .67 .79 .92 .81
1500 .77 .81 .72 .80 .92 .81
1750 .77 .82 .68 .81 .92 .81
2000 .78 .82 .71 .80 .92 .81
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Figure 4.4: Product reviews dataset F1 score results
with full dataset. The lines are the average F1 score for

the K folds, shade shows standard deviation.
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Figure 4.5: Product reviews dataset F1 score results
zoomed first 500 samples. The lines are the average F1
score for the K folds, shade shows standard deviation.
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4.4.3 Hotel Reviews

In this dataset the four best transfer learning models sentiment_neuron,
infersent, use and bert obtain a clear improved compared to the baseline
with similar results.

Table 4.15, and figures 4.6 and 4.7 show the F1 scores of the six mod-
els as a function of the number of training examples used to train the
supervised model.

At 100 training examples, clearly demonstrate a much better per-
formance with a mark of .90 F1 score, almost 45 points more than the
bag_ngrams model. At the 1,000 training examples mark, the four first
models do not get significant improvement as they get their best perfor-
mance, achieving in the range of .91 of F1 score while bag_ngrams reaches
around .88.

Table 4.15: F1 scores for Hotels Reviews dataset.
The best performance is highlighted for milestones corre-

sponding to 100, 500 and 2,000 training examples.

# training
examples

bag of
n-grams bert fasttext infersent sentiment

neuron use

10 .42 .66 .42 .64 .59 .80
20 .41 .80 .46 .78 .73 .82
40 .44 .81 .61 .84 .86 .86
60 .41 .85 .62 .88 .88 .87
80 .43 .88 .68 .88 .86 .87
100 .45 .88 .75 .90 .90 .88
150 .59 .87 .74 .90 .91 .88
200 .70 .90 .77 .91 .92 .89
250 .74 .90 .82 .91 .93 .90
300 .76 .89 .83 .91 .93 .89
350 .78 .91 .84 .92 .94 .90
400 .80 .90 .84 .92 .93 .90
450 .83 .90 .82 .92 .94 .90
500 .83 .91 .86 .92 .93 .90
750 .86 .91 .86 .92 .93 .91
1000 .88 .91 .87 .92 .93 .91
1250 .89 .91 .87 .92 .94 .91
1500 .89 .91 .86 .92 .93 .91
1750 .89 .92 .86 .92 .94 .91
2000 .90 .92 .86 .92 .93 .92
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Figure 4.6: Hotel reviews dataset F1 score results with
full dataset. The lines are the average F1 score for the K

folds, shade shows standard deviation.
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Figure 4.7: Hotel reviews dataset F1 score results
zoomed first 500 samples. The lines are the average F1
score for the K folds, shade shows standard deviation.
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4.4.4 Restaurant Reviews

With the restaurant reviews, the previous patterns are repeated again,
the four best transfer learning models sentiment_neuron, infersent, use
and bert obtain the best performance with similar results between them.

Table 4.16, and figures 4.6 and 4.7 show the F1 scores of the six mod-
els as a function of the number of training examples used to train the
supervised model.

At the 100 examples mark sentiment_neuron obtains the best per-
formance with .89, 44 points higher than the baseline bag_ngrams which
achieves .45.

The fasttext model obtains a poor perfrmance, even compared to the
bag_ngrams model. At 500 training examples, sentiment_neuron is still
the best model with .92, 19 points above the baseline.

Table 4.16: F1 scores for Restaurants Reviews dataset.
The best performance is highlighted for milestones corre-

sponding to 100, 500 and 2,000 training examples.

