A Generic Version of scanf
Programmed in C5.

Juan José Cabezas
PEDECIBA Informatica
Instituto de Computacion, Universidad de la Reprblica,
Casilla de Correo 16120, Montevideo, Uruguay
Email: jcabezas@Qfing.edu.uy

Abstract

In this paper we present a generic version of scanf —the I/O standard
library function of the C language— programmed in C5.

C5 is a superset of the C programming language. The main difference
between C and C5 is that the type system of C5 supports the definition of
types of dependent pairs, i.e., the type of the second member of the pair
depends on the value of the first member (which is a type).

Another C5 extension is the type initialization expression which is a se-
quence of C constant expressions that can be attached to type expressions
in a type declaration.

These extensions make C5 powerful enough to express in a generic
form functions with dependent type arguments like printf and scanf.

The resulting version of scanf is a parser generator based on the Earley
algorithm that for a given type constructs an object of such type according
to the input string.

Keywords: dynamic typing; dependent pair type ; generic programming ; Farley
algorithm

1 Introduction

Polymorphic functions are a well known tool for developing generic programs.
For example, the function pop of the Stack ADT

pop: ¥V T. Stack of T — Stack of T

has a single algorithm that will perform the same task for any stack regardless
of the type of its elements. In this case, we say that the pop algorithm is similar
for different instantiations of T'.

A more complex and powerful way to express generic programs are the func-
tions with dependent type arguments (i.e., the type of an argument may depend
on the value of another) that perform different tasks depending on the argument
type. These functions may inspect the type of the arguments at run time to
select the specific task to be performed.

The C printf and scanf functions are two widely used examples of this kind
of generic programs that are defined for a finite number of argument types. As
we will see later, the type of these useful functions cannot be determined at
compile time by a standard C compiler.

Even more powerful generic programs are achieved when we extend the finite
number of argument types to the entire type system. This class of generic
functions can perform an infinite number of different tasks depending on the
argument type and is powerful enough to include generic programs like parser
generators (a top paradigm in generic programming).

In this paper, we present a generic version of printf and scanf programmed
in the C5 language.

C5 is a superset of the C programming language. The extensions intro-
duced in C5 are the notion of Dependent Pair Type (DPT) and that of a Type
Initialization Expression (TIE).

C5 is a minimal C extension that express a wide class of generic programs
where the generic versions of printf and scanf presented in this paper are two
representative examples.

1.1 The type of printf

The C creators [14] warn about the consequences of the absence of type checking
in the printf arguments:

7 ... printf, the most common C function with a variable number
of arguments, uses information from the first argument to determine
how many other arguments are present and what their types are. It
fails badly if the caller does not supply enough arguments or if the
types are not what the first argument says.”

Let us see through the simple example in Figure 1 how printf works. The
first argument of printf, called the format string, determines the type of the
other two: the expressions 4s and 6.2f indicate that the type of the second

main(){
double n=42.56;
char st[10]="coef";
printf ("%4s %6.2f",st,n);
}

Figure 1: A simple C printf example.

argument is an array of characters while the third argument is a floating point
notation number.

In the case of printf and scanf, the types declared in the format string are
restricted to atomic, array of character and character pointer types. There is
also some numeric information together with the type declaration (4 and 6.2 in
our example) that defines the printing format of the second and third arguments.
These numeric expressions will be called Type Initialization Expressions (TIEs)
in C5.

A standard C compiler cannot type check statically the second and third
arguments of the example presented in figure 1 because their types depend on
the value of the first one (the format string).

In functions like printf and scanf, expressiveness is achieved at a high cost:
type errors are not detected and, as a consequence unsafe code is produced.

However, some C compilers (e.g. the -Wformat option in gcc [9]) can check
the consistence of the format string with the type of the arguments of printf
and scanf. In this case, the format argument is a constant string (readable at
compile time) and the C syntax is extended with the format string syntax.

This is not an acceptable solution of the problem because the syntax of the
format string is specific for the functions printf and scanf and not necessarily
valid for other functions with dependent type arguments. Furthermore, the C
language must be extended with the format string syntax in order to develop
a C compiler that typechecks the printf and scanf functions. This is a too
restricted and rigid solution.

A better solution can be found in Cyclone [20], a safe dialect of C. In this case,
the type of the arguments of printf and scanf is a tagged union containing all
of the possible types of arguments for printf or scanf. These tagged unions
are constructed by the compiler (automatic tag injection) and the functions
printf and scanf include the needed code to check at run time the type of the
arguments against the format string.

Similar results can be obtained with other polymorphic disciplines in stati-
cally typed programming languages such as finite disjoint unions (e,g, Algol 68)
or function overloading (e.g. C++).

This kind of solution of the printf typing problem has the following restric-
tions:

e The consistency of the format string and the type of the arguments is
checked at run time and

e the set of possible types of the arguments of printf and scanf is finite
and included in the declaration (program) of the functions.

The concept of object with dynamic types or dynamics for short, introduced
by Cardelli [6] [1] provides an elegant and more generic solution for the printf
typing problem.

