
Program Fusion with Paramorphisms
Facundo Domı́nguez Alberto Pardo

Instituto de Computación, Universidad de la República
Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay

{fdomin,pardo}@fing.edu.uy

Abstract

The design of programs as the composition of smaller ones is a wide spread approach
to programming. In functional programming, this approach raises the necessity of
creating a good amount of intermediate data structures with the only aim of passing
data from one function to another. Using program fusion techniques, it is possible to
eliminate many of those intermediate data structures by an appropriate combination of
the codes of the involved functions. In the standard case, no mention to the eliminated
data structure remains in the code obtained from fusion. However, there are situations
in which parts of that data structure becomes an internal value manipulated by the
fused program. This happens, for example, when primitive recursive functions (so-
called paramorphisms) are involved. We show, for example, that the result of fusing
a primitive recursive function p with another function f may give as result a function
that contains calls to f . Moreover, we show that in some cases the result of fusion may
be less efficient than the original composition. We also investigate a general recursive
version of paramorphism. This study is strongly motivated by the development of a
fusion tool for Haskell programs called HFUSION.

Keywords: program fusion, deforestation, paramorphism, primitive recursion, functional programming

1. INTRODUCTION

In functional programming, function composition is a fundamental tool for combining smaller
programs to build new ones. Between two composed functions there is always an intermediate
data structure which carries data from one function to the other. The overhead of handling such
intermediate data structures can be avoided in many cases by replacing the composition by an
equivalent function which does not construct the data structure.

Intermediate data structures can be eliminated by a program transformation technique known
as deforestation [16, 9]. In this paper, we follow an approach to deforestation based on
recursion program schemes associated with recursive types [14, 13]. Program schemes have
associated algebraic laws, which are useful for reasoning about programs as well as for program
transformation purposes. In connection with deforestation, there is a particularly relevant set of
algebraic laws, so-called fusion laws, which involve the elimination of intermediate data structures.

In the standard case, no mention of the eliminated data structure remains in the code obtained
from fusion. However, there are situations in which parts of that data structure becomes an internal
value manipulated by the fused program. This may happen, for example, when paramorphisms
[11] are involved. Paramorphism is a program scheme that captures functions defined by primitive
recursion. These are functions that use the arguments and values of the recursive calls to compute
their result. A classical example of paramorphism is the factorial function.

The aim of this paper is to analyze fusion laws for paramorphisms. We show, for example, that
the fusion of the composition of a paramorphism p with another function f may give as result a
function p′ that contains calls to f inside, and therefore includes the generation of values produced
by f . Moreover, we show the existence of cases where the fusion with a paramorphism may lead
to a function that is less efficient than the original composition. To see a simple example of this
situation, consider the composition of tails and map:

tm f = tails . map f

Mathematically Structured Functional Programming, MSFP’06 1

Program Fusion with Paramorphisms

tails :: [a] -> [[a]]

tails [] = []

tails (a:as) = as : tails as

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (a:as) = f a : map f as

Function tails is a paramorphism which uses the successive tails of the list as argument to the
recursive calls and as values to construct the output list. The fusion of these two functions gives
as result the following recursive definition of tm:

tm f [] = []

tm f (a:as) = map f as : tm f as

which retains a call to map, now applied to the successive tails of the list separately. This definition
of tm has O(n2) time complexity, while the original one was the composition of two O(n) functions.
The origin of the problem resides in tails and it is caused by the successive sharing of the tails
between the recursive calls and the cons operation that builds the output list.

In addition to studying fusion laws for paramorphism, we introduce a new program scheme, called
generalized paramorphism, which is a general recursion version of paramorphism. The new
scheme generalizes paramorphism in the same way hylomorphism (another general recursion
scheme) generalizes fold: it is obtained by replacing in the definition of paramorphism the
coalgebra of the destructors (of the input datatype) by an arbitrary coalgebra. The expressive
power of generalized paramorphism is similar to that of hylomorphism, but in addition it
incorporates fusion cases that are not achievable with the fusion laws of hylomorphism.

Our interest in studying this generalization of paramorphism has been motivated by the
development of a fusion tool for Haskell programs, called HFUSION.1 This tool was originally based
on hylomorphisms, but now it uses generalized paramorphisms as the internal representation of
recursive functions. We are particularly interested in presenting so-called acid rain laws [14] for
the different program schemes, as they correspond to a mechanizable subset of fusion laws and
are the kind of laws being used in the implementation of HFUSION. It is worth mentioning that all
the examples to be shown in the paper have been tested in the tool.

The rest of the paper is organized as follows. Section 2 presents background material
about recursion program schemes and sets up the notation to be used during the paper.
Section 3 reviews the definition of paramorphism and its standard laws, and introduces acid
rain laws for this program scheme. Section 4 presents generalized paramorphism and its
laws. In these two sections we will show both positive and negative examples of fusion
with (generalized) paramorphisms. Section 5 explains our practical motivations for introducing
generalized paramorphism. We also describe the fusion cases we gain by the introduction of this
program scheme. Section 6 presents final remarks and conclusions.

2. RECURSIVE TYPES AND PROGRAM SCHEMES

Recursive program schemes encapsulate common patterns of computation of recursive functions
and have a strong connection with datatypes. A generic definition of them can be formulated using
on the categorical approach to recursive types, in which types constitute objects of a category C
and programs are modelled by arrows of the category. This section summarizes the relevant
concepts of this approach to recursive types and the generic definition and standard laws of three
well-known schemes: fold, unfold and hylomorphism (see e.g. [12, 4, 5, 14, 6]).