# training
examples

bag of
n-grams bert fasttext infersent sentiment

neuron use

10 .45 .52 .41 .48 .73 .62
20 .45 .69 .47 .58 .70 .75
40 .45 .76 .55 .75 .86 .82
60 .45 .75 .54 .83 .88 .84
80 .45 .81 .58 .82 .90 .85
100 .45 .80 .66 .86 .89 .85
150 .47 .83 .64 .87 .90 .86
200 .55 .86 .73 .89 .91 .86
250 .60 .84 .70 .89 .91 .86
300 .62 .86 .77 .89 .92 .88
350 .66 .87 .73 .90 .92 .88
400 .68 .87 .75 .90 .92 .88
450 .71 .87 .74 .90 .92 .88
500 .73 .86 .76 .90 .92 .88
750 .77 .88 .80 .90 .93 .89
1000 .80 .88 .77 .90 .93 .90
1250 .83 .88 .75 .90 .92 .90
1500 .84 .89 .78 .90 .93 .90
1750 .85 .89 .78 .90 .93 .90
2000 .86 .89 .79 .90 .93 .90
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Figure 4.8: Restaurant reviews dataset F1 score results
with full dataset. The lines are the average F1 score for

the K folds, shade shows standard deviation.
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Figure 4.9: Restaurant reviews dataset F1 score results
zoomed first 500 samples. The lines are the average F1
score for the K folds, shade shows standard deviation.
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4.4.5 Airlines Twitter Comments

With the airlines corpus happens something similar to the hotel reviews
corpus in the sense that the top three transfer learning models start with
a similar level of performance (although sentiment_neuron in this case is
not the best).

Table 4.17, and figures 4.10 and 4.11 show the F1 scores of the six
models as a function of the number of training examples used to train the
supervised model.

use, bert and infersent end up in the first place, with the same level
of F1 score at .87. As we can see, this level is slightly lower than in the
other corpuses, probably because the domain of this corpus (tweets about
airlines) is significantly different than the previous and probably harder,
since tweets usually have additional artifacts. Still the transfer learning
models, achieve a pronounced difference of 23 points, 14 points and 8
points at 100, 500 and 2,000 training examples respectively.

Table 4.17: F1 scores for Airlines Comments dataset.
The best performance is highlighted for milestones corre-

sponding to 100, 500 and 2,000 training examples.

# training
examples

bag of
n-grams bert fasttext infersent sentiment

neuron use

10 .54 .51 .51 .59 .49 .60
20 .53 .62 .59 .69 .60 .70
40 .55 .65 .64 .75 .69 .77
60 .58 .64 .64 .81 .74 .80
80 .61 .78 .70 .80 .75 .82
100 .61 .78 .75 .83 .76 .84
150 .64 .83 .74 .83 .76 .83
200 .64 .81 .78 .84 .81 .83
250 .65 .84 .77 .84 .80 .84
300 .67 .86 .80 .85 .82 .84
350 .68 .84 .78 .85 .82 .84
400 .70 .85 .77 .85 .82 .84
450 .71 .84 .81 .85 .83 .85
500 .72 .86 .81 .85 .82 .85
750 .74 .87 .83 .86 .83 .86
1000 .76 .87 .83 .86 .84 .86
1250 .77 .87 .81 .86 .83 .87
1500 .77 .88 .82 .86 .84 .87
1750 .78 .88 .81 .87 .85 .87
2000 .79 .87 .83 .87 .84 .87
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Figure 4.10: Airline comments dataset F1 score results
with full dataset. The lines are the average F1 score for

the K folds, shade shows standard deviation.
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Figure 4.11: Airline comments dataset F1 score results
zoomed first 500 samples. The lines are the average F1
score for the K folds, shade shows standard deviation.
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4.4.6 Political Twitter Comments (GOP Debate, the Out-
lier)

With the politics dataset the results are very different than with the rest
of the datasets. In contrast with the previous cases, the first three models
start with a better accuracy than the sentiment_neuron model. Then all
the models keep improving as more training examples are fed. All of them
achieve very similar levels of performance ending with very similar accu-
racies with all the training set. In particular, the bag_ngrams achieves
the second place.

Table 4.18, and figures 4.12 and 4.13 show the F1 scores of the six
models as a function of the number of training examples used to train the
supervised model.

This could mean that none of the models could leverage the advantages
of transfer learning. The reason could be due to the fact that the source
corpuses used to learn the text representations might be of a very different
domain than politics comments in Twitter.

Table 4.18: F1 scores for GOP Debate Comments
dataset. The best performance is highlighted for mile-
stones corresponding to 100, 500 and 2,000 training ex-

amples.