A dynamics is a pair of an object and its type. Cardelli also proposed
the introduction in a statically typed language of a new datatype (Dynamic)
whose values are such pairs and language constructs for creating a dynamic pair
(dynamic) and inspecting its type tag (typecase) at run time.

Figure 2 shows a functional program using the typecase statement where dv
is a variable of type Dynamics constructed with dynamic, Nat (natural numbers)
and X * Y (the set of pairs of type X and Y) are types to be matched against
the type tag of dv, ++ is a concatenation operator, and fst amd snd return the
first and second member of a pair.

typetostring(dv:Dynamics): Dynamics -> String
typecase dv of
(v: Nat) " Nat "
(v: X * Y) typetostring(dynamic fst(v):X)
++ " ox M
++ typetostring(dynamic snd(v):Y)
else "77"
end

Figure 2: The statement typecase

Tagged unions or finite disjoint unions can be thought of as finite versions
of Dynamics: they allow values of different types to be manipulated uniformly
as elements of a tagged variant type, with the restriction that the set of variants
must be fixed in advance.

Ch offers a way to embed dynamics within the C language following the
concepts proposed by Cardelli.

The goal of the C5 language is to experiment with generic programs based
on functions with dependent arguments under the following conditions:

e the type dependency of the arguments is checked at compile time and

e the functions accept (and are defined for) arguments of any type.

2 The C5 extensions

Dynamics has been implemented in C5 as an abstract data type called Depen-
dent Pair Type (DPT). Instead of the statement typecase there are a set of
functions that construct DPTs, inspect the type tag and read or assign values
when the type tag is an atomic type.

Since the use of DPTs is limited to a special class of generic functions, there
is a Ch statement called DT_typedef that allows valid type definitions for the
DPT library.

The major difference of the DPT library with Cardelli’s Dynamics is con-
cerned with the communication between the static and the dynamic universes:

e In the case of dynamics, there is a pair constructor (dynamic) for pass-
ing a static object to the dynamic universe. The inverse operation —the
typecase statement— is a selector that retrieves the dynamic object to the
static universe if it matches with a given static type.

e In the case of the DPT library, the constructor DT_pair is the dynamic
counterpart, but nothing equivalent to typecase can be found in C5. The
only way to inspect a DPT object is by using a generic object selector
(C5_gos) that encodes the static C selectors into the dynamic universe. In
other words, it is easy to transfer a static object to the dynamic universe
but the inverse is limited to atomic types. In compensation, it is possible
to do some object processing within the dynamic universe.

This difference allows C5 to construct new dynamic objects at run-time without
the Dynamics type checking requirements.

2.1 Dependent pairs in C5

For the sake of readability, we will simplify the C type system to int, double,
char , struct , union, array, pointer and defined types.

The following is an informal and brief introduction to the most important
functions of the DPT library:

e DPT DT_pair(C_Type t, t object)
The function returns a dependent pair where the type tag is the dynamic
representation of the first argument t and the object member is a reference
to the second argument object. The C5 compiler assures that DPTs are
well formed by checking that the second argument is a variable whose type
is the value of the first which is a DT_typedef type definition.

e DPT C5_gos(DPT dp, int i, DPT errordp)

The function is a universal selector for DPT pairs. If the type tag of dp
is a struct or a union, then C5_gos yields a DPT pair with the type and
value of the ith field. If dp is an array, then C5_gos returns a DPT pair
with the type of the array elements and the ith element of the array. If
dp is a pointer or DT_typedef DPT, then C5_gos(dp,1) yields a DPT
pair constructed from the type of the referenced object and the object
itself respectively. If i is out of range or dp is an atomic type, the third
argument errordp is returned.

e Type_enum C5_gtype (DPT)
The function yields an element of the enumeration {CHAR, INT, DOUBLE,

STRUCT, UNION, ARRAY, POINTER, TYPEDEF}7 according to the type tag of
the argument.

e int C5_gsize(DPT)
If the type tag of the argument is an struct or union the function returns
the field quantity and in case of arrays it returns their size. If the tagged
type is an atomic type C5_size returns 0i, and in case of pointers or
defined types the function returns 1.

e char * C5_gname (DPT)
The function yields a string equal to the current type name or label of the
type tag of the argument.

e int C5_gint(DPT, int)
double C5_gdouble(DPT, double)
char C5_gchar(DPT, char)
char *C5_gstr(DPT, char *)
These functions return the value of the pair if the type tag is respectively
int, double, char and char pointer or array of char, In case of type
mismatch the second argument is returned.

e int C5_int_ass(DPT dp, int v)
int C5_double_ass(DPT dp, double v)
int C5_char_ass(DPT dp, char v)
If the type tag of dp matches, these functions assign the value of the
second argument to the second member of the first argument pair and the
returned value is 1.

In case of type mismatch no assigning is performed and the functions
return 0.