Throughout the paper the working category will be Cpo, the category of pointed cpos (complete
partial orders with a least element ⊥) and continuous functions. The choice of this category
1http://www.fing.edu.uy/inco/proyectos/fusion/tool

Mathematically Structured Functional Programming, MSFP’06 2

Program Fusion with Paramorphisms

facilitates us to work with arbitrary recursive functions. As usual, a function f is said to be strict
if it preserves the least element, i.e. f ⊥ = ⊥. The final object of Cpo is given by the singleton
set {⊥} and will be written as 1. This object will correspond to our interpretation of the unit type
(), whose unique element is also written as ().2 Product is defined as cartesian product, with
projections π1 :: a × b → a and π2 :: a × b → b. The pairing (or split) of two functions f :: c → a
and g :: c → b is written 〈f, g〉 :: c → a × b. Sum a + b is defined as separated sum, with sum
inclusions inl :: a → a + b and inr :: b → a + b. Given two continuous functions f :: a → c and
g :: b→ c, case analysis is defined as the strict function fOg :: a+ b→ c such that (fOg) ◦ inl = f
and (fOg) ◦ inr = g. Product and sum can be generalized to n components. In the generalization
of the sum we will write ini to denote the i-th injection.

In the categorical modelling of types, a datatype τ is understood as a solution to an equation
x ∼= Fx, for an appropriate endofunctor F that captures the shape (or signature) of the type. Given
a locally continuous and strictness preserving functor F on Cpo, a recursive domain equation
x ∼= Fx has a unique solution specified by a pointed cpo µF together with an isomorphism
provided by a pair of strict functions inF :: FµF → µF and outF :: µF → FµF each others
inverse. The cpo µF contains partial, finite, as well as infinite values. Function inF encodes the
constructors of the datatype, while outF the destructors.

2.1. Fold

Given an endofunctor F : Cpo → Cpo, a function φ :: Fa → a is called a F -algebra. In
particular, observe that inF is an algebra. A homomorphism between two algebras φ :: Fa → a
and φ′ :: Fb→ b is a function f :: a→ b such that f ◦ φ = φ′ ◦ Ff .

The least homomorphism between inF and any other algebra φ :: F a → a gives rise to a
recursion scheme, denoted by (|φ|)F :: µF → a and usually called fold [2] or catamorphism [12],
which captures definitions by structural recursion. That is, fold is defined as the least function that
satisfies the equation f ◦ inF = φ ◦ Ff . Therefore,

(|φ|)F ◦ inF = φ ◦ F (|φ|)F (1)

For lists, fold corresponds to the standard foldr operator used in functional programming. A fold
(|φ|)F is strict iff its algebra φ is strict. Fold satisfies the following laws:

Fold identity

(|inF |)F = idµF (2)

Fold fusion

f strict ∧ f ◦ φ = φ′ ◦ Ff ⇒ f ◦ (|φ|)F = (|φ′|)F (3)

Fold-fold fusion

φ strict ∧ τ :: ∀a. (F a→ a) → (G a→ a) ⇒ (|φ|)F ◦ (|τ(inF)|)G = (|τ(φ)|)G (4)

The last law is usually referred to as acid rain [14]. The goal of acid rain is to combine a
function that produces a data structure with another that consumes it. A polymorphic function
τ :: ∀a. (F a → a) → (G a → a) that converts F -algebras into G-algebras is said to be a
transformer [5]. Every function τ of this type satisfies the following property, which can be inferred
as a free theorem [15]: for every f :: a → b, φ :: F a → a and φ′ :: F b → b, if f ◦ φ = φ′ ◦ Ff
then f ◦ τ(φ) = τ(φ′) ◦ Gf . That is, every homomorphism between two F -algebras is also a
homomorphism between the respective G-algebras.

2Our semantics differs slightly from that of Haskell in that we do not consider lifted domains as the interpretation of types.

Mathematically Structured Functional Programming, MSFP’06 3

Program Fusion with Paramorphisms

2.2. Unfold

Given a functor F , a function ψ :: a→ Fa is called a F -coalgebra. In particular, outF :: µF → FµF
is a coalgebra. A homomorphism between two coalgebras ψ :: a → Fa and ψ′ :: b → Fb is a
function f :: a → b such that ψ′ ◦ f = Ff ◦ ψ. F -coalgebras and their homomorphisms form a
category. The coalgebra outF :: µF → FµF turns out to be final in this categoty. This means that
there exists a unique homomorphism from any coalgebra ψ :: a → Fa to outF , which is denoted
by [(ψ)]F :: a → µF . It gives rise to a recursion scheme, called unfold [8] or anamorphism [12],
which satisfies the equation:

outF ◦ [(ψ)]F = F [(ψ)]F ◦ ψ (5)

Unfold captures definitions by structural corecursion. It satisfies the following laws:

Unfold identity

[(outF)]F = idµF (6)

Unfold fusion

ψ ◦ f = Ff ◦ ψ′ ⇒ [(ψ)]F ◦ f = [(ψ′)]F (7)

Unfold-unfold fusion

σ :: ∀a. (a→ F a) → (a→ G a) ⇒ [(σ(outF))]G ◦ [(ψ)]F = [(σ(ψ))]G (8)

Unfold-unfold fusion is another case of acid rain [14]. A polymorphic function σ :: ∀a. (a→ F a) →
(a→ Ga) is now a transformer from F -coalgebras to G-coalgebras. In this case the free theorem
states that, for every f :: a→ b, and coalgebras ψ :: a→ F a and ψ′ :: b→ F b, if ψ′ ◦ f = Ff ◦ ψ
then σ(ψ′) ◦ f = Gf ◦ σ(ψ).