# training
examples

bag of
n-grams bert fasttext infersent sentiment

neuron use

10 .46 .45 .46 .47 .47 .47
20 .47 .50 .49 .52 .51 .53
40 .47 .50 .51 .55 .54 .58
60 .50 .58 .53 .58 .58 .59
80 .52 .53 .59 .63 .59 .62
100 .53 .55 .56 .63 .59 .62
150 .55 .65 .57 .66 .61 .64
200 .56 .65 .60 .68 .64 .66
250 .56 .63 .56 .68 .63 .66
300 .58 .66 .59 .69 .66 .66
350 .59 .67 .60 .70 .67 .67
400 .59 .68 .61 .69 .67 .68
450 .60 .71 .57 .69 .66 .69
500 .60 .68 .60 .70 .67 .68
750 .61 .72 .63 .70 .69 .70
1000 .63 .72 .62 .71 .70 .69
1250 .64 .73 .61 .71 .70 .71
1500 .64 .73 .63 .72 .70 .72
1750 .66 .73 .64 .73 .70 .73
2000 .66 .74 .61 .74 .69 .71
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Figure 4.12: GOP debate dataset F1 score results with
full dataset. The lines are the average F1 score for the K

folds, shade shows standard deviation.
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Figure 4.13: GOP debate dataset F1 score results
zoomed first 500 samples. The lines are the average F1
score for the K folds, shade shows standard deviation.
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4.4.7 Comparison of Datasets per Model

0 100 200 300 400 500
Number of Training Examples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 sc

or
e

bag_ngrams model

airlines
product_reviews
restaurant_reviews
gop_debate_sentiment
stanford_treebank
hotels

0 100 200 300 400 500
Number of Training Examples

F1
 sc

or
e

infersent model

airlines
product_reviews
restaurant_reviews
gop_debate_sentiment
stanford_treebank
hotels

0 100 200 300 400 500
Number of Training Examples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 sc

or
e

bert model

airlines
product_reviews
restaurant_reviews
gop_debate_sentiment
stanford_treebank
hotels

0 100 200 300 400 500
Number of Training Examples

F1
 sc

or
e

sentiment_neuron model

airlines
product_reviews
restaurant_reviews
gop_debate_sentiment
stanford_treebank
hotels

0 100 200 300 400 500
Number of Training Examples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 sc

or
e

use model

airlines
product_reviews
restaurant_reviews
gop_debate_sentiment
stanford_treebank
hotels

0 100 200 300 400 500
Number of Training Examples

F1
 sc

or
e

fasttext model

airlines
product_reviews
restaurant_reviews
gop_debate_sentiment
stanford_treebank
hotels

Figure 4.14: Comparison of the dataset results, per
model.
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Chapter 5

Conclusions

In this chapter the general discussion and conclusions of the experiments
performed are stated. It also proposes future paths of research not in-
cluded in the scope of this thesis.

5.1 General Conclusions

In this thesis a deep analysis of different transfer learning techniques for
text classification applications have been performed.

Chapter 1: Introduction started with the motivation of this work,
based on the need for data efficient classification models for practical ap-
plications. Sentiment analysis is used as a good testing ground to prove
that, in particular, transfer learning techniques can be used to solve this
problem, which established the objectives to compare the different tech-
niques in different scenarios (datasets).

Chapter 2: Deep Learning Background, provided an overview of the
evolution and state of the art of deep learning techniques presenting the
fundamentals in order to dive deeper into the particular text classification
techniques used in the following chapters.

Chapter 3: Deep Learning for Text Classification presented various
practical implementations of text classification that leverage deep learn-
ing and transfer learning techniques. First, the most popular text vec-
torization techniques were reviewed, including bag of n-grams which is
used as a baseline model. Then an introduction to the transfer learn-
ing fundamentals were presented. Finally in that chapter, the particular
implementations of text classification that leverage transfer learning tech-
niques were presented.
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In Chapter 4: Datasets and Results, the metrics to be used for the
benchmarks were introduced alongside important considerations to take
into account to select the metric that could accurately measure the per-
formance of each model, in alignment with the thesis objectives. The F1
score with macro averaging was selected. Besides, a stratified k-folding
technique was used to generate the subsets to train the models. Both the
metrics and the subsampling techniques take into account practical issues
related to using small datasets with imbalanced sets of labels. Then the
six datasets to run the benchmarks were introduced, the selection of the
datasets aimed to generate diversity in domains in order to have a good
representation of real world problems. Finally in that chapter, the results
of the benchmarks are presented, including F1 scores for each training set
size for each of the combinations of datasets and transfer learning models
used.