The equivalence of the DPT library with Dynamics is showed in the following
program which is a C5 version of the example presented in Figure 2:

void typetostring(DPT dv){
switch(C5_gtype (dv)){
case INT: printf (" Int ");
break;"

case STRUCT: if(C5_gsize(dv)==2){
typetostring(C5_gos(dv,1,ErrorDp));
printf (" * ");
typetostring(C5_gos(dv,2,ErrorDp)) ;

}
else printf(" 77 ");
break;
default: printf(" 7?7 ");

3

We will use DPT's to express the C5 version of printf with the form:
void Ch_printf(DPT)

where the format string of the C printf function is expressed by the dynamic
type of the pair argument. Notice that in this version the type dependency of the
argument is checked at compile time while the possible types of the argument
are not fixed.

We may now write in C5 a first approach to the C printf example presented
in figure 1:

DT_typedef char String[5];
DT_typedef float Fnr;

main(){
String st="coef";
Fnr n=42.56;

C5_printf (DT_pair(String,st));
C5_printf (DT_pair(Fnr,n));
}

Note that the declared types String and Fnr are the arguments of the function
DT_pair.

This is not a complete version of printf because the numeric information
of the format argument is absent.

2.2 The Type Initialization Expression (TIE)

The syntax of a TIE is a comma-separated sequence of C constant expressions
enclosed by brackets. A C constant expression is an arithmetic expression con-
structed from integers, floating point numbers and characters.

String notation in TIEs is accepted as a compressed notation for characters.
For example, the TIE { 'eibc-;i?]:is equivalent to the TIE{ ’a’,’b,’c,’1’,’2’
}

There is a simple syntactical rule for inserting TIEs in a type declaration: a
TIE is placed on the right of the related type.

The next example shows two type definitions with TIEs:

DT_typedef int{1} Numbers[10]{2} [20]1{3};
DT_typedef struct{
Numbers{4} nrs;
char{5} *{6} String_ptr;
7} Rerd;

In the first type definition, the TTE {1} is attached to an int type and the TIEs
{2} and {3} are attached to a double array. In the second definition, the TIEs
{4}, {5}, {6} and {7} are attached to the types Numbers, char, pointer of char
and struct respectively.

TIEs can be inspected at run time using the following functions of the DPT
library:

e int C5_gTIE length(DPT)
the function returns the size of the TIE of the type tag of the dependent
pair argument. If the TIE does not exist, the function returns 0.

e int C5_gTIE type(DPT)
the function returns an element of the enumeration { CHAR, INT, DOUBLE,
NO_TIE } that represents the type of the TIE of the type member of the
dependent pair argument. If the TIE does not exist, the function returns
NO_TIE.

e int C5_gTIE_int(DPT, int, int)
double C5_gTIE_double(DPT, int, double)
char C5_gTIE char(DPT, int, char)
The functions yield the value of the TIE element indexed by the second
argument. If the TIE element to be read does not exist, the function
returns the third argument. In case of type mismatch a warning message
is printed.

After the introduction of TIEs, the C printf example presented in figure 1
can be completely expressed in C5 as follows:

DT_typedef char String[5] {4};
DT_typedef float {6,2} Fur;

main(){
String st="coef";
Fnr n=42.56;

C5_printf (DT_pair(String,st));
C5_printf (DT_pair(Fnr,n));
}

The TIEs {4} and {6,2} are respectively attached to the array and float
types. Notice that TIE declarations are optional: in this program, for example,
the char type of the first type definition has no TIE.

3 A generic version of printf

Since C5_printf accepts type expressions (DPTs) as arguments, it is straight-
forward to extend the restricted argument types of C printf (strings and atomic
types) to the entire C type system.

For example, the type definition with TIEs presented in Figure 3 is an
acceptable argument for the C5_printf function.

The next program shows a simplified version of the C5_printf function de-
fined for the int, double, char, struct, DT_typedef, pointer and array types.
For the sake of readability, printf is used to print values of atomic types.

void C5_printf (DPT dp){
int i;
char format[100];

DT_typedef struct{

char ref[12];

double {2,3} *coef;

struct{
char name[40];
int {5} box_nrs([3];
} client;

} Client_Record;

Figure 3: A type definition with TIEs.

switch(C5_gtype(dp)){
case INT:
sprintf (format,"%%%dd",C5_gTIE_int (dp,0,6));
printf (format,C5_gint(dp,0)); break;
case DOUBLE:
sprintf (format,"%%%d.%df",C5_gTIE_int(dp,0,6),
C5_gTIE_int(dp,1,6));
printf (format,C5_gdouble(dp,0.0)); break;
case CHAR: printf (")c",C5_gchar(dp,’!’)); break;
case STRUCT:
printf("\n struct Y%s={ ",C5_gname(dp));
for(i=1;i<=C5_gsize(dp);i++){
printf (" ");
C5_printf (C5_gos(dp,i,ErrorDp));
}
printf("}\n"); break;
case ARRAY:
printf("\n array %s=[",C5_gname(dp));
for(i=0;i<C5_gsize(dp);i++){
if (C5_gtype (C5_gos(dp,i,ErrorDp))==CHAR)
if (C5_gchar (C5_gos(dp,i,ErrorDp),’!’)=="\0")
break;
else if(i>0) printf(" ,");
C5_printf (C5_gos(dp,i,ErrorDp));
}
printf("]\n"); break;
case POINTER: case TYPEDEF:
C5_printf (C5_gos(dp,1,ErrorDp)); break;