2.3. Hylomorphism

Fold and unfold express standard ways of consuming and generating data structures, respectively.
Now we look at functions given by the composition of a fold with an unfold. They correspond to
general recursive functions whose structure is dictated by a virtual intermediate data structure.

Given an algebra φ :: F b → b and a coalgebra ψ :: a → Fa, the hylomorphism [12, 4, 5]
Jφ, ψKF :: a→ b is the function defined as:

Jφ, ψKF = (|φ|)F ◦ [(ψ)]F (9)

Alternatively, hylomorphism can be defined as the least function that satisfies the equation
f = φ ◦ F f ◦ ψ. This shows that we can always transform the composition of a fold with an
unfold into a single function that avoids the construction of the intermediate data structure. From
this definition, we obtain the equation

Jφ, ψKF = φ ◦ F Jφ, ψKF ◦ ψ (10)

which expresses the shape of recursion that comes with each datatype. Two well-known
examples of hylomorphisms are quicksort and merge sort (see e.g [1, 6]). The expressiveness
of hylomorphisms is very rich. In practice, almost every interesting recursive function can be
expressed as a hylomorphism.

Applying the identity laws corresponding to fold and unfold, it is immediate to see that fold and
unfold are themselves a hylomorphism:

(|φ|)F = Jφ, outF KF [(ψ)]F = JinF , ψKF

Mathematically Structured Functional Programming, MSFP’06 4

Program Fusion with Paramorphisms

The following fusion laws are a direct consequence of (9) and the fusion laws for fold and unfold.

Hylo fusion

f strict ∧ f ◦ φ = φ′ ◦ Ff ⇒ f ◦ Jφ, ψKF = Jφ′, ψKF (11)

ψ ◦ f = Ff ◦ ψ′ ⇒ Jφ, ψKF ◦ f = Jφ, ψ′KF (12)

Fold-hylo fusion

φ strict ∧ τ :: ∀a. (F a→ a) → (G a→ a) ⇒ (|φ|)F ◦ Jτ(inF), ψKG = Jτ(φ), ψKG (13)

Hylo-unfold fusion

σ :: ∀a. (a→ F a) → (a→ G a) ⇒ Jφ, σ(outF)KG ◦ [(ψ)]F = Jφ, σ(ψ)KG (14)

3. PARAMORPHISM

Paramorphisms [11] correspond to primitive recursive functions. Therefore, like folds, they capture
functions that are defined by structural recursion. In this section we review the definition of
paramorphism (presenting it in the context of Cpo) and some of its standard laws. We also
introduce new acid rain laws that relate paramorphisms with folds.

Given a function φ :: F (a× µF) → a, the paramorphism 〈|φ|〉F :: µF → a is the least function that
satisfies the equation f ◦ inF = φ ◦ F 〈f, id〉. The following diagram makes the types explicit:

µF
〈|φ|〉F - a

FµF

inF

6

F 〈〈|φ|〉F , id〉
- F (a× µF)

φ
6

The difference between paramorphisms and folds is in the amount of information available in each
recursive step. In addition to the values returned by the recursive calls (as in fold), function φ has
also available their arguments. As we will see later on in this section, this subtle difference with
folds makes paramorphisms inappropriate for fusion in some cases.

Example 3.1 Consider the list datatype. Its base functor is given by Lab = 1+a×b. For φ1 :: 1 → b
and φ2 :: a× (b× [a]) → b, the paramorphism 〈|φ1Oφ2|〉La

:: [a] → b is the least function such that

f [] = φ1() f (a : as) = φ2(a, (f as, as))

�

The following equations express the well-known relationship between paramorphisms and folds.

〈|φ|〉F = π1 ◦ (|〈φ, inF ◦ Fπ2〉|)F (15)

(|φ|)F = 〈|φ ◦ F π1|〉F (16)

Equation (15) is usually taken as the definition of paramorphism. It states that a paramorphism can
be implemented as a fold that produces a pair, whose second component contains a (recursively
generated) copy of the input. Equation (16) shows that a fold is a paramorphism that ignores the
copy of the arguments to the recursive calls.

The following is the fusion law for paramorphism [11].

f strict ∧ f ◦ φ = φ′ ◦ F (f × id) ⇒ f ◦ 〈|φ|〉F = 〈|φ′|〉F (17)

Mathematically Structured Functional Programming, MSFP’06 5

Program Fusion with Paramorphisms

The rest of this section is devoted to the analysis of acid rain laws for paramorphisms. We are not
aware that they have been presented before. These laws will serve us as basis for designing the
acid rain laws for generalized paramorphisms in section 4.

The first law we consider refers to the composition of a fold with a paramorphism.