As a result of this thesis, the following sections establish the major
contributions and conclusions obtained from this work.

5.1.1 Transfer Learning improves data efficiency

We showed that transfer learning approaches can be used for text clas-
sification in order to obtain models that are more data efficient (require
smaller training sets) than models that learn text representations from
scratch.

From the results shown in section Section 4.4: Results and Analysis,
we can clearly observe that transfer learning techniques quickly obtain
substantial better F1 score improvements than the baseline. With just a
few training examples (under 100 training examples), the transfer learning
techniques obtain double digit improvements in the performance. Even
at higher training set sizes, 500 training examples, and 1,000 training
examples, the transfer learning techniques show substantial improvements
compared to a bag of n-grams approach.

What every model implementation has in common is the fact that they
use the same supervised technique: a simple linear classifier. That means
that the only difference between the different approaches is the underlying
text vectorization. It was shown that the previous knowledge learned by
the different vectorizations helped each model to learn much faster than
using a bag of n-grams approach.
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5.1.2 Sentiment neuron model achieves best performance

It is interesting to note that for 4 out of the 6 datasets tested, the senti-
ment neuron technique got the best performance, both in learning faster
than the rest of the models (achieving higher F1 scores with small amounts
of training data), but also the final score with the largest training size.

What is even more interesting is the fact that the sentiment neuron,
as explained in Subsection 3.4.5: Sentiment Neuron, was trained with a
complete unsupervised approach: it was not required to tag data with
human annotators. Different from the rest of the transfer learning tech-
niques that got significant results (USE, InferSent and BERT) that require
a large corpus of human annotated data. InferSent requires paired sen-
tences, USE uses a combination of un-tagged and tagged datasets as well
as BERT.

As a result, the sentiment neuron technique definitely has an extra ad-
vantage: it just needs a very large un-tagged corpus to be trained, which
usually is something relatively cheap to obtain. The problem though, is
that from the paper presented by the authors and the current implemen-
tation it is not clear how those results can be reproduced (retrain the
model in different corpus). First, the process of training the model re-
quired very large computation power, as the authors declared that it took
multiple GPU cores running for around 30 days. Second, it is not yet
clear how the sentiment neuron emerged from just training a character
level language model. This point is connected to one of the suggested
future works presented in the following section.

5.1.3 Domain where representations are trained affect re-
sults

The dataset where all the models (even the baseline) obtained very sim-
ilar results was the GOP debate (opinions about politics). An intuitive
reason of this result could be that the text representations of the different
models where transferred from domains that are not similar to politics
(e.g.: movie reviews, restaurants reviews, product reviews, hotel reviews
and airline comments). On the other hand, the results for the transfer
learning models where much better than the baseline in target domains
similar to the source domain. As a result, it could be concluded that the
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domain of the source corpus where the transfer learning model is trained
affects its potential to be used in other target domains.

5.1.4 Benchmarks with code and data reproducibility

As a result of the analysis, besides the conclusions stated before, this
thesis generated two practical contributions:

• A set of 6 different datasets to train and test text classification mod-
els in different domains were gathered. This provides easy access to
other works that need to use datasets to reproduce this benchmark
or work on new implementations.

• A Python 3 code base was generated with the benchmarks that re-
produce the implementations described in Chapter 3: Deep Learning
for Text Classification. This is very important to actually test and
compare the implementations.

Both the datasets and the code have been published with the corre-
sponding references to their authors1.

5.2 Future Work

The following are future paths of research that could complement the
transfer learning techniques to obtain even better results.