}

The following C5_printf example prints an object of the type Client Record
presented in Figure 3:

main(){
Client_Record cr;
double r=2.8672;

strcpy(cr.ref,"0037731443");
cr.coef=&r;

cr.client.box_nrs[0]= 1204;
cr.client.box_nrs[1]= 82761;
cr.client.box_nrs[2]= 464;
strcpy(cr.client.name,"Carlos Gardel");
C5_printf (DT_pair(Client_Record,cr));

}

with the following result:

struct Client_Record={

array ref=[0037731443]

2.867

struct client={

array name=[Carlos Gardel]

array box_nrs=[1204 ,82761 , 464]
}

}

4 A generic version of scanf

The scanf function of the C language scans input according to the format string
argument which specifies the type and conversion rules of the other arguments.
The types specified in the format argument are restricted to (references to)
atomic and string types. The results from these conversions are stored in the
arguments of the function.

As we did with printf, we introduce a generic version of scanf in Cb5:

DPT Cb_scanf(DPT)

where the format string of the C scanf function is expressed by the dynamic
type of the DPT argument.

C5_scanf interprets the dynamic type of the argument as the grammar for
parsing the input and, if the parsing is successful, the object member of the
argument pair is constructed accordingly to the input. If the input cannot be
parsed, C5_scanf returns a dependent pair with information about the error.

The resulting program includes a parser generator that can be compared
with Yacc [13] and a scanner like Lex [16].

We introduce the C5_scanf function by first explaining the lexical meaning
of the C types that belong to the lexical analyzer and then the grammatical
meaning of the types related to the syntax analyzer.

4.1 The lexical analyzer

Atomic and string types are the lexical or token elements of C5_scanf. The
actual version of C5_scanf accepts the following lezrical types: int, double,
char, character pointer and array of characters.

10

These types are interpreted in C5_scanf as follows:

e int is interpreted as the regular expression (RE) [0-9]+. If the type is
attached with { Signed} then the RE is [+-]17[0-9]+.

e double is interpreted as the RE [0-9]+. [0-9]+. If the type is attached
with { Signed} then the RE is [+-]17[0-9]+. [0-9]+.

e char {ch} will match a character equal to ch.

e char A[N] {Word} will match a string equal to Word if its length is less
than N and starts with a letter or punctuation char followed of printable
(excluded space) chars. An error is reported if no TIE is declared.

e char *{RE} will match the input according with the regular expression
RE. If the TIE is absent the default RE is [A-Za-z] [A-Za-z0-9_] *.

C5_scanf uses token type declarations to construct a regular expression table
(in the Lex style) with the following order:

1. arrays of chars

2. characters

3. character pointers.
4. double numbers
5. int numbers

There are also special functions to extend the table with comments and spacing
characters. The default table has no comments and the spacing characters are
/\’I“/,/\t/,/ " and /\n/.

In case of ambiguous specifications, C5_scanf chooses the longest match. If
there are more than one RE matching the same number of characters, the RE
found first in the table is selected.

The example below shows how a string can be scanned according to the RE
[AB]+:

DT_typedef char * {’[’,’A’,’B’,’]’,’+’} AB;
main(){
AB ab;
addComment ("/*","*x/");
C5_printf (C5_scanf (DT_pair(AB,ab)));
}

The function addComment enables comments with the declared start and ending
strings. The program accepts the following input

AABBBAAAA /* A C5_scanf example */

and the output will be

11

"AABBBAAAA"
The next input string

AA12xy /* this string is not acceptable by the scanner */
cannot be parsed and therefore the output will be an error message:

struct ErrorMessage={ "Syntax error"
struct near_at_line={ "AA" 1}

3

4.2 The syntax analyzer

The types with a syntactic meaning in C5_scanf are: structures, arrays (array of
char is excluded), type definitions , discriminated unions, pointers (char pointer
is excluded) and recursive declarations.

4.2.1 Structures and arrays

A struct or an array type is a sequence of syntactic or lexical types. The set
of strings accepted by this grammar (type) is the cartesian product

< Sy, Sty ., Sp >

where Sy, S1, ..., 5, are the sets of strings of the fields or elements of a given
structure or array respectively.

4.2.2 Pointers and definition types

The set of strings accepted by pointer and definition types are the same than
the referenced and the defined type respectively.

The next program shows a type (grammar) that includes the structured,
pointer and defined types:

DT_typedef double Real;
DT_typedef struct{ int n; Real r; } *IntReall2];
main(){
IntReal ir;
C5_printf (C5_scanf (DT_pair(IntReal,ir)));
}

For example, the string "123 0.432 21 0.55" is an acceptable input for this
program.

12

4.2.3 Discriminated unions

C unions cannot be used to express alternative grammars because they are not
discriminated, that is, the compiler does not know which field of the union is
currently stored.