Proposition 3.2 (fold-para fusion) For strict φ,

τ :: ∀a. (F a→ a) → (G (a× µG) → a) ⇒ (|φ|)F ◦ 〈|τ(inF)|〉G = 〈|τ(φ)|〉G

Proof Since (|φ|)F is a homomorphism between the algebras inF and φ, by the free theorem
associated with the polymorphic type of τ it follows that

(|φ|)F ◦ τ(inF) = τ(φ) ◦G ((|φ|)F × id)

Therefore, by applying (17) we obtain the desired result. The strictness condition required to (|φ|)F

in (17) follows from the assumption that φ is strict. �

The next fusion law refers to the composition between a paramorphism and a fold. It is particularly
interesting and important as it exhibits a case in which the paramorphism internalizes the
generation of values of the intemediate data structure that wants to be eliminated. The following
lemma will be used in the proof of the law.

Lemma 3.3 For F -algebras φ :: Fa→ a and ψ :: F (b× a) → (b× a), and strict f :: a→ b,

〈f, id〉 ◦ φ = ψ ◦ F 〈f, id〉 ⇒ f ◦ (|φ|)F = 〈|π1 ◦ ψ ◦ F (id × (|φ|)F)|〉F

Proof Let us call p the paramorphism and c the fold. By definition of paramorphism and fold we
have that

p ◦ inF = π1 ◦ ψ ◦ F 〈p, c〉 and c ◦ inF = φ ◦ F c

The two functions are defined simultaneously in an asymmetric way. That is, p depends on c while
c does not depend on p. Definitions following this pattern are called a zygomorphism [10]. From
the definition of p and c, it can be derived that [5]:

〈p, c〉 = (|〈π1 ◦ ψ, φ ◦ Fπ2〉|)F

In the context of Cpo this equation is proved by fixed point induction. If we call pc the split 〈p, c〉,
then the statement of the lemma can be rewritten as:

〈f, id〉 ◦ φ = ψ ◦ F 〈f, id〉 ⇒ f ◦ π2 ◦ pc = π1 ◦ pc

which can then be proved by fixed point induction. �

Proposition 3.4 (para-fold fusion) For strict φ,

τ :: ∀a. (F a→ a) → (G a→ a)
⇒

〈|φ|〉F ◦ (|τ(inF)|)G = 〈|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × (|τ(inF)|)G)|〉G

Proof From the definition of paramorphism we can derive that 〈〈|φ|〉F , id〉 is a homomorphism
between the F -algebras inF and 〈φ, inF ◦ Fπ2〉:

〈〈|φ|〉F , id〉 ◦ inF = 〈φ, inF ◦ Fπ2〉 ◦ F 〈〈|φ|〉F , id〉

Then, by the free theorem associated with the polymorphic type of τ it follows that 〈〈|φ|〉F , id〉 is
also a homomorphism between the G-algebras τ(inF) and τ(〈φ, inF ◦ Fπ2〉):

Mathematically Structured Functional Programming, MSFP’06 6

Program Fusion with Paramorphisms

〈〈|φ|〉F , id〉 ◦ τ(inF) = τ(〈φ, inF ◦ Fπ2〉) ◦G〈〈|φ|〉F , id〉

Finally, by Lemma 3.3 the desired result follows. Strictness of 〈|φ|〉F , necessary for the application
of Lemma 3.3, is a consequence of the assumption that φ is strict. �

Example 3.5 This example shows a simple case in which the fold is copied into the body of the
resulting paramorphism, producing multiple generations of data structures.

tf p = tails . filter p

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (a:as) = if p a then a : filter p as else filter p as

Function tails is a paramorphism while filter is a fold:

tails = 〈|φ1Oφ2|〉
where φ1 = λ(). []

φ2 = λ(a,(ys,as)). as : ys

filter p = (|φ′
1Oφ

′
2|)

where φ′
1 = λ(). []

φ′
2 = λ(a,ys). if p a then a : ys else ys

The algebra of filter can be expressed as τ(in), where τ is a polymorphic function given by:

τ :: (1 + a× b→ b) → (1 + a× b→ b)
τ(α) = τ1(α)Oτ2(α)
τ1(α1Oα2) = α1

τ2(α1Oα2) = λ(a,b). if p a then α2(a,b) else b

Therefore, if we apply para-fold fusion we obtain the following:

tf p = 〈|π1 ◦ τ(〈φ, in ◦ (id + id × π2)〉) ◦ (id + id × (id × filter p)|〉

Inlining,

tf p [] = []

tf p (a:as) = if p a then filter p as : tf p as else tf p as

We applied fusion with the aim to eliminate the intermediate list that was generated by filter,
but as result we obtained a function that filters the successive tails of the input list separately. This
means that fusion transformed the composition of two functions with linear time behaviour to a
function which is quadratic! In other words, in this case the effect of the medicine was worse than
the illness itself. �

Example 3.6 This example shows another case of the situation presented in the previous
example (we simply show the result of applying fusion and skip the details). Consider the function
that counts the number of words of a text after having filtered it with a predicate p.

wcf p = wc . filter p

wc :: String -> Int

wc [] = 0

wc (c:cs) = case cs of

[] -> if isSpace c then 0 else 1

d:ys -> if (not (isSpace c)) && (isSpace d)

then 1 + wc cs

else wc cs

Mathematically Structured Functional Programming, MSFP’06 7

Program Fusion with Paramorphisms

Function wc is a paramorphism. It is inspired in one of the word counting algorithms described
in [7]. This function adds one each time the end of a word is detected, and for this it uses the
current character c and the next one d (except at the end). By para-fold fusion we obtain as result
a paramorphism with the following recursive definition:

wcf p [] = 0

wcf p (c:cs) = if p c

then case filter p cs of

[] -> if isSpace c then 0 else 1

d:ys -> if (not (isSpace c)) && (isSpace d)

then 1 + wcf p cs

else wcf p cs

else wcf p cs

In the original definition of wcf, the inspection of the tail was performed on a text that was
already filtered. Now, on the contrary, an on-line filtering of the tail is necessary each time before
inspection. In this case the time behaviour of the resulting program is linear as the original ones.
However, it may happen that the predicate p is applied twice to some of the elements of the input
string: once in the context of filter and another one in the condition of the if-then-else. Also,
note that the list nodes originally produced by filter are still produced when evaluating the case
on filter p cs. So, in spite of our efforts, we could not eliminate the intermediate list. �

There exist of course applications of para-fold fusion that yield satisfactory results. This is
illustrated by the following example.