5.2.1 Representations in other languages

It would be interesting to reproduce the success of transfer learning tech-
niques in other languages such as Spanish, for example, by training a
language model such as the Sentiment Neuron or BERT but with a large
corpus in Spanish. In particular for the BERT implementation, Hugging-
Face (Wolf et al. 2020) has trained multiple BERT models using public
web corpus in different languages. In particular, it would be interesting
to test the performance of the benchmarks with a multilingual approach
(training a single model that recognizes multiple languages). Hugging-
Face has trained a multilingual model on the top 104 languages with the

1https://github.com/raulgarreta/data-efficient-text-classification
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largest Wikipedia using an masked language modeling approach. This
is particularly interesting for applications where the same classification
has to be done on top of texts with different languages. The advantage:
just a single text vectorization model must be trained which massively
contributes to data efficiency.

5.2.2 Representations in other domains

As mentioned in the previous conclusions, the election of the domain of
the corpus of the source domain in the transfer learning process can have
impact on the effectiveness. In our case, the knowledge transferred from
a corpus about product opinions is not as effective in a target domain
such as politics. It would be interesting to validate this hypothesis by
transferring knowledge from a politics domain and confirm that then the
effectiveness is similar to what we obtained in the rest of the domains.

5.2.3 Representations in a generic domain

Very related to the previous item, it would be interesting to validate if
using a generic corpus as the source of knowledge, e.g.: a corpus that com-
bines opinions in different domains like e-commerce, hospitality, politics,
etc, can be as effective as having focused source domains for the target
task. This would provide to be very practical as a way to have a universal
text representation for multiple text classification domains and problems.

5.2.4 Active learning

If the transfer learning models such as the sentiment neuron get very
significant improvements in performance with a few training examples,
intuitively, the training examples that are selected and the order in which
they are fed into the model could make an important change in the speed
at which the model improves its performance. As a result, it would be
interesting to test active learning techniques to try to obtain optimal
policies on how to choose the training examples to be fed to the supervised
stage of the models. This could improve the data efficiency.
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5.2.5 Zero-shot learning

In this thesis we researched how to create data efficient text classification
models to reduce the number of supervised training examples necessary
to train the model. This approach has been recently known also as Few-
shot learning (Brown et al. 2020a). The extreme situation would be a
classification model that does not need any supervised training examples
at all, also known as Zero-shot learning (Yin, Hay, and Roth 2019). In
this extreme case, the model does not observe any samples with the corre-
sponding labels at training time, but it is directly used to predict labels.
Recently there has been a good progress in this direction by using natu-
ral language inference models, where the classification task is modeled as
an inference of the class (hypothesis) from the input text (premise). In
order to build these models, we must have an inference model that takes
a pair of sequences A (premise) and B (hypothesis), being A the sequence
to classify and B the description of the label to predict. The task is to
determine whether the hypothesis B is true (entailment) or false (con-
tradiction) given the premise A. For example, in our case of sentiment
polarity classification, the pair of sequences would be:

A:"I love this product"
B:"The user is expressing a compliment about a product." (Positive)

A:"The user interface is very easy to use "
B:"The user is expressing a compliment about a product." (Positive)

A:"It was very hard to set up the product, it took days just to build!"
B:"The user is expressing a complaint about a product." (Negative)

Recent research using Generative Pre-Trained (GPT) language models
trained on massive amounts of corpus has generated impressive results
including GPT-2 (Alec Radford et al. 2019) and GPT-3 (Brown et al.
2020b). Other approaches use smaller models based on pre-trained BERT
and fine tuning the inference task with the Multi-genre NLI (MNLI) (A.
Williams, Nangia, and Bowman 2017) corpus.

5.2.6 Transfer learning in other NLP problems

Lastly, it would be interesting to test the same techniques but for different
NLP problems:
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• Other text classification problems including:

– Topic classification: classify texts into a pre defined set of top-
ics or themes, eg: classify items by product category, classify
company descriptions by industry.

– Intent classification: classify text into a pre defined set of in-
tents, eg: Is the customer expressing urgency? is the customer
asking for help? is the customer requesting a new functional-
ity?

• Sequential classification problems including:

– Entity extraction: extract people names, company names, lo-
cations, events.

– Keyword extraction: extract the most relevant multi-word key-
words or keyphrases in a text.
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