By convention, we will represent alternative grammars in C5_scanf by the
following type:

DT typedef struct{
union{ dg,..,d;, ..,d, } < id >;
int < id >;
b o<id >

where dy, .., d;, .., d,, are the fields of the union and the integer field is called the
union discriminator and is supposed to keep the information about the current
field of the union. Thus, the discriminator field has no grammatical meaning.
The discriminated union type represents in C5_scanf the union of the sets
of strings accepted by the fields (grammars) do, .., d;, .., dy.
The concept of empty rule is implemented in the fields of discriminated
unions through a special nullable token called emptyProd and defined as follows:

DT_typedef char {’\0’} emptyProd;

This implementation is based on the proposal of Aycock and Horspool [4].

4.2.4 Recursive declarations

Recursive type declarations of discriminated unions allow us to express un-
bounded sets of strings.

For example, the program below accepts sequences of numbers and the con-
structed object will be a linked list of integers:

DT_typedef struct IntL{
union{
int n;
struct{ struct IntL *next; int n; } RecProd;
} UU;
int discriminator;
} * Int_List;
main(){
Int_List il;
C5_printf (C5_scanf (DT_pair(Int_List,il)));
}

4.3 BNF notation

In most parser generators, grammars are expressed in BNF (Backus-Naur no-
tation) or EBNF (Extended BNF).

13

The following example is a BNF grammar in Yacc syntax:

exp : NUMBER
| exp ’+’ exp

)

where exp is a nonterminal symbol and NUMBER and ’+’ are terminals (tokens).
In C5_scanf, this BNF grammar can be expressed by the next type declaration:

DT_typedef struct EXP{
union{
int number;
struct{
struct EXP *el; char{’+’} pl; struct EXP *e2;
} RecP;
} uU;
int discriminator;
} *exp;

4.4 The parsing algorithm

The algorithm of the C5_scanf parser generator is an implementation of the
Earley algorithm [8] with a lookahead of k = 1. This algorithm is a chart-based
top-down parser that accepts any context free grammar (CFG) and avoids the
left-recursion problem.

The algorithm runs in O(n?) time order where n is the quantity of symbols
to be parsed.

The algorithm has been modified to construct an object of the type that
represents the grammar. This is done by programming the recognizer so that it
builds an object during the recognition process.

C5_scanf will produce parsers even in the presence of conflicts. There are
some disambiguating rules in the Yacc style. For example, the if-else and the
arithmetic expression conflicts are solved in C5_scanf.

4.4.1 The if-else conflict
The program below is an example of the if-else conflict in C5_scanf:

DT_typedef char Else[5] {’e’,’1’,’s’,’e’};
DT_typedef char If[3] {°i’,°f’};
DT_typedef struct IFE{
union{
char {’e’} exp;
struct{ If i; struct IFE *e; } If_stmt;
struct{ If i; struct IFE x*el;
Else s; struct IFE *e2;} If_Else_stmt;
} uu;
int discriminator;

14

} * Stat;
main(){
Stat il;
C5_printf (C5_scanf (DT_pair(Stat,il)));
}

The input if if e else e produces two possible outputs for the same input
if (if e else e) and if (if e) else e.
The ambiguity is detected by C5_scanf returning a diagnostic message:

C5_scanf: Disc. union "Stat" ambiguous in
field 3 "If_Else_stmt" and
field 2 "If_stmt".
Suggestion: attach an int TIE to the "Stat" discriminator
specifying the preferred alternative ({3} or {2}).

If we attach the TIE {2} to the discriminator field of Stat then the ambiguity
is solved and the output will be

struct If_stmt={

array If=[if]

d_union Stat={
struct If_Else_stmt={
array If=[if]
d_union Stat={ e}
array Else=[else]
d_union Stat={ e}
}
}

}

4.4.2 Arithmetic expressions
The next token declaration in Yacc:

%left r40)
%left)% }/7

describes the precedence and associativity of the four arithmetic operators. The
four tokens are left associative, and plus and minus have lower precedence than
star and slash.

The next type declaration is the C5_scanf version of the above Yacc token
declaration:

DT_typedef char {’+’} PLUS;
DT_typedef char {’-’} MINUS;
DT_typedef char {’x’} TIMES;
DT_typedef char {’/’} DIV;

15

DT_typedef PLUS {LeftAss, 1} Plus;
DT_typedef MINUS {LeftAss, 1} Minus;
DT_typedef DIV {LeftAss, 2} Div;

DT_typedef TIMES {LeftAss, 2} Times;

These disambiguating rules are declared in TIEs attached to type definitions
related to token (or lexical) types. The first and second members of the TIE
are respectively the associative and precedence rules.