Example 3.7 Consider the function that replaces the first occurrence of a value in a list by a given
value.

replace :: Eq a => a -> a -> [a] -> [a]

replace x y [] = []

replace x y (a:as) = if (a==x) then y : as else a : replace x y as

This function is a paramorphism because it returns the tail of the input list as part of the result
when the sought value is met.

replace x y = 〈|φ1Oφ2|〉
where φ1 = λ(). []

φ2 = λ(a,zs,as). if a==x then y : as else a : zs

Suppose that we want to replace an element in a list after filtering.

repf x y p = replace x y . filter p

We are again in a situation where we can apply para-fold fusion, obtaining a paramorphism with
the following recursive definition:

repf x y p [] = []

repf x y p (a:as) = if p a then if a==x then y : filter p as

else a : repf x y p as

else repf x y p as

In this case filter needs to be applied to the sublist that remains after the replaced element (in
case that element was found), as that sublist is returned as part of the result. �

Example 3.8 Consider the composition of the function that inserts a value in a binary search tree
with the map function for binary trees.

data Tree a = Empty | Node a (Tree a) (Tree a)

Mathematically Structured Functional Programming, MSFP’06 8

Program Fusion with Paramorphisms

insmap x f = insert x . mapT f

insert x Empty = Node x Empty Empty

insert x (Node a t1 t2) = if x < a then Node a (insert x t1) t2

else Node a t1 (insert x t2)

mapT f Empty = Empty

mapT f (Node a t1 t2) = Node (f a) (mapT f t1) (mapT f t2)

The application of para-fold fusion yields a satisfactory result in this case:

insmap x f Empty = Node x Empty Empty

insmap x f (Node a t1 t2) = if x < f a then Node (f a) (insmap x f t1) (mapT f t2)

else Node (f a) (mapT f t1) (insmap x f t2)
�

Note 3.9 The previous examples have shown the existence of some cases where para-fold fusion
may worsen performance. These are fusions of the form 〈|φ|〉F ◦ f in which occurrences of f in
the result produce the generation of duplicated computations. This means that, in the presence of
paramorphisms, fusion cannot be applied without restrictions. It is necessary thus to include some
code analysis that helps us to avoid the application of fusion in those cases we know performance
will decrease. At the moment HFUSION does not perform this kind of analysis, but we plan to do
so in the near future.

We give an intuitive characterization of the different cases of 〈|φ|〉F ◦ f in terms of the notion of
“computation”. The analysis focuses on function φ of the paramorphism:

• If during the computation of φ both the values returned by the recursive calls and
their arguments are necessary, then fusion should be avoided. This is the case of
tails . filter p and wc . filter p.

• If the values returned by the recursive calls or their arguments (but not both) appear
during the computation of φ, then fusion can be safely performed. This is the case of
replace x y . filter p and insert x . mapT f.
For instance, in the case of insert x = 〈|φ|〉, φ is given by:

φ1 () = Node x Empty Empty

φ2 (a,(t1,r1),(t2,r2)) = if x < a then Node a r1 t2 else Node a t1 r2

If a computation uses t1, then it does not use r1, and vice-versa. The same holds for t2
and r2. This is the reason that makes fusion in Example 3.8 adequate. �

4. GENERALIZED PARAMORPHISMS

This section presents a new program scheme that generalizes paramorphisms in the same sense
hylomorphisms generalize folds. This generalization of paramorphism will permit us to capture
a wider class of recursive functions that use the arguments of the recursive calls to compute
the final result. We will state fusion laws associated with generalized paramorphisms, but now in
combination with folds, unfolds and hylomorphisms.

To see how this generalization is obtained, let us recall the diagram that a paramorphism satisfies,
writing outF instead of inF :

µF
f - a

FµF

outF
?

F 〈f, id〉
- F (a× µF)

φ
6

The arguments to the recursive calls are obtained by applying the coalgebra corresponding to
the destructors of the data type. The generalization we introduce is obtained by considering an
arbitrary coalgebra instead.

Mathematically Structured Functional Programming, MSFP’06 9

Program Fusion with Paramorphisms

Given φ :: F (b × a) → b and a coalgebra ψ :: a → F a, the generalized paramorphism
{|φ, ψ|}F :: a→ b is the least function that makes the following diagram commute:

a
f - b

F a

ψ
?

F 〈f, id〉
- F (b× a)

φ
6

The notion of generalized paramorphism is in some sense related with that of parametrically
recursive coalgebra [3].

Example 4.1 Consider the functor La that captures the signature of lists. For φ1 :: () → b and
φ2 :: a× (c× b) → c, the paramorphism f = {|φ1Oφ2, ψ|}La :: b→ c is the least function such that

f b = case ψ b of
inl() → φ1

inr(a, b′)→ φ2(a, (f b′, b′))

�

The following equation expresses the fact that paramorphisms are a particular instance of
generalized paramorphisms:

〈|φ|〉F = {|φ, outF |}F (18)

Generalized paramorphisms are so expressive as hylomorphisms. The following equation shows
that every hylomorphism can be written as a generalized paramorphism. It states a relationship
similar to the one between folds and paramorphisms (equation 16).

Jφ, ψKF = {|φ ◦ F π1, ψ|}F (19)

The relationship in the other direction is the following. For each ψ :: a → F a, let us define the
functor G x = F (x× a). Then,

{|φ, ψ|}F = Jφ, F ∆ ◦ ψKG (20)

where ∆ = 〈id , id〉. Thus, for g = {|φ, ψ|}F ,

a
g - b

F (a× a)

F∆ ◦ ψ
?

F (g × id)
- F (b× a)

φ
6

The following two fusion laws resemble laws for hylomorphism. Observe that in (22) the colagebra
homomorphism is internalized as part of the code of the resulting generalized paramorphism.

Proposition 4.2 (gpara fusion)

f strict ∧ f ◦ φ = φ′ ◦ F (f × id) ⇒ f ◦ {|φ, ψ|}F = {|φ′, ψ|}F (21)

ψ ◦ f = F f ◦ ψ′ ⇒ {|φ, ψ|}F ◦ f = {|φ ◦ F (id × f), ψ′|}F (22)

Proof Both laws can be proved by fixed point induction. We show the proof of (22) as it
illustrates how f becomes part of the result. Let us define γ(g) = φ ◦ F 〈g, id〉 ◦ ψ and γ′(g) =

Mathematically Structured Functional Programming, MSFP’06 10

Program Fusion with Paramorphisms

φ◦F (id ×f)◦F 〈g, id〉◦ψ′. The proof proceeds with predicate g ◦f = g′. The base case ⊥◦f = ⊥
is immediate. Now, assume that g◦f = g′. Then, γ(g)◦f = φ◦F 〈g, id〉◦ψ◦f = φ◦F 〈g, id〉◦Ff◦ψ′ =
φ◦F 〈g ◦f, f〉◦ψ′ = φ◦F (id×f)◦〈g′, id〉◦ψ′ = γ′(g′). Therefore, by fixed point induction it follows
that fix(γ) ◦ f = fix(γ′). �

Taking into account the close similarity between generalized paramorphisms and hylomorphisms,
one may think of the existence of a factorization property similar to that of hylomorphism,
which states that every generalized paramorphism can be split up into the composition of a
paramorphism with an unfold, i.e. {|φ, ψ|}F = 〈|φ|〉F ◦ [(ψ)]F . However, this law does not hold. The
reason for the failure is originated in the fact that paramorphisms, in contrast to folds, use the
arguments to the recursive calls to compute their results. The following law shows that the result
of fusing the composition of a paramorphism with an unfold is a generalized paramorphism which
internalizes the computation of the unfold as part of its code.

Proposition 4.3 (para-unfold fusion)

〈|φ|〉F ◦ [(ψ)]F = {|φ ◦ F (id × [(ψ)]F), ψ|}F

Proof 〈|φ|〉F ◦ [(ψ)]F
(18)
= {|φ, outF |}F ◦ [(ψ)]F

(22)
= {|φ ◦ F (id × [(ψ)]F), ψ|}F �

Example 4.4 Consider the following composition:

tdown = tails . down

down :: Int -> [Int]

down 0 = []

down n = n : down (n-1)

Function tails is a paramorphism while down is an unfold. By applying para-unfold fusion we
obtain:

tdown 0 = []

tdown n = down (n-1) : tdown (n-1)

This is again a situation in which the composition of two linear time functions gives a quadratic
function as result. This is due to tails. �

The following law is a direct consequence of para-fold fusion (Proposition 3.4).

Proposition 4.5 (para-hylo fusion) For strict φ,

τ :: ∀a. (F a→ a) → (G a→ a)
⇒

〈|φ|〉F ◦ Jτ(inF), ψKG = {|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × Jτ(inF), ψKG), ψ|}G

Proof

〈|φ|〉F ◦ Jτ(inF), ψKG

= { hylo factorization (9) }
〈|φ|〉F ◦ (|τ(inF)|)G ◦ [(ψ)]G

= { para-fold fusion (Prop. 3.4) }
〈|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × (|τ(inF)|)G)|〉G ◦ [(ψ)]G

= { para-unfold fusion (Prop. 4.3) }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × (|τ(inF)|)G) ◦G(id × [(ψ)]G), ψ|}G

= { functor G and hylo factorization (9) }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × Jτ(inF), ψKG), ψ|}G

Mathematically Structured Functional Programming, MSFP’06 11

Program Fusion with Paramorphisms

�

The two previous fusion laws showed compositions that yield generalized paramorphisms as
result. The laws that follow are acid rain laws with generalized paramorphism as argument.

Proposition 4.6 (fold-gpara fusion) Let ψ : b→ G b. For strict φ,

τ :: ∀a. (F a→ a) → (G (a× b) → a) ⇒ (|φ|)F ◦ {|τ(inF), ψ|}G = {|τ(φ), ψ|}G

Proof Similar proof to fold-para fusion (Prop. 3.2), but using (21) instead. �

The generalization of paramorphism opens the possibility of an acid rain law with unfold.