4.5 Semantic Actions

The TIE of a syntactic type may be used to code a semantic action so that
when an object of this type is constructed, the semantic action is performed.
C5_scanf actions return a DPT, and may obtain the DPTs returned by
previous actions.
A semantic action in C5_scanf is an integer TTE attached to a syntactic type
with the form:

{ ACTION_ID, Mvy, Muvy, ... ,Muv, }

where ACTION_ID is the action identifier and Mwvg, Mwvy, ... ,Mv, (n > 0)
are references to the elements of the syntactic type.
The code of an action TIE is interpreted by a user-defined function called

DPT C5_scanfActions(DPT)
which may access DPTs of previous actions through the function
DPT C5_scanfArg(int TIE ide, DPT dp)

where TIE_idx is an element of Mwvy, Mvy, ... , Muv, .
The nexr program shows the use of an action TIE in a simple grammar:

DT_typedef struct{ char {’<’} 1; char *id; char {’>’} g; }
{SELECT, 2} IdExp[2] {SELECT, 0};
DPT C5_scanfActions(DPT dp){
if (C5_gTIE_int(dp,0,0) == SELECT)
return(C5_scanfArg(1,dp));
else return(dp);

}

main(){
IdExp ie;
C5_printf (C5_scanf (DT_pair (IdExp,ie)));
}

The TIE { SELECT, O } selects the first element of the array and { SELECT ,
2 } selects the second field of the structure.

For example, this program accepts the string " < one > < two > " and the
output is "one".

16

Programming with C5_scanf.

The following C5 programs are three motivating examples that illustrate the
use of the C5_scanf function.

Matrix

The example below prints an element of a 2 X 3 matrix constructed by C5_scanf:

DT_typedef int Matrix[2][3];
main(){
Matrix mtx;
if (C5_scanfError (C5_scanf (DT_pair(Matrix, mtx)))
printf ("Cannot read the matrix.\n");
else printf ("mtx[1] [2]=Vd\n" ,mtx[1] [2]);
}

Notice the way the variable mtx is used to communicate the dynamic and the
static universeas. This is an useful programming methodology in C5: the user
constructs an object in the dynamic universe which is processed in the static
universe.

A desk calculator

The next program shows a desk calculator that includes associative and prece-
dence rules to avoid ambiguous grammars:

/* Tokens */

DT_typedef char {’+’} PLUS;
DT_typedef char {’-’} MINUS;
DT_typedef char {’*’} TIMES;
DT_typedef char {’/’} DIV;

/* Association and precedence rules */
DT_typedef PLUS {LeftAss, 2} Plus;
DT_typedef MINUS {LeftAss, 2} Minus;
DT_typedef DIV {LeftAss, 3} Div;
DT_typedef TIMES {LeftAss, 3} Times;
DT_typedef MINUS {LeftAss, 4} Uminus;

#define Ae_ struct Aexp *

DT_typedef struct Aexp{ /* Grammar rules */
union{
int number;
struct{Ae_ el; Plus a; Ae_ e2;} {SUM,1,3} PlusProd;
struct{Ae_ el; Times t; Ae_ e2;} {MUL,1,3} TimesProd;
struct{Ae_ el; Minus m; Ae_ e2;} {SUB,1,3} MinusProd;
struct{Ae_ el; Div d; Ae_ e2;} {DVD,1,3} DivProd;
struct{ Uminus um; Ae_ e;} {UNA,2 } UminusProd;
} uu;

17

int disc;
} #AritihmeticExp;

int Arg(int n, DPT dp){
return(C5_gint (C5_scanfArg(n,dp),0));
}

DT_typedef int SC_Int;

DPT C5_scanfActions(DPT dp){ /* Semantic actions */
SC_Int result;
switch(C5_gTIE_int(dp,0,0)){
case SUM: result= Arg(1l,dp) + Arg(2,dp); break;
case SUB: result= Arg(1l,dp) - Arg(2,dp); break;
case MUL: result= Arg(1l,dp) * Arg(2,dp); break;
case DVD: result= Arg(1l,dp) / Arg(2,dp); break;
case UNA: result= - Arg(1l,dp); break;
default: return(dp);
}
return(DT_pair(SC_Int,result));
}
main(){
AritihmeticExp aexp;
C5_printf (C5_scanf (DT _pair (AritihmeticExp,aexp)));
}

For example, this calculator accepts the input 10 + 2 * 4 / - 2 - 2 and
produces the output 4.

XML checker.

The example below shows a partial and simplified version of a well-formed XML
document checker.

DT_typedef char *{’[’,’"’,’<’,’&’,’>’,°]’,°+’} charD;

DT_typedef struct{ char {’<’} 1; char *id; char {’>’} r; } STag;

DT_typedef struct{ char 1[3] {’<’,’/’}; char *id; char {’>’} r;} ETag;

DT_typedef struct{ char {’<’}1; char #*id; char r[3]{’/’,’>’};
}EmptyElemTag;

DT_typedef struct{
union{ charD chd; char * id; } UU;
int discriminator;
} CharData;

DT_typedef struct CharDL{
union{
emptyProd nil;
struct{ struct CharDL *c; CharData cd; } CDls;
} DU;
int discriminator;

18

} *CharDatalist;

DT_typedef structq{
CharDatalList cdl;
struct XML_EL_LS *els;
} XMLcontent;