Proposition 4.7 (gpara-unfold fusion)

σ :: (a→ F a) → (a→ G a) ⇒ {|φ, σ(outF)|}G ◦ [(ψ)]F = {|φ ◦G(id × [(ψ)]F), σ(ψ)|}G

Proof Same proof to fold-para fusion (Prop. 3.2), but using (22) and the free theorem for σ. �

Example 4.8 Consider the following composition:

dm p f = drop2While p . map f

drop2While :: (a -> Bool) -> [a] -> [a]

drop2While p [] = []

drop2While p [a] = if p a then [] else [a]

drop2While p (a:a’:as) = if p a then drop2While p as else a:a’:as

Function drop2While can be defined as a generalized paramorphism with functor Ha b =
1 + a+ a× a× b.

drop2While p = {|φ1Oφ2Oφ3, ψ|}Ha

where φ1 = λ(). []

φ2 = λa.if p a then [] else [a]

φ3 = λ(a,a’,(ys,as)).if p a then ys else a:a’:as

ψ = λas.case as of

[] -> in1 ()

[a] -> in2 a

(a:a’:as)-> in3 (a,a’,as)

The coalgebra ψ does not correspond to outLa
, for La the base functor of lists, because it contains

nested patterns. It can, however, be written as ψ = σ(outLa
), where σ is given by:

σ :: (b→ La b) → (b→ Ha b)
σ(β) = λb.case β b of

in1 () -> in1 ()

in2 (a,b’)-> case β b’ of

in1 () -> in2 a

in2 (a’,b’’)-> in3 (a,a’,b’’)

On the other hand, map, which is usually presentd as a fold over lists, can be expressed as an
unfold as well: map f = [(ψ)], where

ψ = λxs.case xs of

[] -> in1 ()

(x:xs) -> in2 (f x,xs)

Therefore, we can apply gpara-unfold fusion, obtaining

Mathematically Structured Functional Programming, MSFP’06 12

Program Fusion with Paramorphisms

dm p f = {|φ1Oφ2O(φ3 ◦ (id × id × (id × map f)), σ(ψ)|}

Inlining,

dm p f [] = []

dm p f (a:as) = let fa = f a

in case as of

[] -> if p fa then [] else [fa]

(a’,xs) -> if p fa then dm p f xs else fa:f a’:map f xs

Fusion in this case is completely satisfactory. �

And now we show a law that relates paramorphisms with generalized paramorphisms.

Proposition 4.9 (para-gpara fusion) Let ψ : b→ G b. For strict φ,

τ :: ∀a. (F a→ a) → (G (a× b) → a)
⇒

〈|φ|〉F ◦ {|τ(inF), ψ|}G = {|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G〈id× {|τ(inF), ψ|}G, π2〉, ψ|}G

Proof
〈|φ|〉F ◦ {|τ(inF), ψ|}G

= { (20), H x = G(x× b) }
〈|φ|〉F ◦ Jτ(inF), G∆ ◦ ψKH

= { Prop. 4.5 and def. of H }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G((id× {|τ(inF), ψ|}G) × id), G∆ ◦ ψ|}H

= { product manipulation }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G〈id× {|τ(inF), ψ|}G, π2〉, ψ|}G

�

Corollary 4.10 (para-para fusion) For strict φ,

τ :: ∀a. (F a→ a) → (G (a× µG) → a)
⇒

〈|φ|〉F ◦ 〈|τ(inF)|〉G = 〈|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G〈id× 〈|τ(inF)|〉G, π2〉|〉G

Example 4.11 Using para-para fusion we can transform

dWt p = dropWhile p . tails

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] = []

dropWhile p (a:as) = if p a then dropWhile p as else a : as

into

dWt p [] = []

dWt p (a:as) = if p as then dWt p as else as : tails as

�

Note 4.12 The characterization of good and bad cases of fusion that we can add with the
introduction of generalized paramorphism is very the same as the one presented in Note 3.9. Now
we must analyze function φ in compositions of the form {|φ, ψ|}F ◦f and 〈|φ|〉F ◦f in order to conclude
whether fusion is desirable or not. Performing such an analysis we can conclude, for instance, that
tails . down is a bad case while drop2While p . map f and dropWhile p . tails are good
ones. �

Mathematically Structured Functional Programming, MSFP’06 13

Program Fusion with Paramorphisms

5. FUSION IN PRACTICE

Our interest in studying generalized paramorphisms has arisen in the context of the development
of HFUSION, a fusion tool for Haskell programs that is a reimplementation and an extension of the
HYLO system [13]. The tool essentially translates recursive function definitions written in Haskell
into hylomorphisms and then applies acid rain laws of hylomorphism to function compositions
indicated by the user. This explains our special attention in the acid rains laws for the different
recursion schemes.

The reasons for translating all recursive functions into hylomorphisms is twofold. One is due to
the expressive power of hylomorphism, in the sense that all other recursive program schemes
can be written in terms of it. The other reason is simplicity: translating all recursive functions
into hylomorphisms, the internal engine needs manipulate only one form of recursion and thus
implement only a few fusion laws and restructuring algorithms.

During the implementation of the kernel of the tool we started experimenting with some examples
that were fusable by our implementation (modulo some simple modifications to the internal
representation of hylomorphisms), but were impossible to be fused with the original representation
and laws. We wanted then to give an explanation of these modifications at the abstract level, and it
was during that process that the notion of generalized paramorphism came up as the appropriate
abstraction that reflects the class of special cases we were playing with. With these modifications,
the tool essentially interprets every recursive function as a generalized paramorphism. This
explains our definition of generalized paramorphism.

The equivalence in the expressive power between hylomorphism and generalized paramorphism
(witnessed by equations (19) and (20)) permits us to assure that we are not loosing fusion
cases with the introduction of generalized paramorphism. On the contrary, we gain new cases
captured by para-hylo fusion. We illustrate this by means of an example. Consider again the
function compositon presented in Example 3.7: repf x y p = replace x y . filter p. This
composition corresponds to a successful case of fusion. The main reason for the success is
the fact of having viewed replace as a paramorphism. If, on the contrary, we view this function
as a hylomorphism, then fusion fails. Let us see the reason. The definition of replace as a
hylomorphism is:

replace x y = Jφ1Oφ2, ψKGa

where ψ = La ∆ ◦ outLa
:: [a] → Ga[a] and Ga x = La(x× [a]) = 1 + a× (x× [a]). Expanding the

definition of ψ we obtain:

ψ = λas.case as of

[] -> inl ()

(a:as’) -> inr (a,(as’,as’))

The coalgebra ψ is not exactly outLa , but it contains it. Therefore, replace is a hylomorphism of
the form Jφ, ψKGa , for ψ 6= outLa . On the other hand, filter is a fold (|τ(in)|) whose algebra
can be expressed in terms of a polymorphic function τ . If we try to fuse these two functions as
hylomorphisms, then the only law we could apply is fold-hylo fusion, but this is impossible because
replace is not a fold.

6. CONCLUSIONS AND FINAL REMARKS

In this paper we introduced a generalized version of paramorphism which has an expressive
power equivalent to hylomorphism. We showed acid rain laws for both the generalized and the
standard version of paramorphism. With the introduction of generalized paramorphism we gained
new fusion cases that cannot be captured with the laws of hylomorphism.

However, there are also some negative aspects. In particular, we saw the existence of
compositions involving paramorphisms that may lead to programs with worse performance by

Mathematically Structured Functional Programming, MSFP’06 14

Program Fusion with Paramorphisms

the application of fusion. Therefore, in the presence of paramorphisms one should first perform
some analysis on the code in order to determine whether to apply fusion or not.

There are some other cases, like insert x . mapT f, where fusion deforests just a single
path from the root to the leaves. This is due to the fact that a paramorphism not only
traverses its input, but also keeps it for computing the outcome. So in this case only a
small amount of the intermediate data structure was eliminated. Nonetheless, fusion with
paramorphisms may be good for bringing other functions together. For example, after fusing
map g . replace x y . filter q we will have map g . filter q in the body of the resulting
function.

Concerning HFUSION, we still owe a benchmark where to test on real programs the effectiveness
of our approach based on generalized paramorphisms. We also need to implement a code
analysis to avoid bad fusion cases.

Acknowledgements We thank the anonymous referees for their comments and suggestions
regarding contents and presentation.

REFERENCES

[1] L. Augusteijn. Sorting Morphisms. In Advanced Functional Programming, LNCS 1608.
Springer-Verlag, 1999.

[2] R. Bird. Introduction to Functional Programming using Haskell (2nd edition). Prentice-Hall,
UK, 1998.

[3] V. Capretta, T. Uustalu, and V. Vene. Recursive coalgebras from comonads. Information
and Computation, 204(4):437–468, 2006.

[4] M. Fokkinga and E. Meijer. Program Calculation Properties of Continuous Algebras.
Technical Report CS-R9104, CWI, Amsterdam, January 1991.

[5] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit Twente, The
Netherlands, 1992.

[6] J. Gibbons. Calculating Functional Programs. In Algebraic and Coalgebraic Methods in
the Mathematics of Program Construction, LNCS 2297, pages 148–203. Springer-Verlag,
January 2002.

[7] J. Gibbons. Fission for Program Comprehension. In Intl. Conf. on Mathematics of Program
Construction (MPC 2006), LNCS ??? Springer-Verlag, 2006.

[8] J. Gibbons and G. Jones. The Under-Appreciated Unfold. In Proc. 3rd. ACM SIGPLAN
International Conference on Functional Programming. acm, September 1998.

[9] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation. In Conference
on Functional Programming Languages and Computer Architecture, pages 223–232, June
1993.

[10] G. Malcolm. Algebraic Data Types and Program Transformation. PhD thesis, Dept. of
Computer Science, University of Groningen, The Netherlands, 1990.

[11] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424, 1992.
[12] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses,

Envelopes and Barbed Wire. In Proceedings of Functional Programming Languages and
Computer Architecture’91, LNCS 523. Springer-Verlag, August 1991.

[13] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system HYLO. In
Algorithmic Languages and Calculi, pages 76–106, 1997.

[14] A. Takano and E. Meijer. Shortcut to Deforestation in Calculational Form. In Proceedings of
Functional Programming Languages and Computer Architecture’95, 1995.

[15] P. Wadler. Theorems for free! In Proceedings 4th Int. Conf. on Funct. Prog. Languages
and Computer Arch., FPCA’89, London, UK, 11–13 Sept 1989, pages 347–359. ACM Press,
New York, 1989.

[16] P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer
Science, 73:231–248, 1990.

Mathematically Structured Functional Programming, MSFP’06 15