DT_typedef struct XML_EL{

union{
EmptyElemTag eet;
struct{ STag s; XMLcontent c; ETag e; }

{CHECK_NAMES, 1,3} elem;

} DU;

int discriminator;

} *XMLelement;

DT_typedef struct XML_EL_LS{
union{
emptyProd nil;
struct{struct XML_EL_LS *next; struct XML_EL *el;} els;
} DU;
int discriminator;
} *XMLelementL;

DPT C5_scanfActions(DPT dp){
if (C5_gTIE_int(dp,0,0)==CHECK_NAMES)
if (strcmp(C5_gstr(C5_gos(C5_scanfArg(1l,dp),2),"error"),
C5_gstr(C5_gos(C5_scanfArg(2,dp),2),"error"))){
fprintf (stderr,"Tag unmatched.\n");
exit(1);
}
else return(dp);
else return(dp);

}

main(){
XMLelement xmldoc;
C5_printf (C5_scanf (DT_pair (XMLelement,xmldoc))) ;
}

This program accepts the following XML document

<message>
<to>juanma@adinet.com</to>
<from>marcos@adinet.com</from>
<subject>XML test </subject>
<text>

--Can you check this with Cb_scanf?

</text>

</message>.

19

However, it rejects this input text with nested tags:

<message>
<subject> XML test of nested tags. </message>
</subject>.

Notice that in the case of a successful check, the variable xmldoc contains a
structured XML document that can easily be inspected or processed.

5 About the implementation.

5.1 The C5 compiler

The C5 compiler has been developed at the Instituto de Computacion (InCo)
in Montevideo, Uruguay. The prototype translates C5 programs into C code.

The C5 parser is a reused C parser with few grammatical modifications.
The compiler consists on about 3500 lines where 500 of them are the actual
type checker. The compiler parses C5, does type checking of DPT construction
and translates the resulting code into C.

Since the language keeps types during run-time, the compiler generates two
C files: one of them is the translation of the C5 source program while the other
is a type database required by the DPT library.

The C5 type checker is trivial: for every DT_pair invocation C5 checks stat-
ically if the first argument is a DT_typedef type definition and if the second is
a variable of the same type than the value of the first argument.

The current implementation of C5 with a sample of C5_scanf programs can
be found on the Web at

http://www.fing.edu.uy/~ jcabezas/ch

5.2 The function C5_scanf.

C5_scanf has been implemented in C5 and consists on about 1600 lines where
600 of them belong to the lexical analyzer.

The Earley algorithm and the lexical analyzer have been implemented in a
naive way discarding efficiency considerations. In this first approach, we are
centered in the methodological aspects of the problem. On the other hand,
there is an important amount of work related with fast Earley parsing [4] that
can be incorporated in the future.

However, small examples as those presented in this paper are immediately
processed in a Pentium III under Linux. Furthermore, we tested C5_scanf with
the type

DT_typedef struct IntL{
union{
emptyProd nil;
struct{ struct IntL *next; int n; } RecProd;

20

} uU;
int discriminator;
} *x Int_List;

and an input file of 10000 integers and the parser constructed the integer list of
10000 nodes in about 0.5 second.

6 Related work

6.1 About C5

The statically typed programming languages Amber [6] and Modula-3 [7] include
notions of a dynamic type and a typecase statement. This idea can also be seen
in functional programming [15] [19] and in type-safe C dialects like Ccured [17]
where dynamics are used for converting C in a type safe language.

Although C5 may assign accurate types to untyped C programs like printf,
it is not a type-safe C dialect but rather a C-based framework for experimenting
with generic programming methodologies. In our knowledge, C5 is the first C
extension with dynamics developed for generic programming.

The extension of functional languages with dependent types is another in-
teresting alternative for generic programming: Cayenne [2] —a Haskell-like [11]
language with dependent types— is powerful enough to encode predicate logic
at the type level and thus express generic functions like printf without restric-
tions.

In a close research line to dependent types, the Generic Programming com-
munity [5][10]. is developing another approach. PolyP [12] is an example of this
work that achieves an expressive power similar to that of dependent types by
parameterizing function definitions with respect to data type signatures.

6.2 About C5_scanf

Most parsers in use today are based on efficient linear-time algorithms that
accept a subset of CFGs (LL,LR or LALR) [13].

The primary objection to the Earley’s algorithm is not functionality but
with its run-time response.

Nevertheless, the practical use of Earley parsing has become an interesting
alternative in the last years: Accent [18] is the first Earley parser generator
along the lines of Yacc and DEEP [3] is an efficient directly-executable Earley
parsing.

Finally, we did not found parser generators that accept grammars denoted
with C types in the C5_scanf style.

21

7 Conclusions

7.1 About C5

The generic functions C5_printf and C5_scanf show that a static typed lan-
guage extended with DPTs (dynamics) and TIEs can be powerful enough to
express a wide class of generic functions in a straightforward, compact and safe
way.

Although TIEs are very restricted (constant) expressions, they seem to be
an useful way of providing parameters for generic functions without affecting
the static C type system.

Even though the communication between static and dynamic types is also
restricted to avoid typing conflicts, we have not detected practical limitations
when implementing generic functions like C5_scanf.

7.2 About C5_scanf

In contrast with YACC, grammar rules are written within the same program-
ming language as the rest of the program. There is no gap between the grammar
formalism and the actual programming language used.

Type declarations with TIEs contain all the information required by the pars-
ing process: the lexical, syntactic, disambiguating and semantic action compo-
nents. However, semantic actions coded with TIEs has become a more complex
task than we use to have in Yacc.

Since BNF or EBNF are clearly better notations than C types for grammar
description, C5_scanf is not a YACC alternative. On the other hand, when
dealing with small or medium size grammars, C5_scanf can be an attractive
option.

The most remarkable property of C5_scanf is the object construction. The
user just need to define a grammar which is a type. The parsing result is an
object of that type. Thus, the user may inspect or process the resulting object
according to the defined type. The parsing process becomes transparent to the
user in C5_scanf.

8 Acknowledgments

The support and suggestions of many colleagues and students have added greatly
to the developing of C5 and the pleasant writing of this paper. In particular:
Pablo Queirolo, Gustavo Betarte, Alberto Pardo, Hector Cancela, Bengt Nord-
striom and Alfredo Viola.

Special thanks to the 238 computer engineering students of InCo who tested
(and suffered) the successive versions of the C5 prototype.

22

References

[1]

[12]

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dy-
namic Typing in a Statically Typed Language. In 16th POPL, pages 213—
227, 1989.

Lennart Augustsson. Cayenne - a Language with Dependent Types. In Pro-
ceedings of the third ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’98), pages 239-250, USA, 1998. ISBN 0-58113-
024-4.

”John Aycock and Nigel Horspool”. ”directly-executable Earley parsing”.
Lecture Notes in Computer Science, 2027:229+, 2001.

John Aycock and R. Nigel Horspool. Practical Earley Parsing. The Com-
puter Journal, 45(6):620-630, 2002.

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic Program-
ming - An Introduction -. In Advanced Functional Programming, LNCS
1608. Springer-Verlag, 1999.

Luca Cardelli. ”"amber”. In Guy Cousineau, Pierre-Louis Curien, and
Bernard Robinet, editors, ”Combinators and functional programming lan-
guages : Thirteenth Spring School of the LITP, Val d’Ajol, France, May
6-10, 19857, volume 242. Springer-Verlag, 1986.

”Luca Cardelli, James Donahue, and Lucille Glassman”. Modula-3 report
(revised). Technical report, DEC SRC-RR-52, 1989.

Jay Earley. An Efficient Context-Free Parsing Algorithm. Communications
of the ACM, 13(2):94-102, February 1970.

GNU. Using and Porting the GNU Compiler Collection (GCC). Free
Software Foundation, http://gcc.gnu.org/onlinedocs/gee-2.95.3 /gee. html.

R. Hinze. Polytypic Programming with Ease. In 4th Fuji Interna-
tional Symposium on Functional and Logic Programming (FLOPS’99),
Tsukuba, Japan., Lecture Notes in Computer Science Vol. 1722, pages 21—
36. Springer-Verlag, 1999.

Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairnbairn, Joseph H. Fasel, Maria M. Guzman, Kevin Hammond, John
Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S. Nikhil, Will
Partain, and John Peterson. Report on the Programming Language
Haskell, A Non-strict, Purely Functional Language . SIGPLAN Notices,
27(5):R1-R164, 1992.

P. Jansson and J. Jeuring. PolyP - A Polytypic Programming Language
Extension. In POPL 97: The 24th ACM SIGPLAN-SIGACT Symposium of
Principles of Programming Languages , pages 470-482. ACM Press, 1997.

23

[13]

[14]

[15]

[16]

[20]

Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Pro-
grammer’s Manual, volume 2, pages 353-387. Holt, Rinehart, and Winston,
New York, NY, USA, 1979.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language,
page pg. 71. Prentice Hall, 1977. ISBN 0-13-1101-63-3.

Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional
Programming, 3(4):431-463, 1993.

Michael E. Lesk and Eric Schmidt. "lex: A lexical analyzer generator”. In
UNIX Programmer’s Manual, volume 2, pages 388-400. Holt, Rinehart, and
Winston, New York, NY, USA, 1979. AT&T Bell Laboratories Technical
Report in 1975.

?George C. Necula, Scott McPeak, and Westley Weimer”. ” CCured: type-
safe retrofitting of legacy code”. In Symposium on Principles of Program-
ming Languages, pages 128-139, 2002.

" Friedrich Wilhelm Schrer”. The ACCENT Compiler Compiler. Technical
report, GMD Report 101, 2000.

Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic Typing as
Staged Type Inference. In POPL 98: The 25th ACM SIGPLAN-SIGACT
Symposium of Principles of Programming Languages, pages 289-302, Jan
1998.

Jim Trevor, Greg Morriset, Dan Grossman, Michael Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe Dialect of C. In The USENIX Annual
Technical Conference , Monterrey , CA, 2002.

24

25

